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Abstract

This paper is dedicated to define two new multiple change-points detectors in the case of an un-
known number of changes in the mean of a signal corrupted by additive noise. Both these methods
are based on the Least-Absolute Value (LAV) criterion. Such criterion is well known for improving
the robustness of the procedure, especially in the case of outliers or heavy-tailed distributions. The
first method is inspired by model selection theory and leads to a data-driven estimator. The second
one has a computational interest and it is based on total variation type penalty. These strategies
are compared to standard alternatives in a numerical study.
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1 Introduction
The detection of change-points in time series has been studied a lot [8] and is very useful in many
fields. One can cite finance [34], also genetic [25, 20], medical applications [14, 21], climatology [6]
or agriculture [16].

In the sequel we consider a particular case of offline parametric multiple change-points detection.
The framework is the following. Let (y1, · · · , yn) be an observed trajectory of a multiple mean
process defined by:

yt = θ∗k + εt, t ∈ {t∗k−1 + 1, . . . , t∗k}, k = 1, . . . , D∗m, (1.1)

where D∗m is the number of regimes (therefore D∗m−1 is the number of changes), the abrupt change
instants are 0 = t∗0 < t∗1 < · · · < t∗D∗

m−1 < t∗D∗
m

= n and (θ∗1 , . . . , θD∗
m

) ∈ RD∗
m are the means of the

process. The (εk)k∈N is a white noise, i.e. a sequence of independent and identically distributed
random variables (i.i.d.r.v.) with a positive continuous density, fε, at the neighborhood of zero. In
addition we assume

median(ε0) = 0 ⇐⇒ F−1ε0 (1/2) = 0 E(ε0) = 0. (1.2)

If the median of the noise is non-zero, then the model is translated but the following stays. The
model (1.1) can equivalently be defined with a functional formula:

yt = s∗(t) + εt, for t ∈ {1, . . . , n} with s∗ =

D∗
m∑

k=1

θ∗k 1I∗m∗ (k) (1.3)

where I∗m∗(k) = {t∗k−1 + 1, . . . , t∗k} for k = 1, . . . , D∗m and s∗ is the mean value function that is a
piece-wise constant function. The goal of the paper is the detection (and the location) of change-
points. This is a semi-parametric estimation problem since the distribution of ε is not supposed to
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be known and the original signal is assumed to be piece-wise constant. Thus, this problem of change-
points detection corresponds to the construction of estimators of the parameters (D∗m, (θ

∗
k)k, (t

∗
k)k).

In the present work we consider a global approach by penalized contrast minimization, which
means that all the change-points are detected simultaneously. As a consequence, the minimization
is first realized for the contrast and for each number of change-points Dm − 1, leading to a col-
lection of estimators ((θ̂k)1≤k≤Dm , (t̂k)1≤k≤Dm−1). The larger the number of changes Dm − 1 the
smaller the contrast, therefore the penalty term provides a bias-variance trade-off that determines
the optimal number of changes D̂m − 1.

In this framework, estimators based on the Least-Squares (LS) contrast has received the most
attention. It corresponds to the likelihood for the Gaussian framework, but it is also frequently
used when the error term is not specified to be Gaussian. In [5], an estimation method based on
LS criterion together with a testing method to find the good dimension are proposed. [27] derived
the consistency and the rate of convergence of the change-points estimate from the LS criterion, in
the situation where the number of changes is known. Then [26] proposed a penalized method to
estimate the number of change-points which is unknown and their locations. [29] have developed
a nonparametric strategy based on model selection tools to estimate D∗m. This method is based
on Gaussian model selection theory [13, 12]. [2] focuses on a cross-validation selection method and
[1] is placed in the context of heteroscedastic data. Other nonparametric approaches exist, for
example [23] proposed kernel estimators, also see [17] in a different framework. [32] investigate the
fused LASSO procedure and showed some difficulties. Recently, [9] has built confidence sets in the
special case of shape restricted regression.

But these methods based on classical LS regression rely on estimators that use means of sequences,
and these estimators are not always ideal. Hence, estimators based on medians can be more relevant
since they are significantly less sensitive to extreme values and therefore to outliers [as explained
in 22]. This leads to consider the Least Absolute Value (LAV) criterion. The LAV criterion corre-
sponds to the likelihood criterion for the Laplace framework, i.e. when the distribution of εt is a
Laplace one. To the best of our knowledge, [4] is the most important contribution in this context:
the consistency of the change-points estimators has been proved as well as the consistency of an es-
timator of D∗m from a penalized LAV criterion (see below). If the variance of the noise is infinite the
LAV criterion performed better than the LS criterion in the asymptotic context n→∞. This crite-
rion is then often preferred [see for example 18]. Another paper [3] followed to the particular case of
one shift. Note also that [35] chose a method based on LAV and total-variation for `1-trend filtering.

Our goal is to propose new LAV criteria to estimate a piece-wise constant signal. We first use
a theoretical method based on model selection theory, inspired by [29], which produces an upper
bound for the `1-risk. It is based on the following selection criterion: Γ(m) = C(m, y) + κ penn(m)
where m represents a model that is a partition of n points with Dm regimes. The penalty function
should depend only on n and the dimension Dm of the model m. The parameter κ is a trade-off
parameter. Guided by the model selection literature this procedure leads to a non-asymptotic
strategy. The choice of the penalty function is based on [7] and calibrated from a numerical study
similarly to [29]. Finally, in order to obtain a totally data-driven procedure, we use the heuristic
slope approach introduced in [2]. This provides an estimator κ̂ of the parameter κ and the estimator
D̂New
m of the number of regimes D∗m.

Then we also propose a second method based on a Total-Variation approach (TV). It consists on
a LAV deviation added to the penalty which depends on the difference of successive parameters,
inducing that for a given segmentation the optimal parameters are not the minimizer of the LAV
deviation. Hence the total variation approach does not provide a minimization of the `1-risk. But
it gives an interesting estimator D̂TV

m of the number of regimes D∗m.

We realized Monte-Carlo experiments to compare both these new approaches as well as other
classical ones. The results are extremely convincing for the new penalized LAV deviation estimator
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D̂New
m with respect to other LAV or LS criteria. One can especially note the important gain in

terms of robustness for this estimator as well as the TV procedure compared to the more usual least
squares criterion. We also applied our new criteria to genomic data and the new LAV procedure
leads to interesting conclusions.

In Section 2 the LAV deviation risk is introduced. Section 3 is devoted to a presentation of
classical and new penalized LAV criteria. In Section 4 the total variation estimator is introduced
and the algorithm point of view is detailed. Finally the numerical results for the new estimators are
presented in Section 5, and testify of the accuracy and the robustness of the data-driven penalized
LAV criterion.

2 The Least Absolute Value Deviation and its implementa-
tion
We begin with the construction of the estimators of parameters (D∗m, (θ

∗
k)1≤k≤D∗

m+1, (t
∗
k)1≤k≤D∗

m
),

which are respectively the number of regimes, the value on each segment and the change-points
from the observed trajectory (y1, . . . , yn) defined in (1.1).

2.1 Notations
Here are the notations used in the following. The set of all the partitions of {1, . . . , n} is denoted
Mn. Then, for m ∈ Mn, its length is Dm = Card(m), where m =

{
Im(1), Im(2), . . . , Im(Dm)

}
with Im(k) = {tk−1 + 1, . . . , tk} for k = 1, . . . , Dm, with t0 = 0 and tDm = n. The true model
induced by (1.3) is denoted m∗ with D∗m = Card(m∗) and (Im∗(k))1≤k≤D∗

m
are the true segments.

The set of segmentations ofMn with M ∈ N∗ points is

An,M :=
{
t = (t1, . . . , tM ), t0 = 0 < t1 < . . . < tM = n

}
. (2.1)

As a consequence, for m ∈ Mn we also have m ∈ An,Dm . For m ∈ Mn, Sm is the linear subspace
of the piece-wise constant functions on m, i.e.,

Sm :=

{
Dm∑
k=1

ukIIm(k), (uk)1≤k≤Dm ∈ RDm
}
. (2.2)

For M a fixed integer number in {0, 1, . . . , n}, we also define the subspace of piece-wise constant
functions with M shifts, i.e.,

SM :=

{
M∑
k=1

ukI{tk−1+1,...,tk}, (uk)1≤k≤M+1 ∈ RM+1, (t1, . . . , tM ) ∈ An,M

}
. (2.3)

Finally, for Mmax a fixed integer number in {0, 1, . . . , n}, define the subspace of piece-wise constant
functions with less than Mmax shifts by

SMmax :=
⋃

0≤M≤Mmax

SM . (2.4)

2.2 Least Absolute Deviation criterion
For (y1, . . . , yn) ∈ Rn, we define the Least Absolute Value (LAV) distance or Least Absolute
Deviation by

γ̂n(u) =
1

n

n∑
t=1

|yt − ut| =: ‖y − u‖1,n, for u = (ut)1≤t≤n ∈ Rn. (2.5)
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For m ∈Mn, we define the LAV-contrast estimator ŝm of s∗ defined in (1.3), by

ŝm = argmin
s∈Sm

γ̂n(s) =

Dm∑
k=1

θ̂mk 1Im(k), (2.6)

where θ̂mk is an empirical median defined by θ̂mk := median{ytk−1+1, . . . , ytk}. When the number of
changes M ∈ N is specified and not the specific segmentation, we deduce an estimator of s∗ by

ŝM = argmin
s∈SM

γ̂n(s) = argmin
θ∈RM+1

argmin
t∈RM

1

n

M∑
k=1

tk∑
t=tk−1+1

|yt − θk|. (2.7)

Note that ŝM =
∑M
k=1

∑t̂Mk
t=t̂Mk−1+1

θ̂Mk where θ̂Mk = median
{
yt̂Mk−1+1, . . . , yt̂Mk

}
. In [4] was estab-

lished the following asymptotic result.

Proposition 2.1 ([4]). For model (1.1) with assumptions (1.2), if t∗k − t∗k−1 ≥ n3/4, if there exists

c > 0 such as
∣∣θ∗k − θ∗k−1∣∣ ≥ c, then t̂M∗

k
P−→

n→∞
t∗k for any k ∈ {1, . . . ,M∗ − 1}.

This consistency result motivates the study of LAV-contrast estimators.

2.3 Dynamic programming
From a computing point of view, the dynamic programming algorithm is classically used to compute
recursively the optimal paths, meaning, the collection (ŝM ) for a given finite collection of M ∈
{0, 1, . . . ,Mmax} [see 10]. It is based on the computation of the optimal cost ĈM (s, t) inM segments
included in {s, s+ 1, . . . , t} for s, t ∈ N, given by:

ĈM (s, t) := min
t0=s<t1<t2<···<tM−1<tM=t

min
(θk)1≤k≤M∈RM

1

n

M∑
k=1

tk∑
j=tk−1+1

∣∣yj − θk∣∣. (2.8)

It is a two parts algorithm: the first part computes recursively the cost of the optimal segmentation
with M changes for ` data for 1 ≤ M ≤ Mmax and 1 ≤ ` ≤ n; the second part is called backtrack-
ing and is used to find the optimal segmentation for each dimension [see the details in 19]. More
formally we have:

Box 1 : Dynamic programming

1. Compute, in an iterative way, for M = 1, . . . ,Mmax and t ∈ {M, . . . , n},

ĈM+1(1, t) = min
s∈{M+1,M+2,...,t}

{
ĈM (1, s) + Ĉ1(s+ 1, t)

}
2. Backtracking.

Finally, for each M = 1, . . . ,Mmax + 1, we obtain CM (1, n) and the change-points t1 < t2 <

· · · < tM−1 that minimize ĈM (1, n). The time-consuming cost is O(DmN
2) instead of O(

(
N−1
Dm

)
)

without the dynamic programming [see e.g. 24]. This algorithm gives finally one estimator by
dimension, optimal for γ̂n.
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3 Estimation of the number of abrupt changes from penalized
LAV criterion

3.1 Two first known dimension selection criteria
The previous cost allows to compute a robust estimator of

(
(t∗k)1≤k≤M−1, (θ

∗
k)1≤k≤M

)
for each

M ∈ {1, . . . ,Mmax}. But it is clear that ĈM+1(1, n) ≤ ĈM (1, n) and therefore other procedures
are required for estimating D∗m (meaning choosing M).

In the sequel we first assume that D∗m ≤ Mmax. Then a usual method for estimating D∗m is
to penalize the cost ĈM (s, t). This can be classically done using the following general criterion

D̂m = argmin
1≤M≤Mmax

{
f(ĈM (1, n)) + κn pen(M)

}
= argmin

1≤M≤Mmax

{
f(γ̂n(ŝM )) + κn pen(M)

}
, (3.1)

with an increasing function f , a sequence of penalization parameters (κn)n ∈ (0,∞)N and a penalty
function k ∈ N 7→ penn(k), which is also an increasing function.

For example [4] proposes to select D̂BAI
m defined by

D̂BAI
m = argmin

1≤M≤Mmax

{
log
(
γ̂n(ŝM )

)
+

√
n

n
M
}
.

The author choose to use κn =
√
n
n for insuring the consistency of D̂BAI

m to D∗m. But
√
n could

also be replaced by any increasing sequence with infinite limit and bounded by n 7→
√
n.

Then, with κn = log(n)
n , we could also consider the classical BIC penalty defined by:

D̂BIC
m = argmin

1≤M≤Mmax

{
log
(
γ̂n(ŝM )

)
+

log(n)

n
M
}
.

Note that there is no heuristic justification for using this criterion because the usual Laplace ap-
proximation is no longer valid for non-differentiable functions [see 30, 28].

3.2 A new data-driven oracle penalization
In order to define a new data-driven penalized least absolute values estimator we first follow some
non asymptotic results on model selection developed in [11, 7]. Hence the following general estimator
can be considered

m̂ := argmin
m∈Mn,u∈Sm

{γ̂n(u) + penn(Dm)} (3.2)

where penn(Dm) only depends on Dm and n. The differences with the previous methods are that
the minimization is done (theoretically) on all the models and the penalization function penn(Dm)
is not necessary a linear function of Dm.

First, let us recall the general result of [7] (Theorem 8 and 11) [see also 11, for details on LAV].

Theorem 3.1 (Barron Birgé Massart (1999)). Assume that there exist Σ > 0 and a family of
weights (Lm)m∈Mn

, such that Lm ≥ 1 and
∑
m∈Mn

exp(−LmDm) ≤ Σ for any n ∈ N. With
K > 0, define also the penalty function penn(·) such as

penn(Dm) ≥ K (Lm + Lm)
Dm

n
, where Lm = log

[
c
(

1 + c′
(Dm

n

)1/2)]
+ 1

with c, c′ > 0. Then there exist C, C ′ ∈ (0,∞) depending on σ and κ > 0 such as m̃ defined in
(3.2) satisfies

E[d(s∗, ŝm̂)2] ≤ κ inf
m∈Mn

{
d(s∗,Sm)2 + C penn(Dm)

}
+ C ′

Σ

n
.
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In the present framework it is classical to choose variable weights, depending only on the dimension
of the model Lm = LDm . Using the same computation done in [29] we obtain

Σ =
∑

m∈Mn

e−LmDm ≤
n∑
d=1

e−d(Ld−1−log(n/d)).

Then, with θ > 0, we can choose, using a counting argument,

Ld = 1 + θ + log(n/d) for any d ∈ N.

We deduce from this result the following bound for the considered risk.

Proposition 3.2. For any given positive real numbers c1 and c2, define for any m ∈Mn

penn(Dm) := σ2 Dm

n

(
c1 log

(
n

Dm

)
+ c2

)
(3.3)

there exist two positive constants C(c1, c2), C ′(c1, c2) such that m̂ defined in (3.2) satisfies

E[‖s∗ − ŝm̂‖1,n] ≤ κ inf
m∈Mn

{
d(s∗,Sm)2 + C(c1, c2) penn(Dm)

}1/2
+ C ′(c1, c2)

√
Σ

n
. (3.4)

This result is obtained from the usual inequality E
[
1
n

∑n
i=1 |Xi|

]
≤ E[‖X‖22]1/2 and with the rela-

tionship d2(s∗,Sm) =
1

n

n∑
t=1

|s∗(t)−s∗m(t)|2 = ‖s∗−s∗m‖22,n where s∗m is the orthogonal projection of

s∗, this segmentation is obtained with the mean of s∗ taken on each segment (and not the median).
The logarithm appears in (3.3) because of the complexity of the collection of models, meaning the
huge dimension (there are

(
n
M

)
possible segmentations of lengthM). This result is a non-asymptotic

one. Besides, the choice of constants c1 and c2 could be done through an extensive simulation study
as it was done in [29]. After those Monte-Carlo experiments, we have chosen c1 = 1 and c2 = 2.

Remark 3.3. This results could be improved. Indeed, the result comes from the bound obtained for
the quadratic loss (the `2-distance). The main difficulty with the LAV criterion, which differs from
the LS criterion is that the theoretical loss function that the literature encourages to consider is

`(s∗, u) := E
[
γ̂n(u)− γ̂n(s∗)

]
= E

[
‖y − u‖1,n

]
− E

[
‖y − s∗‖1,n

]
=

1

n

n∑
t=1

E
[
|s∗(t)− u(t) + εt| − |εt|

]
which satisfies

‖s∗ − u‖1,n −
2

n

n∑
t=1

E[|εt|] ≤ `(s∗, u) ≤ ‖s∗ − u‖1,n

but not with the equality. In the LS case, we have that

`(s∗, u) := E
[
γ̂n(u)− γ̂n(s∗)

]
= E

[
‖y − u‖22,n

]
− E

[
‖y − s∗‖22,n

]
= E

[
‖u− s∗‖22,n

]
.

This makes the issue more challenging and could be the subject of further works.

However the unknown constant σ2 is still present in the definition (3.3) of the penalization. We
chose to estimate this constant using heuristic slope method introduced in [12, 2]. It consists on
computing the graph

(
M
n

(
c1 log

(
n
M

)
+ c2

)
, γn(ŝM )

)
for 1 ≤M ≤Mmax. On such graph one can

see an abrupt change of regime for M going from 1 to D∗m, and a linear decrease for M > D∗m.
Using a classical offline change detection for linear models, the slope α of the linear part of the
graph can be estimated by α̂. The main idea of the slope heuristic is to consider the new estimator
of the number of regimes D∗m by

D̂NEW
m := argmin

1≤M≤Mmax

{
γ̂n(ŝM )− 2α̂

M

n

(
c1 log

( n
M

)
+ c2

)}
. (3.5)

Hence we obtain a new data-driven estimator of the number of abrupt changes.
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4 A Total Variation criterion
The developed criterion is called a convex Total Variation (TV) criterion (or sometimes fused lasso),
since for any λ > 0, it is defined by

ŝ = argmin
1≤M≤Mmax,(θk)1≤k≤M∈RM ,(t1,...,tM )∈An,M

{
n∑
t=1

∣∣yt − M∑
k=1

θk1tk−1+1≤t≤tk
∣∣+ λ

M∑
k=2

∣∣θk − θk−1∣∣}
=: argmin

1≤M≤Mmax

argmin
(θk)1≤k≤M∈RM ,(t1,...,tM )∈An,M

ξMλ ((θk)1≤k≤M , (t1, . . . , tM )).

The total variation allows to measure the variability of the sequence of (θk)k. The second term in
the right hand side of the sum is the `1-norm of the first-difference sequence of (θk)k and it can be
seen as a convex approximation of the number of changes and it should tend towards a reduction
of it.

For a fixed dimension, the segmentation is the same than the one obtained with the classical
LAV criterion. Then, the estimated parameters are different according to the total variation penalty
term, and finally the dimension parameter is chosen.

For each λ, which is the tuning parameter of the TV penalization, one would like to solve
argmin

(θk)1≤k≤M∈RM ,(t1,...,tM )∈An,M
ξMλ ((θk)1≤k≤M , (t1, . . . , tM )) using the dynamic programming (see Box

1). But, the cost matrix Ĉ depending on λ cannot be explicit this time, and this would notably
improves the complexity of such a method.

An alternative solution is to compute first, for eachM , the segmentation minimizing the least abso-
lute value criterion with the dynamic programming and obtain the vector (t̂k)k for each dimension
M in the collection. Secondly, the following minimization problem can be solved:(

D̂λ
m, (θ

λ
k )1≤k≤D̂λm

)
= argmin

1≤M≤Mmax

argmin
(θk)1≤k≤M∈RM

ξMλ
(
(θk)1≤k≤M , (t̂1, . . . , t̂M )

)
For any λ > 0 and 1 ≤ M ≤ Mmax, a numerical approximation of the solution (θλk )1≤k≤M can
be done using the Alternating Direction Method of Multipliers (ADMM). The principle of the
algorithm and its convergence are given in [15] [see 36, 31, for examples]. The ADMM algorithm
rewrites the minimization problem over θ as an equality constraint optimization problem where
θ = (θ1, . . . , θM ) is split in two parts θ and γ. It is based on the formulation:

argmin
θ∈RM

{
n∑
t=1

∣∣yt − M∑
k=1

θk1{t̂k−1+1≤t≤t̂k}
∣∣+ λ

M∑
k=2

∣∣θk − θk−1∣∣} = argmin
θ∈RM

{
f(θ) + λ g(Aθ)

}
= argmin

θ∈RM ,γ∈RM−1

Aθ=γ

{
f(θ) + λ g(γ)

}
with

A =


−1 1 0 . . .
0 −1 1 . . .
...

...
...

...
. . . 0 −1 1

 ∈M(M−1,M)(R) and g(x1, . . . , xM ) =

M∑
k=1

|xk|.

This leads to consider the following algorithm:
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Box2 : ADMM algorithm

1. Initialization.

2. θ(`+1) = argmin
θ∈RM

{
f(θ) + ρ

2‖Aθ − γ
(`) + ρ−1α(`)‖2

}
3. γ(`+1) = argmin

γ∈RM−1

{
λg(γ) + ρ

2‖Aθ
(`+1) − γ + ρ−1α(`)‖2

}
4. α(`+1) = α(`) + ρ(Aθ(`+1) − γ(`+1)).

Here, ρ is the augmented Lagrangian parameter, and the ADMM consists in applying the previous
steps. In practice, ρ = 1. We remark also that the choice of the tuning parameter λ is crucial.
In practice λ could be selected using the BIC criterion. This penalty has been used in [14] in the
regression case and the consistency of the change-points estimator is established when the number
of regressor tends to infinity with fixed n (see also [32]).

Nevertheless the approach developed here is slightly different because we impose the length of
the vector θ, imposing the number of change-points (and this reduces the number of possible models
as Mmax << n). Then a minimization with respect to the number of stages M is done.

5 Numerical illustrations
In the section we provide first details about Monte-Carlo experiments allowing to compare the
different criteria as well as the numerical implementation of the different methods. Then a real-life
dataset is studied using the new criteria.

5.1 Presentation of the Monte-Carlo experiments
We led a large simulation study, investigating different kind of signals, from different distributions
of noise (ε) and different lengths (n). We choose n ∈ {50, 200, 500}, DMmax = 40. Signals
are simulated randomly (the change-points, the parameters values) and the resulting estimators
are compared with the oracle estimator (available on simulations). In the following in order to
illustrate our purpose we choose four different distributions of the noise with the same variance σ2:

- Gaussian noise, denoted N , with density φ(0,σ2)(x) = 1√
2π σ2

exp
(
− 1

2σ2 x
2
)
;

- Laplace noise, denoted L, with density f(x) = 1
2
√
2
σ exp(−|x|/σ);

- Normalized Student noise, denoted S, with 3 degrees of freedom, i.e.
√

3σ2 t(3), where t(3)
is the classical Student distribution with 3 degrees of freedom;

- Mixture of Gaussian noises, denoted MN , defined by

fε(x) = (1− p)φ(0,γ2)(x) +
p

2
φ(−µ,γ2)(x) +

p

2
φ(µ,γ2)(x),

with µ = mp√
m2p+σ2

and γ2 = σ4

m2p+σ2 . The distribution of this noise contains 3 modes and

can mimic the presence of outliers. In the sequel we use p = 1/10 and m = 10.

We investigate and illustrate first the example given in [4] with D∗m = 4 change-points and 4
regimes with parameters θ∗ = (1, 3, 1,−1). Then we consider the case D∗m = 7 with θ∗ =
(1, 3, 1,−1, 1,−3,−1) and finally the case of randomized values of D∗m, (θ∗i )i and (t∗i )i has been
studied. More precisely, the parameters are simulated according to the following scheme:

- the number of changes D∗m − 1 is simulated from a binomial distribution with parameters
(6, 0.5),

8



n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 65.4 57.2 57.7 87.8 99.8 70.0 92.1 100 74.9
L 67.8 84.1 69.5 90.5 100 85.4 95.7 100 90.6
S 67.9 96.1 70.2 88.7 100 83.4 94.1 100 83.4

MN 47.2 92.3 72.9 38.6 99.6 48.6 48.1 100 49.8
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 19.1 1.3 22.1 63.5 2.9 64.7 92.5 31.8 77.3
L 32.6 3.9 34.7 88.4 34.2 84.4 96.1 95.9 90.8
S 19.7 1.3 22.2 64.5 2.6 64.4 92.3 33.0 77.0

MN 41.1 7.9 43.2 81.2 63.0 77.9 91.7 99.7 85.8

Table 1: Empirical score in % with 10000 repetitions and D∗
m = 4

- the change-points are uniformly distributed U[b√N/2,N−c√N/2], under the constraint that the
difference between two successive times must be at least

√
N/4,

- the parameters values θ∗i for each regime are Gaussian N (0, 1) under the constraint to be
separated by 1 at least.

The procedures are evaluated in two terms:

- with the empirical score in % , i.e. the frequencies of estimation of the true values of D∗m;

- with the empirical `1-risk.

Both values illustrate a question: what is more important between minimizing the distance between
the estimated and the true signals, and finding the "true" number of break-points ?

5.2 Comparisons of criteria based on penalized LAV deviations

In this subsection, we investigate the estimators D̂Bai
m , D̂BIC

m and D̂New
m , detailed in Section 3.

The results are given in Tables 1-6.

General purposes can be first deduced from the results of Monte-Carlo experiments for the three
penalized LAV criteria D̂New

m , D̂Bai
m and D̂BIC

m .
These experiments exhibit the consistency of these three LAV criteria when n increases. More-

over, the larger σ2 (or D∗m) the smaller the empirical score and the larger the empirical `1-risk. Let
us note that the Gaussian noise, which has the flattest distribution tail, gives the least accurate
results.

The estimators can also be compared through their ability to estimate the true number of
changes. Indeed, different configurations are presented. In “easy” conditions, meaning that D∗m
is small and also is the variance σ2, and the differences |θ∗i+1 − θ∗i | and t∗i+1 − t∗i are large (and
therefore large n), then the criterion D̂Bai

m provides excellent results. This is not surprising since
it has been defined in [4] in an asymptotic framework,

On the contrary, in “difficult” conditions, meaning that D∗m and the variance σ2 are large, and
differences |θ∗i+1 − θ∗i | and t∗i+1 − t∗i are small, then D̂New

m and D̂BIC
m provide much better results

than D̂Bai
m .

Generally speaking, estimator D̂New
m offers the best trade-off as it can be observed in the case

of randomized choice of parameters.
Concerning the empirical `1−risk, the conclusions are almost the same, except that D̂New

m often
provides the minimal risk even when D̂Bai

m obtains the best empirical score (see typically the case
D∗m = 4).
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n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.42 0.52 0.42 0.17 0.17 0.19 0.10 0.11 0.11
L 0.28 0.30 0.28 0.11 0.10 0.11 0.06 0.06 0.06
S 0.37 0.49 0.34 0.14 0.14 0.14 0.08 0.08 0.08

MN 0.46 0.61 0.40 0.15 0.15 0.15 0.08 0.08 0.09
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 0.93 0.99 0.93 0.50 0.78 0.47 0.24 0.56 0.25
L 0.72 0.88 0.73 0.25 0.54 0.25 0.13 0.15 0.14
S 0.93 0.99 0.93 0.51 0.78 0.48 0.23 0.56 0.25

MN 0.62 0.82 0.64 0.22 0.39 0.23 0.12 0.12 0.13

Table 2: Empirical `1-risk with 10000 repetitions and D∗
m = 4

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 25.5 6.0 39.0 92.6 71.6 64.4 95.8 99.8 69.5
L 54.0 22.7 56.8 92.7 97.9 79.8 94.7 100 87.9
S 69.9 42.4 63.2 90.6 99.7 79.3 92.3 100 86.4

MN 54.0 22.7 56.7 92.7 97.9 79.7 94.7 100 87.5
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 3.7 0 4.8 10.9 0 25.7 75.3 0 67.8
L 6.5 0.0 7.7 54.4 0.0 61.9 95.6 10.3 87.9
S 9.0 0.1 11.4 71.3 0.7 71.2 94.2 34.1 85.6

MN 11.5 0.2 11.5 69.9 0.9 66.2 93.2 45.7 80.6

Table 3: Empirical score in % with 10000 repetitions with D∗
m = 7

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.70 0.86 0.56 0.23 0.34 0.25 0.14 0.13 0.15
L 0.39 0.62 0.40 0.15 0.15 0.15 0.08 0.08 0.09
S 0.37 0.49 0.33 0.14 0.14 0.14 0.08 0.08 0.08

MN 0.46 0.62 0.40 0.15 0.15 0.15 0.08 0.08 0.09
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 1.11 1.19 1.11 0.76 0.98 0.70 0.38 0.88 0.36
L 0.97 1.16 0.96 0.45 0.88 0.41 0.19 0.52 0.20
S 0.89 1.08 0.87 0.38 0.80 0.36 0.19 0.41 0.19

MN 0.87 1.09 0.86 0.34 0.79 0.34 0.17 0.35 0.18

Table 4: Empirical `1-risk with 10000 repetitions and D∗
m = 7
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n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 16.9 24.4 39.0 66.5 42.7 72.0 83.5 49.0 86.3
L 44.6 42 35.9 79.0 56.0 60.7 92.1 76.1 75.8
S 49.7 31.0 35.0 82.9 53.8 38.7 94.0 60.2 31.9

MN 55.9 40.5 29.9 73.9 69.3 55.52 91.0 75.5 66.2
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 17.3 14.1 20.5 29.5 20.0 36.6 53.2 20.5 55.2
L 23.0 20.3 19.4 38.9 39.4 30.04 62.7 55.6 43.9
S 25.5 23.5 21.1 45.7 39.6 23.7 67.1 45.8 23.5

MN 25.9 10.17 25.0 46.5 18.4 50.3 65.6 27.4 71.6

Table 5: Empirical score in % with 10000 repetitions with randomized D∗
m

n = 50 n = 200 n = 500
σ = 1 New Bai BIC New Bai BIC New Bai BIC
N 0.18 0.21 0.19 0.18 0.24 0.19 0.10 0.14 0.11
L 0.29 0.35 0.28 0.11 0.15 0.11 0.06 0.08 0.06
S 0.26 0.31 0.25 0.10 0.13 0.11 0.06 0.07 0.06

MN 0.17 0.18 0.16 0.06 0.06 0.08 0.03 0.04 0.05
σ = 2 New Bai BIC New Bai BIC New Bai BIC
N 0.80 0.78 0.78 0.44 0.57 0.44 0.26 0.42 0.26
L 0.62 0.66 0.60 0.29 0.43 0.27 0.15 0.28 0.14
S 0.57 0.63 0.56 0.27 0.39 0.26 0.14 0.25 0.14

MN 0.56 0.62 0.55 0.25 0.38 0.25 0.14 0.25 0.13

Table 6: Empirical `1-risk , with 10000 repetitions and randomized D∗
m
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n = 50 n = 200 n = 500
σ = 1 New TV LS New TV LS New TV LS
N 16.9 24.4 39.0 66.5 42.7 72.0 83.5 48.8 86.3
L 44.6 42.3 35.9 79.0 56.0 60.6 92.1 76.1 75.8
S 49.7 31.2 35.0 82.9 53.8 38.7 94.0 60.2 31.8

MN 55.9 40.5 29.9 73.9 69.3 55.5 91.0 75.5 66.2
σ = 2 New TV LS New TV LS New TV LS
N 17.3 14.1 20.5 29.5 20.0 36.6 53.2 20.5 55.2
L 23.0 14.5 19.4 38.9 39.4 30.0 62.8 48.2 43.8
S 25.5 23.5 21.1 45.7 39.6 23.7 67.1 45.8 23.5

MN 25.9 14.8 18.5 46.5 28.9 31.1 65.6 38.0 47.3

Table 7: Empirical score with 10000 repetitions with randomized D∗
m

5.3 Comparison with total variation and least-squares criteria

In the sequel the new data-driven estimator D̂New
m is compared to two criteria, which are not

based on penalized LAV deviation. The first one is provided from a classical approach, the LS
offline detector presented in Introduction 1 and defined by

γ̂LSn (u) =
1

n

n∑
t=1

(yt − u(t))2 = ‖y − u‖22,n. (5.1)

For a given segmentation m, the LS estimator is

ŝLSm = argmin
u∈Sm

γ̂LSn (u) =

Dm∑
k=1

yk1Ik , yk =
1

nk

tk∑
t=tk−1+1

yt, nk = Card{t ∈ Im(k)}. (5.2)

The estimators are computed using the Dynamic Programming again, to obtain one model by
dimension. Then, to select the best estimator in the collection the selected dimension is the
one minimizing the sum of two terms: argmin

1≤M≤Mmax
{γ̂LSn (ŝLSM ) + pen(M)} with penLS(M) =

M
n σ

2
(
2 log

(
n
M

)
+ 5
)
. according to [29], for a Gaussian noise. To compute the estimator called

D̂LS
m we use again the slope heuristic following the same process as for D̂New

m .

We also implement the estimator D̂TV
m obtained from the total variation (TV) criterion, described

in Section 4. Different programming steps are followed: first the dynamic programming to get
one segmentation by dimension, then the ADMM algorithm to optimize the minimization of the
criterion on θ and finally the selection of the best dimension. Note that the asymptotic properties
of the estimator D̂TV

m have still not be studied. Nevertheless, the following Table 7 exhibits its
convergence when n increases. Note that we do not exhibit the `1-risk scores since the TV criterion
is only devoted to select the number of change-points and not to minize the risk. The empirical
scores are given in Table 7 where we also consider the previous version of randomized values of D∗m,
(θi)i and (ti)i.

It appears first from Table 7 that D̂New
m provides the most accurate estimations, except for

Gaussian time series for which the classical LS criterion is still the most interesting. This is not
a surprise since in this Gaussian case the LS criterion can be derived from maximum likelihood
estimation, while D̂New

m can also be derived but for Laplace distribution. And this confirms the
well known robustness of LAV estimation with respect to the LS one. Figure 1 and Figure 2
illustrates this purpose about the robustness of criteria. In practice it is a common fact to observe
pics values on real data set and instead of truncate them, the LAV criterion can deal with them
without creating artificial new regimes.
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Figure 1: Comparison between LAV and LS criteria (ŝm̃ vs ŝLS
m̂LS ): red line for

LAV new estimator, green line for LS penalized estimator. Student case, σ = 2,
signal y in light grey, true signal s∗ il dotted black line.

Finally, D̂TV
m provides an interesting alternative to LS criterion except for Gaussian processes. But

it is quite always less efficient than D̂New
m . However, this criterion is built on the same principle

than the LASSO criterion and we can suspect that it could especially be useful when K∗ is really
large and not negligible with respect to the data length n.

5.4 Application to genomic data
We also apply new criteria on a real-life data set, which consists on normalized copy-number
logratios of data array CGH study set of Corriel institute taken from the package DNAcopy of V.
Seshan and A. Olshen, see also [33] (the authors have assembled arrays of around 2400 clones
of DNA copy number across the human genome). These data and their analysis help to detect
chromosomal copy number variations which could cause disorders. We apply the previous two new

LS LAV

2
3

4
5

6
7

8
9

Figure 2: Boxplots of D̂LS
m and D̂New

m for Student case, N = 200, D∗ = 7
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Figure 3: Grey: normalized copy-number logratio, left: red ŝ
D̂New

m
, right: orange

ŝ
D̂NTV

m

strategies on some part on the data. The results are presented in Figure 3: on the left the true data
are plotted together with estimator ŝD̂New

m
in red, and on the right the same graph with ŝD̂TV

m
in

orange (and the LS estimator ŝD̂LS
m

is barely equal to ŝD̂New
m

in this case). Here the decomposition
of the signal obtained with the new LAV criterion procedure seems to fit well the data, nevertheless
the TV estimator may have removed an artifact of the data (large variance) choosing only 3 change-
points. However, the biological context and medical knowledge are required to interpret the results.
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