
HAL Id: hal-01846124
https://hal.science/hal-01846124v1

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axo: Detection and Recovery for Delay and Crash
Faults in Real-Time Control Systems

Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, Jean-Yves Le Boudec

To cite this version:
Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, Jean-Yves Le Boudec. Axo: Detection and Recovery for
Delay and Crash Faults in Real-Time Control Systems. IEEE Transactions on Industrial Informatics,
2018, 14 (7), pp.3065 - 3075. �10.1109/TII.2017.2772219�. �hal-01846124�

https://hal.science/hal-01846124v1
https://hal.archives-ouvertes.fr


1

Axo: Detection and Recovery for Delay and Crash
Faults in Real-Time Control Systems

Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, Jean-Yves Le Boudec
School of Computer Science and Communication Systems

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract—Real-time control systems use controllers that com-
pute and issue setpoints within stringent delay constraints. Fail-
ure to do so, due to a crash or delay as a result of software and/or
hardware faults, can cause failure of the controlled resources.
Recently, Axo, a protocol for masking crash and delay faults
by replicating the controller, was proposed. Axo provides safety
by discarding delayed setpoints, and it relies on the presence of
valid setpoints for providing availability. To ensure that enough
valid setpoints are issued, faulty controller replicas need to be
detected and recovered. We present a mechanism for detection
and recovery of delay- and crash-faulty replicas under the Axo
framework. These mechanisms were designed to be soft state
(i.e., their state can be reconstructed from received messages)
to enable seamless additions of new replicas. Besides presenting
the design, we analytically characterize the time to detect and
recover a faulty replica, and we validate them experimentally. We
demonstrate the performance of Axo by using two case studies:
the first provides a stability analysis of an inverted pendulum
system with Axo, and the second shows the fault-tolerance
performance of Axo through a deployment on a real-time control
system that controls a CIGRÉ low-voltage benchmark microgrid.

Index Terms—Reliability, delay faults, fault detection, fault
recovery, real-time

I. INTRODUCTION

A. Problem Description

Real-time control systems (RTCSs), such as control of
electrical grids [1], autonomous vehicles [2], and manu-
facturing processes [3], increasingly rely on software-based
controllers and commercial off-the-shelf (COTS) components.
Such COTS-based RTCSs, hereafter cb-RTCSs, are susceptible
to faults due to their software and hardware [4]. Also, many
RTCSs are mission-critical and the manifestation of faults
leads to failures causing damage to property and life [5], [6].

An RTCS consists of sensors that measure the state of pro-
cesses and send this state, as measurements, to the controller.
The controller uses these measurements, in addition to others
received from process agents (PAs), to compute setpoints that
are then issued to PAs. PAs implement, through actuators, the
received setpoints in the respective process. Setpoints issued
by the controller have strict real-time constraints, i.e., setpoints
delayed by more than a validity horizon are invalid and should
not be implemented. Such delays can occur due to software or
hardware faults in the controller or in the network. We refer
to such faults as delay faults. A special case of delay faults is
crash faults, whereby a setpoint is indefinitely delayed. Crash
faults do not violate the delay constraint, but result in the

loss of a controller, thereby leading to an indefinite loss of
setpoints issued. Both delayed setpoints (as a result of delay
faults) and continuously absent setpoints (as a result of crash
faults) potentially lead to instability, as shown in Section VI.

Traditional benign fault-tolerance protocols tolerate crash-
only faults and Byzantine fault-tolerance (BFT) protocols
tolerate faults concerning the value of a setpoint but not the
timing aspects of it. The existing solutions for delay-fault
tolerance [7], [8] require the controller, either in entirety or
in part, to be implemented using specialized strictly real-time
hardware and software. The large code-base, extensive use of
third-party libraries and off-the-shelf hardware of cb-RTCSs
make these protocols unsuitable for the cb-RTCSs.

Recently, Axo, a protocol for masking delay faults in cb-
RTCSs, was proposed [9]. Axo applies to all RTCSs that can
handle duplicate setpoints and have a well-defined validity
horizon, a deadline after which setpoints are considered in-
valid. For these RTCSs, Axo masks delay faults from the PA
by discarding invalid setpoints. Axo enables the use of active
replication, in which several copies, hereafter replicas, of the
same controller actively compute and issue setpoints. With
active replication, the presence of one non-faulty replica is
enough to deliver a valid setpoint to the PA. Axo also uses a
thin software-layer to perform fault masking, thereby hiding
the effects of delay faults from PAs. Hence, Axo remains
agnostic to the inner working of the RTCS and applies to
a wide range of RTCSs with minor additions to the controller.

The two main masking properties of fault-tolerance proto-
cols are safety and availability [10]. Axo guarantees safety
for all PAs [9], where safety is the property in which invalid
setpoints are never received by PAs. Availability, however,
requires the existence of at least one non-faulty replica at all
times. Delay faults can be transient or persistent in nature,
and if persistently delay-faulty replicas are not detected and
recovered in time, the system will end up having no non-faulty
replicas, and availability suffers. Hence, to continuously mask
delay faults, faulty replicas need to be detected and recovered.

B. Challenges
Delay faults are an end-to-end phenomena, the two ends

being the controller and the PAs. Existing fault-detection
mechanisms (see Section II) rely on polling the state of the
controller hence cannot be used for detecting delay faults.

To detect delay faults in the controller replicas, we in-
troduce feedback, from the PAs, about the validity of the



2

setpoints received. If a PA receives a valid setpoint, then
the corresponding controller is deemed to not have a delay
fault, and vice versa. However, the main challenge in de-
veloping such a design is the possibility of the messages
being lost, reordered, retransmitted, or delayed. Also, after
a single setpoint computation, a controller with multiple PAs
will asynchronously receive multiple feedbacks, one from each
PA. These potentially different feedbacks need to be efficiently
aggregated for fault detection.

The design of a detection and recovery protocol also faces
several other challenges. First, the transient nature of delay
faults makes their detection nontrivial. For instance, a replica
might experience a delay fault for one setpoint only. In such
cases, it is not only nontrivial to detect the transient delay-
fault but also superfluous, as it would be more advantageous to
avoid recovering that replica. Second, cb-RTCSs do not often
use dedicated communication links hence are susceptible to
packet losses, messages delays, retransmissions, and reorder-
ing. This could affect recovery, causing a replica to reboot
multiple times for a single fault, or not at all.

Furthermore, as Axo operates without the knowledge of the
inner workings of the RTCS, the rate at which an RTCS con-
troller issues setpoints is not known. Therefore, conventional
techniques for detecting crash faults, such as monitoring the
frequency at which setpoints are issued, are ineffective.

C. Contributions

In this paper, we present algorithms for the detection and
recovery of delay and crash faults in RTCSs that use Axo
for fault masking. The algorithms integrate with the fault-
masking features of Axo, thereby enabling Axo to continue
masking faults despite one or more controller replicas turning
faulty. The detection and recovery algorithms are designed to
be soft state [11], i.e., their state can be reconstructed from
received messages after a reboot. This enables the seamless
addition and removal of replicas. Additionally, the algorithms
are designed to keep Axo agnostic to the RTCS, in order for
it to apply to a wide range of RTCSs.

II. RELATED WORK

To the best of our knowledge, this is the first work that
addresses delay-fault detection for cb-RTCSs.

Previous work in the literature studied the problem of
detecting timing faults: faults that affect the timing attributes
of a setpoint rather than its value. For instance, the authors
of [12] propose a method of detecting timing faults under
the framework of the timely computing base (TCB) [8]. Such
a framework, however, presupposes the encapsulation and
rewriting of the core RTCS functionality in a strict real-
time component. This encapsulation cannot be applied to cb-
RTCSs, as they have a large code-base mainly consisting of
third-party libraries. A similar drawback is prevalent in [13],
as the method applies to RTCSs that are developed under the
Time-Triggered architecture (TTA) [7]. Our solution assumes
the use of Axo, a thin layer of software that can be deployed
on RTCSs without rewriting the original code [9].

In order to detect timing faults, the aforementioned work
also require additional information from the RTCS. Timing-
failure detection under the TTA framework requires a priori
knowledge of intended send and receive instants of messages
[13]. Similarly, detection under the TCB framework requires
a known bound on the computation times of the time-critical
functionalities of the RTCS [12]. Such requirements cannot
be met for the cb-RTCSs considered in this paper, and our
solution does not require such information.

Existing mechanisms for fault detection rely on monitoring
the replica, such as using heartbeats [14], or on probing the
replica for its current state so as to detect inconsistencies
[15]. Such mechanisms target crash-only faults and cannot
be extended to delay faults that are inherently an end-to-
end property. Replicas themselves do not contain any state to
indicate whether or not they are delay faulty, hence probing
or monitoring the replicas will not provide insight for delay-
fault detection. Our solution makes use of the PAs in order to
correctly detect delay faults.

Another approach to detecting faults is through detailed
modelling of the controller under faulty and non-faulty condi-
tions [16], [17]. The trained models are then used to classify
a replica as faulty during run-time. Such methods are prone to
modelling errors and are limited to RTCSs that have constant
workloads, making them unsuitable for generic RTCSs where
the workload of the controller is not known a priori.

Fault recovery in distributed systems shares similarities with
the consensus problem. Message losses, delays, and reordering
poses a challenge to the requirement of ensuring that each
replica is recovered only once after detection. However, con-
sensus does not guarantee termination under these conditions
[18], and the delays brought about by the multiple rounds of
message exchange in state-of-the-art consensus protocols [19]
are not suitable for RTCSs. To avoid using consensus, our
solution makes use of the partial order provided by the time
synchronization of the RTCS, and it recovers a replica with
minimal delay, at most once after detection.

III. SYSTEM & FAULT MODEL

The fault-detection and fault-recovery algorithms described
in this paper are built for the Axo fault-tolerance protocol.
Hence, they require the same properties of the RTCS needed
by Axo for fault masking as described in [9].

Axo applies to RTCSs that exhibit two main properties: (1)
There exists a known validity horizon (τo) and (2) PAs are
capable of handling duplicate setpoints. The validity horizon is
specific to each RTCS and depends on the inertia of the under-
lying process. Axo requires τo as an input in order to perform
fault masking and detection. The second property is inherent
in RTCSs that use absolute, rather than differential, setpoints.
Absolute setpoints are usually idempotent: implementing two
or more duplicate setpoints has the same effect on the system
as implementing only the first one received. An example of
absolute setpoints would be an electric-grid controller that
instructs a battery agent that is injecting 8 kW to ‘set the
injected power to 10 kW’, rather than a differential setpoint
that would be to ‘increase the injected power by 2 kW’.



3

Additionally, for each setpoint, we assume that there exists a
“conception time” tc at which the controller begins processing
the measurements used to compute this setpoint. Note that
the conception time is the time at which the preconditions of
computing a setpoint are met and is different from the time at
which the computation of setpoints actually begins. A COTS-
based controller cannot reliably estimate the conception time,
in particular in the presence of delay faults. A mechanism to
reliably obtain a conservative estimate (t∗c ) of the conception
time from a controller in the presence of delay faults is
described in Algorithm 1 in [9].

Definition 1 (Valid Setpoint). A setpoint is valid, if and only
if, at the time of reception (tr) at a PA, tr ≤ tc + τo, where
tc is the conception time of this setpoint and τo is the validity
horizon. Else, it is invalid.

We consider that a setpoint is sent to one PA, hence the
setpoint has a well-defined time of reception. If a controller
sends setpoints to different PAs after a computation, we
consider them to be different setpoints, all with the same
conception time.

We target delay and crash faults that affect the controller and
the network. Therefore, our fault model consists of delayed
operations, crashes in the controller, and an asynchronous
network where packets can be delayed, lost, retransmitted or
reordered. Generic Byzantine faults, such as wrong computa-
tions or setpoint contaminations, are not considered.

Definition 2 (Faulty Controller). A controller C is faulty at
time t, if all the setpoints whose conception time equals the
latest conception time at or before t are invalid.

As RTCSs perform real-time operations on distributed
nodes, they naturally have a global notion of time obtained
by GPS or network protocols such as network-time protocol
(NTP) and precision-time protocol (PTP). Let δs be an upper
bound on the inaccuracy of the time-synchronization protocol.

IV. AXO DESIGN FOR DETECTION AND RECOVERY

Axo uses active replication of the controller and requires
g + 1 replicas to tolerate g delay and crash faults. In tra-
ditional active-replication protocols, all the replicas indepen-
dently receive measurements from sensors, compute and hold
a consensus before sending one chosen setpoint to the PA.
The replication of the controller is masked from the PAs,
along with the faults in the replicas. In Axo, to avoid the
latency overhead of consensus, the controller replicas do not
directly communicate with each other. They send the computed
setpoints to the PAs, where delayed setpoints are discarded. As
the cb-RTCSs, for which Axo is designed, can handle duplicate
setpoints, the delay faults in replicas are masked, whereas the
replication is exposed. So, when at least one of the replicas is
non-faulty, the PAs will receive valid setpoints, thus providing
availability with minimal replication overhead.

In order to guarantee safety by discarding delayed setpoints,
Axo uses a controller library on each controller replica and a
PA library on each PA, as shown in Figure 1. The controller
library is composed of three modules: the tagger for tagging

            Controller
Controller Library

PA

PA Library

MaskerTagger

Detector

Rebooter

1

1 Setpoint 

3 Setpoint + Axo Header
Setpoint  4

4

5 Validity Report

6 INT_DET

EXT_REC 7

EXT_DET 6

2 Replica
      Information

0

Timestamp  (tc
*)

                           0

Fig. 1. Axo Architecture

outgoing setpoints with the timestamp of the conception time,
the detector for detecting faulty replicas, and the rebooter for
recovering the replicas that were marked faulty. The PA library
has the masker that discards invalid setpoints. The design of
the tagger and masker was introduced in [9].

Here, we introduce the components for fault detection and
fault recovery, namely detector and rebooter, respectively.
Besides describing their design and operation in Sections IV-C
and IV-D, respectively, we restate the design of the tagger
and the masker highlighting the extensions added for fault
detection and recovery in Section IV-B.

A. Protocol Walkthrough

Each controller replica is assigned a unique replica ID
that serves as its identifier for all ensuing Axo-related com-
munication. Furthermore, the code of the controller replicas
is instrumented such that they send t∗c , an estimate of the
conception time of the setpoint, to the controller library before
beginning the computation of each setpoint. When a controller
replica computes and issues a setpoint, it is intercepted by the
tagger on this same replica. The tagger uses the last received t∗c
from the controller replica and the replica information received
from the detector (elaborated in Section IV-C) to form the 20-
byte Axo header. The utility of the different fields in the header
are explained in Section IV-B. The tagger sends the setpoint
prepended with the Axo header to the masker of the original
PA destination.

On receiving the setpoint, the masker uses the timestamp t∗c
in the Axo header to check if the setpoint is valid according
to Algorithm 2. The masker forwards the setpoint to the PA
if it is valid and discards it otherwise. The masker then sends
a validity report to the detectors of all replicas.

As explained in Section I, delay faults cannot be detected
using conventional techniques such as time-out or heartbeat
between the replicas. Furthermore, feedback from the PA is
needed for fault detection, as the validity of a setpoint, and
consequently the presence or absence of a delay fault, can
only be established at a PA. To this end, the detectors use
validity reports to check if the replica is crash or delay faulty,
as in Algorithm 3. If the detector on a replica detects the
same replica as faulty, then an internal detection message
(INT DET) is sent to the local rebooter. This triggers the
rebooter to initiate the recovery of this replica according to



4

Algorithm 1: Tagger
1 t∗c ← 0;
2 for each message received do
3 if message is timestamp then
4 Update t∗c ;
5 else if message is setpoint SP then
6 Prepend Axo header and send SP to the masker of the PA;
7 else if message is from detector then
8 Update td and h;
9 end

10 end

Algorithm 5. If the detector detects another replica to be
faulty, then an external detection message (EXT DET) is sent
to the local rebooter that then sends an external recovery
(EXT REC) message to the rebooter of the faulty replica.

Axo modifies the setpoints sent by the controllers to the PAs
(by adding an Axo header), which requires the PA library on
all PAs. This thin layer is transparent to the PA, in particular,
any authentication and encryption of the setpoint is left un-
touched. However, as additional Axo messages are exchanged,
these messages need to be authenticated and encrypted in order
to avoid spurious recoveries. This can be achieved by using
general-purpose security libraries such as datagram transport
layer security. Furthermore, Axo only requires the controller
to send t∗c to the tagger. Consequently, it remains agnostic to
the changes in the controller and PA.

B. Fault Masking: Tagger & Masker

Together, the tagger and the masker achieve fault masking.
The design of the tagger and the masker are shown in
Algorithms 1 and 2, respectively. Except for the lines in blue
(Algorithm 1 lines 7-9 and Algorithm 2 line 5) that have been
added to enable fault detection, the design is same as in [9].

For each setpoint, the tagger (Algorithm 1) receives the
timestamp t∗c from the controller and intercepts the setpoints
sent by the controller to the PA. Then, it uses the most recently
received t∗c to populate the 20-byte Axo header that comprises
the replica ID (1 byte), the destination port of the original
setpoint (2 bytes), the timestamp t∗c (8 bytes), the timestamp at
which the detector was last active td (8 bytes), and the replica’s
health h (1 byte). The last two fields are continuously updated
at the tagger by messages from the detector, as discussed
in Section IV-C. The tagger prepends the Axo header to the
setpoint and sends it to the masker of the PA.

At the masker (Algorithm 2), the replica ID is used to
identify the sending controller replica, and the destination
port number is used to forward the setpoint to the PA. The
timestamp t∗c present in the Axo header is used, along with the
validity horizon τo, to check if a setpoint is valid. To account
for the inaccuracy of time-synchronization protocol δs, and the
computation time following the validity check at the masker,
we use τ , instead of τ0. Here, τ = τo − (2δs + δm), where
δm is an upper bound on the computation time at the masker
between performing the validity check (line 2) and sending
the setpoint to the PA (line 3).

Lastly, the masker sends a validity report to the detectors of
all controller replicas. The fields td and h present in the Axo
header are echoed in the validity report to start detection.

Algorithm 2: Masker
1 for each setpoint received do
2 if current time ≤ t∗c + τ then
3 Remove Axo header and send setpoint to PA;
4 end
5 Send validity report to detectors of controllers;
6 end

Algorithm 3: Detector
1 initialize DB[myID];
2 for each report VR received do
3 if VR.id 6∈ DB or VR.ts > DB[VR.id].ts then
4 if VR.id 6∈ DB then
5 create DB[VR.id];
6 DB[VR.id].ts← VR.ts;
7 DB[VR.id].td← VR.td;
8 DB[VR.id].nf ← VR.v;
9 DB[VR.id].h← Hmax;

10 else
11 DB[VR.id].h← min(VR.h,DB[VR.id].h);
12 updateDB(DB[VR.id],VR);
13 end
14 DB[myID].td← max(DB.ts);
15 Send DB[myID].h,DB[myID].td to tagger;
16 if VR.id 6= myID and DB[VR.id].h ≤ Hext then
17 EXT_DET(DB[VR.id].ts,VR.id);
18 delete DB[VR.id];
19 else if DB[myID].h ≤ Hint then
20 INT_DET(DB[myID].ts);
21 end
22 for each id in DB do
23 if max(DB.ts)−DB[id].ts > τc or

max(DB.td)−DB[id].td > τc then
24 if id = myID then
25 INT_DET(max(DB.ts));
26 else
27 EXT_DET(max(DB.ts), id);
28 delete DB[id];
29 end
30 end
31 end
32 else if VR.ts = DB[VR.id].ts then
33 DB[VR.id].nf ← DB[VR.id].nf ∨VR.v;
34 end
35 end

C. Fault Detection: Detector

The detection mechanism (Algorithm 3) is triggered at a
replica when a validity report (VR) is received from the
masker. As no assumptions about synchronicity are made on
the communication network, validity reports can be delayed,
lost, retransmitted or reordered, making detection challenging.

Each validity report consists of the five following fields:
(1) the timestamp tc of the setpoint (VR.ts), (2) the ID of
the replica that issued the setpoint (VR.id), (3) the health
of the replica that issued the setpoint, as seen internally by
that replica (VR.h), (4) the detector timestamp computed as
the highest setpoint timestamp that the detector of the issuing
replica had processed (VR.td), and (5) a flag that shows
whether the setpoint received at the masker was valid (VR.v).

The detector maintains a database DB of replicas, indexed
by replica IDs. For a replica with ID id, the fields of
the database are (1) the highest received setpoint timestamp
(tc) DB[id].ts, (2) the highest received detector timestamp
DB[id].td (3) the replica’s health as seen by this replica
DB[id].h, and (4) a flag, denoting whether the replica is



5

Algorithm 4: Function to update detector database
1 function updateDB(db,VR)
2 db.ts← VR.ts;
3 db.td← VR.td;
4 if db.nf then
5 db.h← α× db.h+ (1− α)×Hmax;
6 else
7 db.h← α× db.h− (1− α)×Hmax;
8 end
9 db.nf ← VR.v;

considered non-faulty for the setpoint with tc = DB[id].ts,
DB[id].nf . We denote one record of DB with db.

When the detector boots, it initializes the fields in the
database corresponding to its replica’s ID (line 1). The health
field (h) is set to its maximum value Hmax, the setpoint
timestamp (ts) and the detector timestamp (td) are set to the
current time, and the non-faulty flag (nf ) field is set to true.

A validity report (VR) is identified by its setpoint times-
tamp field (VR.ts). This enables aggregating the reports that
originated from a single computation. Then, a replica will be
considered to have made a faulty computation if and only if
all of the reports received corresponding to that computation
are invalid (the VR.v flag is set to false). To achieve this, the
detector performs a logical OR of the VR.v flags received
in reports from the same replica with the same setpoint
timestamp (lines 32-34). The database is updated (according
to Algorithm 4) only after a new report is received, i.e.,
report with a higher ts field. Consequently, the replica is not
penalized when it is actually not delay faulty, but a few of the
setpoints that it sent experience a high network-delay.

In Algorithm 4 lines 2-3, the timestamps ts and td are set to
the corresponding ones received in the validity report. Lines 4-
8 show how the health of a replica is updated. If the replica was
delay-faulty in its last computation, i.e., the non-faulty flag set
to false, then the updated health is computed by exponentially
averaging the old health with a penalty of −Hmax and a
parameter α, else the updated health is computed with a bonus
of +Hmax. The exponential averaging serves two purposes:
(1) It smoothens out the health and dampens the effect of
outliers thereby preventing the triggering of fault recovery due
to transient delay faults, and (2) it keeps the health between
−Hmax and +Hmax thereby avoiding overflow. The value of
α (0 ≤ α ≤ 1) represents the weight assigned to the history.
Lastly, the non-faulty flag is set according to the valid flag of
the newly received validity report (line 9).

In Algorithm 3 at line 14, the detector timestamp of this
replica is computed as the highest timestamp processed by this
detector. This field is used by other detectors to detect crashes
of this detector. The detector timestamp and the health of this
replica is sent to the tagger as a part of the Axo header, and
is in turn echoed in the validity report so that newly added
replicas can learn of existing replicas. Furthermore, when a
validity report corresponding to a replica that is already present
in the database is received (lines 10-13), the health in the
database is updated to the minimum of the existing health
and the received health. In this way, a newly added replica
learns of the health of existing replicas and instantly joins the
detection process, thereby making detection soft state.

A replica is detected as delay faulty (line 16-21) when its
health in the database falls below a threshold. For a replica to
be detected as delay faulty by its own detector, the threshold
Hint is used. Whereas, detecting other replicas makes use
of the threshold Hext < Hint. This enables a replica to be
detected by its own detector, before it is detected by others.
This is particularly useful, as the routine for internal recovery
is quicker than that for external recovery (see Section IV-D).

The parameter α and the two thresholds for health, Hint

and Hext, can be varied to trade-off speed of detection for
tolerance of transient delay-faults. A higher α gives less weight
to the penalty term causing slower detection, and vice versa.
On the contrary, a higher Hint or Hext reduces the number of
invalid setpoints permitted by a replica before being deemed
faulty, causing faster detection.

Crash faults are detected as shown in lines 22-31. The
detector compares, for each replica in its database, the value
of ts with the maximum of all ts’s. If the difference is
greater than τc, then that replica is deemed crash faulty. In
this way, a replica is only considered to be crash faulty if it
has been inactive for a period of τc, while other replicas have
been active. This relative comparison allows incorporating
RTCSs with a non-constant rate of issuing setpoints. A similar
comparison is done for td’s, to detect crashes in the detector.

D. Fault Recovery: Rebooter

The rebooter, according to Algorithm 5, (1) reboots its
own replica when it receives an internal detection (INT_DET)
message from the local detector, (2) reboots its own replica
when it receives an external recovery (EXT_REC) messages
from another rebooter, and (3) sends EXT_REC messages
to another rebooter when it receives an external detection
(EXT_DET) message from the local detector.

The messages received by the rebooter contain a timestamp
that corresponds to the report that triggered the detection (see
Algorithm 3, lines 17, 20, 25, 27). The rebooter saves this
timestamp on disk when it triggers a reboot, and loads it upon
booting. The loaded timestamp lastReboot is used to order
the received messages and to avoid rebooting multiple times
for the same detection. This enables the algorithm to deal with
message delays and reordering without using consensus. A
threshold of τreboot is also used to avoid multiple reboots in
the presence of message losses. For example, a lost report to
C1 might cause replicas C1 and C2 to detect a delay fault in
C0 at different times, as C2 would detect it immediately but
C1 will only detect it after it receives the next report. So, they
will send EXT_REC messages with different timestamps.

When the rebooter receives EXT_DET messages from the
local detector, it sends EXT_REC messages to the faulty
replica, until it receives an ACK (Algorithm 5, lines 9-17). This
is done at most maxSend times, once every Tr. The ACKs sent
also contain the timestamp of the received EXT_REC message,
plus the threshold τreboot. This enables the rebooter issuing the
EXT_REC messages to differentiate the ACKs that correspond
to the current exchange from the delayed ones.

From Algorithm 5, note that internal recovery is faster
than external recovery, as it is performed locally and does



6

Algorithm 5: Rebooter
1 lastReboot← loadLastReboot();
2 for each message received do
3 if message is INT_DET(t) then
4 if t > lastReboot + τreboot then
5 saveLastReboot(t) ;
6 reboot the replica;
7 end
8 else if message is EXT_DET(t1, ID) then
9 sentCtr ← 0;

10 while sentCtr < maxSend do
11 send EXT_REC(t1) to replica ID;
12 sentCtr++;
13 listen for Tr ;
14 if (ACK(t2) received) and (t2 ≥ t1) then
15 break;
16 end
17 end
18 else if message is EXT_REC(t) then
19 if t > lastReboot + τreboot then
20 send ACK(t + τreboot) to all replicas;
21 saveLastReboot(t);
22 reboot the replica;
23 else
24 send ACK(lastReboot + τreboot);
25 end
26 end
27 end

not require communication between the rebooters over the
network. This makes it more desirable and is the reason behind
setting Hext < Hint, as mentioned in Section IV-C.

Given that the rebooter needs to respond to remote reboot
requests, it needs to be non-susceptible to crash faults. Else,
the replica cannot be recovered, as it is not possible to remotely
reboot an unresponsive machine. In our analysis, we assume
that the part of the rebooter that handles external recovery
requests is non-faulty. In our implementation, we achieve this
by using a simple heartbeat mechanism on the detector that
monitors the rebooter and re-instantiates it in case of faults.

V. PERFORMANCE ANALYSIS

In this section, we analytically characterize recovery time,
i.e., the time taken to detect and recover a faulty replica by
Axo. This time depends on the number of replicas, the fault-
arrival rate, the frequency of computations by the RTCS, and
the delays and losses in the network. We derive the relationship
between the time to detect and recover, and the aforementioned
parameters. Then, we compare and validate these expressions
with results obtained from experiments.

Consider an RTCS consisting of controller replicas that
sends setpoints according to a Poisson process of rate λn
when non-faulty and rate λf when faulty. Due to delays
induced by a fault, a faulty replica might continue its current
computation while other replicas begin a new computation.
Hence, λn > λf . Furthermore, we consider the probability
that a computation results in an invalid setpoint, i.e., that the
time taken for computation and delivery of a setpoint is greater
than τ , to be θ. Additionally, the network between controller
replicas and the PAs is considered to have a round-trip time
upper bounded by 2∆ and a packet loss probability of p.
Lastly, we assume that at least one PA, including its masker,
is non-faulty. This assumption is valid as it would not make
sense to speak of fault tolerance when all PAs are faulty: the

processes would be uncontrollable. Additional non-faulty PAs
will only improve the time for detection and recovery.

Additionally, we derive the stationary probability of a
replica being in the non-faulty state πn =

λf (1−θ)
λf (1−θ)+λnθ and the

average rate of sending setpoints λ0 = λf (1− πn) + λn πn.

A. Analytical Evaluation of Recovery Time

The exact evaluation of the expression of recovery time
appears to be mathematically intractable and is beyond the
scope of this paper. Instead, we derive a lower bound and an
upper bound on the recovery time. In Section V-B, we validate
these bounds by comparing them with experimental results.

Theorem V.1 gives the expressions for the detection and
recovery of a delay-faulty controller replica. Theorem V.2
gives the same for a crash-faulty controller replica. The
proofs of these theorems can be found in Appendix A and
Appendix B, respectively.

Theorem V.1 (Delay-Faulty Controller). In an RTCS with g
controller replicas, if a replica C0 starts to be delay faulty at
time t = 0 and remains faulty till time t, then a lower bound
(Pld(t)) and upper bound (Pud(t)) on the probability that it is
recovered by time t is given as follows:

Pld(t+ 2∆) =
γNπnβ

β + η
×[

1

(γ + η)N
(1−

Γ(N, γt)

(N − 1)!
)−

e−(β+η)t

(γ − β)N
(1−

Γ(N, (γ − β)t)

(N − 1)!
)

]
Pud (t) = 1− (1− P1(t))g−1

P1(t) = 1−
Γ(N, γt)

(N − 1)!
−

γN

(γ − β)N
e

−(1−p)
Tr

t
[
1−

Γ(N, (γ − β)t)

(N − 1)!

]

β = (1− p)/Tr, γ = λf (1− p)2, η = λnθ

N =
log( 1

2
( Hext
Hmax

+ 1))

log(α)
, Γ(x, s) =

∫ ∞
s

tx−1e−tdt

Theorem V.2 (Crash-Faulty Controller). In an RTCS with g
controller replicas, if a replica C0 starts to be crash faulty at
time t = 0 and remains faulty till time t, then a lower bound
(Plc(t)) and upper bound (Puc (t)) on the probability that it is
recovered by time t is given as follows:

Plc(t) = P2(t− 2∆)

P2(t) =



Be
−(D+G)

τc
Tr

D+E+G

(
A(1−p)Tr
E+G

e
−(E+G) t

Tr + e
D t
Tr

D+F+G

)
−Be

−(D+G)
τc
Tr

F+G

(
A(1−p)Tr
D+F+G

e
−(F+G) t

Tr + 1
E+G

)
t ≤ τc

e
−(E+G) t

Tr

AB(1−p)Tr
(
e
−(D+G)

τc
Tr −e

E
τc
Tr

)
(E+G)(D+E+G)

 t > τc

−e−(F+G) t
Tr

AB(1−p)Tr
(
e
−(D+G)

τc
Tr −e

F
τc
Tr

)
(F+G)(D+F+G)


−
B

(
e
−(D+G)

τc
Tr −e

−G τc
Tr

)
(F+G)(E+G)



7

Puc (t) = 1− (1− P3(t))g−1

P3(t) =



e
−D τc

Tr

[
EJ

(D+E)(D+J)
e
D t
Tr + DJ

(D+E)(J−E)
e
−E t

Tr t ≤ τc

− DE
(D+J)(J−E)

e
−J t

Tr − 1
]

DJ
(J−E)(D+E)

(e
−D τc

Tr − eE
τc
Tr )e

−E t
Tr t > τc

− DE
(J−E)(D+J)

(e
−D τc

Tr − eJ
τc
Tr )e

−J t
Tr

−(e
−D τc

Tr − 1)

A =
λ0

λn(1− p)Tr − 1
, B = (1− p)3Trλnπn, D = (1− p)2Trλo

E = (1−p), F = λn(1−p)2Tr, G = λnθTr, J = (g−1)λn(1−p)2Tr

B. Experimental Validation

1) Experimental setup: The authors in [9] provide an
implementation of Axo for fault masking. We extend this
implementation with a detector and rebooter for fault detection
and fault recovery, respectively. The implementation, which
will be made publicly available, is used for the experiments.

We use three replicas (g = 3) each with a test controller
and the Axo controller library, and one PA with an Axo
PA library. The controller replicas run on 64-bit Ubuntu
Virtual Machines that are configured with 1 GB RAM using
VirtualBox on a Macbook Pro with MacOS 10.10.5, a 2 GHz
Intel Core i7 processor and 16 GB RAM. The test controller
begins a computation according to a Poisson process with
rate λn = 1/100 s−1 when the controller is non-faulty and
λf = 1/200 s−1 when the controller is faulty. The PA runs on
a Lenovo T410 laptop with a 2.67 GHz Intel Core i7 processor
with 4 GB RAM running a 64-bit Ubuntu operating system.

As described by Definition 2, a replica is considered delay
faulty if the last setpoint it sent to the PA, takes more than
τo. We have τo = 17 ms. Furthermore, the synchronization
inaccuracy δs = 1 ms (with PTP) and an upper bound on
the computation time of the masker δm = 0.1 ms. Also, the
one-way network latency ∆ = 2 ms. Therefore, the replica is
considered faulty if its setpoint takes more than τ = 14.9 ms.
Lastly, the threshold, after which an inactive controller is
considered crash faulty, τc is taken as 500 ms.

We study the variation of the distribution of recovery time
as a function of the probability of a setpoint being faulty θ. We
perform experiments for p = 0.01 and θ = 0.01, 0.02. In each
experiment, C0 is configured to start being faulty at a random
time and remain so until recovered, whereas C1 and C2 follow
the parameters of the scenario. Each time C0 is recovered, the
total time elapsed, from the time it started being faulty until
the time it was recovered, is recorded as the recovery time.

2) Results: We noticed both from our experiments and from
the analytical lower and upper bounds that the packet loss
probability p did not have a major effect on the probability of
detection. The range of values under consideration is between
0% and 2% loss probability, which is a realistic figure for
RTCSs. This shows that the detection and recovery algorithms
of Axo are resilient to network losses in this range.

However, the effect of fault rate of replicas (θ) is significant.
Figure 2 shows the results of the experimental simulation of a
delay-faulty C0, with p = 1% and a varying θ. Figure 3 shows

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0.0

0.5

1.0
θ=0. 01, p=0. 01

Upper Bound
Experimental
Lower Bound

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0.0

0.5

1.0
θ=0. 02, p=0. 01

Upper Bound
Experimental
Lower BoundC

u
m
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

Fig. 2. Time to recover from delay-faults for varying θ

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

0.0

0.5

1.0
θ=0. 01, p=0. 01

Upper Bound
Experimental
Lower Bound

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

0.0

0.5

1.0
θ=0. 02, p=0. 01

Upper Bound
Experimental
Lower BoundC
u
m
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

Fig. 3. Time to recover from crash-faults for varying θ

the same for a crash-faulty C0. In addition to validating the
lower and upper bounds, these results show the effect of a
higher fault rate on the detection and recovery performance.
We also notice that the lower and upper bounds are close to
each other, which provides a good estimate of the real values.

VI. CASE STUDIES

A. Stability Analysis of an Inverted Pendulum

In this section, we demonstrate how applying Axo affects
the stability of an inverted pendulum system. We use the
example in [20], of an inverted pendulum mounted on a
motorized cart, in which a Linear Quadratic Regulation (LQR)
controller attempts to balance the pendulum by applying a
force on the cart.

For the implementation, we use Mininet [21], and we
separate the controller from the actuator and have them
communicate over a network with loss probability p = 0.1%,
and with a one-way delay of 0.5 ms in case of no loss. The
controller operates at 100 Hz, resulting in a control cycle
of 10 ms. Using Mininet enables us to run the Axo code
(mentioned in Section V-B1), rather than simulate it.

Figure 4 shows the step response of the system for different
delay profiles of a non-replicated controller, when a step of
1 N is applied as an external force. We see that the pendulum
angle (φ) and position (x) experience a higher overshoot, and
a longer resting time as the mean delay of the controller
increases. For delays greater than 20 ms, the system becomes
entirely unstable. This shows the real-time requirements of an
inverted pendulum system, and hence the applicability of Axo
in masking, detecting, and recovering from delay faults.

Next, we perform step response experiments with a repli-
cated controller with two replicas and a bursty delay fault
model. In these experiments, the delay is exponentially dis-
tributed with a mean of 2 ms in the good state and 80 ms
in the bad state; the probability of transition to the bad state



8

1.0 1.5 2.0 2.5
Time [s]

−0.05

0.00

0.05

0.10

0.15

x
 [
m
]

0 ms 10 ms

1 2 3 4 5
Time [s]

−250

−200

−150

−100

−50

0

50

x
 [
m
]

20 ms 23 ms

1.0 1.5 2.0 2.5
Time [s]

−5

−4

−3

−2

−1

0

1

2

3

φ
 [
d
e
g
re
e
s]

1 2 3 4 5
Time [s]

−200

−150

−100

−50

0

50

100

150

200

φ
 [
d
e
g
re
e
s]

1.0 1.5 2.0 2.5

0.0

0.4

0.2

−0.2

Fig. 4. Step response of the pendulum with a non-replicated controller

0 50 100 150
Time [s]

−10
−5
0
5

10
Without Axo

0 50 100 150
Time [s]

−10
−5
0
5

10
With Axo

φ
 [
d
e
g
re
e
s]

Fig. 5. Stability of the pendulum with a replicated controller

is θd, which is varied across several scenarios; and the mean
burst length is 20 computation cycles.

We evaluate three metrics: the instability rate, mean time
to instability (MTTI), and mean time to failure (MTTF).
Instability rate is the fraction of the time the pendulum
experiences an overshoot (φ > 20o or x > 0.2 m), and the
MTTI is defined as the mean time until an overshoot occurs.
The MTTF is the mean time until the pendulum reaches an
angle that the LQR controller is not tuned to handle (φ > 35o).

Figure 5 shows the additional stability brought about by
using Axo for a representative fault-scenario (θd = 10−3).
Table I shows the computed metrics after a large number
of runs. The results are to be interpreted as the mean of an
exponential distribution obtained by fitting. The results show
that, for all scenarios, Axo improves stability in all the metrics
by up to 25x, with the improvement becoming more apparent
as the probability of delay faults increases.

B. Commelec Deployment

We deployed Axo for tolerating delay and crash faults in
Commelec [1], an RTCS for real-time control of electrical
grids. The RTCS is used for controlling a CIGRÉ low-voltage
benchmark microgrid on campus. The microgrid consists of
two hardware resources, a 25 kW - 25 kWh battery and a
24 kW load of smart heaters. The controller follows a given
dispatch signal for active and reactive power in real-time. To
this end, it receives the state of resources from the respective

Scenario Instability (%) MTTI (s) MTTF (s)
(θd) No Axo Axo No Axo Axo No Axo Axo

#1: 1E-3 19.56 1.86 57.89 79.16 73.30 118.32
#2: 2E-3 23.93 2.78 25.33 31.70 22.29 47.06
#3: 5E-3 54.04 6.25 7.31 7.42 1.28 32.73

TABLE I
RESULTS OF SELECT SCENARIOS WITH VARYING θd

PAs, and it computes and issues setpoints every 100 ms. The
controller runs off-the-shelf Scientific Linux version 7.1.

The setpoints have a validity horizon (τo) of 10 ms. Con-
sequently, the controller is designed to compute and issue
setpoints within 10 ms. First, we measured the computation
times for around 10 million measurements. We observe that
32 setpoints (0.00032 %) have a computation time greater
than 10 ms. Therefore, we conclude that although very rare,
delay faults are observed in real-life deployments of RTCS.
Also, delays added due to the communication network further
increase the risk of delay faults.

In order to demonstrate the fault tolerance of Axo, we
artificially reduce τo to 7 ms, increasing the number of faults.
We use Axo with two controller replicas (C1, C2). The time
after which a replica is considered crash faulty (τc) is 500 ms
and the time between successive recovery messages (Tr) is
1 ms. For time synchronization between the replicas and the
PAs, we use PTP that has a synchronization inaccuracy (δs)
of 1 ms. Lastly, the upper bound on the computation time of
the masker (δm) is 0.1 ms. This leaves us with τ = 4.9 ms.

Figure 6 shows the empirical cumulative distribution func-
tion (CDF) of delays of setpoints sent by C1 and C2, measured
at the masker. It also shows the effective delay of setpoints
at the PAs, after the unsafe ones were discarded by the
Axo masker. We observe that, although the setpoints sent
by controllers have delays > 4.9 ms (= τ ), the setpoints
eventually received at the PAs are all valid, i.e., have an end-
to-end delay < 4.9 ms < 7 ms (= τo), thereby demonstrating
the safety property of Axo.

Additionally, the set of controller replicas is said to be avail-
able if the PAs receive a setpoint every 100 ms. We find the
availability to be 99.86%. In these experiments, the controller
replicas were recovered 38 times, thereby demonstrating the
importance of fault recovery in providing high-availability.

In order to quantify the overhead in the computation of
setpoints by the controller due to the proposed detection
and recovery algorithms, we measure the computation time
with and without these algorithms. We find that, for non-
faulty setpoints, the mean computation time with detection
and recovery, measured at 95% confidence level, is 0.893 ±
0.0004 ms, and the same without detection and recovery is
0.274± 0.0001 ms. For delay-faulty setpoints, the mean com-
putation time with detection and recovery, measured at 95%
confidence level, is 14.18 ± 4.05 ms, and without detection
and recovery is 14.45±2.76 ms. We notice that the additional
delay in the computation of a setpoint incurred by a non-faulty
controller using Axo is sub-millisecond.

VII. CONCLUSION

We present Axo, the first protocol for tolerating delay faults
in cb-RTCSs. We describe the masking, detection and recovery



9

0 1 2 3 4 5 6 7
Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

De lay  o f A xo

De lay  o f C1

De lay  o f C2
τE

m
p
ir
ic
a
l 
C
D
F

Fig. 6. Safety guarantee of Axo

mechanisms for delay and crash faults. These mechanisms
were designed to be soft state to enable the seamless addition
of new replicas and removal of faulty replicas. Moreover,
Axo was designed to be controller-agnostic, enabling easy
deployment to a wide range of existing cb-RTCSs.

We analytically characterize the time to recover a faulty
replica by Axo and experimentally validate the expressions.
Also, we perform a stability analysis to study the effect of
delay faults on the stability of an inverted pendulum system,
and we show that, by detecting and recovering from delay
faults, Axo improves the stability.

We also use Axo to tolerate faults in an RTCS that controls
a CIGRÉ low-voltage benchmark microgrid on campus. We
observe that, from over 10 million setpoints, approximately
3.2× 10−4% setpoints were faulty. We remark that, although
quite rare, such delay faults must be masked from the PAs.
Lastly, we demonstrate the safety and availability properties
of Axo. Currently, we are in the process of deploying Axo,
along with Commelec, in a municipality-wide electrical grid,
an experience through which we expect to demonstrate the
fault-tolerance properties of Axo in greater detail.

VIII. ACKNOWLEDGMENT

This research was supported by the “SCCER - FURIES”
project and the “SNSF - NRP 70” Energy Turnaround project.

REFERENCES

[1] Andrey Bernstein, Lorenzo Reyes-Chamorro, Jean-Yves Le Boudec, and
Mario Paolone. A Composable Method for Real-Time Control of Active
Distribution Networks with Explicit Power Setpoints. Part I: Framework.
Electric Power Systems Research, 125:254–264, 2015.

[2] Tan Yew Teck, Mandar Chitre, and Prahlad Vadakkepat. Hierarchical
Agent-Based Command and Control System for Autonomous Under-
water Vehicles. In Autonomous and Intelligent Systems (AIS), 2010
International Conference on, pages 1–6. IEEE, 2010.

[3] Paulo Leitão. Agent-Based Distributed Manufacturing Control: A state-
of-the-Art Survey. Engineering Applications of Artificial Intelligence,
22(7):979–991, 2009.

[4] Donald J Reifer, Victor R Basili, Barry W Boehm, and Betsy Clark.
COTS-based Systems–Twelve Lessons Learned about Maintenance. In
COTS-Based Software Systems, pages 137–145. Springer, 2004.

[5] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, et al. Causes
of the 2003 Major Grid Blackouts in North America and Europe, and
Recommended Means to Improve System Dynamic Performance. Power
Systems, IEEE Transactions on, 20(4):1922–1928, Nov 2005.

[6] Michael Dunn. Toyota’s Killer Firmware: Bad Design and its Conse-
quences. EDN Network, October, 28, 2013.

[7] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[8] A. Casimiro and P. Verissimo. Generic Timing Fault Tolerance Using a
Timely Computing Base. In Dependable Systems and Networks, 2002.
Proceedings. International Conference on, pages 27–36, 2002.

[9] Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, and Jean-Yves
Le Boudec. Axo: Masking Delay Faults in Real-Time Control Systems.
In Industrial Electronics Society, IECON 2016-42nd Annual Conference
of the IEEE, pages 4933–4940. IEEE, 2016.

[10] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Funda-
mental Concepts of Dependability. University of Newcastle upon Tyne,
Computing Science, 2001.

[11] John CS Lui, Vishal Misra, and Dan Rubenstein. On the Robustness
of Soft State Protocols. In Network Protocols, 2004. ICNP 2004.
Proceedings of the 12th IEEE International Conference on, pages 50–60.
IEEE, 2004.

[12] António Casimiro and Paulo Verı́ssimo. Timing Failure Detection with
a Timely Computing Base. 1999.

[13] Hermann Kopetz. Fault Containment and Error Detection in the Time-
Triggered Architecture. In Autonomous Decentralized Systems, 2003.
The Sixth International Symposium on, pages 139–146. IEEE, 2003.

[14] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
The Primary-Backup Approach. Distributed systems, 2:199–216, 1993.

[15] Brian M Oki and Barbara H Liskov. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed Systems.
In Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 8–17. ACM, 1988.

[16] Kalyanaraman Vaidyanathan and Kishor S Trivedi. A Comprehensive
Model for Software Rejuvenation. Dependable and Secure Computing,
IEEE Transactions on, 2(2):124–137, 2005.

[17] Tomasz Maniak, Chrisina Jayne, Rahat Iqbal, and Faiyaz Doctor.
Automated Intelligent System for Sound Signalling Device Quality
Assurance. Information Sciences, 294:600–611, 2015.

[18] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

[19] Leslie Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[20] Carnegie Mellon, University of Michigan. Control Tutorials for
MATLAB & Simulink. http://ctms.engin.umich.edu/CTMS/index.
php?example=InvertedPendulum&section=SystemModeling, 2012. Ac-
cessed: 2017-06-22.

[21] Mininet. http://mininet.org/. Accessed 2017-06-22.

APPENDIX A
PROOF OF THEOREM V.1

Delay-Faulty Controller: In an RTCS with g controller
replicas, if a replica C0 starts to be delay-faulty at time t = 0
and remains faulty till time t, then a lower bound (Pld(t)) and
upper bound (Pud(t)) on the probability that it is recovered by
time t is given.

Proof. First, we derive the probability for g = 2.
In a two-replica RTCS, the probability that the delay-faulty

replica C0 issues enough delayed setpoints in [0, t1] to be
detected by the second replica C1, given that C1 is non-faulty
throughout is computed as follows.

P∗
det(t1) = P(C0 issuing i ≥ N setpoints in [0, t1] that are

received by C1) = 1−
N−1∑
i=0

(λf (1− p)2t1)ieλf (1−p)2t1

i!
(1)

Equation 1 is based on the model of the controller described
in Section V: it gives the cumulative distribution function
(CDF) of a Poisson distribution, where the rate is the rate
of a faulty replica issuing setpoints (λf ) multiplied by the
probability of the corresponding report being received (1−p)2.
N is the number of consecutive reports, corresponding to
delayed setpoints, that are sufficient to detect a delay fault,
and can be derived from α,Hext, and Hmax, from Algorithms
3, 4, as shown in Theorem V.1.

The probability density function (PDF) of the above expres-
sion can be obtained by taking the derivative, resulting in the
Erlang distribution.

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SystemModeling
http://mininet.org/


10

Pdet(t1) =
d

dt1
P∗
det(t1) =

(λf (1− p)2)N tN−1
1 e−λf (1−p)2t1

(N − 1)!
(2)

In a two-replica RTCS, the probability that C1 will recover
a delay-faulty replica C0, that was detected as faulty at t1 +d,
at [t2, t2 +dt], given that C1 is non-faulty throughout, is given
by Pr(∆t), where ∆t = t2 − (t1 + d).

Pr(∆t) = P(C0 receives one reboot message in [t2, t2 + dt])

=
d

d∆t
(1− e

−(1−p)∆t
Tr ) =

1− p
Tr

e
−(1−p)∆t

Tr (3)

Equation 3 can be obtained by modeling the process of
receiving reboot messages (Algorithm 5) as a Poisson process
of rate (1− p)/Tr, where 1− p is the probability of receiving
a reboot message and 1/Tr is the rate at which they are
sent. The approximation of the periodic sending process as
an exponential one is justified by the low rate, and facilitates
the derivation of the above expression.

The probability of C1 being non-faulty in [0,∆t] is:

Pnf (∆t) = P(C1being non-faulty at t = 0 and in (0,∆t])

= πne
−λnθ∆t (4)

Equation 4 considers the fault model of a controller replica,
where πn is the stationary probability of being in a non-faulty
state. This is multiplied by the probability of not transitioning
to the faulty state within a period of ∆t.

Using Equations 2, 3, 4, we can define the lower and upper
bounds on recovering a delay-faulty controller replica.

For a lower bound, we consider a two-replica system, the
worst-case network delay, and that a faulty replica cannot help
in detection and recovery. Increasing the number of replicas,
decreasing the network delay, or considering the cases in
which faulty replicas can take part in detection or recovery,
will increase the probability. Therefore, the lower bound is
justified. It is given as follows:

Pld(t) =
t−2∆∫
t1=0

Pdet(t1)

t∫
t2=t1+2∆

Pr(t2 − t1 − 2∆)Pnf (t2 − 2∆)dt2dt1

Note that the lower bound always considers two-replica
RTCSs regardless of g.

For an upper bound, we relax the condition of dependence
between replicas: we consider that each additional replica in
the system can detect and recover C0 independently. We also
consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result
in an increase to the actual probability. Therefore, the upper
bound is justified. It is given as follows:

Pud(t) = 1− (1− P1(t))g−1

P1(t) =

t∫
t1=0

Pdet(t1)

t∫
t2=t1

Prec(t2 − t1)dt2dt1

The derivation of Pld(t) and Pud(t) results in the statement
of the Theorem.

APPENDIX B
PROOF OF THEOREM V.2

Crash-Faulty Controller: In an RTCS with g controller
replicas, if a replica C0 starts to be crash-faulty at time t = 0
and remains faulty till time t, then a lower bound (Plc(t)) and
upper bound (Puc (t)) on the probability that it is recovered by
time t is given.

Proof. We first derive the following probabilities.
We define the notion of awareness, where a replica Ci

is aware of replica C0 at ta, if the detector database at Ci
contains an entry for C0 at ta. This condition is satisfied if
C0 sends a setpoint with a conception time t0 > ta − τc, the
report of which is received by Ci. The probability of such
an event, given that C0 conceives another setpoint at ta and
that Ci is non-faulty throughout, is given as Pa(∆t), where
∆t = t0 − ta:

Pa(∆t) = P(C0 issues a setpoint of conception time t0 −∆t,

that is received by Ci)

= λ0(1− p)2e−λ0(1−p)2∆t (5)

Equation 5 considers the controller model from Section V,
and uses the time-reversal property of Poisson processes.

We now consider a g-replica RTCS, in which C0 crashes at
t0, and the other g−1 replicas are assumed to be able to detect
this independently, and are all non-faulty throughout. For this,
each controller can be modeled as receiving setpoints at a rate
of (g−1)λn(1−p)2. The network is considered to have a fixed
one-way delay of d for packets that are not dropped. Under
such conditions, the probability of a replica Ci detecting C0

as crash faulty in the interval [t1, t1 + dt], given the above
conditions and that Ci was aware of C0, is given as Pc(∆t, g),
where ∆t = t1 − t0 − d.

Pc(∆t, g) = P(Cj 6= C0 conceivs a setpoint at t1 − d,
the report of which is received by Ci at t1)

=

{
0 ∆t < τc

(g − 1)λn(1− p)2e−(g−1)λn(1−p)2(∆t−τc) ∆t ≥ τc
(6)

Note that the above expression is an upper bound when
g > 2, but is exact when g = 2, since the condition of
independence is not required when there is only one replica
participating in detection.



11

In what follows, we derive a lower bound and upper bound
on the probability of recovering from a crash fault using
Equations 5 and 6. We will also use Pr and Pnf from
Equations 3 and 4, respectively.

The conditions for lower and upper bound are similar
to those presented in Appendix A. For a lower bound, we
consider a two-replica RTCS, the worst-case network delay,
and that a faulty replica cannot help in detection and recovery.

Plc(t) =

τc∫
t0=max(0,τc−t)

t−2∆∫
t1=τc−t0

t∫
t2=t1+2∆

Pa(t0)Pc(t1 + t0, 2)×

Pr(t2 − (t1 + 2∆))Pnf (t2 + (t0 + 2∆))dt2dt1dt0

For an upper bound, we relax the condition of dependence
between replicas: we consider that each additional replica in
the system can detect and recover C0 independently. We also
consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result
in an increase to the actual probability. Therefore, the upper
bound is justified. It is given as follows:

Puc (t) = 1− (1− P3(t))g−1

P3(t) =

τc∫
t0=max(0,τc−t)

t∫
t1=τc−t0

t∫
t2=t1

Pa(t0)Pc(t1 + t0, g)×

Pr(t2 − t1)dt2dt1dt0

The derivation of Plc(t) and Puc (t) results in the statement
of the Theorem.

Maaz Mohiuddin is a PhD student at the School
of Computer Science and Communication Systems
of EPFL since January 2014. He works under the
supervision of Professor Jean-Yves Le Boudec. He
grew up in Hyderabad, India and attended the Indian
Institute of Technology Hyderabad, where he com-
pleted his undergraduate in Electrical Engineering
with a minor in Computer Science in 2013. His
main research interests are fault-tolerance in real-
time systems and reliable communication for smart
grid networks. He has co-authored a paper presented

at WFCS 2015 that won the best paper award.

Wajeb Saab is a PhD student at the School of
Computer Science and Communication Systems of
EPFL. He grew up in Lebanon, where he obtained
his undergraduate degree in Computer and Com-
munications Engineering in 2014. He moved to
Switzerland in September 2014, where he started
working towards his PhD under the supervision of
Professor Jean-Yves Le Boudec. His main research
interests are reliable and robust real-time control
systems.

Simon Bliudze holds an MSc in Mathematics from
St. Petersburg State University (Russia, 1998), an
MSc in Computer Science from Université Paris
6 (France, 2001) and a PhD in Computer Science
from École Polytechnique (France, 2006). He has
spent two years at Verimag (Grenoble, France) as
a post-doc with Joseph Sifakis working on formal
semantics for the BIP component framework. After
three years as a research engineer at CEA Saclay
(France) and six years as a scientific collaborator
at EPFL (Lausanne, Switzerland), he has recently

joined INRIA Lille - Nord Europe (France).

Jean-Yves Le Boudec is professor at EPFL and
fellow of the IEEE. He graduated from Ecole Nor-
male Supérieure de Saint-Cloud, Paris, where he
obtained the Agrégation in Mathematics in 1980 and
received his doctorate in 1984 from the University
of Rennes, France. From 1984 to 1987 he was
with INSA/IRISA, Rennes. In 1987 he joined Bell
Northern Research, Ottawa, Canada, as a member of
scientific staff in the Network and Product Traffic
Design Department. In 1988, he joined the IBM
Zurich Research Laboratory where he was manager

of the Customer Premises Network Department. In 1994 he became associate
professor at EPFL. His interests are in the performance and architecture of
communication systems and smart grids. He co-authored a book on network
calculus, which forms a foundation to many traffic control concepts in the
internet, an introductory textbook on Information Sciences, and is the author
of the book ”Performance Evaluation”.


	Introduction
	Problem Description
	Challenges
	Contributions

	Related Work
	System & Fault Model
	Axo Design for Detection and Recovery
	Protocol Walkthrough
	Fault Masking: Tagger & Masker
	Fault Detection: Detector
	Fault Recovery: Rebooter

	Performance Analysis
	Analytical Evaluation of Recovery Time
	Experimental Validation
	Experimental setup
	Results


	Case Studies
	Stability Analysis of an Inverted Pendulum
	Commelec Deployment

	Conclusion
	Acknowledgment
	References
	Appendix A: Proof of Theorem V.1
	Appendix B: Proof of Theorem V.2
	Biographies
	Maaz Mohiuddin
	Wajeb Saab
	Simon Bliudze
	Jean-Yves Le Boudec


