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Abstract

This paper is dedicated to define two new multiple change-points detectors in the case of an unknown
number of changes in the mean of a signal corrupted by additive noise. Both these methods are based on
the Least-Absolute Value (LAV) criterion. Such criterion is well known for improving the robustness of the
procedure, especially in the case of outliers or heavy-tailed distributions. The first method is inspired by
model selection theory and leads to a data-driven estimator. The second one is an algorithm based on total
variation type penalty. These strategies are numerically studied on Monte-Carlo experiments.
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1. Introduction

In the sequel we consider a particular case of off-line parametric multiple change-points detection. The
framework is the following. Let (y1, · · · , yn) be an observed trajectory of a multiple mean process defined
by:

yt = θ∗k + εt, t ∈ {t∗k−1 + 1, . . . , t∗k}, k = 1, . . . ,M∗, (1)

where M∗ ∈ {1, 2, . . . , n} is the number of regimes and therefore M∗ − 1 is the number of changes, 0 =
t∗0 < t∗1 < . . . < t∗M∗ < t∗M∗ = n and (θ∗1 , . . . , θ

∗
M∗) ∈ RM∗

are respectively the abrupt change instants and
the means (satisfying also θ∗i 6= θ∗i+1, i = 1, . . . ,M∗ − 1 for insuring thant changes occur) of the process.
We assume that (εk)k∈N is a white noise, i.e. a sequence of independent and identically distributed random
variables (i.i.d.r.v.) with a positive continuous density, fε, at the neighbourhood of zero. In addition we
assume

median(ε0) = 0 ⇐⇒ F−1ε0 (1/2) = 0, E[ε0] = 0. (2)

If the median of the noise is non-zero, then the model is translated but the following stays. The model (1)
can equivalently be defined with a functional formula:

yt = s∗(t) + εt, for t ∈ {1, . . . , n} with s∗ =

M∗∑
k=1

θ∗k 1I∗(k) (3)

where the intervals are I∗(k) = {t∗k−1 + 1, . . . , t∗k} for k = 1, . . . ,M∗ and s∗ is the mean value function that
is a piece-wise constant function.

The goal of the paper is the estimation of the number of changes (M∗ − 1) and the detection (and
the location) of change-points. This is a semi-parametric estimation problem since the distribution of
ε is not supposed to be known and the original signal is assumed to be piece-wise constant. Thus,
this problem of change-points detection corresponds to the construction of estimators of the parameters
(M∗, (θ∗k)1≤k≤M∗ , (t∗k)1≤k≤M∗−1).
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1.1. State of the art
The detection of change-points in time series has been widely studied (see for example the general book

[1]) and is very useful in many fields. One can cite finance ([2]), medical applications ([3, 4]), climatology
([5]) or agriculture ([6]). It is a real challenge in genetic, and several change-point detection methods have
been designed to deal with special kinds of genomic data, as [7, 8, 9] and [10].

In this framework, estimators based on the Least-Squares (LS) contrast have received the most attention.
It corresponds to the likelihood for the Gaussian framework, but it is also frequently used when the error
term is not specified to be Gaussian. In [11], an estimation method based on LS criterion together with
a testing method to find the good dimension are proposed. [12] derives the consistency and the rate of
convergence of the change-points estimate from the LS criterion, in the situation where the number of
changes is known. Once a collection of estimators is available, the model (or dimension) selection is crucial.

Then [13] proposes a penalized method to estimate the number of change-points which is unknown and
their locations. A nonparametric strategy based on model selection tools to estimate M∗ is developed in
[14]. This method is based on Gaussian model selection theory ([15, 16]). [17] focuses on a cross-validation
selection method and [18] is placed in the context of heteroscedastic data. Other nonparametric approaches
exist, for example [19] proposes kernel estimators, also see [10] in a different framework. [20] investigates the
fused LASSO procedure and showed some difficulties. Recently, [21] has built confidence sets in the special
case of shape restricted regression.

But it is well known that these methods based on classical LS regression rely on estimators that use means
of sequences, and these estimators are not always ideal. Hence, estimators based on medians can be more
relevant since they are significantly less sensitive to extreme values and therefore to outliers (as explained
in [22]). This leads to consider the Least Absolute Value (LAV) criterion. It corresponds to the likelihood
criterion for the Laplace framework, i.e. when the distribution of εt is a Laplace one. To the best of our
knowledge, [23] is the most important contribution in this context: the consistency of the change-points
estimators has been proved as well as the consistency of an estimator of M∗ from a penalized LAV criterion
(see below). If the variance of the noise is infinite the LAV criterion performed better than the LS criterion
in the asymptotic context n → ∞. This criterion is then often preferred (see for example [24]). Another
paper [25] has followed to the particular case of one shift. Note also that [26] chose a method based on LAV
and total-variation for `1-trend filtering.

Our goal is to propose new penalized LAV criteria to estimate a piece-wise constant signal.

1.2. Main contribution
In the present work to estimate the signal s∗ we consider global approaches by penalized contrast mini-

mization. In particular, the change-points, which are of interest here, are detected simultaneously.
Naturally, a first approach is based on model selection theory. Inspired by [14] one can ideally want to

produce an upper bound for the `1-risk. The selection criterion has the form Γ(m) = C(m, y) + κpen(m)
where m represents a model that is a partition of n points with |m| = Card(m) regimes. The penalty
function should depend only on n and the dimension |m| of the model m. The parameter κ is a trade-off
parameter. In practice, the minimization is first realized on the contrast and for each possible dimension
or number of regimes M leading to a collection of estimators ((θ̂k)1≤k≤M , (t̂k)1≤k≤M−1), one by possible
dimension. The larger the number of changes the smaller the contrast, therefore the penalty term provides
a bias-variance trade-off that determines the optimal number of regimes M̂ . Guided by the model selection
literature this procedure leads to a non-asymptotic strategy. The choice of the penalty function is based
on [27] and calibrated from a numerical study similarly to [14]. Finally, in order to obtain a totally data-
driven procedure, we use the heuristic slope approach introduced in [17]. This provides an estimator κ̂ of
the parameter κ and the estimator M̂New of the true number of regimes M∗. This method is theoretically
different from the classical LAV penalization methods (Bai’s penalty or BIC). Indeed, in the presentation
and in the theoretical part, it is presented as model selection, meaning not just a dimension selection. In
other word, the collection of model is much larger and models are not nested. This is why the induced
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penalty is much complicated. Nevertheless, in practice, this procedure rely also on the dynamic algorithm
to select one model by dimension first according to the criterion, just as Bai, BIC procedure or [14]’s.

Then we also propose a second method based on a Total-Variation approach (TV). It consists on a LAV
deviation and an additional term which penalizes the first order difference of θ, inducing that for a given
segmentation the optimal parameters are not the minimizer of the LAV deviation. This time, the penalty
term does not only depend on the number of regimes. Since its introduction in the field of image processing,
the total variation proved to be a valuable regularizer (see e.g. [28] for `1 trend filtering, we drive the
reader attention on the fact that in these articles the LS loss is chosen). This approach does not provide a
minimization of the `1-risk. But it provides interesting different estimators ŝTV and M̂TV of the signal s∗
and the number of regimes M∗.

We realized Monte-Carlo experiments to compare both these new approaches, and to challenge them
with previous estimator from literature. The results are convincing for the new penalized LAV deviation
estimator with respect to other LAV, LS, Huber loss criteria (which combines both approaches). One can
especially note the important gain in terms of robustness for this estimator as well as the TV procedure
compared to the more usual Least-Squares criterion.

1.3. Organisation of the paper
In Section 2 the LAV deviation risk is introduced. Section 3 is devoted to a presentation of classical

and new penalized LAV criteria. In Section 4 the total variation estimator is introduced and the algorithm
point of view is detailed. Finally the numerical results for the new estimators are presented in Section 5,
and testify of the accuracy and the robustness of the data-driven penalized LAV criterion.

2. The Least Absolute Value Deviation and its implementation

We begin with the construction of the estimators of parameters ((θ∗k)1≤k≤M∗ , (t∗k)1≤k≤M∗−1), which are
the value on each segment and the change-points from the observed trajectory (y1, . . . , yn) defined in (1),
when the number of regime is fixed.

2.1. Notations
Here are the notations used in the sequel. The set of all the partitions of {1, . . . , n} is denotedMn. Then,

for m ∈ Mn, its length is |m| = Card(m), where m =
{
t1, . . . , t|m|−1

}
with Im(k) = {tk−1 + 1, . . . , tk} for

k = 1, . . . , |m|, with t0 = 0 and t|m| = n. The true model induced by (3) is denoted m∗ with M∗ = |m∗|
and (Im∗(k))1≤k≤M∗ are the true segments.

The set of all segmentations ofMn with M ∈ N∗ points is

AM :=
{
t = (t1, . . . , tM−1), t0 = 0 < t1 < . . . < tM = n

}
(4)

(we classically use bold letters for vectors). For M a fixed integer number in {0, 1, . . . , n}, the subspace of
piece-wise constant functions with M shifts is denoted SM , and for Mmax ≤ n a fixed integer,the subspace
of piece-wise constant functions with less than Mmax shifts by

SMmax :=
⋃

0≤M≤Mmax

SM . (5)

As a consequence, for m ∈ Mn we also have m ∈ A|m|. For m ∈ Mn, Sm is the linear subspace of the
piece-wise constant functions on m, i.e.,

Sm :=


|m|∑
k=1

ukIIm(k), (uk)1≤k≤|m| ∈ R|m|
 . (6)
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2.2. Least Absolute Deviation criterion
For (y1, . . . , yn) ∈ Rn, we define the Least Absolute Value (LAV) distance or Least Absolute Deviation

by

γ̂(u) =
1

n

n∑
t=1

|yt − ut| =: ‖y − u‖1,n, for u = (ut)1≤t≤n ∈ Rn. (7)

When the number of changes M ∈ N is specified, the LAV estimator of s∗ is given by

ŝM = argmin
s∈SM

γ̂(s) = argmin
θ∈RM+1

argmin
t∈RM

1

n

M∑
k=1

tk∑
t=tk−1+1

|yt − θk|. (8)

and

ŝM =

M∑
k=1

θ̂Mk 1{t=t̂Mk−1+1,...,t̂Mk }

where θ̂Mk = median
{
yt̂Mk−1+1, . . . , yt̂Mk

}
. In [23] was established the following asymptotic result.

Proposition 2.1 ([23]). For model (1) with assumptions (2), if t∗k − t∗k−1 ≥ n3/4, if there exists c > 0 such

as
∣∣θ∗k − θ∗k−1∣∣ ≥ c, then t̂M∗

k
P−→

n→∞
t∗k for any k ∈ {1, . . . ,M∗ − 1}.

This consistency result motivates the study of LAV-contrast estimators. Nevertheless, the huge size of the
models with M regimes makes the solution non computable. To solve it, we classically use the dynamic
programming algorithm.

2.3. Dynamic programming
From a computing point of view, the dynamic programming algorithm is classically used to com-

pute recursively the optimal paths, meaning, the collection (ŝM ) for a given finite collection of M ∈
{0, 1, . . . ,Mmax} (see [29]). It is based on the computation of the optimal cost ĈM (s, t) in M segments
included in {u, u+ 1, . . . , v} for u, v ∈ {1, . . . , n}, given by:

ĈM (u, v) := min
t0=u<t1<t2<···<tM−1<tM=v

min
(θk)1≤k≤M∈RM

1

n

M∑
k=1

tk∑
j=tk−1+1

∣∣yj − θk∣∣. (9)

Note that this problem is computable here because the cost matrix min
θ

t∑
j=s

∣∣yj−θ∣∣ =

t∑
j=s

∣∣yj−median(ys:t)
∣∣,

0 ≤ s < t ≤ n. First compute Ĉ1[u, v]u,v∈{1,...,n}. Then it is a two parts algorithm: the first part computes
recursively the cost of the optimal segmentation withM changes for ` data for 1 ≤M ≤Mmax and 1 ≤ ` ≤ n;
the second part is called backtracking and is used to find the optimal segmentation for each dimension (see
the details in [30]). More formally we have:

Input: Ĉ1

Initialization Ĉ2, . . . ĈMmax
= 0;

for M = 1, . . . ,Mmax do
for v ∈ {M, . . . , n} do

ĈM+1[1, v] = min
u∈{M+1,M+2,...,v}

{
ĈM [1, u] + Ĉ1[u+ 1, v]

}
end

end
Output: (ĈM [1, v])M∈{1,...,Mmax}, v∈{M,...,n}

Algorithm 1: Dynamic Programming
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And then for each cost we follow the path witch gives this minimal cost and obtain one optimal seg-
mentation by dimension.
Finally, for each M = 1, . . . ,Mmax, we obtain ĈM (1, n) and the change-points t1 < t2 < · · · < tM−1
that minimize ĈM (1, n). The time-consuming cost is O(Mn2) instead of O(

(
n−1
M

)
) without the dynamic

programming (see e.g. [31]). This algorithm gives finally one estimator by dimension, optimal for γ̂n.
In Section 3, we describe penalized LAV criteria. First we remind the reader some existing ones and

secondly we propose a new criterion and provide some theoretical justifications.

3. Estimation of the number of abrupt changes from penalized LAV criterion

3.1. Two first known dimension selection criteria
The previous cost allows to compute a robust estimator of

(
(t∗k)1≤k≤M−1, (θ

∗
k)1≤k≤M

)
for each M ∈

{1, . . . ,Mmax}. But it is clear that ĈM+1(1, n) ≤ ĈM (1, n), implying that a minimization of M → CM (1, n)
leads to the choice Mmax with probability 1 and therefore other procedures are required for estimating M∗
(meaning choosing M).

Assuming that M∗ ≤ Mmax, a usual method for estimating M∗ is to penalize the cost ĈM (1, n). This
can be classically done using the following general criterion

M̂ = argmin
1≤M≤Mmax

{
f(ĈM (1, n)) + κn pen(M)

}
= argmin

1≤M≤Mmax

{
f(γ̂n(ŝM )) + κn pen(M)

}
, (10)

with an increasing function f , a sequence of penalization parameters (κn)n ∈ (0,∞)N and a penalty function
k ∈ N 7→ pen(k), which is also an increasing function (depending on n).

For example [23] proposes to select M̂BAI defined by

M̂BAI = argmin
1≤M≤Mmax

{
log
(
γ̂(ŝM )

)
+

√
n

n
M
}

= argmin
1≤M≤Mmax

{
argmin
t∈AM

(
log
( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣)+

√
n

n
M
)}
.

The author choose to use κn =
√
n
n for insuring the consistency of M̂BAI to M∗ in our framework. But

√
n

could also be replaced by any increasing sequence with infinite limit and bounded by n 7→
√
n.

Then, with κn = log(n)
n , we could also consider the classical BIC penalty defined by:

M̂BIC = argmin
1≤M≤Mmax

{
log
(
γ̂(ŝM )

)
+

log n

n
M
}

= argmin
1≤M≤Mmax

{
argmin
t∈AM

(
log
( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣)+
log n

n
M
)}

Note that there is no heuristic justification for using this criterion because the usual Laplace approximation is
no longer valid for non-differentiable functions (see [32, 33]). Moreover, since for n ≥ 1 we have log n <

√
n,

the penalty term in M̂BAI is always larger than the one in M̂BIC: we deduce that:

M̂BAI ≤ M̂BIC. (11)

This is the only possible comparison that can be made between the different criteria proposed in this article.
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3.2. A data-driven oracle penalization
The point of view adopted in this paragraph is slightly different. The segmentation (or model) m ∈Mn

is now fixed. Then we define the LAV-contrast estimator ŝm of s∗ defined in (3), is

ŝm = argmin
s∈Sm

γ̂(s) =

|m|∑
k=1

θ̂mk 1Im(k), (12)

where θ̂mk is an empirical median defined by θ̂mk := median{ytk−1+1, . . . , ytk}. This time the minimisation is
done only on the θ parameter as soon as the segmentation (thus the change-points) is fixed.

In order to define data-driven penalized least absolute values estimator we first follow some non asymp-
totic results on model selection developed in [34, 27]. Hence the following general estimator can be considered

m̂ := argmin
m∈Mn

{
argmin
s∈Sm

{
γ̂(s) + pen(|m|)

}}
(13)

where pen(|m|) only depends on |m| and n. The differences with the previous methods are that the mini-
mization is done (theoretically) on all the models and the penalization function pen(|m|) is not necessary a
linear function of |m| (since the model are no more nested).

First, let us recall the general result of [27] (Theorem 8 and 11) in the fixed design setting (see also [34] for
details on LAV).

Theorem 3.1 (Barron Birgé Massart (1999)). Assume that there exist Σ > 0 and a family of weights
(Lm)m∈Mn

, such that Lm ≥ 1 and
∑

m∈Mn
exp(−Lm |m|) ≤ Σ for any n ∈ N. With K > 0, define also

the penalty function pen(·) such as

pen(|m|) ≥ K (Lm + Lm)
|m|
n
, where Lm = log

[
c
(

1 + c′
( |m|
n

)1/2)]
+ 1

with c, c′ > 0. Then there exist C, C ′ ∈ (0,∞) depending on σ and κ > 0 such as m̂ defined in (13) satisfies

E[d(s∗, ŝm̂)2] ≤ κ inf
m∈Mn

{
d(s∗,Sm)2 + C pen(|m|)

}
+ C ′

Σ

n
.

This result is very strong for the LAV-contrast estimator, and the control of its quadratic risk. Furthermore,
it is not a Gaussian framework result.

Then, in the present context, it is classical to choose variable weights, depending only on the dimension
of the model Lm = L|m|. Using the same computation done in [14] we obtain

Σ =
∑

m∈Mn

e−Lm|m| ≤
n∑
d=1

e−d(Ld−1−log(n/d)).

Then, with θ > 0, we can choose, using a counting argument,

Ld = 1 + θ + log(n/d) for any d ∈ N.

We deduce from this result the following bound for the considered risk.

Proposition 3.2. For any given positive real numbers c1 and c2, define for any m ∈Mn

pen(|m|) := σ2 |m|
n

(
c1 log

(
n

|m|

)
+ c2

)
(14)

there exist two positive constants C(c1, c2), C ′(c1, c2) such that m̂ defined in (13) satisfies

E[‖s∗ − ŝm̂‖1,n] ≤ κ inf
m∈Mn

{
d(s∗,Sm)2 + C(c1, c2) pen(|m|)

}1/2
+ C ′(c1, c2)

√
Σ

n
. (15)
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This result is obtained from the usual inequality E
[
1
n

∑n
i=1 |Xi|

]
≤ E[‖X‖22]1/2 and with the relationship

d2(s∗,Sm) =
1

n

n∑
t=1

|s∗(t) − s∗m(t)|2 = ‖s∗ − s∗m‖22,n where s∗m is the orthogonal projection of s∗, this seg-

mentation is obtained with the mean of s∗ taken on each segment (and not the median).
The logarithm appears in (14) because of the complexity of the collection of models, meaning the huge
dimension. This result is a non-asymptotic one.

Besides, the choice of constants c1 and c2 could be done through an extensive simulation study as it was
done in [14]. After those Monte-Carlo experiments, we have chosen c1 = 1 and c2 = 2.

Remark 3.3. This results could be improved. Indeed, the result comes from the bound obtained for the
quadratic loss (the `2-distance). The main difficulty with the LAV criterion, which differs from the LS
criterion is that the theoretical loss function that the literature encourages to consider is

`(s∗, u) := E
[
γ̂(u)− γ̂(s∗)

]
= E

[
‖y − u‖1,n

]
− E

[
‖y − s∗‖1,n

]
=

1

n

n∑
t=1

E
[
|s∗(t)− u(t) + εt| − |εt|

]
which satisfies

‖s∗ − u‖1,n −
2

n

n∑
t=1

E[|εt|] ≤ `(s∗, u) ≤ ‖s∗ − u‖1,n

but not with the equality. In the LS case, we have that

`(s∗, u) := E
[
γ̂(u)− γ̂(s∗)

]
= E

[
‖y − u‖22,n

]
− E

[
‖y − s∗‖22,n

]
= E

[
‖u− s∗‖22,n

]
.

This makes the issue more challenging and could be the subject of further works.

However the unknown constant σ2 is still present in the definition (14) of the penalization. To be data-
driven procedure, we propose a procedure to estimate this quantity from the data. We chose to estimate
this constant using slope heuristic method introduced in ([16, 17]). It consists on computing the graph(
M
n

(
log
(
n
M

)
+ 2

)
, γ(ŝM )

)
for 1 ≤M ≤Mmax. On such graph one can see an abrupt change of regime for

M going from 1 to M∗, and a linear decrease for M > M∗. Using a classical off-line change detection for
linear models, the slope κ of the linear part of the graph can be estimated by κ̂. The main idea of the slope
heuristic procedure is to consider the new estimator of the number of regimes M∗ by

M̂New = argmin
1≤M≤Mmax

{
γ̂(ŝM )− 2κ̂

M

n

(
log
( n
M

)
+ 2

)}
(16)

= argmin
1≤M≤Mmax

{
argmin
t∈AM

( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣− 2κ̂
M

n

(
log
( n
M

)
+ 2
))}

Hence we obtain a new data-driven estimator m̂ of the true segmentation and thus an estimator M̂New of
the number of abrupt changes for the LAV-contrast estimator.

In Section 4, we develop a criterion based on Total-Variation penalty form. This penalty is adapted
in the present context and leads to another way to estimate the change-points and the regime parameters
together with the number of regimes.
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4. A Total Variation criterion

The developed criterion is called a convex Total Variation (TV) criterion, since for any λ > 0, it is defined
by

ŝTV = argmin
1≤M≤Mmax

{
argmin

(θk)1≤k≤M∈RM ,(t1,...,tM−1)∈AM

{ n∑
t=1

∣∣yt − M∑
k=1

θk1tk−1+1≤t≤tk
∣∣+ λ

M∑
k=2

∣∣θk − θk−1∣∣}}
=: argmin

1≤M≤Mmax

argmin
θ∈RM ,t∈AM

ξMλ (θ, t).

The total variation allows to measure the variability of the sequence of (θk)k. The second term in the right
hand side of the sum is the `1-norm of the first-difference sequence of (θk)k. It can be seen as a convex
approximation of the number of changes and it should tend towards a reduction of it.

For a fixed dimension, the estimated parameters θk are different to the one obtained from the minimiza-
tion of the LAV deviation only, according to the total variation penalty term. This criterion differs from the
classical `1-trend filtering. First we use divergence, we introduce the knowledge of the number of regimes in
the criterion, as a result, the minimization problem is different an we propose an algorithm to approximate
the solution. This procedure produces in one algorithm an estimation for the change-points, the parameters
of the regimes and the number of it.

For each λ, which is the tuning parameter of the TV penalization, one would like to minimize ξMλ (θ, t)
in θ ∈ RM and t ∈ AM . But, the cost matrix depending on λ cannot be explicit this time and this would
notably improves the complexity of such a method.

An alternative solution is to compute first, for each M , the segmentation minimizing the least absolute
value criterion with the dynamic programming and obtain the vector m̂ = (t̂k)k for each dimension M in
the collection. Secondly, the following minimization problem can be solved:(

M̂λ, (θλk )
1≤k≤M̂λ

)
= argmin

1≤M≤Mmax

argmin
(θk)1≤k≤M∈RM

ξMλ
(
θ, (t̂1, . . . , t̂M−1)

)
(17)

For any λ > 0 and 1 ≤ M ≤ Mmax, a numerical approximation of the solution (θλk )1≤k≤M can be done
using the Alternating Direction Method of Multipliers (ADMM). The principle of the algorithm and its
convergence are given in [35] (see e.g.[36, 37]). The ADMM algorithm rewrites the minimization problem
over θ as an equality constraint optimization problem where θ = (θ1, . . . , θM ) is split in two parts θ and γ.
It is based on the formulation:

argmin
θ∈RM

{ n∑
t=1

∣∣yt − M∑
k=1

θk1{t̂k−1+1≤t≤t̂k}
∣∣+ λ

M∑
k=2

∣∣θk − θk−1∣∣} = argmin
θ∈RM

{
f(θ) + λ g(Aθ)

}
= argmin

θ∈RM ,γ∈RM−1

A θ=γ

{
f(θ) + λ g(γ)

}
with

A =


−1 1 0 . . .
0 −1 1 . . .
...

...
...

...
. . . 0 −1 1

 ∈M(M−1,M)(R) and g(x1, . . . , xM ) =

M∑
k=1

|xk|.

This leads to consider the following algorithm:
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Input: A, λ, ρ,M
Initialization: θ, α = 0, γ = 0, ;
for ` = 1, . . . , `conv do

θ(`+1) = argmin
θ∈RM

{
f(θ) +

ρ

2
‖Aθ − γ(`) + ρ−1α(`)‖2

}
γ(`+1) = argmin

γ∈RM−1

{
λg(γ) +

ρ

2
‖Aθ(`+1) − γ + ρ−1α(`)‖2

}
α(`+1) = α(`) + ρ(Aθ(`+1) − γ(`+1))

end

Output: θ̂
λ
∈ RM

Algorithm 2: ADMM algorithm

The parameter `conv is the number of iterations used until convergence. The next step is the minimization
over M given in (17) and we obtain the optimal dimension (in the sense of this TV criterion) denoted M̂TV.

In the previous, ρ is the augmented Lagrangian parameter, and the ADMM consists in applying the
previous steps. In practice, ρ = 1. We remark also that the choice of the tuning parameter λ is crucial. In
practice λ could be selected using the BIC criterion.

This penalty has been used in [3] in the regression case and the consistency of the change-points estimator
is established when the number of regressors tends to infinity with fixed n (see also [20]). In this classical
`1-trend filtering context, the consistency holds only if the sign of the parameters θk are all different.

As it has been said before, the approach developed here is slightly different because we impose the length
of the vector θ, imposing the number of change-points (and this reduces the number of possible models as
Mmax << n). Then a minimization with respect to the number of stages M is done. The consistency is
beyond the scope of this work and should be the subject of future works.

In Section 5, we illustrate the several presented strategies, together with classical Least-Squares one and
a Huber-loss criterion. Finally, we provide two examples of results for our estimators on real data sets.

5. Numerical illustrations

In the section, we first provide details on the Monte-Carlo experiments allowing to compare the different
criteria as well as the numerical implementation of the different methods. Then two real dataset are studied
using the new criteria.

5.1. Presentation of the Monte-Carlo experiments
We have led a large simulation study, investigating different kind of signals, from different distributions

of noise (ε) and different lengths (n). In the following in order to illustrate our purpose we choose n ∈
{50, 200, 500}, Mmax = 40. Signals are simulated randomly (the change-points, the parameters values)
and the resulting estimators are compared with the oracle estimator (available on simulations). Finally, we
choose four different distributions of the noise with the same variance σ2:

- Gaussian noise, denoted N , centred with variance σ2.

- Laplace noise, denoted L, with density f(x) = 1
2
√
2
σ exp(−|x|/σ).

9



- Normalized Student noise, denoted S, with 3 degrees of freedom, i.e.
√

3σ2 t(3), where t(3) is the
classical Student distribution with 3 degrees of freedom.

- Mixture of Gaussian noises, denoted MN , defined by

fε(x) = (1− p)φ(0,γ2)(x) +
p

2
φ(−µ,γ2)(x) +

p

2
φ(µ,γ2)(x),

where φµ,σ2 is the density of a Gaussian random variable with mean µ and variance σ2, µ = qp√
q2p+σ2

and γ2 = σ4

q2p+σ2 . The distribution of this noise contains 3 modes and can mimic the presence of
outliers. In the sequel we use p = 1/10 and q = 10.

We considered several scenarios for the distribution of changes:

1. the example given in [23] with M∗ = 4 regimes with parameters θ∗ = (1, 3, 1,−1), with t∗i = [in/4] for
i = 1, 2 and 3;

2. the case M∗ = 7 with θ∗ = (1, 3, 1,−1, 1,−3,−1) with t∗i = [in/7] for i = 1, . . . , 6;
3. finally the case of randomized values of M∗, (θ∗i )i and (t∗i )i that allows for a greater universality of

numerical results, has been studied. More precisely, the parameters are simulated according to the
following scheme:

- the number of change-points M∗ − 1 is simulated from a binomial distribution with parameters
(6, 0.5),

- the change-points are uniformly distributed U[b√N/2,N−c√N/2], under the constraint that the
difference between two successive times must be at least

√
N/4,

- the parameters values θ∗i for each regime are GaussianN (0, 1) under the constraint to be separated
by 1 at least.

Figure 1 illustrates the good behavior of estimator ŝ
M̂New estimating s∗(in dotted black) with n = 1200,

a Student noise,M∗ = 5 and parameters θ∗ = (0, 1, 3, 2, 1) (with equal width for each regime). The observed
signal y (orange crosses) is very corrupted by the noise and nevertheless the estimator is very close to the
true underlying signal.

The procedures are evaluated in two terms:

- with the empirical score in % , i.e. the frequencies of estimation of the true values of M∗;

- with the empirical `1-risk.

Both values illustrate a question: what is more important between minimizing the distance between the
estimated and the true signals, and finding the "true" number of break-points ?

5.2. Comparisons of criteria based on penalized LAV deviations
In this subsection, we investigate the estimators M̂Bai, M̂BIC and M̂New, detailed in Section 3. Indeed,

this paragraph is a continuation of the numerical study of [23]. The results are given in Tables 1-6.

General purposes can be first deduced from the results of Monte-Carlo experiments for the three penalized
LAV criteria M̂New, M̂Bai and M̂BIC. These experiments exhibit the consistency of these three LAV criteria
when n increases. Moreover, the larger σ2 (or M∗) the smaller the empirical score and the larger the
empirical `1-risk. Let us note that the Gaussian noise, which has the flattest distribution tail, gives the least
accurate results. The estimators can also be compared through their ability to estimate the true number of
changes. Indeed, different configurations are presented. In “easy” conditions, meaning that M∗ is small and
also is the variance σ2, and the differences |θ∗i+1 − θ∗i | and t∗i+1 − t∗i are large (and therefore large n), then
the criterion M̂Bai provides excellent results. This is not surprising since it has been defined in [23] in an

10



asymptotic framework, On the contrary, in “difficult” conditions, meaning that M∗ and the variance σ2 are
large, and differences |θ∗i+1 − θ∗i | and t∗i+1 − t∗i are small, then M̂New and M̂BIC provide much better results
than M̂Bai.

Generally speaking, estimator M̂New offers the best trade-off as it can be observed in the case of random-
ized choice of parameters. Concerning the empirical `1−risk, the conclusions are almost the same, except
that M̂Newoften provides the minimal risk even when M̂Bai obtains the best empirical score (see typically
the case M∗ = 4).

5.3. Comparison with total variation, least-squares and Huber criteria
In the sequel the new data-driven estimator M̂New is compared to three other criteria: TV, LS, Huber’s.

5.3.1. TV criterion
We implement the estimator M̂TV obtained from the total variation (TV) criterion, described in Section

4. Different programming steps are followed: first the dynamic programming to get one segmentation by
dimension, then the ADMM algorithm to optimize the minimization of the criterion on θ and finally the
selection of the best dimension. It is a challenge during the computation phase, to choose the best λ
parameter. We choose to select it with a BIC criteria. Nevertheless, Figure 2 illustrates the behaviour of
the selected dimension with respect to λ, when n = 300, M∗ = 3 and σ = 1. We notice that the number of
detected change-points decreases quickly when λ increases and converges to the true value 3. As remarked
in [28], choose λ of order nc with c = 0.7 (between 1/2 and 1) seems also justified.

Note that the asymptotic properties of the estimator M̂TV have still not be studied. Nevertheless, Table
8 exhibits its convergence when n increases. Note that we do not exhibit the `1-risk scores of ŝ

M̂TV since
the TV criterion is only devoted to select the number of change-points and not to minimize the risk.

For this estimator it is interesting to study the empirical `1 risk of estimator θ̂
TV

of θ∗. The results are
presented in Table 7 for a Student noise distribution in the fixed case θ∗ = (1, 3, 1,−1). The risks tends to
0 with n.

5.3.2. LS criterion
The presentation in analogue with the one on Section 3.2. For a given segmentation m ∈ Mn, the LS

estimator is

ŝLSm = argmin
u∈Sm

γ̂LS(u) =

|m|∑
k=1

yk1Ik , yk =
1

nk

tk∑
t=tk−1+1

yt, nk = Card{t ∈ Im(k)}. (18)

Again, the model selection literature under the Gaussian noise assumption (this time), leads the author of
[14] to propose the following estimator:

m̂LS = argmin
m∈Mn

{γ̂LS(ŝLSm ) + penLS(|m|)}

with penLS(M) = M
n σ

2
(
2 log

(
n
M

)
+ 5
)
. This is the same penalty function as pen of Section 3.2 with different

constants. Nevertheless, the final estimator is different, because the criterion differs.
As previously, the problem comes down to find one estimator by dimension, optimized for the LS criterion.

They are computed using the Dynamic Programming again. To compute the estimator called M̂LS we use
again the slope heuristic following the same process as for M̂New. Finally we used

M̂LS = argmin
1≤M≤Mmax

{
argmin
t∈AM

( 1

n

M∑
k=1

tk∑
t=tk−1+1

(
yt −

1

tk − tk−1

tk∑
i=tk−1+1

yi

)2
− 2κ̂

M

n

(
2 log

( n
M

)
+ 5
))}

.
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5.3.3. Huber criterion
The standard Huber loss, motivated by the non-Gaussian case, combines LS and LAV losses for more

robustness in location parameter estimation. It can also be considered to provide another estimation of the
number of changes. First define the classical Huber function (see [38]):

ψ(x) := x2 1|x|≤k + k
(
2|x| − k

)
1|x|>k, (19)

where k > 0. As it was suggested in [38], we choose k = 1.345. For a given segmentation m ∈ Mn, the
Huber estimator is

ŝHub
m = argmin

u∈Sm

n∑
t=1

ψ(yt − ut). (20)

As for the LS estimator, we use a Huber criterion with a penalty constant κ̂ estimated through the slope
heuristic method, i.e.

m̂Hub = argmin
m∈Mn

{ n∑
t=1

ψ(yt − ŝHub
m (t))− 2κ̂

|m|
n

(
2 log

(
n

|m|

)
+ 5

)}
.

5.3.4. Results of comparisons
The empirical scores are given in Table 8 where we also consider the previous version of randomized values

of M∗, θ∗ and t∗. It appears that M̂New provides the most accurate estimations, except for Gaussian time
series for which the classical LS criterion (and also Huber criterion) is still the most interesting. This is not
a surprise since in this Gaussian case the LS criterion can be derived from maximum likelihood estimation,
while M̂New can also be derived but for Laplace distribution. And this confirms the well known robustness
of LAV estimation with respect to the LS one. Figure 3 shows the two estimators ŝm̂ (red) ŝLSm̂LS (blue)
together with the true signal s∗ in dotted black line when the noise is a Student noise and σ = 2. On this
example, the estimator based on LS criterion detects two artificial change-points during the first regime.
This is due to the large variance of the data. On the contrary, the estimator based on LAV is very close to
the real signal. In practice it is a common fact to observe pics values on real data set and instead of truncate
them, the LAV criterion can deal with them without creating artificial new regimes. As we could imagine
from its definition, the Huber criterion provides an interesting trade-off between LAV and LS criteria, and
is really convincing especially when σ = 2 and for Gaussian or Student distributions.

Finally, Table 8 shows that M̂TV provides an interesting alternative except for Gaussian processes. But
it is quite always less efficient than M̂New. However, this criterion is built on the same principle than the
LASSO criterion and we can suspect that it could especially be useful when M∗ is really large and not
negligible with respect to the data length n. Also, when σ increases, the TV estimator is advantageous
compared to the New one.

5.4. Application to genomic data
In this paragraph, we apply the new criteria on a real-life data set, which consists on normalized copy-

number logratios of data array CGH study set of Corriel institute taken from the package DNAcopy of V.
Seshan and A. Olshen, see also [39] (the authors have assembled arrays of around 2400 clones of DNA copy
number across the human genome). These data and their analysis help to detect chromosomal copy number
variations which could cause disorders. We apply the previous two new strategies on some part on the
data. The results are presented in Figure 4: on the left the true data are plotted together with estimator
ŝ
M̂New in red, and on the right the same graph with ŝTV in orange (and the LS estimator ŝ

M̂LS is barely
equal to ŝ

M̂New in this case). Here the decomposition of the signal obtained with the new LAV criterion
procedure seems to fit well the data, nevertheless the TV estimator may have removed an artifact of the
data (large variance) choosing only 3 change-points. However, the biological context and medical knowledge
are required to interpret the results.
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5.5. Application to financial data
We further consider a publicly available financial data set. It is composed of the FTSE index between

January 2004 and April 2013 and more precisely to its monthly estimations of the volatility (calculated
from the empirical standard deviation taken over one month of FTSE log-returns). We are looking for the
different possible disruptions with the different financial crises that occurred during these years in mind.
Results are shown on Figure 5: we represent the New LAV estimator ŝ

M̂New (red) as well as the more
classical ŝLS (blue). Once again ŝ

M̂New provides a very convincing result. The adaptive LS estimator detects
9 breaks (while there are 44 estimated breaks for the BIC-LS criterion!). But as it can be seen on Figure 5,
3 of these breaks correspond to peaks of distribution while only one of them (2009) is also detected by New
LAV estimator (and during a larger period).

Besides, most of the estimated change dates obtained by ŝ
M̂New are really meaningful:

1. t̂1 is July 13, 2007. This corresponds to the beginning of the sub-prime crisis.
2. t̂2 is September 10, 2008. this corresponds to Lehman Brothers bankruptcy (September 15, 2008).
3. t̂3 is November 27, 2008: he American, British and European Union central banks proposed financial

recovery plans.
4. t̂5 and t̂6 are July 29 and August 22, 2011: this occurs during the European financial crisis of summer

2011.

We have also computed LAV-Bai and LAV-BIC estimators that detected respectively 13 and 42 breaks,
while TV criterion detected 43 breaks. In this case, New-LAV estimator provides clearly the most interesting
segmentation.

Conclusion

The main contribution of this article concerns the construction of new robust estimators of the number
of changes in the framework of multiple mean processes and their comparisons with other estimators. Let
us recall the definition of the different estimators we considered:

M̂BAI = argmin
1≤M≤Mmax

{
argmin
t∈AM

(
log
( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣)+

√
n

n
M
)}

M̂BIC = argmin
1≤M≤Mmax

{
argmin
t∈AM

(
log
( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣)+
logn

n
M
)}

M̂New = argmin
1≤M≤Mmax

{
argmin
t∈AM

( 1

n

M∑
k=1

tk∑
t=tk−1+1

∣∣yt −median
{
ytk−1+1, . . . , ytk

} ∣∣− 2κ̂
M

n

(
log
( n
M

)
+ 2
))}

M̂TV = argmin
1≤M≤Mmax

{
argmin

θ∈RM ,t∈AM

( n∑
t=1

∣∣yt − M∑
k=1

θk1tk−1+1≤t≤tk
∣∣+ λ̂

M∑
k=2

∣∣θk − θk−1

∣∣)}

M̂LS = argmin
1≤M≤Mmax

{
argmin
t∈AM

( 1

n

M∑
k=1

tk∑
t=tk−1+1

(
yt −

1

tk − tk−1

tk∑
i=tk−1+1

yi

)2
− 2κ̂

M

n

(
2 log

( n
M

)
+ 5
))}

M̂Hub = argmin
1≤M≤Mmax

{
argmin

θ∈RM ,t∈AM

( M∑
k=1

tk∑
t=tk−1+1

ψ
(
yt − θk

)
− 2κ̂

M

n

(
2 log

( n
M

)
+ 5
))}

,

where κ̂ is obtained from a slope heuristic procedure and the function ψ is given in (19). There is only
one general relation (11) between those estimators, i.e. M̂BAI ≤ M̂BIC. Otherwise, and this is verified
by numerical simulations, the estimator M̂New has the best overall performance, particularly in terms of
robustness.
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Figure 1: Example of estimator ŝ
M̂New (red line) when n = 1200, M∗ = 5, s∗ the dotted black line and y orange points

corrupted with Student noise.

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 65.4 57.2 57.7 87.8 99.8 70.0 92.1 100 74.9
L 67.8 84.1 69.5 90.5 100 85.4 95.7 100 90.6
S 67.9 96.1 70.2 88.7 100 83.4 94.1 100 83.4

MN 47.2 92.3 72.9 38.6 99.6 48.6 48.1 100 49.8
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 19.1 1.3 22.1 63.5 2.9 64.7 92.5 31.8 77.3
L 32.6 3.9 34.7 88.4 34.2 84.4 96.1 95.9 90.8
S 19.7 1.3 22.2 64.5 2.6 64.4 92.3 33.0 77.0

MN 41.1 7.9 43.2 81.2 63.0 77.9 91.7 99.7 85.8

Table 1: Empirical score in % with 10000 repetitions and M∗ = 4.

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.42 0.52 0.42 0.17 0.17 0.19 0.10 0.11 0.11
L 0.28 0.30 0.28 0.11 0.10 0.11 0.06 0.06 0.06
S 0.37 0.49 0.34 0.14 0.14 0.14 0.08 0.08 0.08

MN 0.46 0.61 0.40 0.15 0.15 0.15 0.08 0.08 0.09
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 0.93 0.99 0.93 0.50 0.78 0.47 0.24 0.56 0.25
L 0.72 0.88 0.73 0.25 0.54 0.25 0.13 0.15 0.14
S 0.93 0.99 0.93 0.51 0.78 0.48 0.23 0.56 0.25

MN 0.62 0.82 0.64 0.22 0.39 0.23 0.12 0.12 0.13

Table 2: Empirical `1-risk with 10000 repetitions and M∗ = 4.
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n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 25.5 6.0 39.0 92.6 71.6 64.4 95.8 99.8 69.5
L 54.0 22.7 56.8 92.7 97.9 79.8 94.7 100 87.9
S 69.9 42.4 63.2 90.6 99.7 79.3 92.3 100 86.4

MN 54.0 22.7 56.7 92.7 97.9 79.7 94.7 100 87.5
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 3.7 0.0 4.8 10.9 0.0 25.7 75.3 0.0 67.8
L 6.5 0.0 7.7 54.4 0.0 61.9 95.6 10.3 87.9
S 9.0 0.1 11.4 71.3 0.7 71.2 94.2 34.1 85.6

MN 11.5 0.2 11.5 69.9 0.9 66.2 93.2 45.7 80.6

Table 3: Empirical score in % with 10000 repetitions with M∗ = 7.

n = 50 n = 200 n = 500|
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.70 0.86 0.56 0.23 0.34 0.25 0.14 0.13 0.15
L 0.39 0.62 0.40 0.15 0.15 0.15 0.08 0.08 0.09
S 0.37 0.49 0.33 0.14 0.14 0.14 0.08 0.08 0.08

MN 0.46 0.62 0.40 0.15 0.15 0.15 0.08 0.08 0.09
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 1.11 1.19 1.11 0.76 0.98 0.70 0.38 0.88 0.36
L 0.97 1.16 0.96 0.45 0.88 0.41 0.19 0.52 0.20
S 0.89 1.08 0.87 0.38 0.80 0.36 0.19 0.41 0.19

MN 0.87 1.09 0.86 0.34 0.79 0.34 0.17 0.35 0.18

Table 4: Empirical `1-risk with 10000 repetitions and M∗ = 7.

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 16.9 24.4 39.0 66.5 42.7 72.0 83.5 49.0 86.3
L 44.6 42.0 35.9 79.0 56.0 60.7 92.1 76.1 75.8
S 49.7 31.0 35.0 82.9 53.8 38.7 94.0 60.2 31.9

MN 55.9 40.5 29.9 73.9 69.3 55.5 91.0 75.5 66.2
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 17.3 14.1 20.5 29.5 20.0 36.6 53.2 20.5 55.2
L 23.0 20.3 19.4 38.9 39.4 30.0 62.7 55.6 43.9
S 25.5 23.5 21.1 45.7 39.6 23.7 67.1 45.8 23.5

MN 25.9 10.17 25.0 46.5 18.4 50.3 65.6 27.4 71.6

Table 5: Empirical score in % with 10000 repetitions with randomized M∗.
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n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.18 0.21 0.19 0.18 0.24 0.19 0.10 0.14 0.11
L 0.29 0.35 0.28 0.11 0.15 0.11 0.06 0.08 0.06
S 0.26 0.31 0.25 0.10 0.13 0.11 0.06 0.07 0.06

MN 0.17 0.18 0.16 0.06 0.06 0.08 0.03 0.04 0.05
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 0.80 0.78 0.78 0.44 0.57 0.44 0.26 0.42 0.26
L 0.62 0.66 0.60 0.29 0.43 0.27 0.15 0.28 0.14
S 0.57 0.63 0.56 0.27 0.39 0.26 0.14 0.25 0.14

MN 0.56 0.62 0.55 0.25 0.38 0.25 0.14 0.25 0.13

Table 6: Empirical `1-risk , with 10000 repetitions and randomized M∗.

n = 50 n = 200 n = 500
σ = 1 New 0.73(0.28) 0.36(0.13) 0.22(0.086)

TV 0.76(0.29) 0.37(0.14) 0.22(0.087)
σ = 2 New 2.42(2.08) 2.12(1.86) 0.45(0.161)

TV 2.23(1.79) 2.08(0.66) 0.44(0.162)

Table 7: Empirical `1-risk of θ̂
TV

with ε ∼ S.

0 20 40 60 80

5

10

15

Figure 2: M̂TV
λ as a function of λ when M∗ = 3.
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n = 50 n = 200 n = 500
σ = 1 New TV LS Hub New TV LS Hub New TV LS Hub
N 16.9 24.4 39.0 38.8 66.5 42.7 72.0 71.2 83.5 48.8 86.3 87.1
L 44.6 42.3 35.9 42.9 79.0 56.0 60.6 73.9 92.1 76.1 75.8 90.5
S 49.7 31.2 35.0 47.7 82.9 53.8 38.7 76.1 94.0 60.2 31.8 88.8

MN 55.9 40.5 29.9 40.0 73.9 69.3 55.5 42.1 91.0 75.5 66.2 50.2
σ = 2 New TV LS Hub New TV LS Hub New TV LS Hub
N 17.3 14.1 20.5 19.7 29.5 20.0 36.6 34.6 53.2 20.5 55.2 48.7
L 23.0 14.5 19.4 22.9 38.9 39.4 30.0 39.3 62.8 48.2 43.8 62.4
S 25.5 23.5 21.1 26.4 45.7 39.6 23.7 48.7 67.1 45.8 23.5 71.0

MN 25.9 14.8 18.5 26.5 46.5 28.9 31.1 40.5 65.6 38.0 47.3 63.8

Table 8: Empirical score with 10000 repetitions with randomized M∗: comparisons between several estimators of the number
of changes: M̂New, M̂TV, M̂LS and M̂Hub.
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Figure 3: Comparison between LAV and LS criteria (ŝm̂ vs ŝLS
m̂LS ): red line for LAV new estimator,

blue line for LS penalized estimator. True signal s∗ in dotted black line, and y in orange corrupted
with Student noise, σ = 2.

17



++

+
+++

+
+
+

+
++
++

+

++
+

++++
+

+++

+

++

+

+

+

+
+++

+

++++

+

++
+
+

+

+
+

+

+

+

+
++

+

+

+

+
+

+

+

+

++

+

+
+++

++
+
+

+

++
+
+

+

+

+
+
+

+

++
++
++

+

+++

+
+++
+
+

+
++

+

+
+

+
+
+

+
+

+

+

+++

++++
+

+

+

+

+
+

+

+

+

++
+
+
++
+
+

+

++

+++
+
+
+

+

+
+

+

+
+
+
+

+
+
+

+

++
+
+

+

+
+

++
+++
++
+
+
+

+

+

+

+

+

+
+
+

+
++

+

++

+

++

++

+

+

+

+

+

+

+

+
+

+++

++
+
+

+
++

++
+

+

+
+
+
+
+

+

++

+

+
+

+
++
++
+
+

+

+

+

+

++

+

+

++

+++
+
++

+

+
++

+

++
+

+

+

+

+++
+

++
++

+

+
++

+
+++

+
+

+

+

+
+
+

+
+

++

++
+
+

+
+

+

+

+
+

+

+

+
+
+

+

+++++
+
+
+

+

+

+
+

+

++
++
+
++
+++
+

+

+

+++
+
+

+

+
+

+

+

+

+
+

+

+

++

+

++

+

++
+

+

+
+
+
+

+

++

+

++
++

+

+

+

+

+
++

+

+
+
+

+

+
+

+
+

+

+

+
+
+

+++
+
+
++
+
+
+
+
+

+
+

+

+
+
++

+

+

+

+

+
+

+

+++
+

+

+

++
+

+

+

+

+

+

+

+
+

+

+
++

++
++

+

+++
+

+

+

+

+

+
+
+

+

+

+

+

+
+
+

+

+

+
+++

+

+

+

+++

++

+

+
+

+
+

+

+

++
+
+

+

++

++
+++
+
+

+++

+
+

++++

++
+
+

+

+
+

+

+

+

+

+
+

++
+
+
+

+

+++

+
+

+

++

+

+

+

+

++
+
+
+
++

+

+

+
+
+
+

+
+

+

+
+
++
+++

+
++
+
+
++
+

+
++
+
+

+

+
+
++
++
+

+

+
+

+

+
+
+
+
+

+
+
+
+

+

+

++
+++

+

+

+

+

+

+

+

+++

+

++

+

+

+

++
+
+
+

++

++
+
+

+

+

+
+

+

++

+

+

+

+

+

+

++++

+
+
++
+
+

+

+
+

+
++
+

+

+

+
+

++
+

+

+

+
++
+
++
+
+
++

+++
+

+

+

+
+
+

+

+++
+
+

+
+++

++
++++

++

+
++

+

+
++

+

+

+

++
+++

+
+
+

+

+
+
+

+

++
+
+

+
++++
+
+
+
+

++

+

+

+
+++

+

+
+
+
+
+++
+

+

+
++

+++

+
++

+

+

+

+
++++++

+

+

+
+
++
+

+
+
+
+
+
++
++++

+

+++

+

+
++

+

++
+
+

+

+

+
+

+

+
++

++

+
++++

++++

++
+

+

+++++
+++
+
+++
+

+

+

+
+
+
+

+

+

+
+

+++

++
+
+
+
+
++++

+

+

+

+
+

+

+++
+

+

+
++

+
+
+
++
+

++

++
++

+

++

+
+

+

+

+

+

+

+

+++

+
+

++

+

+
+
++

+

+
+
++
+
+
+

++

+
+
+

+

+

++++

+

+
+
++
+
+
+
+

+

+

++

+

+
+
++++++++

+

+
+

+
++

+
++
+
+++
+

+

++
+
++

++

+

+

+

+
+

+

+
++
+
+

+
+

+
+
+

+

+
+
+
+

+
+

++

++
+
+
+

+

+

+
+++
+
+
+
++
+++
+
+
+
+

+

+

+

+
+++
+

++

+

+
++++

+

+

+
+
+++
+++

+

+

+

+

+

+++

+

+

+

+++

+

+

+

+

+++
++++
+
+
+

++

+

++

+
+
+
+

+++

+

++
++
+

+

+
+
+++

++
++

+++
+
+

+

+
++
+

++
+++

+
+

+

+

++
+

+++
++

+

+

++

++

+

+
+

++
+

++

+

+

+

+
++
+

+++

+

+

+

+
++

+

+

+
+

+
+

+
+

+

+
+
+

+

+

++
+

++

+

+
++
+
+

+

+

+

+

++

+
+
+

+

+
+

+
+

++
+
+

+

+
+
+
+++

+

++

+

++

+

+
++

+

+

+++
++

+

+

+

++

++
+

++
+

+

+

+

++

+
+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
++
+

+

+

+++

+++

+++

++

+
+

+

+
++

+++
++
+
+

+

++
++

+
+

+
+
+
+

+

+

+
++
+

+
++

+

+
+

+

+
+

++
++

+

+

+

+

+

+

+

+

+

++

+++
+

+
+

+
++

+

+

++
+
+

+

++

+++
+

+
+

+

++

+

+

+

+

+

++
+

+

+

+
+++
++
+
+++
+

+

+
+
+

+

+

+

+

+

+
++
+
+
+
+

+

+

+

+

+
+

+

++

+

+
++

+

++++
++

+

+

+
++

++

+

+

+
+

+

+

+
+

+

+

++
+

+

+

+
+

+

+
+

+

++++

+

++

+

+
+

+

+
+

+

+
+
+

+

++

+
+++

+
+

+
+

+

+

+
+
+
+
+
++

+

+

+

+
+

++

+
+

+

+
+

+

+

+
+++
+++
+

+

+
++
+

+

+
+++
+++
+
+
+
++
+
+

++++
++

+
++

+
+
+
+
+

++

+
++

+

+
++

+

+

++

+
++

+

+

+
+
+++
+
+
+

+

+

+

+

+

++

+

+

+
+
+

+

++

+
+
+

+

+

+
+

+
+++
+

+

+

++
+

++++

++

+

+

+
++

+

+

+

+

+

+

+

+

+++

+

+

+++

+

+

+++
++

+++

+

+

+
+

+

+

+

+++

+

++++
+

+

+

++

+

+
+
++

+
++

+
+

+

++
+

+
+
+
++
+++
++
+

++
+++
++

+

+

+

+
+
++

+

+++

+

+

+
+

++

+

+

+

+

++
++
+
+
+

+

++++++

+

+

+

+

+

+

+
+
++
+

+

++

+
+

+
++

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+
+
+

+

+
+++

+
+
++

+

+

++

+++

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
++

+

+
+
+

+

+

+

+

++

+

+

+

++

++
+
+
++
+

+
+
+

+

++

+
+
++
+
++

+

+

++
+++

+

+

+
++
+

+

+
+

+
+
++

++

+
+

+

+
+
++

+

+
++
+

+
+
+

+

+
+++
++

++

+

+

+
+
++
+
+
+
+
+++
+
++
++
+

+

+

++
++

+++

+

++

+

+

+

+

+++

++

+
++

+

++
+
+
+
++

++
+
+
+
++

++

+

+

+

+

+
+

+

+

++
+
+

++

+

+
+

++
+

+

+

+

+

+

+

++
+
+

+
++
+

++
++
++

++

+

+

+

++

+

+

++
+

+

+

++

+

+
+
+

+

+

+

+

+

+
+

+
+
++

+

++
+

+
++++
+
+
++++
+

+
++

+

+

+
+

+

+
+
+
+
++

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

++

+

++

+

+

+

++

+

+

+
++

+

+
+

+

+

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

++

+
+++

+
+
+

+
++
++

+

++
+

++++
+

+++

+

++

+

+

+

+
+++

+

++++

+

++
+
+

+

+
+

+

+

+

+
++

+

+

+

+
+

+

+

+

++

+

+
+++

++
+
+

+

++
+
+

+

+

+
+
+

+

++
++
++

+

+++

+
+++
+
+

+
++

+

+
+

+
+
+

+
+

+

+

+++

++++
+

+

+

+

+
+

+

+

+

++
+
+
++
+
+

+

++

+++
+
+
+

+

+
+

+

+
+
+
+

+
+
+

+

++
+
+

+

+
+

++
+++
++
+
+
+

+

+

+

+

+

+
+
+

+
++

+

++

+

++

++

+

+

+

+

+

+

+

+
+

+++

++
+
+

+
++

++
+

+

+
+
+
+
+

+

++

+

+
+

+
++
++
+
+

+

+

+

+

++

+

+

++

+++
+
++

+

+
++

+

++
+

+

+

+

+++
+

++
++

+

+
++

+
+++

+
+

+

+

+
+
+

+
+

++

++
+
+

+
+

+

+

+
+

+

+

+
+
+

+

+++++
+
+
+

+

+

+
+

+

++
++
+
++
+++
+

+

+

+++
+
+

+

+
+

+

+

+

+
+

+

+

++

+

++

+

++
+

+

+
+
+
+

+

++

+

++
++

+

+

+

+

+
++

+

+
+
+

+

+
+

+
+

+

+

+
+
+

+++
+
+
++
+
+
+
+
+

+
+

+

+
+
++

+

+

+

+

+
+

+

+++
+

+

+

++
+

+

+

+

+

+

+

+
+

+

+
++

++
++

+

+++
+

+

+

+

+

+
+
+

+

+

+

+

+
+
+

+

+

+
+++

+

+

+

+++

++

+

+
+

+
+

+

+

++
+
+

+

++

++
+++
+
+

+++

+
+

++++

++
+
+

+

+
+

+

+

+

+

+
+

++
+
+
+

+

+++

+
+

+

++

+

+

+

+

++
+
+
+
++

+

+

+
+
+
+

+
+

+

+
+
++
+++

+
++
+
+
++
+

+
++
+
+

+

+
+
++
++
+

+

+
+

+

+
+
+
+
+

+
+
+
+

+

+

++
+++

+

+

+

+

+

+

+

+++

+

++

+

+

+

++
+
+
+

++

++
+
+

+

+

+
+

+

++

+

+

+

+

+

+

++++

+
+
++
+
+

+

+
+

+
++
+

+

+

+
+

++
+

+

+

+
++
+
++
+
+
++

+++
+

+

+

+
+
+

+

+++
+
+

+
+++

++
++++

++

+
++

+

+
++

+

+

+

++
+++

+
+
+

+

+
+
+

+

++
+
+

+
++++
+
+
+
+

++

+

+

+
+++

+

+
+
+
+
+++
+

+

+
++

+++

+
++

+

+

+

+
++++++

+

+

+
+
++
+

+
+
+
+
+
++
++++

+

+++

+

+
++

+

++
+
+

+

+

+
+

+

+
++

++

+
++++

++++

++
+

+

+++++
+++
+
+++
+

+

+

+
+
+
+

+

+

+
+

+++

++
+
+
+
+
++++

+

+

+

+
+

+

+++
+

+

+
++

+
+
+
++
+

++

++
++

+

++

+
+

+

+

+

+

+

+

+++

+
+

++

+

+
+
++

+

+
+
++
+
+
+

++

+
+
+

+

+

++++

+

+
+
++
+
+
+
+

+

+

++

+

+
+
++++++++

+

+
+

+
++

+
++
+
+++
+

+

++
+
++

++

+

+

+

+
+

+

+
++
+
+

+
+

+
+
+

+

+
+
+
+

+
+

++

++
+
+
+

+

+

+
+++
+
+
+
++
+++
+
+
+
+

+

+

+

+
+++
+

++

+

+
++++

+

+

+
+
+++
+++

+

+

+

+

+

+++

+

+

+

+++

+

+

+

+

+++
++++
+
+
+

++

+

++

+
+
+
+

+++

+

++
++
+

+

+
+
+++

++
++

+++
+
+

+

+
++
+

++
+++

+
+

+

+

++
+

+++
++

+

+

++

++

+

+
+

++
+

++

+

+

+

+
++
+

+++

+

+

+

+
++

+

+

+
+

+
+

+
+

+

+
+
+

+

+

++
+

++

+

+
++
+
+

+

+

+

+

++

+
+
+

+

+
+

+
+

++
+
+

+

+
+
+
+++

+

++

+

++

+

+
++

+

+

+++
++

+

+

+

++

++
+

++
+

+

+

+

++

+
+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+
+
++
+

+

+

+++

+++

+++

++

+
+

+

+
++

+++
++
+
+

+

++
++

+
+

+
+
+
+

+

+

+
++
+

+
++

+

+
+

+

+
+

++
++

+

+

+

+

+

+

+

+

+

++

+++
+

+
+

+
++

+

+

++
+
+

+

++

+++
+

+
+

+

++

+

+

+

+

+

++
+

+

+

+
+++
++
+
+++
+

+

+
+
+

+

+

+

+

+

+
++
+
+
+
+

+

+

+

+

+
+

+

++

+

+
++

+

++++
++

+

+

+
++

++

+

+

+
+

+

+

+
+

+

+

++
+

+

+

+
+

+

+
+

+

++++

+

++

+

+
+

+

+
+

+

+
+
+

+

++

+
+++

+
+

+
+

+

+

+
+
+
+
+
++

+

+

+

+
+

++

+
+

+

+
+

+

+

+
+++
+++
+

+

+
++
+

+

+
+++
+++
+
+
+
++
+
+

++++
++

+
++

+
+
+
+
+

++

+
++

+

+
++

+

+

++

+
++

+

+

+
+
+++
+
+
+

+

+

+

+

+

++

+

+

+
+
+

+

++

+
+
+

+

+

+
+

+
+++
+

+

+

++
+

++++

++

+

+

+
++

+

+

+

+

+

+

+

+

+++

+

+

+++

+

+

+++
++

+++

+

+

+
+

+

+

+

+++

+

++++
+

+

+

++

+

+
+
++

+
++

+
+

+

++
+

+
+
+
++
+++
++
+

++
+++
++

+

+

+

+
+
++

+

+++

+

+

+
+

++

+

+

+

+

++
++
+
+
+

+

++++++

+

+

+

+

+

+

+
+
++
+

+

++

+
+

+
++

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

+
+
+

+

+
+++

+
+
++

+

+

++

+++

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
++

+

+
+
+

+

+

+

+

++

+

+

+

++

++
+
+
++
+

+
+
+

+

++

+
+
++
+
++

+

+

++
+++

+

+

+
++
+

+

+
+

+
+
++

++

+
+

+

+
+
++

+

+
++
+

+
+
+

+

+
+++
++

++

+

+

+
+
++
+
+
+
+
+++
+
++
++
+

+

+

++
++

+++

+

++

+

+

+

+

+++

++

+
++

+

++
+
+
+
++

++
+
+
+
++

++

+

+

+

+

+
+

+

+

++
+
+

++

+

+
+

++
+

+

+

+

+

+

+

++
+
+

+
++
+

++
++
++

++

+

+

+

++

+

+

++
+

+

+

++

+

+
+
+

+

+

+

+

+

+
+

+
+
++

+

++
+

+
++++
+
+
++++
+

+
++

+

+

+
+

+

+
+
+
+
++

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

++

+

++

+

+

+

++

+

+

+
++

+

+
+

+

+

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

Figure 4: Grey: normalized copy-number logratio, left: red ŝ
M̂New , right: orange ŝTV.
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Figure 5: Black: estimated monthly volatility of FTSE index each day from January 2004
and April 2013. In red the new LAV estimator ŝ

M̂New , and in blue, the LS estimator
ŝLS
m̂LS .
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