
HAL Id: hal-01846096
https://hal.science/hal-01846096

Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software in the context of luminescence dating: status,
concepts and suggestions exemplified by the R package

’Luminescence’
Sebastian Kreutzer, Christoph Burow, Michael Dietze, Margret C Fuchs,

Manfred Fischer, Christoph Schmidt

To cite this version:
Sebastian Kreutzer, Christoph Burow, Michael Dietze, Margret C Fuchs, Manfred Fischer, et al..
Software in the context of luminescence dating: status, concepts and suggestions exemplified by the
R package ’Luminescence’. Ancient TL, 2017, 35, pp.1-11. �hal-01846096�

https://hal.science/hal-01846096
https://hal.archives-ouvertes.fr


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

Software in the context of luminescence dating: status, concepts and suggestions
exemplified by the R package ‘Luminescence’

Sebastian Kreutzer,1∗ Christoph Burow,2 Michael Dietze,3

Margret C. Fuchs,4 Manfred Fischer,5 & Christoph Schmidt5

1 IRAMAT-CRP2A, Université Bordeaux Montaigne, Pessac, France
2 Institute of Geography, University of Cologne, Cologne, Germany

3 Section 5.1: Geomorphology, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
4 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz-Institut Freiberg for Resource Technology, Freiberg, Germany

5 Chair of Geomorphology, University of Bayreuth, Bayreuth, Germany

∗Corresponding Author: sebastian.kreutzer@u-bordeaux-montaigne.fr

Received: Nov 11, 2016; in final form: July 4, 2017

Abstract

The relevance of luminescence dating is re-
flected by the steadily growing quantity of
published data. At the same time, the amount
of data available for analysis has increased due
to technological and methodological advances.
Routinely, luminescence data are analysed
using a mixture of commercially available soft-
ware, self-written tools and specific solutions.
Based on a luminescence dating literature
screening we show how rarely articles report
on the software used for the data analysis and
we discuss potential problems arising from
this. We explore the growing importance of
the statistical programming language R in
general and especially its reflection in recent
software developments in the context of lu-
minescence dating. Specifically, for the R
package ‘Luminescence’ we show how the
transparency, flexibility and reliability of tools
used for the data analysis have been improved.
We finally advocate for more transparency if
unvalidated software solutions are used and we
emphasise that more attention should be paid
to the tools used for analysing the data.

Keywords: R, Software, Luminescence dating,
Data analysis

1. Introduction

Luminescence dating studies require comprehensive data
analyses. Moreover, technological advances and method-
ological developments during the last decades have increased
the amount of data available. However, how much empha-
sis is, or rather should be, put on the software used to anal-
yse the data? Should we care about software development
in general? For most of the researchers in the lumines-
cence dating community, software is merely a tool to anal-
yse data and conduct research. Moreover, not every update
of such tools is worth publishing nor does every minor (or
even major) change in, e.g., the Analyst (Duller, 2015) or
the R package ‘Luminescence’ (Kreutzer et al., 2012) al-
ways appeal to the vast majority of the luminescence dating
community. Nevertheless, researchers may encounter prob-
lems, where no alternative software solution is readily avail-
able. Researchers are not usually skilled in programming
or trained in managing software development projects, even
though particular research questions sometimes demand such
solutions. However, the design and the usage of self-written,
specialised tools raises further challenges, such as verifica-
tion and validation, bug tracking and even licensing ques-
tions. At the same time, scientific standards (e.g., documen-
tation, transparency, reproducibility) need to be ensured.

In this study, we aim at shedding light on the role of soft-
ware in the context of luminescence dating. Therefore we
have conducted a literature screening and have compiled a
list of software tools developed over the last years. We high-
light the growing importance of the statistical programming
language R. R and the package ‘Luminescence’ are used to

1



Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

exemplify standard software engineering practices and soft-
ware test tools applied for developing research software. Fi-
nally, we discuss the advantages and challenges arising from
the development of highly specialised software tools and we
make suggestions for further developments. Our contribution
consists of two parts: (I) a general presentation and discus-
sion of the status quo of software tools used by the lumines-
cence dating community and (II) a description of technical
concepts embedded within the R package ‘Luminescence’.

Henceforth, we report names of software in italic letters
and the names of R packages in single quotes and monospace
letters (e.g., ‘Luminescence’). For program code we use
monospace letters. Hyperlinks to internet resources, beyond
the references, are provided as footnotes at their appropriate
positions.

2. Software and its role in luminescence data
analysis

2.1. Observations from the literature
To examine the role of software in the context of lumi-

nescence dating we conducted a literature study. The ten last
published articles, presenting new luminescence dating re-
sults, of 10 international peer-reviewed journals (cf. Table
S1, 100 items in total, closed volumes only, years 2016 to
2014, screening period: 2016-10-03 to 2016-10-08), were
systematically screened for information given on the soft-
ware used for the luminescence data analysis. Our chosen
definition of data analysis includes equivalent dose mod-
elling, age calculation and dosimetric calculations. Supple-
mentary data provided with the screened articles were taken
into account, but not referred articles. Exceptions were made
for articles where substantial information on data and proce-
dures were spread over more than one manuscript.

A table listing all screened articles is provided as sup-
plement (Table S1). Screened journals were: Boreas
(BOR), CATENA (CAT), Earth and Planetary Science Let-
ters (EPSL), Geomorphology (GM), Journal of Quaternary
Science (JQS), Quaternary Geochronology (QG), Quater-
nary International (QI), Quaternary Research (QR), Quater-
nary Science Reviews (QSR) and The Holocene (HOL). Note
that this selection may be biased by preferring journals with
an easy online accessibility; no further randomisation took
place. Due to the applied selection articles published during
the last two years were favoured. Hence, the overall explana-
tory power of the screening is limited.

In CAT and JQS, 5 out of 10 articles reported on the soft-
ware used in the context of luminescence dating, in EPSL,
GM and QSR, 3 out of 10 articles, in QG, QR and HOL it
were 2 out of 10 articles each. In BOR, 1 out of 10 studies
provided information, and none of the ten screened articles
in QI reported on the software used. Thus, 26 out of 100
recently published articles reported on the software used for
analysing the luminescence data (cf. Fig. 1). In 9 out of
the 26 articles further details (e.g., software version number)
were given and in only two of the articles, the references

Luminescence dating

25

50

75

0/100

C−14 dating

25

50

75

0/100

(screened articles: 100)

S
u

m
m

a
ry

Reported?
NO

YES

Does the article report on the software used?

26 %

74 %

87 %

13 %

Figure 1. Results of the conducted literature study. 26 out of 100
screened articles report on the software tool used for analysing the
luminescence data (left chart). By contrast, 31 out of these 100
articles additionally reported on 14C dating results and from these
31 studies 27 (87 %) reported on the applied software to obtain the
14C results. For details see main text. The graphic was produced
using ‘ggplot2’ (Wickham, 2009).

fully covered the data analysis carried out. Note: Software
used for data visualisation only was not considered.

Software tools mentioned in these articles were (in alpha-
betical order):

• ADELE (Kulig, 2005, and one time ADELE2015, un-
published),

• AGE (Grün, 2009),

• Analyst (Duller, 2015),

• the R package ‘Luminescence’(Kreutzer et al., 2012,
2017),

• DRAC (Durcan et al., 2015),

• DRc (Tsakalos et al., 2015),

• RadialPlotter (Vermeesch, 2009),

• PAST (Hammer et al., 2001) (here for luminescence
data regression analysis)

• and one self-written Excel R© sheet.

Except for the programme ADELE (both versions) and the
self-written Excel R© sheet all cited tools were freely accessi-
ble at the time this article was written; links are given in the
reference list.

Our observation differs for those articles that also include
14C analysis. There, 87 % report on the software used to cal-
culate the 14C ages. In the 14C community, specialised soft-
ware such as OxCal (Ramsey, 1995) or CALIB (Stuiver et al.,
2016) may have set a quasi-standard and their usage and ci-
tation may therefore be considered as indispensable for pub-
lishing an article. However, in other research communities
(e.g., biology), Howison & Bullard (2015) encountered the
similar problematic practise of missing citations and infor-
mation on the software used.

2



Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

2.2. Software in the wild
The previously mentioned observations from the literature

are contrasted by the remarkable number of specialised soft-
ware packages formally or informally released in the broader
context of luminescence dating and related data analysis (in
alphabetic order): ADELE (Kulig, 2005), AGE (Grün, 2009),
AgesGalore1 (Greilich et al., 2006), AgesGalore2 (Greilich
et al., 2015), Analyst (Duller, 2007, 2015), DOSE (Brumby,
1992), DosiVox (Martin et al., 2015), DRc (Tsakalos et al.,
2015), DRAC (Durcan et al., 2015), FitBin9 (Bailey, 2008),
FITT (Grün & Macdonald, 1989), Hybfit (principle described
in Bluszcz & Adamiec, 2006), PTanalyse (Lapp et al., 2009),
RadialPlotter (Vermeesch, 2009), RLanalyse (Lapp et al.,
2012). This list must be considered as non-exhaustive, which
indicates a general demand for specialised solutions to deal
with luminescence data. However, software may have not
been taken into account or may have been overlooked. This
includes various self-written Excel R©, MATLAB R©, S scripts
and R scripts and individual software solutions that were
never formally published, but circulate in the wild.

2.3. The R factor
Additionally, we observed a rising trend of published soft-

ware based on the statistical programming language and en-
vironment R since 2012. Currently available R software
(henceforth packages) dedicated to luminescence data analy-
sis in a broader sense are listed in Table 1. All of them were
first published during the last five years. The table lists the
name of the package, the package maintainer as well as the
latest available version and provides a short description. The
columns ‘Access via’ (subcolumns CRAN and GitHub) and
‘Licence’ inform accessibility and on the selected legal state-
ment. A licence sets the needed legal framework the software
can be used in, modified and further propagated. Every soft-
ware reported in Table 1 was published under GNU general
public licence (GPL)2 conditions.

3. The software dilemma
Considering the amount of software developed in the lu-

minescence dating community over the time, it is remark-
able how few articles (cf. Sec. 2.1) report on details of the
software tools used for their data analysis. We consider this
practice as problematic for several reasons:

1. The unanswered question “Which tool was used to anal-
yse the data?” may lead to “How much trust can be put
in presented data if important details on the data anal-
ysis remain undocumented?”. Thus, reporting on the
tools is indispensable to ensure transparency and repro-
ducibility of published results.

2. Software is never free of bugs, might be inappropriately
used and ‘degrades’ through time. Software that is no

1This software should not be confused with the R package
‘AgesGalore’ (Greilich, 2013)

2https://www.gnu.org/licenses/gpl-3.0.en.html

longer developed and not regularly maintained to func-
tion properly may suffer from increasingly frequent dis-
abilities (e.g., unsupported new file structures, methods,
operating systems) and eventually stop working at all.
Changes are not always visible to the user and running
software may undergo modifications causing changes
for the data output. A proper reporting links the results
to a particular tool and its version. It cannot prevent
mistakes, but it helps to track them down.

3. Free and open-source software usually comes without
any warranty. Hence, the user should not blindly trust
every change undertaken and every new version re-
leased. Here, software quality assurance (e.g., testing,
cross validation) is a responsibility that cannot be taken
by the developers of analysis tools alone or should not
be fully committed to them. If nothing is reported and
software errors are discovered later, they are not linked
to the article and can hardly be recognised.

The last point deserves further attention. Although the
software tools reported in Sec. 2.2 were made freely available
by the authors, the source code is not accessible to the pub-
lic. By contrast, the source code of all the R software listed in
Sec. 2.3 is available via public repositories. A non-accessible
closed source tool is not by default inherently better or worse
than a freely available open-source tool. However, if dis-
agreements in the results from different software tools are
encountered the ability to track down errors, such as devi-
ations in calculations, are reduced. Open-source software
balances the roles between developers and users, but only if
recognised as an opportunity. At present, however, common
reporting practice indicates that computational work and its
developments are not yet part of the daily scientific routine
in the luminescence dating community.

Beyond transparency, open-source software and in par-
ticular software published under GPL-3 (cf. Sec. 2.3) en-
courages code recycling, and tailored solutions can be built
on existing code. The statistical programming language R
provides a very robust and popular environment (Tippmann,
2014). The reuse and extension of code are capable of chang-
ing the way research is carried out. However, it comes at the
cost of caretaking for reproducibility and reliability, and time
must be invested to build up skills in programming.

In the second part of our paper, we explore some lesser
known features of the programming language R. We further
present and discuss concepts and development processing
tools implemented in the R package ‘Luminescence’.

4. The popularity of the R environment

Since our first article on the R package ‘Luminescence’
(Kreutzer et al., 2012), the popularity of R has risen remark-
ably. This development can be seen by the Comprehensive R
Archive Network (CRAN)3 statistics. The first R package on

3https://cran.r-project.org

3

https://www.gnu.org/licenses/gpl-3.0.en.html
https://cran.r-project.org


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

Table 1. To date available R packages in alphabetic order dealing with luminescence and ESR data in a broader sense. URLs are given in the
reference list.

Name Maintainer Version Description Licence Access via Reference2

CRAN GitHub1

‘AgesGalore’ Steffen
Greilich

0.0.3
[2013-12-16]

Collection of routines comple-
menting AgesGalore 2

GPL-3 - - unpublished,
Greilich
(2013)

‘ArchaeoPhases’Anne Philippe 1.2
[2017-06-13]

Post-Processing of the
Markov Chain Simulated
by ChronoModel, Oxcal or
BCal

GPL-3 X - Philippe & Vi-
bet (2017a)

‘ESR’ Christoph
Burow

0.1.0.9031
[2017-07-03]

Analysing and plotting Electron
Resonance Spin (ESR) data

GPL-3 - X unpublished,
Burow (2015)

‘KMS’2 Jun Peng no number
[2015-11-04]

Collection of kinetic models for
simulating quartz luminescence

custom
&
GPL-3

- X Peng & Pago-
nis (2016)

‘Luminescence’ Sebastian
Kreutzer

0.7.5
[2017-06-26]

Comprehensive luminescence
dating data analysis

GPL-3 X X Kreutzer et al.
(2012, 2017)

‘LumReader’ David Strebler 0.1.0
[2017-01-27]

Package to simulate and visu-
alise technical aspects of a lu-
minesce reader

GPL-3 X X Strebler
(2017)

‘numOSL’ Jun Peng 2.3
[2017-05-18]

Numerical routines dealing for
OSL dating, e.g., De calcula-
tion, dose response curve fitting

GPL-3 X - Peng et al.
(2013); Peng
& Li (2017)

‘RChronoModel’ Anne Philippe 0.4
[2017-01-12]

Collection of functions for
post-processing data returned
by the software ChronoModel
(Lanos et al., 2015), this
includes chronological frame-
works based on luminescence
dating data

GPL-3 X - Philippe & Vi-
bet (2017b)

‘RLumModel’ Johannes
Friedrich

0.2.1
[2017-04-13]

Simulate luminescence signals
based on published models,
e.g., Bailey (2001)

GPL-3 X X Friedrich et al.
(2016, 2017)

‘RLumShiny’ Christoph
Burow

0.2.0
[2017-06-26]

Graphical interface for the R
package ‘Luminescence’

GPL-3 X X Burow et al.
(2017, 2016a)

‘rxylib’ Sebastian
Kreutzer

0.1.1
[2017-07-07]

Functions to import xy-data
into R (e.g., from γ-ray spec-
trometer)

GPL-3 X X Kreutzer
(2017)

‘TLdating’ David Strebler 0.1.3
[2016-08-31]

Functions dealing with TL data
using the MAAD and SAR pro-
tocol

GPL-3 X X Strebler et al.
(2016); Stre-
bler (2016)

‘tgcd’ Jun Peng 2.0
[2016-09-06]

Functions for TL curve decon-
volution

GPL-3 X - Peng et al.
(2016); Peng
(2016)

1 The source code of every R package on CRAN is additionally available on GitHub, but here only listed if the source code is actively
managed by the package author(s) on GitHub
2 A software is considered as published if it is (a) released via CRAN and/or (b) presented in a peer-reviewed journal
3 Not available as a distinct R package, but as a collection of R functions
CRAN: comprehensive R Archive Network. https://cran.r-project.org
GitHub: online platform for the open-source version control system Git. https://github.com

CRAN was released in 1997. In 2012, the year the R pack-
age ‘Luminescence’ was introduced, the CRAN counted
almost 4,000 packages and the package ‘Luminescence’

became number 3,9184. When this article was written there

4https://gist.github.com/daroczig/

3cf06d6db4be2bbe3368, accessed: 2016-10-06

were 10,255 active R packages (07/2017: 11,018), 1,322
packages of which have been added from January to August
2016 alone (Hornik & Zeilis, 2016) and CRAN counted 6 to
7 million downloaded individual packages every week5.

5http://www.r-pkg.org; accessed: 2017-03-12 & 2017-07-10

4

https://cran.r-project.org
https://github.com
https://gist.github.com/daroczig/3cf06d6db4be2bbe3368
https://gist.github.com/daroczig/3cf06d6db4be2bbe3368
http://www.r-pkg.org


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

Every package published on CRAN is well integrated in
the R environment (convenient download and installation)
and available for all three major platforms (Windows R©, ma-
cOS R© and Linux R©) along with the source code and a refer-
ence manual. GitHub6 is a commercial repository to main-
tain, develop and host the source code of software written in
all kinds of programming languages. GitHub uses the ver-
sion control system Git (e.g., Chacon & Straub, 2014) and
can be used free of charge as long as the source code is made
public and open-source. The popularity of GitHub amongst
the R community may result from its good integration pro-
vided by the R community itself, e.g., packages under devel-
opment can be directly downloaded and installed out of the
R environment.

In Table 1 the columns CRAN and GitHub (Table 1) in-
form on how the package itself and the program code are
made available to the public. As mentioned before, the term
CRAN refers to the location a package can be submitted
to after it has successfully passed some technical tests (cf.
Sec. 5.4) and as long as it does not violate the repository
rules7. At present, the source code of all R packages on
CRAN is additionally mirrored on GitHub even if the pack-
age is not developed on GitHub itself. By contrast, Table 1
only lists packages available via GitHub if they are actively
developed and maintained via GitHub.

General advantages of using R for luminescence data
analyses have been outlined already elsewhere (Kreutzer
et al., 2012; Dietze et al., 2013; Fuchs et al., 2015; Dietze
et al., 2016). A lesser known fact is that CRAN automatically
archives all packages ever published on the network. Thus
even after a package was updated or removed, the older ver-
sions are still available. Additionally, automatic checks are
run by the CRAN before every package submission and reg-
ularly after the package was released on CRAN. These tests
provide a certain degree of technical compatibility and stabil-
ity. They ensure, amongst other things, that the package can
be installed without error (e.g., all dependencies are avail-
able) and it provides tests for all package examples. Pack-
ages failing the automatic tests are usually removed from
CRAN and become archived until the developers have ad-
dressed the raised issues.

5. Transparency, flexibility and reliability

The development of software for scientific research de-
mands extra care regarding transparency, flexibility and relia-
bility. During the last five years of developing the R package
‘Luminescence’, we have adapted concepts established in
computational science of which the most important aspects
are presented below.

6https://github.com
7https://cran.r-project.org/submit.html, accessed: 2016-

10-03

5.1. Transparent development process
All packages on CRAN are, including the source code,

freely accessible. The development process itself is not al-
ways visible to the user. This can lead to situations where
the developer might already be aware of a critical bug lead-
ing to a wrong calculation and eventually fixes that bug, but
if the bug fix is not announced when the new version is re-
leased, the user might not even become aware of a faulty
version that previously produced erroneous results. To im-
prove the transparency of the development process, for the
package ‘Luminescence’ it was decided to move the entire
development process, including the bug tracking, to an open
repository, namely: GitHub.

In agreement with the GPL-3 licence conditions, the pack-
age still comes without any warranty, but now offers maxi-
mum transparency and an open handling of bugs. All modi-
fications made to the software are recorded as so-called com-
mits, usually enhanced by comments. Each of these commits
keeps track of all individual changes, which enables a side-
by-side comparison of a newer and older version of a piece
of code or file. As shown in Table 1 this step is not limited to
the ‘Luminescence’ package and it is also not a new soft-
ware development concept, but it is an important step which
allow a proper peer-reviewing process of tools used for the
data analysis.

5.2. Object standardisation
Working with R can sometimes become a rather dis-

jointed experience, especially if different packages are in-
volved (Boettiger, 2015). Many packages are tailored to deal
with rather specific problems or to solve only one particu-
lar task. Some packages comprise only a few functions and
even these few functions within one package may work with
a different logic.

For example, the first version of the package
‘Luminescence’ was just a collection of functions
that could be used independently for one or the other pur-
pose, e.g., analysing linearly modulated optically stimulated
luminescence (LM-OSL) signals or plotting equivalent dose
(De) distributions. Both are still possible, but due to the
standardisation of function argument names and a changed
package structure, more comprehensive data analyses are
now possible.

Figure 2 shows the general package structure for the last
version of the ‘Luminescence’ package. The development
of this structure was guided by the idea that the luminescence
data need to be first imported independently of the initial data
format and is then transformed into a coherent internal struc-
ture.

Therefore, an interface was integrated that converts all
kinds of luminescence input data (e.g., a BIN- or XSYG-
file) into a new unified data structure consisting of so-called
RLum-objects. The details of this structure are beyond
the scope of this contribution and may change in the future.
Once the data are available as RLum-objects, they can be
passed from one function to another. Thus, as long as the

5

https://github.com
https://cran.r-project.org/submit.html


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

transform into

RLum-objects 

plot_

calc_

analyse_

apply_

merge_

verify_

R
 L

uminescence

..._

<html/>
Rdata

BIN

BINX

CSV

TXT XSYG SPE PSL

BIN

BINX...

proprietary 

format

export

open format export re
s
to

re
 s

e
s
s
io

n

link to other

R 

packages

CSV
x y
.
.
.
.
.

.

.

.

.

.

Figure 2. R ‘Luminescence’ package structure with indicated in-
put/output interfaces. Once the raw measurement data have been
transformed into an RLum-object, data can be passed without fur-
ther transformation from one function to another within the package
environment.

data are processed within the package environment (blue cir-
cle in Fig. 2), they can be analysed and combined in man-
ifold ways, paving the way for new types of data analysis,
e.g., data mining and big data analysis. For example, Burow
et al. (2016b) reported the photo-ionisation cross section ob-
tained from CW-OSL fitting of 5,488 CW-OSL curves ex-
tracted from 58 BIN-files (348 aliquots, 17 fine grain quartz
loess samples from Europe). Their preliminary work showed
the potential of data analyses carried out on a large scale,
determining realistic distributions of expected natural varia-
tions.

The analytical output can be a graphic, a printed text in
the R terminal, a new R object, an individual object created
by the package ‘Luminescence’ (RLum-object) itself, or
a combination of these possibilities. Numerical output can be
exported to various formats natively supported by R (e.g., a
CSV-file) or even proprietary formats (e.g., a BIN/BINX-file
using the ‘Luminescence’ package). R allows for the ex-
port or archiving of an entire session (Rdata-file), which can
be used to continue the data analysis with all previously cre-
ated objects at any other time or to load the data and objects
into a new session.

Another way to share analytical output with persons not
familiar with R is the implemented possibility to export a
function output to an HTML-file by creating a report using

the function report RLum(). Detailed examples are given
in the package manual itself; an exemplary output is shown
in Fig. 3.

Figure 3. Screenshot of an HTML report produced using the func-
tion report RLum() from the R package ‘Luminescence’. The
output object used for the example was produced by the function
calc AliquotSize(). The output has been manually reduced for
this figure.

The HTML-file can be opened with any modern web
browser. It reports analytical output and parameters used for
data analysis when producing the object, e.g., the R version,
the package version, the operating system etc. Standard plot
outputs are partly included. In this way, the provided infor-
mation on a performed data analysis is optimised regarding a
maximum transparency. Since HTML-files are human read-
able (non-binary) and can be opened by a web browser or
by any text editor, the included information are available to
every reviewer and reader.

5.3. Task modularisation
A programmer’s mantra is: do not repeat yourself. In

other words, existing code designed for a particular task
should be reused instead of implementing new code. With
package modularisation, the R environment is well suited to
reuse solutions developed by others. The ‘Luminescence’

package takes direct and indirect advantage of > 50 other
R packages. The packages are imported during instal-
lation or later (upon request) and are connected to the

6



Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

‘Luminescence’ package based on the ability to link pack-
ages in the R environment and import functionalities from
one package into another. Figure 4 illustrates how the pack-
age ‘Luminescence’ can be (and is) connected to other R
packages.

RLumModel

L
u

m
inescence

RLumShiny

TLdating

dep
en

ds

su
gges

ts

s
u
g
g
e
s
ts

im
p

o
rt

s

im
ports

im
p

o
rt

 f
ro

m
 

o
th

e
r 
R

 p
a
c
k
a
g
e
s

Figure 4. R package ‘Luminescence’ dependency sketch. For
example: The package ‘RLumShiny’ is suggested by the pack-
age ‘Luminescence’ and therefore imported. Thus, the package
‘Luminescence’ can run without the package ‘RLumShiny’, but
not the other way around.

To date, three packages import the ‘Luminescence’

package and using its core functionalities (e.g., data im-
port, RLum-object structure). The package ‘RLumShiny’

(Burow et al., 2017) enhances the ‘Luminescence’ pack-
age by providing a graphical user interface for selected
functions. ‘RLumShiny’ is not required to analyse
data and is not installed by default while installing the
‘Luminescence’ package, but once installed it can im-
prove the usability of supported functions tremendously
(e.g., plot AbanicoPlot()). The package ‘RLumModel’

(Friedrich et al., 2016, 2017) is a package to simulate
quartz luminescence signals and it can be called out of the
‘Luminescence’ package using a so-called wrapper func-
tion (model LuminescenceSignals()). To take advantage
of its full functionality and for more complex use cases, the
package functions should be called directly. The link estab-
lished between both packages allows a very quick and fo-
cussed development of the ‘RLumModel’ package. It uses
the entire object structure of the ‘Luminescence’ package,
i.e., simulation outputs can be transferred to the analysis and
plot functions of the ‘Luminescence’ package and can be
treated as measurement output, i.e., as if it were produced by
a luminescence reader. This connection makes writing cus-
tom plot and analysis functions for the ‘RLumModel’ pack-

age unnecessary and still allows a very efficient and inde-
pendent development of the ‘RLumModel’ package, while
keeping the model functions out of the ‘Luminescence’

package, where they are not needed for routine data anal-
yses. The package ‘TLdating’ (Strebler, 2016; Strebler
et al., 2016) took a different path. It imports functions (e.g.,
for plotting) from the ‘Luminescence’ package, but was
further modified based on the underlying code structure of
the ‘Luminescence’ package.

In all cases, the idea is similar concerning a preferred
flexibility and task orientation of the packages, but avoid-
ing a doubling of code wherever possible to reduce cod-
ing errors and to improve the overall reliability. The var-
ious possibilities to link R packages combined with the
universally applicable object structure gives other package
authors an independent platform for their projects without
the need of taking care of the constraints provided by the
‘Luminescence’ package. For example, due to the com-
plexity of ‘Luminescence’ not every function can be mod-
ified substantially without breaking other code and introduc-
ing errors.

5.4. Improving the code quality
Every new ‘Luminescence’ package release has passed

internal tests performed by the programmers or by users
working with the developer version from GitHub. But even
after all of those tests, chance remains that bugs persist or
that new bugs are introduced, which may lead to unexpected
substantial errors or behaviours, i.e., the calculation output
changes and remains undetected. And not every unexpected
behaviour is a real bug, i.e. a coding mistake. For the pack-
age ‘Luminescence’, unexpected behaviour occurred with
the change from package version 0.3.4 to 0.4.0. With the new
version, the function calc FiniteMixture() produced a
different output; not because the function itself was changed,
but the likelihood optimisation routine was taken from an-
other package. The old and the new version gave different
results. The results returned by the old version were not
wrong, but the new results are considered to be more pre-
cise. Still, this behaviour remained unnoticed at first. Un-
expected program behaviour and software errors can hardly
be avoided, but can be reduced by adequate testing. Unfor-
tunately, software testing is a tedious and time-consuming
business that requires skilled users developing test scenarios.
It is not the easily recognisable error in the graphical output
that is most concerning, but the hard-to-track-down errors in
basic calculations. Thus, errors may lead to a chain of mis-
interpretations and wrong scientific conclusions. Given that
code errors will always exist, the aim is to recognise and re-
duce them. Figure 5 illustrates the development and testing
process as implemented for the ‘Luminescence’ package
(version > 0.7.0).

First, the implementation of a new feature (e.g., new func-
tion) starts with a feature request (induced internally or ex-
ternally). After that, the developer drafts the first version
and runs tests until the feature appears sufficiently imple-
mented. Before making the new function part of the pack-

7



Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

CRAN

local 

check

CRAN

submission 

checks

AppVeyor
(Windows®)

Travis CI
(Linux®/macOS®)

Platform specific tests

‘testthat’

Content tests

alpha beta final

internal 

developer

tests

community

beta

tests

coding

testing

Submission

Development

CRAN

general

checks

ReleaseFeature request

Development

from

>= 0.7.0

continuous integration

revert 

if failing

test

feedback

Figure 5. Development and testing process as implemented in the R package ‘Luminescence’. Once the development process has been
initialised by a feature request (e.g., a new function), the new package version evolves over several development versions. Starting with an
alpha version, stability and quality are improved until a final version, ready for submission to CRAN, is reached. The entire development
process is supported by automatic platform and unit tests, which are run continuously.

age, local CRAN checks are performed, i.e., the same tests
that are run by CRAN when submitting a package. If these
tests were passed successfully, the entire package is send to
two external resources, namely AppVeyor8 and Travis CI9, to
conduct platform specific tests. Both resources are service
platforms that provide continuous integration tests on virtual
machines (virtual computers) for various platforms and are
used in combination with GitHub. Currently, these services
are free of charge for open-source projects.

The tests have the same intention as the local CRAN test,
namely to run technical tests including the package exam-
ples, but they are run on different systems, newly set up,
in a separate virtual machine for each test. On top of that,
with version 0.7.0, special unit tests were defined and run us-
ing the package ‘testthat’ (Wickham & RStudio, 2016;
Wickham, 2011). In contrast to the tests before, complex test
scenarios can be established and function output can be com-
pared to predefined output values. For example, the function
calc FinitMixture() can be run with predefined values
while the output is compared against reference values. Any
mismatch between calculated and pre-defined reference val-
ues causes an immediate test-error message.

Until this point, all tests (except in the first step, the de-
veloper test) run automatically. After passing, the new fea-
ture will be implemented in a first ‘alpha’ version. Now a
test phase using “human resources” starts until the sched-
uled CRAN submission date. The CRAN submission can
be compared with the submission of a scientific article for
peer-review. The CRAN is volunteered by only a few mem-

8https://www.appveyor.com
9https://travis-ci.org

bers of the R community running further automated or semi-
automated tests, though the review process only cares about
technical aspects and takes usually not more than 24 h. Af-
ter the package with the new feature is released on CRAN it
is still continuously tested, i.e. as soon as a change in an-
other package prevents the ‘Luminescence’ package from
functioning this would be recognised by the CRAN team.

6. Discussion

The previous section has demonstrated an increasingly
complex system that is necessary to fulfil basic scientific
standards, balancing transparency and reproducibility with
enhanced tool functionality. The question is whether this ef-
fort is needed and justified.

Humans are imperfect, which justifies the established,
peer-reviewed procedure in science. However, for software
tools used in data analysis, this system appears to be un-
derutilised. The required innovations and the dynamics of
software development do not favour the long lasting peer-
review procedures that every new version would require, and
it would perhaps exhaust existing capacities. Take the pack-
age ‘Luminescence’ as an example. It would have required
a minimum of 25 publications and a minimum of up to twice
as many reviewers within the last five years. Accordingly, to
ensure basic scientific standards, we implemented the mea-
sures as discussed in Sec. 5.

Furthermore, tools of limited complexity may also only
encounter problems of limited complexity. A pseudo LM-
OSL curve conversion requires only a rather simple script,
which can be easily validated by third parties. However, the

8

https://www.appveyor.com
https://travis-ci.org


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

additional benefit of such scripts remains limited. By con-
trast, a full equivalent dose determination routine requires a
set of tools working together and thus becomes more com-
plicated, but carries more overall value. The presented pro-
gramming environment R favours simple scripts which can
be combined to produce complex scenarios. Hence, the pop-
ularity of R within the scientific community might be partly
explained by its package structure, which allows for aggre-
gate packages to tackle rather complex tasks.

Nonetheless, R serves only as an example, and the draw-
backs should not be overlooked. The nearly unlimited flex-
ibility comes at the cost of lacking a native, easy-to-handle
graphical user interface (GUI), which poses serious obstacles
for beginners, as basic knowledge on the R environment is
needed before packages can be used. And the advantage that
R software is open for inspection by the user is of interest
only to a small circle of R users. Even the package struc-
ture itself may partly cause a fragmentation of the system.
Spreading needed functionalities across packages with lim-
ited compatibility gives no direct benefit to the user. Pack-
ages are not necessarily compatible with each other in terms
of data exchange and functionality.

In contrast to the established peer-reviewed publishing
procedure, software development is a far more agile and fast
moving process, poorly suited to the established peer-review
process. We may, therefore, advocate for a changed percep-
tion of scientific software developments. The correct and
complete documentation of the applied tools would be an
important first step. A minimum reporting standard for the
tools used in luminescence dating studies should at least in-
clude the correct name of the tool, the version number (al-
ternatively the release date) and an appropriate reference. If
more complex procedures were applied (e.g., age models),
used parameters might be provided as well to make the pre-
sented data comprehensible. To what extent such reporting
is necessary depends on the particular case. For example, re-
searchers may consider whether the raw data should be made
available, or whether the computational work can be repro-
duced easily. Both discussions are beyond the scope of this
article.

We furthermore suggest that every non-trivial piece of
self-written software or script should be made freely acces-
sible or published along with the study. Ideally, the source
code itself would be open-source, provided under a com-
monly accepted open-source licence and available via plat-
forms similar to those presented here (i.e., CRAN or GitHub).

7. Conclusions
The role of software for analysing luminescence data is

increasingly important. In our article, we investigated the
role of software in the luminescence dating community.

1. A literature screening was carried out, showing that
only one-quarter of the screened articles reports on the
software used for the data analysis. We argue for mini-
mum reporting standards for the software applied to the

data processing in a luminescence dating study, includ-
ing the name of the tool, the version number and any
relevant reference.

2. We listed software developed by the community to anal-
yse luminescence data.

3. We explored the popularity of the statistical pro-
gramming environment R and presented develop-
ment concepts implemented for the R package
‘Luminescence’.

4. We explained how transparency, flexibility and reli-
ability of the developed code and tools can be im-
proved. To this end, the software development pro-
cess for the ‘Luminescence’ package was moved to
an open repository and the software code is now largely
tested automatically. The opening-up of the develop-
ment process is believed to increase the transparency
and reliability of the developed tools.

5. We suggest that the code of freely available, self-
developed tools should be made accessible to the public.

Finally, we advocate for more attention to software devel-
opments, since they considerably influence the research from
which scientific conclusions are drawn.

Acknowledgements

The manuscript benefitted considerably from suggestions
by Rainer Grün and Nathan Brown. Johannes Friedrich is
thanked for his help getting access to the Boreas’ articles.
Steve Grehl is thanked for fruitful discussions on object-
based programming and questions on how to take advantage
of this concept for the R package ‘Luminescence’. The
work of Sebastian Kreutzer is financed by a programme sup-
ported by the ANR - n◦ ANR-10-LABX-52. Collaboration
and personal exchange between the authors are gratefully
supported by the DFG (SCHM 3051/3-1) in the framework
of the programme Scientific Networks.

Appendix

How do I cite an R package?
R has an implemented functionality to get conclusive infor-
mation on how a package should be cited and referenced.
For the R package ‘Luminescence’ this information will
be shown by typing the following code line into the R
terminal:

library(Luminescence)

citation("Luminescence", auto = TRUE)

9



Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

References
Bailey, D J E. Development of LM OSL Analysis Techniques for

Applications to Optical Dating. PhD thesis, Research Laboratory
for Archæology and the History of Art Keble College, 2008.

Bailey, R M. Towards a general kinetic model for optically and
thermally stimulated luminescence of quartz. Radiation Mea-
surements, 33: 17–45, 2001.

Bluszcz, A and Adamiec, G. Application of differential evolution
to fitting OSL decay curves. Radiation Measurements, 41(7-8):
886–891, 2006.

Boettiger, C. An introduction to Docker for reproducible research.
ACM SIGOPS Operating Systems Review, 49(1): 71–79, 2015.

Brumby, S. Regression analysis of ESR/TL dose-response data. In-
ternational Journal of Radiation Applications and Instrumenta-
tion. Part D. Nuclear Tracks and Radiation Measurements, 20
(4): 595–599, 1992.

Burow, C. ESR: Package to analyse ESR data (under development).
CRAN, version 0.1.0.9031, 2015. Developer version on GitHub:
https://github.com/tzerk/ESR.

Burow, C, Kreutzer, S, Dietze, M, Fuchs, M C, Fischer, M, Schmidt,
C, and Brückner, H. RLumShiny - A graphical user interface for
the R Package ‘Luminescence’. Ancient TL, 34: 22–32, 2016a.

Burow, C, Zens, J, Kreutzer, S, Dietze, M, Fuchs, M C, Fischer,
M, Schmidt, C, and Brückner, H. Exploratory data analysis us-
ing the R package ’Luminescence’. Towards data mining in OSL
applications. In UK LED Liverpool, 2016-08-11 to 2016-08-13,
Liverpool, 2016b. Poster presentation.

Burow, C, Wolpert, U T, and Kreutzer, S. RLumShiny: ’Shiny’
Applications for the R Package ’Luminescence’. CRAN, version
0.2.0, 2017. URL https://CRAN.R-project.org/package=

RLumShiny. Developer version on GitHub: https://github.
com/tzerk/RLumShiny.

Chacon, S and Straub, B. Pro Git. Everything you need to know
about git. Apress, 2nd edition edition, 2014. web resource:
https://git-scm.com.

Dietze, M, Kreutzer, S, Fuchs, M C, Burow, C, Fischer, M, and
Schmidt, C. A practical guide to the R package Luminescence.
Ancient TL, 31(1): 11–18, 2013.

Dietze, M, Kreutzer, S, Burow, C, Fuchs, M C, Fischer, M, and
Schmidt, C. The abanico plot: visualising chronometric data
with individual standard errors. Quaternary Geochronology, 31:
12–18, 2016.

Duller, G A T. Assessing the error on equivalent dose estimates de-
rived from single aliquot regenerative dose measurements. An-
cient TL, 25(1): 15–24, 2007.

Duller, G A T. The Analyst software package for luminescence data:
overview and recent improvements. Ancient TL, 33(1): 35–42,
2015. URL http://users.aber.ac.uk/ggd/.

Durcan, J A, King, G E, and Duller, G A T. DRAC:
Dose Rate and Age Calculator for trapped charge dat-
ing. Quaternary Geochronology, 28: 54–61, 2015. source
code on GitHub: https://github.com/drac-calculator/
DRAC-calculator.

Friedrich, J, Kreutzer, S, and Schmidt, C. Solving ordinary dif-
ferential equations to understand luminescence: ’RLumModel’,
an advanced research tool for simulating luminescence in quartz
using R. Quaternary Geochronology, 35(C): 88–100, 2016.

Friedrich, J, Kreutzer, S, and Schmidt, C. RLumModel: Mod-
elling Ordinary Differential Equations Leading to Lumines-
cence. CRAN, version 0.2.1, 2017. URL https://CRAN.

R-project.org/package=RLumModel. Developer version on
GitHub: https://github.com/R-Lum/RLumModel.

Fuchs, M C, Kreutzer, S, Burow, C, Dietze, M, Fischer, M, Schmidt,
C, and Fuchs, M. Data processing in luminescence dating anal-
ysis: An exemplary workflow using the R package ’Lumines-
cence’. Quaternary International, 362: 8–13, 2015.

Greilich, K-S, Harney, H L, Woda, C, and Wagner, G A. AgesGa-
lore—A software program for evaluating spatially resolved lumi-
nescence data. Radiation Measurements, 41(6): 726–735, 2006.

Greilich, S. AgesGalore: R routines for AgesGalore data. 0.03,
2013. URL http://www.agesgalore.net.

Greilich, S, Gribenski, N, Mittelstraß, D, Dornich, K, Huot, S,
and Preusser, F. Single-grain dose-distribution measurements by
optically stimulated luminescence using an integrated EMCCD-
based system. Quaternary Geochronology, 29(C): 70–79, 2015.

Grün, R. The “AGE” program for the calculation of luminescence
age estimates. Ancient TL, 27(2): 45–46, 2009. URL to the
AGE program: http://www.ecu.edu/cs-cas/physics/

ancient-timeline/upload/ATL27-2_supplement_Grun.

zip.

Grün, R and Macdonald, P D M. Non-linear fitting of TL/ESR dose-
response curves. International Journal of Radiation Applications
and Instrumentation. Part A. Applied Radiation and Isotopes, 40
(10-12): 1077–1080, 1989.

Hammer, Ø, Harper, D A T, and Ryan, P D. PAST: Paleontologi-
cal Statistics Software Package for Education and Data Analysis.
Palaeontologia Electronica, 4(1): 1–9, 2001. Software down-
load: http://nhm2.uio.no/norlex/past/download.html.

Hornik, K and Zeilis, A. Changes on CRAN. The R Journal, 8(1):
402–403, 2016.

Howison, J and Bullard, J. Software in the scientific literature:
Problems with seeing, finding, and using software mentioned in
the biology literature. Journal of the Association for Information
Science and Technology, 67(9): 2137–2155, 2015.

Kreutzer, S. rxylib: Import XY-Data into R. CRAN,
0.1.1, 2017. URL https://CRAN.R-project.org/package=

rxylib. Developer version on GitHub: https://github.

com/R-Lum/rxylib.

Kreutzer, S, Schmidt, C, Fuchs, M C, Dietze, M, Fischer, M, and
Fuchs, M. Introducing an R package for luminescence dating
analysis. Ancient TL, 30(1): 1–8, 2012.

Kreutzer, S, Burow, C, Dietze, M, Fuchs, M C, Schmidt, C,
Fischer, M, and Friedrich, J. Luminescence: Comprehen-
sive Luminescence Dating Data Analysis. CRAN, version
0.7.5, 2017. URL https://CRAN.R-project.org/package=

Luminescence. Developer version on GitHub: https://

github.com/R-Lum/Luminescence.

10

https://github.com/tzerk/ESR
https://CRAN.R-project.org/package=RLumShiny
https://CRAN.R-project.org/package=RLumShiny
https://github.com/tzerk/RLumShiny
https://github.com/tzerk/RLumShiny
https://git-scm.com
http://users.aber.ac.uk/ggd/
https://github.com/drac-calculator/DRAC-calculator
https://github.com/drac-calculator/DRAC-calculator
https://CRAN.R-project.org/package=RLumModel
https://CRAN.R-project.org/package=RLumModel
https://github.com/R-Lum/RLumModel
http://www.agesgalore.net
http://www.ecu.edu/cs-cas/physics/ancient-timeline/upload/ATL27-2_supplement_Grun.zip
http://www.ecu.edu/cs-cas/physics/ancient-timeline/upload/ATL27-2_supplement_Grun.zip
http://www.ecu.edu/cs-cas/physics/ancient-timeline/upload/ATL27-2_supplement_Grun.zip
http://nhm2.uio.no/norlex/past/download.html
https://CRAN.R-project.org/package=rxylib
https://CRAN.R-project.org/package=rxylib
https://github.com/R-Lum/rxylib
https://github.com/R-Lum/rxylib
https://CRAN.R-project.org/package=Luminescence
https://CRAN.R-project.org/package=Luminescence
https://github.com/R-Lum/Luminescence
https://github.com/R-Lum/Luminescence


Kreutzer et al., Ancient TL, Vol. 35, No. 2, 2017

Kulig, G. Erstellung einer Auswertesoftware zur Alters-
bestimmung mittels Lumineszenzverfahren unter besonderer
Berücksichtigung des Einflusses radioaktiver Ungleichgewichte
in der 238-U-Zerfallsreihe. Master’s thesis, Inst. F. Informatik,
TU Bergakademie Freiberg, 2005.

Lanos, P, Philippe, A, Lanos, H, and Dufrense, P. Chronomodel
: Chronological Modelling of Archaeological Data using
Bayesian Statistics. version 1.5, 2015. URL http://www.

chronomodel.fr.

Lapp, T, Jain, M, Ankjærgaard, C, and Pirtzel, L. Development
of pulsed stimulation and Photon Timer attachments to the Risø
TL/OSL reader. Radiation Measurements, 44: 571–575, 2009.

Lapp, T, Jain, M, Thomsen, K J, Murray, A S, and Buylaert,
J P. New luminescence measurement facilities in retrospective
dosimetry. Radiation Measurements, 47: 803–808, 2012.

Martin, L, Incerti, S, and Mercier, N. DosiVox: Implementing Geant
4-based software for dosimetry simulations relevant to lumines-
cence and ESR dating techniques . Ancient TL, 33(1): 1–10,
2015.

Peng, J. tgcd: Thermoluminescence Glow Curve Deconvolution.
CRAN, version 2.0, 2016. URL https://CRAN.R-project.

org/package=tgcd.

Peng, J and Li, B. numOSL: Numeric Routines for Optically Stim-
ulated Luminescence Dating. CRAN, version 2.3, 2017. URL
https://CRAN.R-project.org/package=numOSL.

Peng, J and Pagonis, V. Simulating comprehensive kinetic models
for quartz luminescence using the R program KMS. Radiation
Measurements, 86: 63–70, 2016. URL https://github.com/

pengjunUCAS/KMS.

Peng, J, Dong, Z B, Han, F Q, Long, H, and Liu, X J. R package
numOSL: numeric routines for optically stimulated luminescence
dating. Ancient TL, 31(2): 41–48, 2013.

Peng, J, Dong, Z, and Han, F. tgcd: An R package for analyzing
thermoluminescence glow curves. SoftwareX, 5: 112–120, 2016.

Philippe, A and Vibet, M-A. ArchaeoPhases: Post-Processing
of the Markov Chain Simulated by ’ChronoModel’, ’Oxcal’ or
’BCal’. CRAN, version 1.2, 2017a. URL https://CRAN.

R-project.org/package=ArchaeoPhases.

Philippe, A and Vibet, M-A. RChronoModel: Post-Processing of
the Markov Chain Simulated by ChronoModel. CRAN, version
0.4, 2017b. URL https://CRAN.R-project.org/package=

RChronoModel.

Ramsey, C B. Radiocarbon Calibration and Analysis of Stratigra-
phy: The OxCal Program. Radiocarbon, 37(2): 425–430, 1995.

Strebler, D. TLdating: Tools for Thermoluminescences Dat-
ing. CRAN, version 0.1.3, 2016. URL https://CRAN.

R-project.org/package=TLdating. Developer version on
GitHub: https://github.com/dstreble/TLdating.

Strebler, D. LumReader: TL/OSL Reader simulator (under develop-
ment). CRAN, 0.1.0, 2017. URL https://CRAN.R-project.

org/package=LumReader. Developer version on GitHub:
https://github.com/dstreble/LumReader.

Strebler, D, Burow, C, Brill, D, and Brückner, H. Using R for TL
dating. Quaternary Geochronology, pp. 1–27, 2016.

Stuiver, M, Reimer, P J, and Reimer, R. CALIB: Radiocarbon Cal-
ibration. 7.1, 2016. URL http://calib.org/calib/.

Tippmann, S. Programming tools: Adventures with R. Nature, 517
(7532): 109–110, 2014.

Tsakalos, E, Christodoulakis, J, and Charalambous, L. The Dose
Rate Calculator (DRc) for Luminescence and ESR Dating-a
Java Application for Dose Rate and Age Determination. Ar-
chaeometry, 58(2): 347–352, 2015. Software download: http:
//www.ims.demokritos.gr/download/.

Vermeesch, P. RadialPlotter: A Java application for fission
track, luminescence and other radial plots. Radiation Measure-
ments, 44(4): 409–410, 2009. URL http://www.ucl.ac.uk/

~ucfbpve/radialplotter/.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2009. ISBN 978-0-387-98140-6.
URL http://ggplot2.org.

Wickham, H. testthat: Get Started with Testing. R Journal, 3(1):
5–10, 2011.

Wickham, H and RStudio. testthat: Unit Testing for R. 1.02, 2016.
URL https://CRAN.R-project.org/package=testthat.

Reviewer
Nathan Brown

11

http://www.chronomodel.fr
http://www.chronomodel.fr
https://CRAN.R-project.org/package=tgcd
https://CRAN.R-project.org/package=tgcd
https://CRAN.R-project.org/package=numOSL
https://github.com/pengjunUCAS/KMS
https://github.com/pengjunUCAS/KMS
https://CRAN.R-project.org/package=ArchaeoPhases
https://CRAN.R-project.org/package=ArchaeoPhases
https://CRAN.R-project.org/package=RChronoModel
https://CRAN.R-project.org/package=RChronoModel
https://CRAN.R-project.org/package=TLdating
https://CRAN.R-project.org/package=TLdating
https://github.com/dstreble/TLdating
https://CRAN.R-project.org/package=LumReader
https://CRAN.R-project.org/package=LumReader
https://github.com/dstreble/LumReader
http://calib.org/calib/
http://www.ims.demokritos.gr/download/
http://www.ims.demokritos.gr/download/
http://www.ucl.ac.uk/~ucfbpve/radialplotter/
http://www.ucl.ac.uk/~ucfbpve/radialplotter/
http://ggplot2.org
https://CRAN.R-project.org/package=testthat

	. Introduction
	. Software and its role in luminescence data analysis
	. Observations from the literature
	. Software in the wild
	. The R factor

	. The software dilemma
	. The popularity of the R environment
	. Transparency, flexibility and reliability
	. Transparent development process
	. Object standardisation
	. Task modularisation
	. Improving the code quality

	. Discussion
	. Conclusions

