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Abstract. This paper describes a method for fast and efficient inpaint-
ing of light fields. We first revisit disparity estimation based on smoothed
structure tensors and analyze typical artefacts with their impact for the
inpainting problem. We then propose an approach which is computation-
ally fast while giving more coherent disparity in the masked region. This
disparity is then used for propagating, by angular warping, the inpainted
texture of one view to the entire light field. Performed experiments show
the ability of our approach to yield appealing results while running con-
siderably faster.

1 Introduction

As the capture of 4D light fields from real scenes is gaining in popularity, the
need for efficient editing tools is expected to rise as well. However, the very large
volume of data which they represent, as well as the need to maintain texture and
structure consistency across views, raise challenging complexity issues in these
processing tasks.

In this paper, we focus on light field inpainting for applications such as object
removal. Although the problem of image inpainting has already been extensively
studied, only a few methods in the literature address the specific case of 4D
light fields. One can find some work on the related topic of multiview image
inpainting, however the methods as in [1], [2] are designed for captures with
large baselines and do not generalize well for dense light fields.

It is only recently that methods have been proposed for dense light fields
inpainting. The authors in [3] extend 2D patch-based methods to 4D patches and
ensure consistency by minimizing a 4D patch bi-directional similarity measure.
This method progresses patch per patch in a greedy fashion and suffers from a
high computational complexity. In addition, the global consistency of the entire
light field is not guaranteed. In [4], the central view is first edited using a 2D
patch-based method, and the offsets between the filled patches and their best
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match in the known region are propagated to the other views. But the above
methods suffer from high complexity and/or from angular view coherency.

Inpainting first one view (in general the center one) and then coherently
propagating the inpainted texture to the other views is an interesting approach
as it allows using any 2D inpainting method on the center view to have a good
initialization. This is related to the general problem of edit propagation [5]. In
this category of methods, the approach in [6] inpaints the center view using a 2D
patch-based method and the other views are inpainted by searching for the best
matching patches in the inpainted center view. However, because of the greedy
nature of the algorithm and the fact that the views are processed separately, the
inpainting results may contain angular inconsistencies. The authors in [7] exploit
smoothness priors in the epipolar plane images (EPI) to coherently propagate
information across views using PDE-based diffusion, while a method based on
matrix completion is proposed in [8], assuming a low rank prior for the light field
data.

One critical issue for propagating texture to all views is the estimation of
disparity in the masked region. In [9], the disparity map is inpainted using a
linear interpolation followed by variational regularization. However, an interpo-
lation per EPI may lead to spatial inconsistencies in the disparity maps. In [7],
dominant orientations of known pixels are computed as weighted averages of
structure tensors across all the views of a given slice. Dominant orientations of
unknown pixels are found using a super-pixel guided interpolation.

In this paper, we focus on the fast propagation of the inpainted texture across
the entire light field. For sake of computational efficiency, we consider a simple
warping strategy which requires knowledge of scene geometry in the inpainted
region, that is to say the disparity at this location, as shown in Fig. 1. We revisit
the problem of disparity estimation using smoothed structure tensors. We show
that, while smoothing generally increases spatio-temporal coherence of estimated
disparity fields, it may also lead to misalignment between color and disparity,
and in turn to incoherent disparity in the masked region. A direct structure
tensor computation is used instead and it is shown that, even if the disparity
field is much noisier, this noise does not affect the inpainted disparity values as it
turns out to be automatically removed via the color-guided interpolation. This
simple approach reduces computational complexity while improving disparity
coherency in the masked region. The inpainted disparity allows us to perform
a simple angular warping to propagate inpainted texture across the whole light
field.

In summary, the contributions of the paper are as follows: 1) A fast disparity
estimation of a masked area guided by an inpainted view. 2) The ability of
applying inpainting on any view of the light field with corresponding disparity at
angular position, since disparity is computed exactly on the view (no averaging).
3) A direct propagation of inpainted area over the whole light field using a 2D
forward warping method. 4) An overall speed increase as compared to other
methods.



The paper is organized as follows: Section 3 and 4 describe the selected
disparity computation method and the method for interpolating the disparity
inside the inpainted area. Section 5 presents the method used for propagating a
view across the light field, and in Section 6 we discuss some experimental results.

Inpainted
view+mask

Interpolated
disparity Angular warping

Light field

Fig. 1: Overview of the method. The red triangle represents inpainted object in the

scene. Corresponding mask standing for inpainted area is delimited by the white line.

Scene geometry (depth) behind the mask is unknown. Disparity is therefore interpo-

lated according to subapertures color features.

2 Disparity estimation

Let L(x, y, u, v) denote the 4D representation of a light field, describing the radi-
ance of a light ray parameterized by its intersection with two parallel planes [10],
and where (u, v) denote the angular (view) coordinates and (x, y) the spatial
(pixel) coordinates. While disparity estimation methods based on structure ten-
sors [11] usually operate on EPI smoothed with a 2D Gaussian kernel, we consider
instead a direct computation of the structure tensors on the 4D light field L as

Txu = ∇xuL⊗∇xuLᵀ ∗Gσ(x, y, u, v), (1)

where ∇xuL =

(
∂xL
∂uL

)
, denotes the (x, u) gradient of L, and where Gσ(x, y, u, v)

is a Gaussian kernel smoothing along the four light field dimensions.
The orthogonal eigenvectors θ+ and θ− with respective eigenvalues λ+ and

λ− (where λ+ > λ−) of Txu give a robust computation of the dominant gradient
orientations. We are interested in the eigenvector θ− with the smallest eigenvalue
which corresponds to the isophote lines whose slopes give the amount of disparity
between the views. Same applies for computing the vertical disparity with the
tensor Tyv.

While the use of a smoothing kernel yields disparities with enhanced spatial
coherence, this also leads to mis-alignment (some cross overs) between the dis-
parity estimates and objects contours (Fig. 2). We will see in the next section
that such cross overs can produce bad estimates of disparity inside the inpainted
area.



(a) (b)

(c) (d)

Fig. 2: Disparity estimate of one light field view (a), with black lines accounting for orig-

inal image’s segmentation of dominant shapes. (b) Using Sobel gradient and smoothing

tensor with a Gaussian kernel of size 7. (c) Without gradient or tensor smoothing. (d)

Without smoothing + TVL1. Despite being nosier, estimate without smoothing better

fits object contours.

The structure tensor in the approach is therefore computed with no smooth-
ing, and in order to remove most of outliers estimates, i.e. reducing the noise,
we apply a Total Variation (TV-L1) denoising [12] on the disparity estimate:

D =
1

2

(
θxu−

−→x
θxu−

−→u
+
θyv−

−→y
θyv−

−→v

)
, (2)

searching to optimize:

D̃ = argminD̃||∇D̃||1+λ||D̃ −D||2, (3)

where λ is the total variation regularization parameter and was set to 0.5 in
our experiments. This value yields a good trade-off regarding smoothness of the
regularization.

We finally obtain a disparity estimate specific to inpainted view, being spa-
tially accurate regarding scene contours, and in a very fast way. In the next
section, we will address the problem of both filling inpainted mask and dealing
with remaining noise.



3 Superpixel guided disparity interpolation

In order to propagate the inpainted area across all views, we need a disparity
information inside the mask that does not exist in the light field scene, since
inpainting a view can be seen as modifying depth geometry in the inpainted
area. As proposed in [7], we use a superpixel segmentation of the inpainted view
to guide disparity inpainting, making the assumption that disparity (i.e. depth)
is homogeneous in local regions having the same color. The computed superpixels
S = {Ss}, with {s ∈ N|s ≤ Q}, are first merged such as any of them lying even
partly inside the masked area has at least K pixels outside the mask, i.e. known
data. The number of superpixels is defined such as Q = 1

γP , P being the number
of pixels in each subaperture. In our experiments γ was set to 1000 pixels per
superpixel, which allows to capture main structures of the image, and K to 20,
so that a certain area of each superpixel exists outside the mask.

The disparity D̂ for any pixel at position x inside the mask and belonging
to a superpixel Ss is estimated by interpolating known disparity values D̃ of
W ≤ K closest pixels outside the mask but from the same superpixel as:

D̂(x) =
ΣWi ws,i(x, yi)D̃(yi)

ΣWi ws,i(x, yi)
, (4)

where yi ∈ Ss is a pixel position outside the mask. We also set W to 20 in our
experiments. The weights are defined as:

ws(x, yi) = exp

(
− (ds(x, yi)− µs(x))2

σs(x)2

)
, (5)

with: ds(x, yi) = ‖x− yi‖2 + (I(x)− I(yi))
2fs (6)

accounting for the spatial distance between the two pixels (inside and outside
the mask) and of the color proximity of the two pixels in the inpainted view.

Knowing that the spatial distance ds(x, yi) can greatly vary for the different
pixels x within a given superpixel, we apply in Eq.(5) a centering of weights
around the minimum distance as:{

µs(x) = min( {ds,i}),
σs(x)2 = βVar({ds,i}).

(7)

Hence, pixels with known disparity and closest to the border of the mask have a
higher weight. The scaling between spatial and color distance in Eq.(6 is defined

by a function specific to superpixel geometry as fs = α Var({x})
Var({I(x)}) , x ∈ Ss to

compensate for higher spatial and color variance inside some superpixels. In our
experiments, we set α = 10−5 and β = 1 which yielded a good trade-off for
interpolation smoothness and coherence with outer mask disparity.

Superpixel guided interpolation has proved to be effective for disparity re-
construction [7]. It is nonetheless very sensitive to disparity cross overs. In Fig.
3a, we can see that the disparity interpolation uses in some cases irrelevant



(a) (b)

Fig. 3: Disparity estimate of inpainted view with focus on cross over issue, white line

accounting for inpainting mask boundaries. a) As in [7] for a vertical EPI., b) Our

method. Highlighted superpixel mostly use information close to the leaf due to mask

configuration. Disparity retrieval is therefore extremely sensitive to estimate around

object edges.

information because of mask and segmentation configuration. In Fig. 3b, this
reconstruction error is strongly alleviated because of the disparity cross over
avoidance introduced in Section 2.

As for the rest of the inpainted area, interpolation weights guided by super-
pixels prove to be enough for obtaining an homogeneous disparity reconstruction
despite noisy inputs, in the same fashion as in [13]. Finally, we obtain a consistent
disparity estimate inside the mask which is derived from the inpainted view only
and not by using information from the other views, with a few computations
and approximations.

4 Inpainting propagation

The computed disparity in the masked area is used to propagate the inpainted
area of one view to all the other views of the light field using an angular forward
warping. Instead of propagating information on one angular dimension in an EPI
framework, we chose to warp directly in directions (u, v). Two main advantages
of such approach are as follows. First, we do not need to repeat the whole pipeline
of disparity computation and inpaint propagation for each EPI stripe N+1 times
(for a light field of size N × N views). And second, direct warping is very fast
as compared to diffusion.

However, warping has well known drawbacks. Backward warping implies to
know disparity in each destination view, i.e. computing N2 − 1 disparity esti-
mates, which is time consuming. Forward warping on the other hand only needs
disparity at the origin of propagation, but comes with ghosting and cracking
effects. We propose a solution to tackle the latter issues in the scope of fast light
field inpainting.

Handling ghosting artefacts: Ghosting effects, which are classical in depth
image-based rendering, arise when multiple pixels with different depth and color
converge to a same one in the warped image, resulting in a mean value. Ghosting



artifacts are often avoided by detecting depth discontinuities, in order to separate
the boundary layer (containing pixels near the contours of an object) from the
main layer (containing pixels far from the contours) [14]. The main layer is first
projected then the boundary layer is added everywhere it is visible (i.e. where its
depth value is smaller than the main layers one). Ghosting artifacts can also be
avoided by estimating background and foreground contributions in the rendered
view with the help of advanced matting techniques [15], or using a confidence
measure for each projected pixel as in [16].

For sake of reduced complexity, we consider instead a simple disparity mean
filter to classify the projected pixels within the mask area as locally belong-
ing to the foreground or the background. This simple mean depth classification
approach gives satisfactory results in the case where the number of depth lay-
ers does not exceed two. However, in the case of more complex scenes with a
higher number of layers, approaches such as z-buffering would be needed to
avoid ghosting artefacts. Nonetheless, one can note that for dense light fields
with small disparities, as those considered here, such case remains marginal.

Let us suppose that two pixels coming from two different objects with differ-
ent depths are projected on the same pixel, when doing the texture propagation.
Instead of handling a z-buffer to order the projected pixels from foreground to
background, thus saving computationally expensive sorting operations, we com-
pute the mean disparity of pixels projected on the same point. We then classify
pixels having a disparity higher than the mean as foreground occluding pixels,
and those having a disparity smaller than the mean as occluded pixels. In order
to obtain such mean disparity, we simply warp the disparity by itself, see Fig.
4. The color is then warped with pixels classified as occluding pixels overlaying
those classified as occluded pixels. This simple method also prevents aliasing
of warping by still averaging occluding pixels that converge to the same point.
This method is directly applied in the two angular dimensions (u, v) of light field,
which also provides better continuity of propagation as compared to a sequential
one dimension u, v projection.

Handling cracks: Cracking effects, oppositely, arises where a destination
pixel does not receive any information due to a local divergence of disparity.
This issue is dealt with the help of unsupervised inpainting as in [17] and yields
satisfying results for tested light fields.

Eventually, the computational cost of inpainting propagation for one view
accounts for two forward warpings and an inpainting of cracks. The later is
negligible provided cracks are small, which was the case in our tests.

5 Computational complexity analysis

Algorithmic complexity is presented for the differents stages of the method.
First, disparity estimate obtained by Eqs.(1, 2) is computed all over the view at
which the inpainting is assigned. The estimate is regularized using Eq.(3). Both
algorithms have O(P ) complexity.



(a) (b)

Fig. 4: Forward warping in 1D. Circles stand for image pixels. Disparity is represented

in red. a) Base algorithm, b) Modified algorithm with warping of disparity by itself.

Disparity interpolation guided by inpainted view: SLIC algorithm [18]
used for superpixel segmentation has O(P ) complexity. Fast implementations of
the algorithm exist, and make in practice superpixel segmentation computational
cost to be low. Merging superpixels with respect to the mask has an approximate
complexity O(R log(R)), with R being the number of superpixels not containing
at least K pixels outside the mask. This process therefore strongly depends on
image segmentation and mask characteristics, as well as on value K. Assuming
R is mostly dependant on the number of superpixels Q, we obtain O(Q log(Q))
complexity for the merging step. In our experiments, for a total number of su-
perpixels around 400 (depending on the dataset), computation took in most
complex cases only a few seconds. Disparity interpolation inside the mask de-
fined at Eq.(4) has complexity O(MW ), with M being the number of pixels in
the mask. It is, in most cases, more costly than the last two processes.

Inpainting propagation: As presented in section 4, two forward warpings
of inpainted view are performed in our method. Each of them as O(N2M) com-
plexity. The second one also involve unsupervised inpainting of cracks. This last
step has O(V ) complexity, whith V being the number of cracked pixels. Their
number is usally low for dense light fields, therefore the cost of this step is
neglectible.

Overall: The global method then has O(P ), O(Q log(Q)), O(MW ) and
O(N2M) complexities. In our experiments, we found that increasing Q and W
does not noticeabily change inpainting results. Therefore, our method’s complex-
ity can be approximated by O(N2M). However, in case a small inpainting mask
is applied, disparity estimate and superpixel segmentation become dominant,
and the complexity is then O(P ).

6 Experimental results

Fig. 5 shows an inpainting result in comparison with method [6]. The experiments
were performed on real light fields captured by camera Lytro 1.0. To alleviate
color fluctuations between views, we first perform a histogram matching between
the central and remaining views. The algorithm takes as input the mask of the
area to be inpainted in the whole light field and an inpainted view (usually the
central one), which here has been inpainted using the patch-based method of [19].
We compare our method to [7], for which we perform 100 iterations of diffusion
in the reference algorithm. Computations for the later and ours were performed



using a C++ implementation on a i7-6600U without any parallelization and the
execution times are presented in Tab. 1.

Our method performs the fastest inpainting for almost every dataset tested.
Because the mask applied on light field Bee2 has small size, method of [8] is
faster. Indeed, the singular value decomposition used has a O(N4M) complexity
linearily dependent on mask’s size, whereas our method has O(P ) complexity in
this case.

Let us note that from a memory allocation perspective, our method con-
sumes only a few calculation images. For comparison [8] requires approximately
8M(N2 + 400) floating point numbers to store in memory.

More results with videos showing the inpainting consistency across views are
provided at https://www.irisa.fr/temics/demos/lightField/InpaintFast/
index.html, and Fig. 6 shows additional results comparison to state of the art
methods.

Experiments show very similar results regarding refocusing on focus plane of
removed object and its corresponding background, while running considerably
faster than other methods.

Dataset N Resolution Mask [7] [8]
Our

method

Bee1 9 625*434 4.4% 1’29” - 4”6

Bee2 11 625*434 1.6% 1’17” 4”2 5”3

Figurines 11 625*434 17.4% 3’39” 19”3 7”6

Fruits 9 625*434 4.8% 1”38 - 4”6

Totoro
Park

7 379*379 17.2% 50” 9”2 2”5

Totoro
Waterfall

7 379*379 24% 1’2” 9”1 3”

Tape 7 379*379 17.1% 1”12 - 2”6

Still life 9 768*768 4.6% 4’2” 13.2” 11”9

Butterfly 9 768*768 21.6% 6’17” 45” 19”3

Table 1: Execution times. Our new method performs with an average of ∼ 21 times

faster than proposed in [7], and ∼ 2.2 times than [8]. Regarding the later, our method

performs faster for larger inpainting masks. As compared to [6], our experiments on

Lytro Illum light fields ran around ∼ 1.3 times faster, without GPU implementation.

7 Conclusion
In this paper we have presented a new fast approach for inpainting light fields.
Our method is based on a minimum of relevant computation steps. By first
obtaining a coarse disparity estimate at inpainted view coordinates in angular
space, we are able to interpolate the disparity at inpainted object’s location. This
allows a fast propagation of inpainted view using specifically adapted warping
techniques. Results quality match state of the art, while running most of the
time significantly faster. As a future work, our algorithm would highly benefit
of parallel programming like GPU implementation.

https://www.irisa.fr/temics/demos/lightField/InpaintFast/index.html
https://www.irisa.fr/temics/demos/lightField/InpaintFast/index.html


(a) (b)

(c) (d)

Fig. 5: Inpainting of Totoro waterfall light field. a,b) Top left view. c,d) Bottom right

view. a,c) With method proposed by [6]. See the incoherence of the texture in the mask

area. b-d) Using our method. Views are more coherent along angular coordinates inside

the inpainting area with the proposed algorithm.
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