
HAL Id: hal-01845976
https://hal.science/hal-01845976

Submitted on 20 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Scalable Model Views on Heterogeneous Model
Resources

Hugo Bruneliere, Florent Marchand de Kerchove, Gwendal Daniel, Jordi
Cabot

To cite this version:
Hugo Bruneliere, Florent Marchand de Kerchove, Gwendal Daniel, Jordi Cabot. Towards Scalable
Model Views on Heterogeneous Model Resources. ACM/IEEE 21th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’18), Oct 2018, Copenhagen, Denmark.
pp.334-344, �10.1145/3239372.3239408�. �hal-01845976�

https://hal.science/hal-01845976
https://hal.archives-ouvertes.fr


Towards Scalable Model Views on
Heterogeneous Model Resources

Hugo Bruneliere

IMT Atlantique - LS2N (CNRS) & ARMINES

Nantes, France

hugo.bruneliere@imt-atlantique.fr

Florent Marchand de Kerchove

IMT Atlantique - LS2N (CNRS) & ARMINES

Nantes, France

florent.marchand-de-kerchove@imt-atlantique.fr

Gwendal Daniel

IN3, Universitat Oberta de Catalunya (UOC)

Barcelona, Spain

gdaniel@uoc.edu

Jordi Cabot

ICREA & Universitat Oberta de Catalunya (UOC)

Barcelona, Spain

jordi.cabot@icrea.cat

ABSTRACT
When engineering complex systems, models are used to represent

various systems aspects. These models are often heterogeneous in

terms of modeling language, provenance, number or scale. They can

be notably managed by different persistence frameworks adapted

to their nature. As a result, the information relevant to engineers

is usually split into several interrelated models. To be useful in

practice, these models need to be integrated together to provide

global views over the system under study. Model view approaches

have been proposed to tackle such an issue. They provide an uni-

fication mechanism to combine and query heterogeneous models

in a transparent way. These views usually target specific engineer-

ing tasks such as system design, monitoring, evolution, etc. In our

present context, the MegaM@Rt2 industrially-supported European

initiative defines a set of large-scale use cases where model views

can be beneficial for tracing runtime and design time data. However,

existing model view solutions mostly rely on in-memory constructs

and low-level modeling APIs that have not been designed to scale

in the context of large models stored in different kinds of sour-

ces. This paper presents the current status of our work towards

a general solution to efficiently support scalable model views on

heterogeneous model resources. It describes our integration ap-

proach between model view and model persistence frameworks.

This notably implies the refinement of the view framework for the

construction of large views from multiple model storage solutions.

This also requires to study how parts of queries can be computed

on the contributing models rather than on the view. Our solution

has been benchmarked on a practical large-scale use case from

the MegaM@Rt2 project, implementing a runtime – design time

feedback loop. The corresponding EMF-based tooling support and

modeling resources are fully available online.
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1 INTRODUCTION
Different, and quite often, many kinds of models are used when

engineering complex systems. This is notably the case for systems

of systems or Cyber-Physical Systems (CPSs) [13], where models

have to represent both software and hardware aspects. Depending

on the concerned application domains, the nature and number of

the involved models can vary significantly: they can rely on various

modeling languages, come from different sources or be very large.

Moreover, these models usually contain complementary informa-

tion that is not uniformly spread among them. Thus, engineers need

to combine these different models in order to have a better vision

and understanding of the whole system. The combined models are

intended to support particular engineering activities such as system

design, development, monitoring or adaptation/evolution.

The MegaM@Rt2 collaborative project
1
is a recent and large

European initiative supported by both industry and academic part-

ners. As part of its continuous system engineering approach [1],

the project notably aims at providing a runtime↔ design time feed-

back loop that could be deployed and used in different industrial

domains. Such a feedback loop can bring interesting benefits in the

above-mentioned engineering activities, for instance. To realize this

in practice, model views are used to transparently relate together

all the required (design and runtime) models.

1
http://megamart2-ecsel.eu/

https://doi.org/10.1145/3239372.3239408
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Several model view approaches have already been proposed in

order to provide support for such views [4]. Based on MDE, they

allow specifying, creating and handling views on possibly hetero-

geneous models. Once built, the views can be used to uniformly

manipulate and query the data coming from the different contri-

buting models. However, most of the view approaches have only

been deployed on models of small to medium size (e.g. manually

created design models) and not on large to very large models (e.g.

automatically-generated runtime models). Scalability is one of the

main issues hampering the adoption of MDE in the industry [18],

and is a major challenge to be addressed in MegaM@Rt2 as well.

Moreover, the support for strongly interconnected models coming

from different data sources (e.g. databases) appears to be the focus

of only a few of the proposed approaches. Those are problems that

are also particularly relevant in the context of MegaM@Rt2.

In this paper, we present the current status of our work towards

efficiently supporting scalable model views over heterogeneous

model resources. This includes the following contributions:

(1) A conceptual integration approach for the complementary

use of model view and model persistence frameworks.

(2) A scalable realization of this approach combining the EMF

Views [6] model view solution with the NeoEMF [10] and

CDO [14] model persistence frameworks.

(3) An evaluation of our approach and current implementation

on a large-scale and realistic scenario from the MegaM@Rt2

project.

The rest of this paper is organized as follows. Section 2 motivates

our work by introducing the MegaM@Rt2 context, use case and

related objectives. Section 3 presents our conceptual approach to

integrate model view techniques andmodel persistence frameworks

as a solution. Section 4 details how we implemented this conceptual

approach on top of well-known MDE solutions based on the Eclipse

Modeling Framework (EMF). Section 5 provide an evaluation of our

approach and implementation via different scalability benchmarks

performed on a MegaM@Rt2 use case. Finally, Section 6 reviews

the related work while Section 7 concludes with our main lessons

learned and planned future work.

2 BACKGROUND & MOTIVATION
The MegaM@Rt2 collaborative project

2
is a large and industrially-

supported European initiative that officially started on April 2017.

It relies on a wide consortium composed of 27 partners from 6

different national clusters (Sweden, France, Spain, Italy, Finland &

Czech Republic) including large companies such as Atos, Thales,

Nokia, Volvo and Bombardier. MegaM@Rt2 aims at incorporating

methods and tools in order to develop a continuous system engi-

neering and validation approach that can be practically deployed

in various industrial domains [1]. To this intent, the project also

comes with 9 case studies covering a variety of potential applica-

tion areas: aeronautics, railway, warehouse, telecommunication,

etc. One of its main expected contributions is notably to propose

a runtime↔ design time feedback loop that is (re)usable in these

different contexts. In order to realize this, scalable model-based met-

hods and tools are being considered to improve the productivity,

quality and predictability of such large complex industrial systems.

2
http://megamart2-ecsel.eu/

MegaM@Rt2 deliverables reporting the project’s progresses have

already been produced during the first year of the project and new

ones are currently being developed [25].

2.1 MegaM@Rt2 Use Case
From the current MegaM@Rt2 results (notably the description of

the industrial requirements and case studies), we have been able to

extract a general scenario that concretely illustrates the need for

scalable model views and their persistence. Thus, let us consider

the realization of the previously mentioned runtime↔ design time

feedback loop via a view gathering 4 different models covering both

runtime and design time aspects of a given system in the project.

As shown on Figure 1, this view relies on a runtime log model (that

conforms to a simple trace metamodel), a Java code model (that

conforms to the Java metamodel from MoDisco [5]), a component

model (that conforms to OMG UML [27]) and a requirement model

(that conforms to OMG ReqIF [26]).

On the one hand, the runtime log model and (to a lesser extent)

the Java model can be considered as runtime models. They can

potentially be very large, especially the runtime log model which

represents actual system execution traces. Thus, a typical solution

to store and access them in a scalable way is to rely on database

model persistence frameworks. The used technical solution then

depends on the nature of the model, its access/handling scenario

or the required features.

On the other hand, the component model and requirement mo-

del can be considered as design models. They are generally of a

reasonable size compared to the runtime ones, because they are

very often manually specified. Hence, they can be handled by stan-

dard modeling frameworks relying on in-memory constructs and/or

XML-based files.

A concrete example of the view from Figure 1 is given in Figure 2.

By using this view, an engineer can navigate transparently within

and between the four contributing models as if they were all part

of the same single model. Thus, from a particular runtime infor-

mation collected at system execution (here a trace.Log element),

one can move back to the originating Java code instructions (here

java.ClassDeclaration elements). One can then follow links to the

components (here uml.Component elements) the code implements,

and up to the actual requirements these components fulfill (here

reqif10.SpecObject elements).

Such a view combining different models can also be queried as

any regular model, in order to extract relevant data out of it. For

example, one can obtain all the requirements that are related to

a given execution trace (runtime to design time traceability). Or,

the other way around, one can get all the execution traces that

correspond to a particular requirement (design time to runtime

traceability). We could imagine many other similar queries also

relevant in the context of MegaM@Rt2, according to different needs

of the industrial partners.

To summarize, the main benefit of using a view is to collect

in a transparent way information that is spread among different

models. Without such a view, the engineer has to query the different

models one by one and then aggregate the obtained results by

herself. This includes recreating the mappings between related

elements from different models in the view. Instead, using a view,

http://megamart2-ecsel.eu/
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Figure 1: Running use case from the MegaM@Rt2 industrial project.

Figure 2: Concrete example of a view in MegaM@Rt2 (based
on the use case from Figure 1).

queries traversing several contributing models (such as the queries

mentioned previously) can be expressed and computed naturally

as if dealing with a single model.

2.2 Objectives
In the MegaM@Rt2 context, it is not sufficient to be able to build

model views: the view mechanism must scale up when aggregating

very large models provided by the industrial partners. More gene-

rally, the need for scalable modeling solutions has been observed

in several industrial contexts [18, 33], and is also recognized as a

long-term challenge from a research perspective [23]. However,

existing model view solutions do not handle large and very large

models well, if at all (cf. Section 6).

In the present paper, we target the building, handling and que-

rying of scalable model views over heterogeneous model resources.

We consider here heterogeneity in terms of both the used modeling

languages (i.e. metamodels) and the underlying persistence solu-

tions. We can notably leverage database model persistence frame-

works that are particularly adapted to address scalability-related

issues. Thus, we propose the following roadmap for our approach:

(1) Refining themodel view framework tomodel resources using

different persistence solutions.

(2) Persisting any view-specific information in a scalable way.

(3) Loading views and accessing view elements with a reasona-

bly low overhead.

(4) Querying views efficiently, e.g. by leveraging persistence-

specific optimizations.

In Section 3, we describe our conceptual approach to achieve these

goals. This approach has been implemented relying on the EMF

ecosystem (cf. Section 4) and evaluated in practice on our Me-

gaM@Rt2 use case (cf. Section 5). At the time of writing, we have

successfully tackled (1), (2) and (3), and partially addressed (4).

3 INTEGRATION APPROACH
In what follows, we describe our general approach to support sca-

lable model views on heterogeneous model sources. This section

introduces, for each goal listed in Section 2.2, a conceptual solution

to the related issue(s). The overall objective is to be able to build

views that do scale up in practice: views that are built on top of

several models where some are too large to be loaded, handled and

stored only in memory (e.g. using the base EMF features, cf. Section

4). This is made possible notably by relying on models that can

be persisted and manipulated, when necessary, using appropriate

database backends. The general approach we consider is depicted

in Figure 3.

A Modeling Framework is usually composed of two main parts: a

Core component providing the inner behavior (i.e. model manipula-

tion facilities) and a Generic API as the interface provided externally
for (re)use by Model-based Tools. The Modeling Framework also of-

ten provides a base File Persistence Framework relying on the local
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Figure 3: A conceptual approach for integrating model view and model persistence capabilities.

file system, coming with some file import/export capabilities in

different serialization formats. This default mechanism is used to

store the design models introduced in our running example (cf.

Section 2.1).

Database Persistence Frameworks have been proposed to connect

the modeling framework to databases of various kinds (relational-

based, graph-based, etc.). These solutions are typically used to store

large models (e.g. the runtime models of our running example, cf.

Section 2.1) with a reduced memory footprint.

In the general case, theModel View Framework must be correctly

integrated with the Modeling Framework and comply with its Gene-
ric API. This allows client applications to query views as regular

models. Moreover, for model views to scale with large models, the

Model View Framework has to leverage the characteristics of the

Database Persistence Frameworks. This notably requires various re-

finements and optimizations from both sides. The next subsections

describe the important goals we have identified in order to realize

such a scalable integration.

3.1 Building Views on Heterogeneous Model
Sources

This goal is of primary importance in MegaM@Rt2, and is a prere-

quisite to the three subsequent ones. As said earlier, most (if not all)

modeling frameworks provide a default file serialization support,

usually relying on XML-based format(s). However, they are very

often not supporting other data sources. This is notably the case

when needed to load/store models from/into different kinds of da-

tabases (e.g. relational, graph, etc.). Such databases can be existing

ones, e.g. handled by external applications, or can be created just

for the sake of modeling.

Model view approaches generally rely on the model persistence

support provided by their underlying modeling framework. Thus,

they usually lack of support for scalable model persistence solutions,

e.g. relying on databases. As a consequence, it is required to perform

the integration of the model view framework with such database

persistence framework(s). This way, depending on the nature of the

contributing models, different persistence backends can be selected

and combined in the context of a same view. This is the case in our

running scenario from Section 2.1, for example.

Such an integration can be performed in different ways. In some

cases, it can be realized indirectly. The considered modeling fra-

mework can be first refined to be able to use the database persis-

tence framework. Then, the view framework can simply rely on

the general interface of the modeling framework in order to access

transparently the underlying database resources. In some other situ-

ations, a direct connection can be required between the model view

framework and the persistence framework. This notably allows

implementing particular optimizations that could not be realized if

passing by the modeling framework, cf. Section 4.1 for technical

examples of these.

3.2 Persisting the View Information in a
Scalable Way

Depending on the view specification, additional data can also be

required in order to be able to fully compute it. For instance, this is

the case when a given view provides new relationships between

elements coming from different models, or when it adds new pro-

perties to elements from one of the involved models.

When initializing such a view, this view-specific information

has to be obtained in some way. One possibility is to compute it

at runtime when loading the view. This can be based on the data
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available from the contributing models and on some predefined

queries executed on top of them. Another option is to collect it

from an existing data source or a dedicated additional model. Such

a model can come from manual inputs from the view users. It can

also be the result of the running of an external application. In either

cases, the view mechanism has to be able to retrieve the appropriate

information in order to build the view.

Related scalability problems can occur when this view-specific

data is too large to be handled correctly by the default support from

the used modeling framework. Indeed, depending on the nature

of the view, this extra data can be even larger than some of the

contributing models themselves (e.g. as in our running scenario

from Section 2.1). In these cases, it is required to be able to persist

a view-specific model (storing this data) by using a more scalable

database persistence framework. Adopting such a strategy can

reduce significantly the memory footprint of given views, thus

allowing to manipulate views that could not be loaded otherwise.

Section 4.2 describes how this can be realized in practice.

3.3 Optimizing the View Loading and Element
Access

With very large views, some operations can rapidely become heavy

in terms of execution time and memory consumption. This can

even go to a point where the view is not really usable anymore. For

example, this is the case when the response time is too long (e.g.

when the user navigates the view) or when the view simply ends

by crashing. The situation is notably critical during the process of

initializing/loading the view, as it can require a significant number

of model element accesses.

Relevant performance gains can be obtained by applying various

lazy loading techniques at different levels. In the general case, any

hit to an actual model element has to be delayed as much as possible

and must only occurs when strictly needed. Such optimizations

also concern accesses to both the various contributing models (cf.

Section 3.1) and the view-specific elements (cf. Section 3.2). Ideally,

all these accesses must be delayed without impacting the overall

correctness of the view.

Moreover, depending on the used persistence framework(s), the

model view framework can be refined differently. For given model

element accesses, the view framework can directly benefit from

specific capabilities provided by a database type (e.g. graph). For

instance, the view framework can leverage the database API to turn

full traversals of models into more selective requests, as traversals

are time- and memory-intensive for large models. Section 4.3 gives

more technical insights on how such optimizations can look like.

3.4 Optimizing the View Querying
Once a view has been correctly created and loaded (cf. Section 3.3),

it can be navigated and queried as any regular model according to

the needs of the engineering activity it supports. As said earlier,

the view framework usually relies on a generic interface provided

by a modeling framework and shared between different tools from

a same ecosystem. This way, it also natively supports the execu-

tion of queries defined in languages supported by this modeling

framework.

However, when implementing this in practice, performance is-

sues can arise. For instance, some models can be serialized in stan-

dard XML-based files while others can be stored in databases (cf.

Section 3.1). In this situation, using the default querying support

might not take advantage of backend-specific optimizations. Thus,

more elaborated schemes have to be considered.

query::Log.allInstances()

->any(l | l.message.startsWith('CaptchaValidateFilter'))

   .javaClass._'package'.component.requirements->size()

Modeling Framework (Core)

Database Persistence 
Framework File Persistence Framework

   Model View Framework

Modeling Framework (Generic API)

Runtime Log
model

Source Code
model

Component
model

Requirement
model

Runtime - Design Time
view (model)

Querying Tool (OCL)

delegate

Figure 4: Optimizing model view querying by delegating to
model persistence backends.

The optimization of model querying techniques has already been

studied (cf. Section 6), but not really in the context of model views.

Base operations (e.g. allInstances in OCL) can be costly to exe-

cute with the default behavior of the modeling framework. For

better efficiency, such operations could be delegated to the various

persistence frameworks used in a view. This is illustrated in Figure

4 where an OCL query navigates the view from Section 2.1 and

returns the number of design requirements that are impacted by a

specified runtime event, captured as a log from an execution trace.

This query can be optimized by delegating the allInstances call
to the database persistence framework that contains the related

elements, thus bypassing the default (less efficient) implementation

of the modeling framework.

More generally, large performance gains are possible by splitting

a query (on a given view) into a request plan that is better suited to

the underlying persistence frameworks. This requires the model

view framework to be able to split any query, delegate its execution

and collect its results by leveraging the specificities of the different

persistence backends. We have made first concrete steps towards

this, as described in Section 4.4.
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4 IMPLEMENTATION
We have concretely implemented the conceptual approach descri-

bed in Section 3 by relying on EMF [28] as our core Modeling Fra-

mework. Based on our own knowledge and expertise, we made the

choice of using EMF Views [6] as our Model View Framework. Con-

cerning the Persistence Frameworks, we used both NeoEMF [10]

and CDO [14] as supporting graph and relational database backends

(respectively). In what follows, we detail how all these technical

solutions have been combined together in practice to address the

four different key points of our conceptual approach. Our current

implementation is freely available from a branch of the EMF Views

source code repository
3
.

4.1 Building Views with EMF Views on Models
stored in NeoEMF and CDO

4.1.1 EMF Views for Model Views. EMF Views
4
is a model view

mechanism that reuses thewell-known concept of view in databases

and transpose it to the modeling world. It embeds a lightweight

model virtualization framework that can be used on top of any

EMF-based model. This way, it allows to create (currently read-

only) views that aggregate elements coming from different models.

EMF Views itself is fully compliant with the EMF API and the views

it produces act as standard models: they can be navigated, queried

and taken as inputs of model transformations. The approach has

the following characteristics:

• Lightweight: elements in a view are only proxies to actual

elements from the contributing models (which are never

copied). This allows for a low overhead when creating and

navigating views.

• Filtering: existing elements, attributes or references from the

contributing models can be hidden in a view.

• Virtualization: views can contain new elements, attributes

or references that exist only at the view level and are not

part of the contributing models.

• Non-intrusiveness: all the additional view-specific informa-

tion (pointers to contributingmodels, filters, virtual elements,

references between different models) is described in a sepa-

rate weaving model 5 and does not imply any change on the

contributing models.

EMF Views is released as a set of open source Eclipse plugins. Its

native integrationwith EMF-based tools as well as its characteristics

constitute an interesting starting point for our implementation.

Note that alternative view mechanisms are also considered in the

related work (cf. Section 6).

4.1.2 CDO and NeoEMF for Model Persistence. The Connected
Data Objects model repository (CDO) [14] is a model persistence

framework designed to handle large EMF models by relying on a

client-server repository structure. CDO is based on a lazy-loading

mechanism and supports transactions, access control policies as

well as concurrent model editing. CDO’s default implementation

uses a relational database connector to serialize models into SQL

3
https://github.com/atlanmod/emfviews/tree/integrate-neoemf

4
https://github.com/atlanmod/emfviews/

5
We do not elaborate in this paper how such weaving model can be obtained in general

(the initial EMF Views paper [6] covers this point), but we describe one construction

scheme in Section 5.2.

compatible databases. However, the modular architecture of the

frameworks can be extended to support different data storage solu-

tions (even if, in practice, only relational connectors are used and

regularly maintained).

NeoEMF
6
is a complementary model persistence framework that

relies on the scalable nature of NoSQL databases to store and ma-

nipulate large models. NeoEMF supports three model-to-database

mappings, i.e. graph, key-value and column stores. Each one of

them is adapted to a specific modeling scenario, such as atomic ele-

ment accesses (key-value) or complex navigations (graph). As other

persistence solutions, NeoEMF provides a lazy-loading mechanism

that allows to obtain significant gains in terms of performances.

Since CDO and NeoEMF are two of the main actors in the field

of scalable model persistence, we chose to rely on them in our

implementation.

4.1.3 Integration. Since EMF Views, NeoEMF and CDO are all

part of the EMF ecosystem, integrating them together is a straight-

forward task since they all implement the same EMF model hand-

ling API. It is mostly a matter of telling EMF Views how to retrieve

and load the right model resources. However, CDO and NeoEMF

resources require platform-specific initialization code (such as spe-

cific URI schemes, resource factory implementations and data store

configurations) that had to be integrated into EMF Views. Note that

this code is also available from the EMF Views/NeoEMF integra-

tion repository (cf. the URL indicated earlier in this section). Once

loaded, all the model resources are navigated through the standard

modeling API. This way, the persistence frameworks transparently

delegate the operations to the databases in a scalable manner

4.2 Persisting the View Information with
NeoEMF

As explained before, EMFViews uses aweavingmodel that represent
the view-specific information. This model can potentially contain

entries for many elements coming from the different contributing

models. Thus, it can get as large or even larger (depending on the

view) than the contributing models themselves. In order to improve

the scalability of our approach on large-scale views (such as in our

running example from MegaM@Rt2, cf. Section 2), we chose to

persist this model using NeoEMF instead of using the default XMI

serialization.

Since the weaving model is also defined as a standard EMF mo-

del, its migration to NeoEMF has been done quite transparently

by changing the model serialization behavior (and initializing the

corresponding database backend). Persisting the weaving model

in NeoEMF allows us to handle views that cannot fit in memory

otherwise.

4.3 Optimizing the View Loading and Element
Access in EMF Views

When dealing with large database resources, many operations of

the EMF API that had little to no overhead with small in-memory

resources now potentially bear high costs in execution time and

memory consumption. So we had to pay extra attention to minimize

the impact of such operations. For instance, checking whether a

6
https://github.com/atlanmod/neoemf/

https://github.com/atlanmod/emfviews/
https://github.com/atlanmod/neoemf/
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reference has any contents can be done by calling the EList.isEmpty
operation. A naive implementation of this operation compares the

size of the collection against zero, where getting the size is an

O(n) operation. On small in-memory resources, n is small and a

call to the isEmpty operation triggers no issue. On large database

resources, n is large and the overhead of hitting the database can

become a bottleneck. A better implementation of isEmpty rather

checks if at least one element exists, and thus exits early when

this is not the case. Similarly, getting the nth element of a multi-

valued reference by using the EList.get operation can be costly if

the implementation first builds a list containing all the elements

of the reference, regardless of the index requested. If, instead, the

implementation navigates to the index and looks no further, then

we make less hits to the database and the operation has a minimal

cost.

We significantly improved EMF Views for large model resources

by following these ideas. As introduced in Section 3.3, our key tenet

was: delay actual hits to the resource as much as possible.

Another important improvement of EMF Views concerned the

view loading process. As said previously, weaving models can be

large depending on the number (and contents) of virtual references.

Previously, EMF Views eagerly populated these virtual references

when loading the view. Each virtual reference thus delayed loading

the view further: for larger weaving models, this meant several

seconds or even minutes. Here again, the optimization lies in lazi-

ness: delaying work that can be done later. In this case, we have

to populate virtual references only when they are first accessed. If

some virtual associations are never looked up then we never have

to load them from the weaving model, thus avoiding the loading

cost. Making this change to EMF Views enabled loading views with

large weaving models with no overhead in terms of time.

A third point of optimization was to tweak the way the data is

stored into the graph database handled by NeoEMF. The runtime

log model of our example (cf. Section 2.1) is a large model but a flat

one. It contains a top-level element holding a large collection of

execution logs (some of which have also children). Our experiments

have shown that this flat structure was reducing the performances

of NeoEMF. To solve this issue, we developed a new mapping from

model to graph for NeoEMF, using in-database linked lists. This

mapping, dedicated to large collections, allowed us to speed up the

creation of the runtime log model and the access to its elements by

a factor of 30.

4.4 Optimizing the View Querying in OCL
Since views are regular EMF models, querying tools like OCL or

transformation tools like ATL can be applied transparently on

views (regardless of the underlying persistence framework used

by the contributing models). However, relying only on the EMF

API leaves a lot of performance on the table. Base operations, like

allInstances in OCL, can be quite costly to execute naively using

the EMF API [32]. On the contrary, persistence backends may pro-

vide more efficient ways to execute such operations. For example,

NeoEMF resources expose a getAllInstances method which can

compute the set of instances of a given classifier. This method is

around 40 times faster than using the EMF API directly.

We extended the standard OCL interpreter in order to specialize

some operations according to the data store they target. In the follo-

wing paragraph we detail our implementation of the allInstances
operation, but other native operation implementations can be easily

defined to enhance query computation performances. However, our

implementation still needs a generic operation delegation mecha-

nism that, along with the support for other query languages, is

currently left for future work (cf. Section 7).

The OCL API provides a way to customize the behavior of the

allInstances operation through aModel Manager (or Extents Map
in the legacy implementation). We define a custom extents map

that allows to specialize the allInstances call according to the

concrete data stores used in a given view. When instances of a

classifier are looked up, the extents map redirects the call to the

view that fetches instances—using native database calls—from each

contributing model and them combines these instances as the result.

Compared to the standard OCL implementation that iterates the

entire model to match elements of a given type, this approach

benefits from the low-level optimizations of the databases (such

as built-in indexes and caches). We show in our evaluation that

such optimization can dramatically improve query computation

performances (cf. Section 5).

5 EVALUATION
To evaluate our integration approach and its current implementa-

tion, we applied them on the use case from the MegaM@Rt2 project

(cf. Section 2.1). In this section, we focus on measuring the time
overhead of our current implementation, because it directly impacts

the interactive user experience (as opposed to batch processing).

However, as dealing with on-disk resources is inevitably (one to

two orders of magnitude) slower than dealing with in-memory

resources, matching the speed of in-memory resources is not a

realistic goal. Thus, we rather insist on the asymptotic behavior of

our approach and on gains made by our optimizations.

For reproducibility, the complete source code of the performed

benchmarks (including the models and views) as well as more

detailed results are available online
78
. All the benchmarks have

been realized on a laptop with an i7-7600 (2.80GHz) processor, 32GB

of RAM, and M.2 PCIe SSD, using OpenJDK 64-bit 1.8.0.

5.1 Overview
We built two versions of the same view answering to the Me-

gaM@Rt2 use case.

The first version is fully file-based: all four contributing models

and the view-specific information (i.e. the weaving model) are seria-

lized using standard EMF-XMI. Thus, once loaded, the view resides

fully in memory.

The second version demonstrates our capability to build views

over heterogeneous model resources. It uses a mix of file-based

and database resources as contributing models. More precisely, the

Runtime Log model and the weaving model are persisted in a Neo4j

graph database handled by NeoEMF, using our mapping developed

for optimizing flat models (cf. Section 4.3). The Java Source Code

model is persisted in a relational database handled by CDO. Only

7
https://github.com/atlanmod/scalable-views-heterogeneous-models

8
http://remodd.org/content/towards-scalable-views-heterogeneous-model-resources

https://github.com/atlanmod/scalable-views-heterogeneous-models
http://remodd.org/content/towards-scalable-views-heterogeneous-model-resources


MODELS ’18, October 14–19, 2018, Copenhagen, Denmark H. Bruneliere, F. Marchand de Kerchove, G. Daniel and J. Cabot

Size XMI Hetero. Overhead

10
1

0.001 0.051 38

10
2

0.001 0.028 23

10
3

0.001 0.058 52

10
4

0.004 0.293 81

10
5

0.098 1.778 18

10
6

8.460 22.556 3

Table 1: Time (inminutes) to create the view-specificmodels
(weaving models).

the two remaining models, namely the UML Component model and

the ReqIF Requirement model, are serialized as XMI files handled

by the standard EMF implementation.

Furthermore, we also evaluated the scalability of both versions

of the view. To this intent, for each version we considered different

sizes for the Runtime Log model, going from 10
1
to 10

6
elements.

This way, we have been able to measure the performance of the

view creation, loading and querying up to large-scale models, as

required in our MegaM@Rt2 context.

5.2 Benchmark 1: Creating the View-specific
Information

The first benchmark evaluates the creation of the view-specific

data, stored as a weaving model, that is needed by the view in order

to be loaded. This benchmark notably measures the overhead of

navigating and populating such databases resources, compared to

in-memory EMF resources.

The weaving model contains the new (virtual) links between

the different models composing the view. Recall that in Figure 2,

we create three virtual links: (1) we connect a given execution Log

to the Java ClassDeclaration that emitted it; (2) we relate the Java

Package this ClassDeclaration is part of to the UML Component

that represents it at design level; (3) we link this UML Component

to the corresponding ReqIF SpecObject, i.e. the requirement the

UML Component is supposed to support.

As a consequence, creating the weaving model implies checking

different matches between two elements coming from two contri-

buting models. For large models, such as the Runtime Log from

the MegaM@Rt2 scenario, these matches can be very numerous.

In these cases, the whole matching process can take a significant

amount of time. Table 1 compares the time it takes to create the

weaving model using the two versions of our view, while Table 2

compares the sizes of the persisted weaving models on disk. The

Size column in both tables refers to the number of log elements in

the Runtime Log model.

A first observation is that, while models stored in databases are,

as expected, slower to create than models serialized in XMI, the

overhead for the heterogeneous views diminishes when models get

larger. This is possibly indicating a better asymptotic performance.

A second observation is that the weaving models persisted in da-

tabases are overall 50 times larger than the ones persisted in XMI,

and this factor is constant across model sizes. The large size of the

persistence format used by the database backend can be explained

by the creation of many indexes and logs when initializing the

resource. Even though the heterogeneous resources are larger on

Size XMI Hetero. Overhead

10
1

0.011 0.704 64

10
2

0.036 1.828 51

10
3

0.285 13.284 47

10
4

2.799 130.736 47

10
5

28.112 1316.776 47

10
6

282.994 13263.500 47

Table 2: Size (in megabytes) of the view-specific models (we-
aving models) on disk.

Size XMI Hetero. Overhead

10
1

0.788 2.265 2.87

10
2

0.257 0.870 3.39

10
3

0.245 0.750 3.06

10
4

0.389 0.811 2.08

10
5

0.921 2.482 2.69

10
6

12.214 3.006 0.25

Table 3: Time (in seconds) to load the view.

Size XMI Hetero. Overhead

10
1

1.468 5.049 3

10
2

0.641 3.029 5

10
3

0.469 2.222 5

10
4

0.623 2.833 5

10
5

0.948 6.795 7

10
6

1.946 82.323 42

Table 4: Time (in seconds) to iterate over the full content of
the view.

disk, the compromise is made in favor of faster lookup as we will

see in next two benchmarks.

5.3 Benchmark 2: Loading the View
In the second benchmark, we evaluated both the loading of a view

and the iteration over all its contents. Again, we performed this on

the two versions of the view (full XMI vs. databases + XMI). This

benchmark measures the overhead of accessing the content of the

different models contributing to the view. Table 3 compares the

time it takes to load the two versions of the view, while Table 4

compares the time required to iterate over the full content of the

view.

A first point is that loading the heterogeneous view takes a relati-

vely low and constant time (between 1 and 4 seconds), regardless of

the size of the Runtime Log model (i.e. the largest one) contributing

to the view. For the largest model size, it takes four times longer

to load the first view compared to the similar heterogeneous view

which uses our approach. This difference can be explained by the

lazy loading of our approach, where most of the actual loading

takes place when navigating model elements.

When iterating over the full content of the view, the overhead

remains relatively small, but slightly increases as the Runtime Log

model gets larger. For the largest size, the heterogeneous view is



Towards Scalable Model Views on Heterogeneous Model Resources MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)

10
1

1.083 0.049 5.655 4.722

10
2

0.683 0.025 2.694 3.000

10
3

0.477 0.019 2.087 1.744

10
4

0.433 0.022 2.707 1.905

10
5

0.872 0.576 7.777 2.309

10
6

5.485 0.752 85.030 14.544

Table 5: Time (in seconds) to run the OCL query (1).

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)

10
1

1.093 0.116 5.075 4.043

10
2

0.711 0.031 3.478 2.563

10
3

0.527 0.033 3.256 2.087

10
4

0.570 0.068 5.336 3.173

10
5

1.050 0.241 16.604 9.626

10
6

6.294 4.008 178.444 114.733

Table 6: Time (in seconds) to run the OCL query (2).

42 times slower to navigate, which is around the expected speed

difference between RAM and disk. This large increase in time can

be partly explained by the data model of the underlying database,

for which exhaustive iteration is a very costly operation due to

numerous loads/unloads between database and memory. While a

full iteration scenario may not be very common in practice, it is a

useful reminder that the choice of data representation can have a

strong impact on performance.

5.4 Benchmark 3: Querying the View
In the third benchmark, wemeasured the time it took to successfully

run three different OCL queries on top of our view. The considered

OCL queries are the following:

(1) Log.allInstances()->size()

(2) Log.allInstances()

->any(l| l.message.startsWith(’CaptchaValidateFilter’))

.javaClass._’package’.component.requirements

->size()

(3) SpecObject.allInstances()

->any(r| r.values->selectByType(AttributeValueString)

->exists(v| v.theValue.startsWith(’Controller’)))

.components->collect(c| c.javaPackages)

->collect(p| p.ownedElements)

->selectByType(ClassDeclaration)

->collect(c| c.traces)

->size()

The first query simply counts all the instances of Log elements in

the view, and thus only accesses the Runtime Log model via the

view. The other two traverse the complete view, i.e. they access to

elements from all of the four contributing models.

Table 5 compares the time it takes to execute query (1) on the

two versions of our view. Tables 6 and 7 do the same for queries (2)

and (3), respectively. In these three tables, the two additional (Opt.)
columns refer to optimized views that use the custom extents map

we described in Section 4.4.

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)

10
1

1.133 0.186 4.473 3.860

10
2

0.664 0.026 2.575 2.270

10
3

0.688 0.046 2.148 1.869

10
4

0.691 0.248 5.138 3.147

10
5

1.757 0.857 18.518 12.843

10
6

12.722 7.647 251.451 154.621

Table 7: Time (in seconds) to run the OCL query (3).

One observation is that, on the heterogeneous view, the queries

can be 11 to 30 times slower than on the XMI view, which is still

lower than the expected speed difference between RAM and disk.

The optimized versions are a 2- to 6-fold improvement, which brings

the overhead down to 3 to 30 times slower, as the optimizations

also benefit the XMI view. The effect of the specialization of the

allInstances operation on the Runtime Log model stored in database

is the most evident on the last line of Table 5. For the other two

queries, the improvement is lower, but still significant. Some further

gains may lie in fully specializing the queries into backend-specific

request plans, as proposed in Section 3.4.

6 RELATEDWORK
Several solutions have already been proposed in order to support

the definition, creation and handling of views over models. We

have already studied and tried to classify them according to their

main characteristics [4]. From what we have been able to observe

so far, there are currently not many proofs that these solutions do

scale up in the context of very large models. This can be considered

as an important issue in this area, as scalability is key to related

challenges such as view update or incremental maintenance (such

as seen in our detailed study).

Moreover, few model view approaches focus on integrating

strongly interconnected models coming from different data sources.

For instance, ModelJoin [7] proposes a DSL for querying different

models and building a view as a result. However, it does not cur-

rently provide particular support for various model persistence

backends (other than the EMF default ones). On the contrary, Open-

Flexo [16] is natively intended to support several data sources. But

it privileges graphical (manual) modeling to specify views and does

not come with an extended querying support at view-level. These

are important aspects that were lacking in our current MegaM@Rt2

context.

Another relevant approach is Epsilon [21], a modeling platform

defining a family of languages to query, transform and compare

models. Among these languages, Epsilon provides EML [22], that

allows to merge models, and Epsilon Decoration [24], that allows

to decorate an existing model with additional features. These can

be seen as kind of equivalent to a (partial) support for model views.

Compared to our solution based on EMF Views [6], Epsilon does

not currently provide optimized strategies to heterogeneous bac-

kend queries, nor allows to decorate multiple models/metamodels.

Moreover, it only relies on in-memory structures to store both the

merging and decoration constructs, which can be a limitation in

terms of scalability.
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There has also been several initiatives more related to the model

querying domain. For example the VIATRA [31] project, relying

on IncQuery [30] for efficient incremental querying, is a reactive

model transformation platform. The platform also embeds some

capabilities for manipulating multiple models and defining sorts

of views over them [12]. VIATRA and our approach work best in

different scenarios. VIATRA is very efficient when the contributing

models fit in memory and queries are executed multiple times over

the same view. Our solution is rather designed to access models

from different sources (notably from databases), and to benefit from

their internal structure in order to efficiently perform single query

computations. However, incremental querying could be integrated

to our solution by experimenting on the use of IncQuery over our

views (in addition to OCL as described in this paper).

A few approaches have been proposed to improve the computa-

tion of model-level queries over several scalable persistence soluti-

ons. The Mogwaï tool [11] is a translation approach that maps OCL

constructs to Gremlin [29], a graph database language: generated

queries are sent directly to the database for computation, thus by-

passing the limitation of current modeling frameworks. A similar

approach is used in the Hawk query framework [2], that dynami-

cally translates Epsilon queries into graph database native calls.

However, these solutions focus on specific data sources and are

not designed to handle heterogeneous backends (such as in a view).

Nevertheless, they could be integrated to our solution in order to

speed-up parts of queries related to the backend they target.

Finally, in the data warehouse community, views on heteroge-

neous storage solutions have already been studied for relational

databases [17]. They regained interest quite recently thanks to po-

lystore data warehouses [8]. On the query side, CloudMdsQL [20]

is a SQL-like language for querying multiple data stores within a

single query. To do so, it extends the standard SQL syntax with

additional constructs allowing to embed native datastore queries. A

similar approach can be found in generic query frameworks such

as Apache Drill
9
. Such solutions could also be integrated to our

approach to improve the overall computation of queries and views

on models stored in heterogeneous data backends.

7 CONCLUSION: LESSONS LEARNED &
FUTUREWORK

In this paper, we presented our approach to support the efficient

creation and handling of model views over heterogeneous large-

scale models. We started by detailing our conceptual solution to

integrate model views and model persistence frameworks, empha-

sizing on important goals to be addressed. Then we described our

current EMF-based implementation of this conceptual approach,

that is being developed in the context of the MegaM@Rt2 industrial

project. We also summarized our evaluation of this approach and

implementation onto a view scenario taken from MegaM@Rt2. In

the current state, our work has shown promising results when cre-

ating and loading views on very large models. Our evaluation has

also shown that there is still room for improvement when querying

large-scale views using our approach, even though we already star-

ted to address some frequently encountered cases. We believe that,

9
https://drill.apache.org/

by continuing to leverage model persistence-specific optimizations,

we can achieve scalability at a low overhead with our solution.

Lessons Learned. From our experience in this paper, we can attest

to the benefit of relying on a standard API (such as the EMF one)

when it comes to integrating together different tools. This largely

facilitated the initial combination of the EMF Views, NeoEMF and

CDO tools in order to obtain a solution working on basic cases.

However, relying on such generic API can also hinder performance

when tackling larger-scale scenarios. Firstly, the generic API may

hide some of the features and capabilities of the underlying tools,

and so prevent from using them. For instance, the NeoEMF API

exposes additional efficient methods for navigatingmodel resources,

but thesemethods are not available to EMFViewswhen only relying

on the standard EMF API. Secondly, using such generic API can also

hide the actual impact of some actions. Various backends may have

weak spots in their implementation of the generic API, and some

usage patterns may be preferred to others for performance or even

correctness reasons. For example, when creating amodel and adding

elements to it using EMF, the order of some operations may matter

to the persistence backendswhile it may have no impact on standard

in-memory resources. In this case, a naive use of the generic API

may lead to surprising performance issues. Ultimately, to minimize

the overhead of views on large models, we have to consider more

elaborated strategies. We can notably identify when it is relevant

to delegate a given operation or not, and to which persistence

backend. Thanks to our approach, we have been able to embed

such practical knowledge into our integrated model view solution.

This way, users do not have to pay the full cost of the generic

API while still benefiting from its genericity and interoperability

capabilities.

Future Work. In the next steps of our work, we will push further

our experiments by also testing model transformation tools on our

views, such as ATL [19] or VIATRA [31] ones. To this intent, we can

use the view information to delegate parts of the transformation

computations directly to the underlying database backends. We

plan to do this by integrating scalable query/transformation appro-

aches, such as Mogwaï [9] for instance. Another possible work is

to extend our integration approach to additional model handling

and querying environments, such as Epsilon [21] or KMF [15] for

instance. Moreover, we could also study how incremental querying

techniques [3] could be integrated in our approach (in addition to

the reuse of some already realized optimizations, at OCL-level for

instance [34]). Finally, we are going to continue the developments

around our model view solution and apply them in the context of

other use cases from the MegaM@Rt2 project. For example, we

already have plans to build views tracing the architectural mo-

dels of an industrial system with runtime models representing the

configuration and running of corresponding physical machines.
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