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Abstract. The uncertainty and the sensitivity of the response of a nonlinear stochastic multi-
scale numerical model for randomly heterogenous material is investigated. 9 input parameters
and 10 descriptors of the time-dependent output response are considered. The material model
has been presented elsewhere and is introduced as a ’black box function’ in the present paper,
parameterized so that the model is deterministic and that variability in the outputs only comes
from the variability introduced in the inputs. The objective is twofolds: (i) surveying the variety
of macroscopic behaviors the material model considered is capable of representing, and (ii)
assessing the relative importance of the model inputs in the model outputs to, for instance, define
efficient parameters identification protocoles. A preliminary analysis of the linear dependency
between the output descriptors is presented and a reduced set of 6 descriptors is eventually
selected. Then, the influence of the model input parameters on each of these model response
descriptors is investigated using a global sensitivity analysis technique based on the functional
decomposition of their respective total variance.

1 INTRODUCTION

The mechanical behavior of a wide range of natural or manufactured materials is charac-
terized by macroscopic engineering parameters that depend on phenomena at heterogeneous
smaller scales (concrete, nano-engineered materials [12]). On the one hand, experimental de-
vices and techniques allow characterizing the spatial distribution of material properties at micro-
scales as for instance the combination of atomic force microscope imaging and quantitative
nanomechanical property mapping techniques employed in [14] for a study of Young’s mod-
ulus distribution in the so-called interfacial transition zone in concrete material. On the other
hand, computational material models allow carrying out numerical experiments that have the
potential of investigating the material behavior in a range of configurations that can be difficult
to reach with sole experimental investigation. There is therefore a need for developing such nu-
merical material models that can simulate engineering properties at macro-scale from relevant

1



Pierre Jehel

information coming from lower scales. This has been a topic of continuing research in the field
of computational mechanics for decades.

The development of the inelastic stochastic multi-scale numerical model investigated in the
present work (see [5] and [6]) was initially motivated by the need for a concrete model that is
capable of representing the contribution of material damping to the overall structural damping in
the seismic analysis of civil engineering assets. In earthquake engineering, structural damping
is indeed commonly introduced in numerical simulations using ad hoc damping models such as
the pervasive so-called Rayleigh damping model. Unfortunately, as nonlinear structural analysis
is performed, resorting to such ad hoc approach potentially results in large uncertainties when
assessing structural seismic performance.

This concrete model [5, 6] is based on a meso-scale where the heterogeneous structure is
represented by random vector fields. Local behavior at meso-scale is nonlinear and can be seen
as the homogenized response of other mechanisms at lower scales when explicit construction of
smaller scales is not possible. The model is constructed with a set of parameters that describes
the structure of the random vector fields (correlation coefficients, correlation lengths and func-
tions); a set of parameters that characterizes the mean, variance and distribution of physical
parameters at meso-scale (initial stiffness, yield stress and stiffness degradation ratio); and a
set of parameters for spatial discretization of the material domain (finite element method) and
of the random fields (spectral representation method [11]). A representative volume element
(RVE) can be retrieved with the ability to represent salient features of the concrete uniaxial
cyclic compressive response that are not explicitly represented at meso-scale, like for instance
the hysteresis loops experimentally observed in unloading-reloading cycles.

The objective of this paper is twofolds: (i) surveying the variety of macroscopic behaviors
this numerical inelastic stochastic multi-scale material model is capable of representing, and
(ii) assessing the relative importance of the model inputs in the model outputs to, for instance,
define efficient parameters identification protocoles. Next section is focussed on introducing the
model input parameters. Then, a probabilistic framework is set in section 3 for uncertainty and
global sensitivity analysis. In section 4, the results of an application are presented and, finally,
a list of conclusions closes the paper.

2 THE MATERIAL MODEL AND ITS INPUT PARAMETERS

The material model used in this paper has been developed to represent the restoring force
f(t) of a 1D nonlinear material in a given cyclic quasi-static loading displacement time history
u(t) where t is the pseudo-time (Fig. 1). This material model is referred to as M, it takes t
along with a set of parameters x as inputs, and yields the restoring force history f(t) as output.

!

f(t)% u(t)%

Figure 1: The experiment: bar with quasi-static displacement u(t) imposed at one end, with other end fixed where
reaction f(t) develops; it is assumed that the experiment is such that the strain field is homogeneous in the bar.

The material model M that is used in this work has been presented in [5, 6]. Therefore,
we only introduce here its main characteristics along with the list of input parameters that will
be used for uncertainty and sensitivity analyses hereafter. Also, for the sake of illustrating, we
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consider that the modeled material is concrete; but any other random heterogeneous material
described by 3 scales as introduced in Tab. 1 and Fig. 2 could fit this setting.

Scale Observations Modeling assumptions
Micro Physical and chemical mecha-

nisms occur
Internal variables are considered in the frame-
work of continuum thermodynamics [1, 8] to
convey information from this scale to the meso-
scale (see Fig. 3).

Meso Aggregates and the cement paste
are observable and build an het-
erogenous material structure

The heterogeneity at this scale is represented
using random fields rather than an explicit rep-
resentation of the structure.

Macro Homogeneous quantities are re-
trieved for engineering purposes

Classical homogenization technique in the
framework of the Finite Element Method is
used [9, 10].

Table 1: The 3 scales introduced in the modelM. Concrete material is considered here as an illustrating example.
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Table 2. SEM-BSE analyses of ITZ points.

Concrete Point Phase Ca/Si (Al+Fe)/Ca S/Ca

Type 1
1 CH 35.08 - 0.03

2 C-S-H 1.78 0.15 -

Type 2

3 C-S-H 1.35 0.20 -

4 CH 13.10 - 0.08

5 C-S-H 1.80 0.08 -

Type 3
6 CH 25.30 - 0.04

7 C-S-H 1.53 0.07 -

Type 4

8 C-S-H 2.48 0.04 -

9 CH 15.84 0.01 0.09

10 C-S-H 1.63 0.08 -

Figure 9. SEM-SE analyses of concrete 1 IZT (without doping).

Figure 10. SEM-SE analyses of concrete 2 IZT (with doping).

Figure 11. SEM-SE analyses of concrete 3 IZT (without doping, 
S/C = 10% and SP/B = 2%).

Figure 12. SEM-SE analyses of concrete 4 IZT (with doping, 
S/C = 10% and SP/B = 2%).

from secondary electrons, and confirm the results presented 
earlier.

Concrete 1 (Figure 9) is not doped. Therefore, it 
presents a large amount of CH which is characterized in 
geometrically defined piles of plates. The fracture of the 
sample indicates the weak link, which coincides with the 
CH plates. However, in doped concrete (Figures 10 and 12) 
both the quantity and the size of the CH crystals decreased. 
This factor favors the absence of ITZ and contributes to a 
stronger aggregate-matrix bond.

The morphology of the C-S-H in doped concrete is 
different from the morphology in concrete without doping, 

in the form of short acicular crystals (Figures 10 and 12) 
and compact fibrous bundles or almost not crystalline fibers 
(Figures 9 and 11), respectively. The results are attributed to 
the presence of silica fume in the doping layer.

The alteration in cement hydration products in the 
ITZ with 10% of silica fume in the doping layer can be 
explained by the following: i) low permeability of fresh 
concrete, thus causing less water accumulation on the 
surface of the aggregate, ii) the presence of multiple nuclei 
of crystallization, contributing to the formation of smaller 
CH crystals with lesser tendency in preferential orientations 
iii) gradual densification in the hydration products through 
pozzolanic reactions between CH and silica fume.

In Figure 13 the alteration in cement hydration products 
in the ITZ with 10% of silica fume in the doping layer can 
be observed through strength tests on specimens subjected 
to compression strength which has achieved fc,91 = 59 MPa. 
This result confirms the possibility of using defective 
aggregates - which have no commercial value - to produce 
durable high-strength concrete through doping and the 
improvement of high performance mortar.

Thus, the treatment of ITZ enables the possibility of 
using lateritic aggregates in structural concrete. It results 
in the refinement of porosity in the ITZ cement matrix and 
modification of cement hydration products, represented by 
the reduction of both quantity and size of CH plates and the 
increase of more compact and strong C-S-H. Doped concrete, 
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Figure 2: From left to right: [a] equivalent homogeneous concrete (macro-scale), [b] representation of the hetero-
geneous concrete at meso-scale (5 cm × 5 cm-square), [c] actual heterogeneous concrete (5 cm × 5 cm-square),
and [d] zoom on the underlying microstructure in the cement paste (20 µm × 20 µm-square observed through
Scanning Electron Microscope, courtesy A.P.M. Trigo [13]).

The model uses stochastic fields to represent spatial variations – that is random heterogene-
ity – in the material properties at meso-scale. The actual meso-scale shown in Fig. 2[c] is
replaced by random vector fields as shown in Fig. 2[b]. In the particular case of a 1D material
behavior, which this work is limited to, three parameters are represented as spatially variable as
illustrated in Fig. 3: the initial stiffness C(p, ω) (or Young’s modulus at meso-scale), the yield
stress σy(p, ω), and the stiffness degradation ratio r(p, ω) ∈ [0, 1], where p is a position in the
material and ω recalls the randomness in the quantity. The three quantities are correlated and
the same correlation coefficient ρ is considered for any pair of parameters. The parameters x of
modelM are listed in Tab. 2.

The modelM can be stochastic: same input parameters x and imposed displacement history
u(t) can yield different outputs. Nevertheless, it has been shown in [5, 6] that the model can
also be deterministic: same input parameters x and loading history u(t) would yield same
output. In other words, it is possible to parameter the model in such a way that a material
Representative Volume Element (RVE) is simulated. This can be achieved using particular set
of spatial parameters (N = 16, M = 32, Mf = 96, L0/` = 0.1, εR = 0.01 using the same
notations as in [5]). This parameterization is used in this paper so that uncertainty observed in
the output parameters y would only come from uncertain input parameters x.
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Figure 3: Behavior law at meso-scale depends on the position p in the heterogeneous material. Initial stiffness,
yield stress, and stiffness degradation ratio at any point p are modeled as random variables.

x Description
x1 = lawC Initial stiffness C distribution (log-normal or uniform)
x2 = aC Mean of lawC
x3 = bC Variance of lawC
x4 = lawσy Yield stress σy distribution (log-normal or uniform)
x5 = aσy Mean of lawσy
x6 = bσy Variance of lawσy
x7 = ar Mean of the stiffness degradation ratio uniform distribution lawr
x8 = br Variance of lawr
x9 = ρ Correlation coefficient between (C and σy), (C and r), or (σy and r)

Table 2: List of the Nx = 9 model input parameters xj , j = 1 . . . Nx considered in this work.

3 UNCERTAINTY AND SENSITIVITY ANALYSES OF THE MODEL OUTPUT

Let introduce the probability space (Θ,S, P ) with sample space Θ, collection of events S,
and probability measure P . To introduce a certain degree of belief in the set x of the model
input parameters, we consider them as random variables X : θ ∈ Θ 7→ X(θ). Consequently,
the model output f(t) also is a random variable F (t) : θ 7→ F (t, θ) for all t ∈ [0, T ] and we
have the deterministic modelM that is the mapping

M : (θ, t) 7→ F (t) =M(X, t) (1)

3.1 Uncertainty analysis

The uncertainty in the model output can be analyzed computing quantities such as the mean,
variance, and cumulated density function for all t ∈ [0, T ]:

E[F (t)] =

∫
Θ

M(X(θ), t) dP (θ) (2)

V [F (t)] =

∫
Θ

(
E[F (t)]−M(X(θ), t)

)2
dP (θ) (3)

Pr[F (t) ≤ f(t)] =

∫
Θ

δf(t)[M(X(θ), t)] dP (θ) with δf(t)[·] =

{
1 if · ≤ f(t)
0 if · > f(t)

(4)
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This requires computing integrals over the sample space Θ. To this purpose, Monte Carlo
simulations are performed from a Latin hypercube sample (LHS) of size N s. LHS is adopted
here for its efficiency compared to random sampling [3, 7] with the Nx input random variables
in X assumed as mutually independent.

3.2 Sensitivity analysis

For the analysis of the sensitivity of the model output to the inputs, the approach adopted in
this work is based on a functional decomposition of the variance (see e.g. [4]), ∀t ∈ [0, T ], as:

V [F (t)] =
Nx∑
j=1

Dj[F (t)] +
∑

1≤j<k≤Nx

Djk[F (t)] + . . .+D12...Nx [F (t)] (5)

where Dj[F (t)] = V [E[F (t)|Xj]], Djk[F (t)] = V [E[F (t)|Xj, Xk]] − Dj[F (t)] − Dk[F (t)]
and so on. Then, the following first-order and total indices are computed from (Nx + 2)×N s

computations of the model response as:

sj =
Dj[F (t)]

V [F (t)]
(6)

sjT = sj +

∑Nx

k=1,k 6=j Djk +
∑Nx

1≤k 6=j<l 6=j Djkl + . . .+D12...Nx

V [F (t)]
(7)

where sj , respectively sjT , is the portion of V [F (t)] due to input xj alone, respectively to xj
and all the interactions of xj with the other input variables.

4 APPLICATION

4.1 Uncertainty in the model input parameters

The distributions selected for the uncertain input parameters are introduced in Tab. 3.

X(θ) Distribution: law(mean, variance)
X1 = LAWC B0.5: either U(aC , bC) or L(aC , bC) with probability 0.5 each
X2 = AC [MPa] U(ãC = 30e3, 0.04 ã2

C) such that C ≥ 0

X3 = BC [MPa2] U(b̃C = 15e3, 0.04 b̃2
C) such that C ≥ 0

X4 = LAWσy B0.5: either U(aσy , bσy) or L(aσy , bσy) with probability 0.5 each
X5 = Aσy [MPa] U(ãσy = 35, 0.04 ã2

σy) such that σy ≥ 0

X6 = Bσy [MPa2] U(b̃σy = 20, 0.04 b̃2
σy) such that σy ≥ 0

X7 = Ar U(ãr = 0.5, 0.04 ã2
r) such that r ∈ [0, 1]

X8 = Br U(b̃r = 0.02, 0.04 b̃2
r) such that r ∈ [0, 1]

X9 = Rho U(0.5, 1/12) (support is [0, 1])

Table 3: Random variables and there distributions characterized by their mean and variance. B, U , and L are
Bernoulli, uniform, and log-normal distributions. How to find the support of a uniform distribution from its mean
and variance is shown in the Annex. Quantities with superimposed tilde ·̃ are some nominal mean values; a
coefficient of variation of 20% is considered to calculate the variance associated to these nominal mean values.
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4.2 Model response descriptors

We start by simulating the material response in one symmetric loading cycle with macro-
scopic strain amplitude E = 3.5e−3. N s = 500 simulations are run and model responses are
plot in Fig. 4. From the observation of this figure we choose a series of Ny model response
descriptors as introduced in Fig. 5, gathered in vector y. Then, we seek possible linear depen-
dencies – other types of dependencies could of course be sought too – and build Fig. 6. From
Fig. 6, it is observed that model response after point D is strongly correlated to model response
between points O and D. Accordingly, only the following Ny = 6 model response descriptors
will be considered thereafter: y1 = CO, y2 = CB, y3 = ΣA, y4 = ΣB, y5 = ΣD, and y6 = EC .
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Figure 4: [left] Ns = 500 model response curves. [middle] and [left] Sample mean along with the 10% and 90%
percentiles (dashed line); response curves are split into two parts for better readability.
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Figure 5: Model response descriptors: initial tangent modulus CO and unloading tangent modulus at point B CB ;
stresses ΣA (E = 1.75e−3), ΣB , ΣD, ΣE , ΣG, and ΣH ; strains EC and EF .
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Figure 6: [left] Absolute value of the sample Pearson correlation coefficients between model response descriptors
yk, k = 1 . . . Ny; [right] scatterplot of ΣA versus ΣH showing strong linear correlation.

4.3 Uncertainty and sensitivity estimators

To estimate global sensitivity of the model outputs y to the inputs x, the method detailed
in [2] (Sect. 6.13) has been implemented. Accordingly:

1. A first LHS [xij], i ∈ [0, N s] and j ∈ [0, Nx], is generated and the model response
yi(t) =M(xi, t) is computed for each set of input parameters xi = [xi1 · · ·xiNx ]. From
these quantities, estimators of the mean and variance in Eqs. (2) and (3) are computed
∀k ∈ [1 . . . Ny] as:

Ê[Yk] =
1

N s

Ns∑
i=1

yk,i(t) ; V̂ [Yk] = (σ̂[Yk])
2 =

1

N s

Ns∑
i=1

(
Ê[Yk]− yk,i(t)

)2 (8)

2. Another sample [x̄I,j] = [p(x1) · · · p(xNx)], I ∈ [0, N s], is built, where p(xj) is a random
permutation without replacement of the N s elements of the j-th column of [xij]. The
model response ȳI(t) = M(x̄I , t) is computed for each x̄I = [x̄I1 · · · x̄INx ]. Then,
Nx samples of N s model responses are obtained by reordering the computed ȳI(t)’s as
follows: ȳ(j)

i (t) =M([x̄I1 · · · x̄Ij = xij · · · x̄INx ], t), j ∈ [0, Nx].

3. A last LHS [x̌ij], i ∈ [0, N s] and j ∈ [0, Nx], is generated and Nx samples of N s model
responses are computed as ¯̄y

(j)
i = M(¯̄x

(j)
i , t), ¯̄x

(j)
i = [¯̄x

(j)
i1 · · · ¯̄x

(j)
iNx ], with ¯̄x

(j)
iJ = xiJ for

J ∈ [0, Nx] except for J = j where ¯̄x
(j)
iJ = x̌ij .

Estimators for the sensitivity indices are then computed, ∀k ∈ [1 . . . Ny], as:

ŝk,j =
1

V̂ [Yk]

(
1

N s

Ns∑
i=1

yk,i(t)× ȳ(j)
k,i (t)− Ê[Yk]

2

)
(9)

ŝk,jT =
1

N s × V̂ [Yk]

Ns∑
i=1

yk,i

(
yk,i − ¯̄y

(j)
k,i

)
(10)

Altogether, the model has to be run (2 + Nx) × N s times. In the present work, Nx = 9,
N s = 300, 400, or 1, 000, and computing one model response takes less than 2 seconds. The
calculated estimations are shown in Tab. 4.
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N s y1 = C0 y2 = CB y3 = ΣA y4 = ΣB y5 = ΣD y6 = EC
300 29,998 MPa 15,034 MPa 34.470 MPa 35.034 MPa -16.801 MPa 1.156e-3

Ê[Yk] 600 29,997 MPa 15,040 MPa 34.441 MPa 35.035 MPa -16.776 MPa 1.155e-3
1,000 29,997 MPa 15,008 MPa 34.344 MPa 35.030 MPa -16.700 MPa 1.152e-3
300 6,001 MPa 2,822 MPa 6.565 MPa 7.007 MPa 5.509 MPa 3.06e-4

σ̂[Yk] 600 6,000 MPa 2,848 MPa 6.507 MPa 7.000 MPa 5.561 MPa 3.09e-4
1,000 6,000 MPa 2,835 MPa 6.413 MPa 7.006 MPa 5.494 MPa 3.04e-4
300 0.012 0.058 0.112 0.056 -0.012 0.058

ŝ1 (x1 = lawC) 600 -0.074 -0.021 -0.003 -0.029 -0.050 -0.068
1,000 0.003 -0.006 0.119 -0.011 0.046 0.075
300 1.000 0.070 -0.018 -0.104 0.256 0.269

ŝ2 (x2 = aC) 600 1.000 0.127 0.068 0.016 0.268 0.225
1,000 1.000 0.159 0.137 -0.018 0.294 0.204
300 0.077 0.087 -0.004 -0.081 0.083 0.062

ŝ3 (x3 = bC) 600 -0.015 0.013 0.022 -0.021 -0.003 -0.039
1,000 0.008 0.029 0.157 0.017 -0.028 -0.034
300 -0.024 0.167 0.135 0.048 0.112 0.144

ŝ4 (x4 = lawσy ) 600 -0.056 0.028 -0.004 -0.038 0.063 0.025
1,000 -0.011 0.056 0.149 0.017 0.076 0.072
300 -0.042 0.626 1.032 1.002 0.023 0.218

ŝ5 (x5 = aσy ) 600 -0.034 0.573 0.994 1.000 0.014 0.131
1,000 -0.014 0.614 1.103 1.003 0.046 0.187
300 -0.078 0.030 0.035 -0.014 -0.034 0.022

ŝ6 (x6 = bσy ) 600 0.003 0.042 0.054 -0.016 -0.017 -0.114
1,000 0.004 0.017 0.106 -0.018 0.016 0.012
300 -0.070 0.331 0.097 0.049 0.679 0.709

ŝ7 (x7 = ar) 600 0.011 0.300 0.040 0.030 0.644 0.595
1,000 0.029 0.335 0.130 0.002 0.697 0.618
300 -0.066 -0.004 0.074 0.016 -0.034 0.073

ŝ8 (x8 = br) 600 0.026 0.000 -0.012 -0.049 -0.003 -0.075
1,000 0.011 0.088 ,0.173 0.042 0.076 0.058
300 -0.021 0.066 0.102 0.019 -0.053 -0.041

ŝ9 (x9 = ρ) 600 -0.007 0.006 0.063 0.015 -0.007 0.008
1,000 -0.074 0.010 0.115 -0.001 0.011 0.034
300 0.000 0.000 -0.001 0.000 0.002 -0.002

ŝ1T (x1 = lawC) 600 0.000 -0.002 0.002 0.002 -0.003 0.004
1,000 0.000 0.000 0.000 -0.000 0.001 -0.001
300 1.020 0.038 0.017 -0.002 0.212 0.179

ŝ2T (x2 = aC) 600 0.914 0.230 0.046 0.002 0.374 0.297
1,000 0.945 0.067 -0.083 -0.001 0.246 0.202
300 0.000 0.001 0.000 0.000 0.004 -0.002

ŝ3T (x3 = bC) 600 0.000 0.000 0.001 0.001 -0.001 0.000
1,000 0.000 -0.001 0.000 0.000 -0.003 -0.001
300 0.000 0.000 -0.005 -0.002 0.019 -0.001

ŝ4T (x4 = lawσy ) 600 0.000 0.002 -0.004 -0.001 0.008 -0.004
1,000 0.000 0.000 -0.003 -0.002 0.001 -0.001
300 0.000 0.581 0.894 0.939 0.111 0.180

ŝ5T (x5 = aσy ) 600 0.000 0.547 0.920 1.005 0.049 0.223
1,000 0.000 0.565 0.893 1.023 0.078 0.171
300 0.000 -0.002 0.007 -0.004 0.006 0.001

ŝ6T (x6 = bσy ) 600 0.000 -0.003 0.004 0.001 -0.003 -0.004
1,000 0.000 -0.001 0.000 -0.000 -0.002 -0.001
300 0.000 0.174 -0.003 -0.003 0.572 0.554

ŝ7T (x7 = ar) 600 0.000 0.316 0.000 0.000 0.619 0.566
1,000 0.000 0.343 -0.004 -0.003 0.721 0.607
300 0.000 -0.008 -0.001 0.000 0.002 -0.008

ŝ8T (x8 = br) 600 0.000 -0.006 0.002 0.002 0.001 -0.007
1,000 0.000 -0.004 -0.001 -0.000 -0.004 -0.003
300 0.000 0.000 0.000 0.000 -0.001 0.002

ŝ9T (x9 = ρ) 600 0.000 0.007 0.003 0.005 0.012 0.007
1,000 0.000 0.009 -0.004 -0.004 -0.005 0.021

Table 4: Estimates Ê[Yk] and σ̂[Yk] for expected value and standard deviation of the model response descriptors
yk with k = 1 . . . Ny; estimates ŝj for the contribution of each input xj with j = 1 . . . Nx; estimates ŝjT for the
contribution of each input xj and all its interactions with the other inputs xp with p = 1 . . . Nx and p 6= j.
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5 CONCLUSIONS

In the particular case of the experiment shown in Fig. 1, and from the above presented work,
the following conclusions can be drawn about the inelastic stochastic multi-scale numerical
model for random heterogeneous materials developed in [5] and [6]:

• Fig. 4: The model simulates macroscopic behaviors of analogous shapes for all the sets
of input parameters considered.

• Tab. 4: Clear trends regarding the relative importance of the model input parameters on
the outputs can be observed with a relatively small number of simulations.

• Tab. 4: 3 out of 9 input parameters are key to control the simulated macroscopic response,
namely the means of the random fields at meso-scale: aC , aσy , and ar.

• Tab. 4: Combined actions of two or more input parameters on the model outputs are very
limited (ŝk,j ≈ ŝk,jT , ∀(j, k) ∈ [1, Nx]× [1, Ny]).

• Tab. 4: Initial stiffness CO at macro-scale solely depends on the mean aC of the initial
stiffness marginal distribution at meso-scale (see Fig. 4). This is in accordance with the
way the model is built: by definition CO =< C(p, ω) > with < C(p, ω) > the spatial
mean of the initial stiffness field over the material RVE, and, consequently to ergodicity
properties of the random vector field at meso-scale aC =< C(p, ω) >; accordingly:
CO = aC .
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ANNEX - Support of a uniform distribution with know mean and variance

Let U(a, b) be a uniform distribution over the range [x; y] (x < y) with mean a and variance
b2 > 0. In this annex, we show how to calculate x and y from a and b. By definition, the
following nonlinear system has to be solved:{

x+ y = 2a
(y − x)2 = 12b2 (11)

Introducing C2 = 4a2 and D2 = 12b2, Eqs. (11) implies that:{
(x+ y)2 = C2

(x− y)2 = D2 ⇒
{
x+ y = ±C
x− y = ±D (12)

Consequently, we have the following four possible couples of solutions:

(x1, y1) = ((C +D)/2 , (C −D)/2) (13)
(x2, y2) = ((C −D)/2 , (C +D)/2)

(x3, y3) = ((−C +D)/2 , (−C −D)/2)

(x4, y4) = ((−C −D)/2 , (−C +D)/2)
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From Eqs. (13), the following table can be built:

(C,D) = (C,D) = (C,D) = (C,D) =

i (xi + yi)/2 xi − yi (2a,
√

12b) (2a,−
√

12b) (−2a,
√

12b) (−2a,−
√

12b)
1 C/2 D No Y es No No
2 C/2 −D Y es No No No
3 −C/2 D No No No Y es
4 −C/2 −D No No Y es No

A Yes means that both conditions (xi + yi)/2 = a and xi < yi are true for the corresponding
values of C and D, while a No is indicated otherwise. Because there is always one and only one
Yes for each value of i, this table shows the intuitive fact that x and y are uniquely determined
from a and b. Besides, if for instance we consider that (x, y) = (x2, y2) in Eqs. (13) with
C = 2a and D =

√
12b (corresponding to a Y es), we have:

x = a−
√

3b and y = a+
√

3b (14)

As a direct application of Eqs. (14), it is for instance straightforward to guarantee that [x, y] ⊂
[0, 1] if, for any a ∈ [0, 1], b is calculated as{

a−
√

3b ≥ 0

a+
√

3b ≤ 1
⇒ b ≤ min

(
a/
√

3 ; (1− a)/
√

3
)

(15)
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