
HAL Id: hal-01845691
https://hal.science/hal-01845691v2

Preprint submitted on 18 Apr 2020 (v2), last revised 23 Mar 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of the symmetry class of an Elasticity
tensor using polynomial covariants

Marc Olive, Boris Kolev, R. Desmorat, Boris Desmorat

To cite this version:
Marc Olive, Boris Kolev, R. Desmorat, Boris Desmorat. Characterization of the symmetry class of an
Elasticity tensor using polynomial covariants. 2018. �hal-01845691v2�

https://hal.science/hal-01845691v2
https://hal.archives-ouvertes.fr


CHARACTERIZATION OF THE SYMMETRY CLASS OF AN ELASTICITY

TENSOR USING POLYNOMIAL COVARIANTS

M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

Abstract. We produce a minimal set of 70 generators for the covariant algebra of a fourth-
order harmonic tensor, using an original generalized cross product on totally symmetric tensors.
This allows us to formulate coordinate-free conditions using polynomial covariant tensors for
identifying all the symmetry classes of the Elasticity tensor and prove that these conditions are
both necessary and sufficient. Besides, we produce a new minimal set of 297 generators for the
invariant algebra of the Elasticity tensor, using these tensorial covariants.
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1. Introduction

The problem of determining a minimal set of generators for the invariant algebra of the
Elasticity tensor was solved recently [44]. This definitively answered an old academic question:
assuming that one could measure the components of the Elasticity tensors of two materials,
can one decide by finitely many calculations, whether the two materials are identical as elastic
materials, i.e. that the two tensors are related by a rotation?

Close to this problem, is another academic question: can one decide by finitely many calcula-
tions what is the symmetry class of a given Elasticity tensor?

In the specific case of the Elasticity tensor, it is known [22] that there are exactly eight symme-
try classes: isotropic, cubic, transversely isotropic, trigonal, tetragonal, orthotropic, monoclinic
and triclinic. This problem has a long history, recalled by Forte and Vianello in [22]. These
authors have definitively clarified the mathematical problem about the symmetry classes of an
Elasticity tensor and removed the link with crystallographic point groups which was extremely
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confusing and lead to the false assumption that there were ten, rather than eight, symmetry
classes [30, 17, 29]. These eight classes were confirmed in 2001, using an alternative approach [13],
where symmetry planes rather than rotations play the central role. Note however that this ap-
proach, using symmetry planes, cannot be generalized to find the symmetry classes of higher
order tensorial representations due to the fact that not all closed subgroups o f O(3) can be
generated by plane reflections (see [43]). Finally, in 2014, a definitive and systematic way to
determine the symmetry classes of any finite dimensional representation of the groups SO(2),
SO(3), O(2) or O(3) was formulated (see [38, 41, 42, 40]). This method uses clip’s tables and the
decomposition of the representation into irreducible components, a strategy which was initiated
in the nineteens [16, 14, 15].

Nevertheless, determining explicitly the symmetry class of a given Elasticity tensor is not an
easy task and has been the subject of many researches, using different means. Moreover, the
problem becomes even more complicated if one consider that, in real life, a measured Elasticity
tensor (assuming that one can access to all of its components) is subject to experimental errors
and has therefore no symmetry but is nevertheless close to a given theoretical tensor with a
given symmetry [25, 36].

Concerning this problem, we would like first to cite the excellent work of François and coau-
thors [23, 24] who performed a deep experimental and numerical study of the problem using
acoustic measurements on an hexagonal testing sample of a raw material. The problem is then
addressed numerically by testing how far is a plane reflection snnn from a symmetry of the given
experimental Elasticity tensor E (see also [20]). Scanning a large range of directions nnn lead to
build a pole figure, which is a graphical representation over an hemisphere (representing all the
unit vectors nnn up to ±1) of the distance between E and its transformed snnn ⋆E by snnn. This gives
qualitative information about the possible number of symmetry planes of the material. This
pole figure can then be used to initialize an optimization algorithm to produce the “nearest”
tensor with the expected symmetry.

Besides these experimental and numerical approaches, the literature is abundant about for-
mulations of coordinate-free criteria to characterize Elasticity tensors which have exactly a given
symmetry class.

Some authors [10] have used the Kelvin representation [54, 55, 47] of the Elasticity tensor
to achieve this goal. They have formulated necessary and sufficient conditions involving the
multiplicity of the 6 eigenvalues of the Kelvin representation and of the eigenvalues of its eigen-
vectors (the eigenstrains, which are in fact second order tensors). Such criteria are however very
sensitive to rounding errors: one needs first to find the roots of a degree 6 polynomial and then
of several polynomials of degree 3 (for each Kelvin eigenmodes) which depend on these roots.

Other approaches make use of the harmonic decomposition (H,d′,v′, λ, µ) of the Elasticity
tensor E, where d′ and v′ are respectively the deviatoric part of the dilatation tensor d = tr12E
and the Voigt tensor v = tr13 E. For instance, following [17], some authors [18, 32, 5, 13] have
extracted information about the symmetry class of E using d′ and v′. However, if this works well
for certain orthotropic or monoclinic tensors E, there are still many cases where the information
on the symmetry class is not carried by the pair d′,v′. Indeed, there exist orthotropic and
monoclinic tensors E for which d′ and v′ vanish.

In the same spirit, but to avoid loosing the information contained in the harmonic fourth-order
component H, Baerheim [4] has used the harmonic factorization introduced by Sylvester [53]
(see also [2] and [45] for a more modern treatment). This factorization allows to decompose
an harmonic tensor of order n as an n-tuple of vectors, the so-called Maxwell multipoles [2].
Baerheim has formulated criteria on the multipoles to characterize the different symmetry classes
of E. The difficulties with this approach is that the multipoles are not uniquely defined [45] and
that the only way to obtain them is to solve a polynomial equation of degree 2n (hence, one
degree eight and two degree four polynomials for the Elasticity tensor).

More recently, in [1], the authors have suggested to reconsider the question in the general
framework of Real Algebraic Invariant Theory. They have used a generating set of the invariant
algebra of fourth-order harmonic tensors H

4(R3) proposed in [9] to characterize the symmetry
classes of a tensorH ∈ H

4(R3), writing down polynomial equations and inequations involving the
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generators of the invariant algebra. However, these relations become increasingly complicated
when the symmetry group becomes smaller and only the cubic, transversely isotropic, tetragonal,
trigonal and orthotropic classes have been characterized this way. Note also that the same
approach has already been used by Vianello [56] in 1997 for the full 2D Elasticity tensor, where
formulas are considerably much simpler than in 3D.

In this paper, we propose to give a definitive answer to this classification problem for the full
Elasticity tensor, using polynomial covariants rather than invariants (and avoiding, this way,
increasing complexity). The answer is furnished by theorem 10.2, which is our main result. In
some sense, our result is particularly simple, since one needs only to check that some polynomial
functions defined on the components of the Elasticity tensor vanish (we do not need to solve
any algebraic equation).

In order to obtain these results, we have been lead to formulate rigorously what is the covari-
ant algebra of a given representation V of the rotation group SO(3) (even if this terminology
is already well-known in classical invariant theory of binary forms [46]). It was also necessary
to introduce a generalization of the cross-product for totally symmetric tensors. Using these
tools, we were able to explicit a minimal set of 70 generators for the covariant algebra of H4(R3)
in Table 2. These fundamental covariants are the cornerstone which has allowed us to char-
acterize first the symmetry class of a tensor H ∈ H

4(R3) and then of a full Elasticity tensor
E.

A by-product of these achievements is the production of a new set of minimal generators for
the invariant algebra of the Elasticity tensor, using the covariants in Table 2 and the covariant
tensor operations of section 3. These generators are given in Appendix C and shall be more
useful for the mechanical community than the original invariants furnished in [44], which were
described using transvectants [46].

Organization of the paper. The paper is organized as follows. In section 2, we provide basic
definitions and recall the link between totally symmetric tensors and homogeneous polynomials.
In section 3, we recall the basic covariant operations on tensors and introduce the generalized
cross-product between totally symmetric tensors. The section 4 is devoted to the definition of
polynomial covariants of a linear representation and basic facts about the covariant algebra. A
minimal generating set of 70 polynomial covariants for H4(R3) is provided in section 5. The sym-
metry classes are introduced in section 6 and a way to compute them is provided. The section 7
provides several lemmas which connect the dimension of covariant spaces of order one and two
to their symmetry class. In section 8, several criteria which restrict the symmetry class of one or
several totally symmetric tensors, using polynomial covariants are formulated. The characteri-
zation of the symmetry class of a fourth-order harmonic tensor H using polynomial covariants is
given in section 9 and the result for a full Elasticity tensor E is given in section 10. In addition,
three appendices are provided. In Appendix A, we recall the basics about the spaces of binary
forms of degree n, Sn (which are models for irreducible representations of SL(2,C)) and we relate
the invariant algebra of S2n⊕S2 to the covariant algebra of S2n. In Appendix B, we explain how
we have been able to compute a minimal set of generators for the covariant algebra of H4(R3)
using the knowledge of a minimal set of generators for the covariant algebra of S8. Finally,
in Appendix C, we provide a new minimal set of 297 generators for the invariant algebra of the
Elasticity tensor using the tensorial covariants provided in section 5.

2. Symmetric and harmonic tensors

Let Tn(R3) be the vector space of n-th order tensors on the Euclidean space R3. Thanks to the
Euclidean product, we do not have to distinguish between upper and lower indices. Therefore,
an n-th order tensor may always be considered as a n-linear mapping

T : R3 × · · · × R
3 → R, (xxx1, . . . ,xxxn) 7→ T(xxx1, . . . ,xxxn).

The subspace Sn(R3) of totally symmetric tensors can be identified with the vector space Pn(R
3)

of homogeneous polynomials of degree n. This isomorphism generalizes, to higher order tensors,
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the well-known connection between quadratic forms and symmetric bilinear forms obtained by
polarization (see [45] for more details).

Example 2.1. For instance, the polynomial representation of a totally symmetric fourth-order
tensor S = (Sijkl) is given by

S1111 x
4 + S2222 y

4 + S3333 z
4 + 12S1122 x

2y2 + 12S1133 x
2z2

+ 12S2233 y
2z2 + 4S1222 xy

3 + 4S1112 yx
3 + 4S1113 zx

3 + 4S1333 xz
3

+ 4S2223 zy
3 + 4S2333 yz

3 + 6S1123 yzx
2 + 6S1223 xzy

2 + 6S1233 xyz
2.

Contracting two indices i, j on a totally symmetric tensor S does not depend on the particular
choice of the pair i, j. Thus, we can refer to this contraction without any reference to a particular
choice of indices. We will denote this contraction as trS, which is a totally symmetric tensor of
order n− 2 and is called the trace of S.

Definition 2.2. An n-th order totally symmetric and traceless tensor will be called an harmonic
tensor and the subspace of Sn(R3) of harmonic tensors will be denoted by H

n(R3) (or simply
H

n, if there is no ambiguity).

Remark 2.3. In the correspondence between totally symmetric tensors and homogeneous poly-
nomials, a traceless totally symmetric tensor H corresponds to an harmonic polynomial h (i.e.
with vanishing Laplacian: △h = 0) and this justifies the appellation of harmonic tensor. The
space of homogeneous harmonic polynomials of degree n will be denoted by Hn(R

3).

The natural action of the special orthogonal group SO(3) (or the full orthogonal group O(3))
on R

3 induces the tensorial representation ρn on T
n(R3), defined by

(ρn(g)(T))(xxx1, . . . ,xxxn) = (g ⋆T)(xxx1, . . . ,xxxn) := T(g−1xxx1, . . . , g
−1xxxn),

where T ∈ T
n(R3) and g ∈ SO(3). Under this linear representation, the subspaces Sn(R3) and

H
n(R3) are invariant. Moreover, Hn(R3) is irreducible [26] (its only invariant subspaces are itself

and the null space).

Theorem 2.4 (Harmonic decomposition). Every finite dimensional representation V of the
rotation group SO(3) can be decomposed into a direct sum of irreducible representations, each of
them being isomorphic to an harmonic tensor space H

n(R3), by an equivariant isomorphism.

Remark 2.5. An alternative model for the irreducible representations of SO(3) is furnished by
the spaces of harmonic polynomials Hn(R

3), where the action of SO(3) on polynomials is given
by (g ⋆ p)(xxx) := p(g−1xxx).

Example 2.6. Every homogeneous polynomial of degree n can be decomposed [45] as the follow-
ing:

(2.1) p = h0 + qh1 + · · · + qrhr,

where q = x2 + y2 + z2, r = [n/2] – with [·] integer part – and hk is a harmonic polynomial of
degree n− 2k.

Definition 2.7. Given a homogeneous polynomial p, the highest order component in (2.1),
namely h0, which is uniquely defined, is called the harmonic projection of p and denoted (p)0.

3. Covariant operations on tensors

In this section, we will introduce three operations on tensors, which commute with the action
of the rotation group and are thus called covariant operations. The first one is the symmetric
tensor product.

Definition 3.1 (Symmetric tensor product). The symmetric tensor product between two tensors
T1 ∈ T

p(R3) and S2 ∈ T
q(R3) is defined as

T1 ⊙T2 := (T1 ⊗T2)s ∈ S
p+q(R3),
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where the total symmetrisation of a tensor T ∈ T
n(R3), noted Ts ∈ S

n(R3), is defined as

Ts(xxx1, . . . ,xxxn) :=
1

n!

∑

σ∈Sn

T(xxxσ(1), . . . ,xxxσ(n))

where Sn is the symmetric group on n letters.

Remark 3.2. When restricted to totally symmetric tensors, the polynomial counterpart of the
symmetric tensor product is just the usual product of polynomials. This product is thus asso-
ciative and commutative. It is equivariant relative to either the rotation group SO(3) and the
full orthogonal group O(3).

Remark 3.3. The harmonic decomposition (2.1) of an homogenous polynomial of degree n leads
thus to the following harmonic decomposition of a totally symmetric tensor S ∈ S

n(R3):

(3.1) S = H0 + q⊙H1 + · · ·+ q⊙r−1 ⊙Hr−1 + q⊙r ⊙Hr,

where Hk is an harmonic tensor of degree n − 2k. In this formula, q ∈ S
2(R3) is the Eu-

clidean metric tensor (which writes as q = (δij) in any orthonormal basis) and q⊙k means the
symmetrized tensorial product of k copies of q.

The second one is the contraction between two tensors T1 ∈ T
p(R3) and T2 ∈ T

q(R3) over one
or several subscripts. This operation uses the Euclidean structure represented by the canonical
Euclidean metric tensor q = (qij) and its inverse q−1 = (qij). It is defined as follows:

(T1 (r)· T2)i1···ip−rjr+1···jq = qip−r+1j1 · · · qipjrT 1
i1···ip

T 2
j1···jq

.

The r-contraction of two tensors is an O(3)-equivariant mapping

T
p(R3)× T

q(R3) → T
p+q−2r(R3),

and for n = p = q, the n-contraction corresponds to the canonical scalar product on T
n(R3).

Example 3.4. In an orthonormal basis (eeei), we have

(T1 ·T2)i1···ip−1j2···jq = T 1
i1···ip−1k

T 2
kj2···jq

,

(T1 :T2)i1···ip−2j3···jq = T 1
i1···ip−2kl

T 2
klj3···jq

,

(T1 ...T
2)i1···ip−3j4···jq = T 1

i1···ip−3klm
T 2
klmj4···jq

.

Definition 3.5 (Symmetric r-contraction). The symmetric r-contraction between two totally
symmetric tensors S1 ∈ S

p(R3) and S2 ∈ S
q(R3) is defined as

(S1 (r)· S2)s.

Remark 3.6. The polynomial counterpart of the symmetric r-contraction is obtained as follows.

If S1,S2 correspond respectively to the polynomials p1,p2, then, (S
1
(r)· S2)s corresponds to the

polynomial

p =
(p − r)!

p!

(q − r)!

q!

∑

k1+k2+k3=r

r!

k1!k2!k3!

∂rp1
∂xk1∂yk2∂zk3

∂rp2
∂xk1∂yk2∂zk3

.

The third covariant operation is the generalized cross product, which extends the standard
cross product between vectors of R3 to symmetric tensors of arbitrary order.

Definition 3.7 (Generalized cross product). The generalized cross product (or Lie-Poisson
product) between two totally symmetric tensors S1 ∈ S

p(R3) and S2 ∈ S
q(R3) is defined as

S1 × S2 := −
(

S1 · εεε · S2
)s ∈ S

p+q−1(R3).

where εεε is the Levi–Civita tensor. In any orthonormal basis, we get

(S1 × S2)i1···ip+q−1
:= (εi1jkS

1
ji2···ip

S2
kip+1···ip+q−1

)s
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Remark 3.8. The generalized cross product is skew-symmetric:

S2 × S1 = −S1 × S2.

Its polynomial counterpart is (up to a scaling factor) the Lie–Poisson bracket on so
∗(3,R), the

dual of the Lie algebra of the rotation group (isomorphic to R
3). More precisely, if p1,p2 are

the polynomial representatives of S1,S2, then the polynomial representative of S1 × S2 is

1

pq
{p1,p2}LP =

1

pq
det(xxx,∇p1,∇p2).

This product is equivariant relative to the rotation group SO(3) but not to full orthogonal group
O(3). In that later case, we get

(g ⋆ S1)× (g ⋆ S2) = (det g)
(

g ⋆ (S1 × S2)
)

.

Remark 3.9. Note that if q is the Euclidean metric tensor, then S × q = 0 for every totally
symmetric tensor S (indeed, the radial function q = x2 + y2 + z2 is a Casimir function for the
Lie-Poisson bracket on so

∗(3,R)). In particular, S×a = S×a′ for every symmetric second-order
tensor a, where

a′ = a− 1

3
tr(a)q

is the deviatoric (i.e. harmonic) part of a.

4. Polynomial covariants

Let V be a finite dimensional representation of a group G. The linear action of G on V extends
naturally to the algebra R[V] of real polynomial functions defined on V by

(g ⋆ p)(vvv) := p(g−1 ⋆ vvv), p ∈ R[V], g ∈ G.

A polynomial p ∈ R[V] is invariant if g ⋆p = p for all g ∈ G. The set R[V]G, also noted Inv(V),
of all invariant polynomials is a sub-algebra of R[V], called the invariant algebra of V. In [33],
Kraft and Procesi have generalized the concept of invariants in the following way.

Definition 4.1. Given two representations V and W of a group G, we define Pol(V,W) to be
the space of polynomial mappings p from V to W (i.e each component function is a polynomial
expression of the components of vvv ∈ V, and such in any basis). A polynomial covariant of V of
type W is a G-equivariant polynomial mapping p : V → W, which means that

p(g ⋆ vvv) = g ⋆ p(vvv), ∀vvv ∈ V, ∀g ∈ G.

The problem with this definition is that the set Pol(V,W)G, of polynomial covariant of V of
type W is only a vector space and not an algebra. We will therefore extend this definition as
follows.

Definition 4.2. Let V,W be finite dimensional representations of a group G. The covariant
algebra of V of type W, noted Cov(V,W), is defined as the invariant algebra

R[V⊕W
∗]G,

where W
∗ is the dual vector space of W.

Remark 4.3. We can define similarly, Con(V,W), the contravariant algebra of V of type W as
R[V ⊕ W]G. However, if W and W

∗ are equivalent representations (for instance if the repre-
sentation W is unitary), we do not have to distinguish between these two algebras which are
canonically isomorphic.

Note that the covariant algebra Cov(V,W) has a natural bi-graduation. It is the direct sum
of the finite dimensional vector spaces Covd,k(V,W) of bi-homogeneous polynomial p(vvv, ω):

• of total degree d in vvv ∈ V, called the degree of the covariant,
• and, of total degree k in ω ∈ W

∗, called the order of the covariant.

Furthermore, the subspace of covariants of order 0 is identical to the invariant algebra of V.
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Remark 4.4. The vector space of polynomial covariants Pol(V,W)G can thus be identified with

Cov1(V,W) =
+∞
⊕

k=0

Covk,1(V,W),

the vector space of first-order covariants.

In this paper, we will only be interested when G = SO(3) and W is the Euclidean space R3 (in
which case, we do not have to make any difference between the covariant and the contravariant
algebras), and we will set

Cov(V) := R[V⊕ R
3]SO(3).

An element p ∈ Cov(V) is thus a polynomial which can be written as

p(vvv,xxx) =
∑

i,j,k

pijk(vvv)x
iyjzk,

where each coefficient pijk(vvv) is a polynomial function of vvv and such that

p(g ⋆ vvv,xxx) = p(vvv, g−1 ⋆ xxx),

for all vvv ∈ V, xxx ∈ R
3 and g ∈ SO(3).

Remark 4.5. Any homogeneous polynomial covariant of vvv ∈ V of degree d and of type S
k(R3)

can thus be identified with a polynomial in Covd,k(V).

One fundamental result, obtained in the nineteenth century, is that the invariant and covariant
algebras of a finite dimensional representation of a compact group is finitely generated.

Theorem 4.6 (Hilbert’s Theorem [28]). The covariant algebra Cov(V) is finitely generated,
i.e. there exists a finite set B := {p1, . . . ,ps} in Cov(V) such that

Cov(V) = R[p1, . . . ,ps].

Moreover, one can always find such a system where the pj are bi-homogeneous, both in vvv ∈ V

and xxx ∈ R
3.

Definition 4.7. A set of generators B for Cov(V) is called an integrity basis. An integrity basis
B is minimal if no proper subset of it is an integrity basis.

Example 4.8. A minimal integrity basis for Cov(S2(R3)) is provided by three invariants tr(a),
tr(a2) and tr(a3), three order 2 covariants q, a and a2 and one order 3 covariant a× a2.

Remark 4.9. Of course, a minimal integrity basis is not unique. However, its cardinality n(V)
is a constant. To see this, as in [21], set

Cov+(V) :=
∑

d+m>0

Covd,m(V),

which is an ideal of the graded algebra Cov(V). Then (Cov+(V))2 is the space of covariants
which can be written as a sum of reducible covariants. For each (d,m) such that d+m > 0, let
δd,m be the codimension of (Cov+(V))2d,m in Covd,m(V). Since Cov(V) is finitely generated,
there exists an integer p such that δd,m = 0 for d+m ≥ p and we can define

n(V) :=
∑

d,m

δd,m.

Then, any minimal integrity basis is of cardinal n(V). As far as we know, there is no way to
obtain the constant n(V) but to compute a minimal basis.
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5. A minimal integrity basis for the covariant algebra of H
4

In this section, we propose to describe a minimal integrity basis for Cov(H4). As detailed in
Appendix B, Cov(H4) is connected with the invariant algebra Inv(S8⊕S2) (theorem B.4), where
Sn is the space of binary forms of degree n (see Appendix A). This algebra is itself connected
to the covariant algebra of the binary form of degree 8, Cov(S8) (theorem A.6). A minimal
covariant basis for Cov(S8) is known at least partially since 1880 and was first produced by von
Gall [57] (see also [6, 19, 39, 44]). These results have been used to obtain degrees and orders of
a minimal basis for Cov(H4) which are given in Table 1.

degree / order 0 1 2 3 4 5 6 7 9 # Cum

0 - - 1 - - - - - - 1 1
1 - - - - 1 - - - - 1 2
2 1 - 1 - 1 - 1 - - 4 6
3 1 - 1 1 1 1 1 1 1 8 14
4 1 - 2 1 1 2 1 1 1 10 24
5 1 1 2 2 1 3 - 1 - 11 35
6 1 1 2 3 1 1 - - - 9 44
7 1 2 2 3 - - - - - 8 52
8 1 2 2 2 - - - - - 7 59
9 1 3 1 - - - - - - 5 64
10 1 2 - - - - - - - 3 67
11 - 2 - - - - - - - 2 69
12 - 1 - - - - - - - 1 70

Tot 9 14 14 12 6 7 3 3 2 70

Table 1. Degrees and orders of a minimal covariant basis for Cov(H4)

Once we know the information provided in Table 1, we have a lot of freedom in the choice
of an explicit minimal basis. Checking that a system of 70 arbitrary covariants satisfying the
requirements of Table 1 is a minimal integrity basis requires moreover the knowledge of the
Hilbert series [49]

H(z, t) :=
∑

d,k≥0

ad,kz
dtk,

which encodes the dimension ad,k of each finite dimensional vector space Covd,k(H
4). However,

the Hilbert series H(z, t) is a rational function which can be computed a priori [49, 50, 34, 52,
7, 8], using the Molien-Weyl formula [52]:

H(z, t) =

∫

SO(3)

1

det(I − tρ1(g))

1

det(I − zρ4(g))
dµ(g)

where dµ is the Haar measure on SO(3) (see [51, Section 4.1]), ρ1 is the standard representation
of SO(3) on R

3 and ρ4 is the representation of SO(3) on H
4. Thus, for each module Covd,k(H

4)
where (d, k) appears in Table 1, we have checked inductively on n = d + k that adding new
covariants of immediate superior degree/order to the subspace generated by reducible covariants
of lower order/degree, we obtain a vector space of dimension ad,k.

Theorem 5.1. The polynomial covariant algebra of H4 is generated by a minimal basis of 70
homogeneous covariant polynomials, which degree/order are provided in Table 1. An explicit
basis has been computed in Table 2.

In Table 2, we have introduced the following symmetric second-order covariants

d2 := tr13H
2, d3 := tr13 H

3, ck := Hk−2 :d2, k ≥ 3.
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where Hn := H : Hn−1 for n ≥ 2 and tr13 A of a fourth order tensor A is defined as (tr13 A)ij :=
Akikj (in any orthonormal basis). We have also used the simplified notation ab := a · b, when
a and b are second order tensors.

Remark 5.2. Note the following relation

c3 = 2d′
3,

which can be checked by a direct calculation.

Remark 5.3. In addition to d2 and d3, the following second-order covariants were introduced
in [9]:

(5.1)

d4 := d2
2, d5 := d2(H :d2), d6 := d2

3,

d7 := d2
2(H :d2), d8 := d2

2(H2 :d2), d9 := d2
2(H :d2

2),

d10 := d2
2(H2 :d2

2).

For k = 2, 3, 4, 6, the dk are symmetric, while they are not for k = 5, 7, 8, 9, 10. None of them
are harmonic. These covariants were used to define the following invariants:

(5.2) Jk := trdk, k = 2, . . . , 10,

which constitute a minimal integrity basis for H
4 (see [9]). In Table 2, we did not use the

invariants Jk but an alternative set of generators Ik. The nine invariants Jk are not algebraically
independent (neither are the nine invariants Ik); they are subject to some algebraic relations,
which have been calculated first by Shioda [48] (with some minor errors).

6. Symmetry classes

Symmetry plays a fundamental role in the study of tensor representations. In this section,
we recall the definitions of symmetry groups and symmetry classes of a vector vvv in a finite
dimensional representation V of a compact group G.

Definition 6.1 (Symmetry group). The symmetry group of a vector vvv ∈ V is defined as the
subgroup

Gvvv := {g ∈ G, g ⋆ vvv = vvv} .
Definition 6.2 (Symmetry class). The symmetry class (or isotropy class) of a vector vvv is the
conjugacy class of its symmetry group, where the conjugacy class [H] of a subgroup H is defined
as

[H] :=
{

gHg−1, g ∈ G
}

.

There is, of course, no obstruction to extend the concept of symmetry classes to a finite or
infinite family of vectors belonging to different (or same) representations of G.

Definition 6.3. Let F be a finite or infinite family of vectors belonging to different (or same)
representations of G. We define the isotropy group of F as the subgroup

GF :=
⋂

vvv∈F

Gvvv.

The symmetry class of F is the conjugacy class of GF in G.

Remark 6.4. Note that if F is a vector space and (vvvi)i∈I is any generating set of F , then

GF =
⋂

i∈I

Gvvvi .

In particular, if (vvv1, . . . , vvvp) is a basis of F , then

GF =

p
⋂

j=1

Gvvvj .
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Since every symmetry group of a vector vvv in V is a closed subgroup of G, we are mainly
interested in the closed subgroups of G up to conjugacy. Now we have the following result which
can be deduced from [11, Proposition 1.9].

Lemma 6.5. The set of conjugacy classes of a compact group G is a partially ordered set
(poset) induced by inclusion, which is defined as follows:

[H1] � [H2] if H1 is conjugate to a subgroup of H2 in G.

Definition 6.6. Since the symmetry classes of a given representation V form a poset, we will say
that a vector vvv ∈ V (resp. a family F) is at least in a given symmetry class [H], if [H] � [Gvvv ]
(resp. [H] � [GF ]). Similarly, we will say that it is at most in the symmetry class [H], if
[Gvvv] � [H] (resp. [GF ] � [H]).

Since we are interested in representations of the rotation group SO(3), we will recall the
following result [26].

Lemma 6.7. Every closed subgroup of SO(3) is conjugate to one of the following list:

SO(3), O(2), SO(2), Dn(n ≥ 2), Zn(n ≥ 2), T, O, I, and1

where:

• O(2) is the subgroup generated by all the rotations around the z-axis and the order 2
rotation σ : (x, y, z) 7→ (x,−y,−z) around the x-axis;

• SO(2) is the subgroup of all the rotations around the z-axis;
• for n ≥ 2, Zn is the unique cyclic subgroup of order n of SO(2), the subgroup of rotations
around the z-axis;

• for n ≥ 2, Dn is the dihedral group, of order 2n. It is generated by Zn and σ : (x, y, z) 7→
(x,−y,−z);

• T is the tetrahedral group, the orientation-preserving symmetry group of a given tetra-
hedron, which has order 12;

• O is the octahedral group, the orientation-preserving symmetry group of a given cube,
which has order 24;

• I is the icosahedral group, the orientation-preserving symmetry group of a given dodec-
ahedron, which has order 60;

• 1 is the trivial subgroup, containing only the unit element.

Remark 6.8 (The octahedral group). The octahedral group O is defined as the orientation-
preserving symmetry group of a cube whose edges are parallel to the axes of a the canonical
basis (eee1, eee2, eee3) of R

3. It corresponds to the subgroup

{g ∈ SO(3); g ⋆ eeei = ±eeej}
of SO(3) which contains 24 elements:

• the identity I;
• 3 order 2 rotations around the axes eee1, eee2, eee3;
• 6 order 4 rotations around the axes eee1, eee2, eee3;
• 6 order 2 rotations around the axes eee1 ± eee2, eee1 ± eee3, eee2 ± eee3;
• 8 order 3 rotations around the axis eee1 ± eee2 ± eee3.

It is a classical fact, that for any representation V of a Lie group G, there exists only a finite
number of symmetry classes [37, 35]. These classes have been detailed by Ihrig-Golubistky [31]
(see also [39]) for irreducible representations of SO(3). We get, in particular, the following
posets:

(1) For H1: [SO(2)] � [SO(3)].
(2) For H2: [D2] � [O(2)] � [SO(3)].
(3) For H3: see Figure 1.
(4) For H4: see Figure 2 (same as for the Elasticity tensor [22]).
(5) For H5: see Figure 3.
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The determination of symmetry classes for reducible representations of SO(3) has been achieved
by Olive [39], who formulated an algorithm to compute theses classes, provided a decomposition
into irreducible representations is known. Using these results and the fact that

S
n(R3) ≃ H

n ⊕H
n−2 ⊕ · · · ⊕H

n−2r, r = [n/2],

by (3.1), we deduce the following proposition.

Proposition 6.9. We have the following results.

(1) The symmetry classes for n (n ≥ 2) first-order tensors are

{[1], [SO(2)], [SO(3)]} .

(2) The symmetry classes for n (n ≥ 2) second-order symmetric tensors are

{[1], [Z2], [D2], [O(2)], [SO(3)]} .

(3) The symmetry classes for one third-order totally symmetric tensor are

{[1], [Z2], [Z3], [D2], [D3], [T], [SO(2)], [SO(3)]} .

(4) The symmetry classes for one fourth-order totally symmetric tensor are (like for the
Elasticity tensor)

{[1], [Z2], [D2], [D3], [D4], [O], [O(2)], [SO(3)]} .

(5) The symmetry classes for one fifth-order totally symmetric tensor are

{[1], [Z2], [Z3], [Z4], [Z5], [D2], [D3], [D4], [D5], [T], [SO(2)], [SO(3)]} .

Remark 6.10. The harmonic decomposition of a totally symmetric tensor (2.1) of odd order

contains only factors Hk with k odd. Moreover, an isotropic tensor in H
k

vanishes necessarily if
k ≥ 1 odd. Thus any totally symmetric isotropic tensor of odd order vanishes. This is however
not true for an even order totally symmetric isotropic tensor.

Figure 1. The poset of symmetry classes for H3.
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Figure 2. The poset of symmetry classes for H4 and Ela.

Figure 3. The poset of symmetry classes for H5.

7. Dimension of covariant spaces and symmetry

Given a linear representation V of SO(3) and vvv ∈ V, we defineCovk(vvv) as the set of all k-order
polynomial covariants of vvv (see section 4). Note that whereas Cov(V) is a polynomial algebra,
and Covk(V) is an infinite dimensional vector space, Covk(vvv) is the set of all evaluations of
these covariants on the vector vvv. As such, it is a subspace of the finite dimensional real vector
space Pk(R

3) of homogeneous polynomials of degree k on R
3, or equivalently of the space Sk(R3)

of totally symmetric tensors of order k. In this section, we will focus on polynomial covariants
of order one and two of a vector vvv ∈ V and relate the symmetry class of Cov1(vvv) and Cov2(vvv)
with their respective dimension.

Recall that, thanks to proposition 6.9, the possible symmetry classes for the space Cov1(vvv)
are

[1], [SO(2)], [SO(3)],
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whereas, for Cov2(vvv), they are

[1], [Z2], [D2], [O(2)], [SO(3)].

Proposition 7.1. Given vvv ∈ V, dimCov1(vvv) is either 0, 1 or 3. Moreover, the symmetry class
of Cov1(vvv) is:

(1) [SO(3)] if and only if Cov1(vvv) = {0};
(2) [SO(2)] if and only if dimCov1(vvv) = 1;
(3) [1] if and only if dimCov1(vvv) = 3.

Proof. (1) If the symmetry class of Cov1(vvv) is [SO(3)], then, every first-order covariant vanishes
and thus Cov1(vvv) = {0}. Conversely, if Cov1(vvv) = 0 then its symmetry class is [SO(3)].

(2) Suppose now that the symmetry class of Cov1(vvv) is [SO(2)]. Without loss of generality,
we can suppose that the isotropy group of Cov1(vvv) is exactly SO(2). Then, dimCov1(vvv) ≥ 1
but all first-order covariant are colinear to eee3 and thus dimCov1(vvv) = 1. Conversely, suppose
that dimCov1(vvv) = 1 and let uuu 6= 0 be a basis of Cov1(vvv). Then the symmetry class of Cov1(vvv)
is just [Guuu] = [SO(2)].

(3) Finally, suppose that the symmetry class of Cov1(vvv) is [1]. Then dimCov1(vvv) ≥ 2. But
if uuu,www are two independent first-order covariants then uuu ×www is also a first-order covariant, so
that dimCov1(vvv) = 3. Conversely, if dimCov1(vvv) = 3, we can find two independent covariants
uuu,www and thus

Guuu ∩Gwww = 1.

�

The case of Cov2(vvv) is more involving. Note first that the Euclidean second-order tensor q

is always in Cov2(vvv), thus dimCov2(vvv) ≥ 1 for every vvv ∈ V. Moreover, given two covariants
a,b in Cov2(vvv), then

(ab)s :=
1

2
(ab+ ba)

belongs to Cov2(vvv), where ab is the standard matrix product.

Lemma 7.2. Let a ∈ S
2(R3). Then,

(1) a is orthotropic if and only if dim〈q,a,a2〉 = 3;
(2) a is transversely isotropic if and only if dim〈q,a,a2〉 = 2.

Proof. Without loss of generality, we can suppose that a = diag(λ1, λ2, λ3). Then, it is easy to
check that q, a, a2 are linearly independent if and only if

(λ2 − λ1)(λ3 − λ1)(λ3 − λ2) 6= 0.

Thus, we get (1). Moreover, if a is transversely isotropic and has thus a double eigenvalue
then dim〈q,a,a2〉 ≤ 2 but it cannot be one, otherwise, a would be isotropic. Conversely if
dim〈q,a,a2〉 = 2, then a has a double eigenvalue and is hence at least transversely isotropic but
it cannot be isotropic (otherwise dim〈q,a,a2〉 = 1). This achieves the proof. �

Recall that a pair (a,b) of symmetric second-order tensors is either isotropic, transversely
isotropic, orthotropic, monoclinic or triclinic by proposition 6.9. We have, moreover, the follow-
ing result.

Lemma 7.3. Let (a,b) be a pair of symmetric second-order tensors, which is either orthotropic,
monoclinic or triclinic. Then, there exists a linear combination of a and b which is orthotropic.

Proof. If either a or b is orthotropic, we are done. Otherwise, both a and b are transversely
isotropic, neither being isotropic. Let a′ and b′ be the deviatoric parts of a and b respectively.
Note that a′, b′ are linearly independent and both transversely isotropic. If we can show that
there exists a linear combination αa′ + βb′ which is orthotropic, then, we are done, because

αa+ βb = αa′ + βb′ +
1

3
(α tr a+ β trb)q
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is orthotropic. Let

ã = a′ − tr(a′b′)

tr(b′2)
b′, b̃ = b′

If ã is orthotropic, we are done. Otherwise ã, b̃ are two linearly independent, transversely
isotropic deviators such that tr(ãb̃) = 0. Now, the discriminant of the characteristic polynomial
of a deviatoric tensor d writes as

(tr(d2))3/2− 3(tr(d3))2.

Hence a deviatoric tensor d is orthotropic if and only if

(tr(d2))3 − 6(tr(d3))2 6= 0.

Let d(t) := tã+ (1− t)b̃. Then d(t) is orthotropic if and only if

p(t) := (tr(d(t)2))3 − 6(tr(d(t)3))2 6= 0.

Moreover, a direct computation shows that the coefficient of t2 in the polynomial p(t) is

3 tr(ã2) tr(b̃2)2 6= 0.

Hence, there exists t ∈ R such that p(t) 6= 0 and for this value, d(t) is orthotropic. We have thus

found a linear combination of ã, b̃, and therefore of a′, b′ which is orthotropic. This achieves
the proof. �

Corollary 7.4. Let F be a sub-vector space of S2(R3) with dimF ≥ 3. Then, F contains an
orthotropic element.

Proof. Suppose that each element in F is at least transversely isotropic. Then, by lemma 7.3,
each pair (a,b) of elements in F is at least transversely isotropic. If each element in F is
isotropic, then F is of dimension 0 or 1. If F contains a transversely isotropic element t, then
for every a ∈ F , the pair (t,a) is transversely isotropic and thus a = αt+ βq. Thus dimF ≤ 2.
This achieves the proof. �

Given an orthonormal basis (eee1, eee2, eee3) of R3, we will consider the following natural basis of
S
2(R3)

eii := eeei ⊗ eeei (no sum), eij := eeei ⊗ eeej + eeej ⊗ eeei, (i < j),

which is orthogonal but not orthonormal.

Proposition 7.5. Given vvv ∈ V, dimCov2(vvv) is either 1, 2, 3, 4 or 6. Moreover, the symmetry
class of Cov2(vvv) is:

(1) [SO(3)] if and only if dimCov2(vvv) = 1;
(2) [O(2)] if and only if dimCov2(vvv) = 2;
(3) [D2] if and only if dimCov2(vvv) = 3;
(4) [Z2] if and only if dimCov2(vvv) = 4;
(5) [1] if and only if dimCov2(vvv) = 6.

Proof. (1) If the symmetry class of Cov2(vvv) is [SO(3)], then, every symmetric second-order
covariant is proportional to q and hence dimCov2(vvv) = 1. Conversely, if dimCov2(vvv) = 1 then
q generates Cov2(vvv), and its symmetry class is [SO(3)].

(2) Suppose that the symmetry class of Cov2(vvv) is [O(2)]. Then, without loss of generality,
we can suppose that each symmetric second-order covariant writes as diag(λ, λ, µ) and hence
that dimCov2(vvv) ≤ 2. Since it cannot be 1, otherwise Cov2(vvv) would be reduced the one-
dimensional space generated by q, it must be 2. Conversely, if dimCov2(vvv) = 2, then, there
exists some non–isotropic second-order covariant a such that (q,a) is basis of Cov2(vvv). Since
a cannot be orthotropic, otherwise (q,a,a2) would be linearly independent, by lemma 7.2, a is
necessarily transversely isotropic and so is Cov2(vvv).

(3) Suppose that the symmetry class of Cov2(vvv) is [D2]. Then without loss of generality we
can assume that each symmetric second-order covariant writes as diag(λ1, λ2, λ3) and hence that
dimCov2(vvv) ≤ 3. Since this dimension cannot be 1, neither 2 due to points (1) and (2), its must
be 3. Conversely, suppose that dimCov2(vvv) = 3. Then, by corollary 7.4, Cov2(vvv) contains an
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orthotropic tensor c, and we are done by lemma 7.2 because the orthotropic triplet (q, c, c2) is
a basis of Cov2(vvv).

(4) Suppose that the symmetry class of Cov2(vvv) is [Z2]. Then without loss of generality we
can suppose that each symmetric second-order covariant writes as





a11 a12 0
a12 a22 0
0 0 a33





and hence that dimCov2(vvv) ≤ 4. Since this dimension is necessarily > 3 by (1), (2) and (3), it is
4. Conversely, suppose that dimCov2(vvv) = 4. Then by corollary 7.4, there exists an orthotropic
covariant c in Cov2(vvv) and without loss of generality, we can suppose that this covariant is
diagonal. Then, by lemma 7.2, 〈q, c, c2〉 is a vector basis of the space of diagonal tensors, so
that 〈q, c, c2〉 = 〈e11, e22, e33〉, and thus each eii belongs to Cov2(vvv). Let a be a second-order
covariant such that (e11, e22, e33,a) is a basis of Cov2(vvv). Without loss of generality, we can
assume that

a = a12e12 + a13e13 + a23e23,

where the aij do not vanish altogether, for instance a12 6= 0. Then

(e11a)
s + (e22a)

s − (e33a)
s = a12e12

belongs to Cov2(vvv) and so does e12. Hence

(e11, e22, e33, e12)

is a basis of Cov2(vvv) which has therefore the symmetry [Z2].
(5) Suppose that the symmetry class of Cov2(vvv) is [1]. Then

dimCov2(vvv) ≥ 5,

by (1), (2), (3) and (4). By corollary 7.4, there exists an orthotropic covariant c in Cov2(vvv),
and like in the proof of (4), we can assume that

e11, e22, e33 ∈ Cov2(vvv).

Since, dimCov2(vvv) ≥ 5, the space Cov2(vvv) contains two linearly independent covariants, which
write

a = a12e12 + a13e13 + a23e23,

b = b12e12 + b13e13 + b23e23,

and we can assume (without loss of generality) that the minor

a12b13 − a13b12 6= 0.

As in the proof of (4), we conclude then that both e12 and e13 belong to Cov2(vvv). But then

(e12e13)
s =

1

2
e23

belongs to Cov2(vvv) and thus dimCov2(vvv) = 6. Conversely, suppose that dimCov2(vvv) = 6.
Then the only possibility is that the symmetry class of Cov2(vvv) is [1] by (1), (2), (3) and (4).
This achieves the proof. �

8. Covariant criteria for tensor’s symmetry

In this section, we formulate covariant criteria which restrict the symmetry class of second
and fourth order tensors, using the vanishing of some of their covariants.
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8.1. Second order tensors.

Lemma 8.1. Let a be a symmetric second-order tensor. Then, a is at least transversely isotropic
if and only if a× a2 = 0.

Proof. Without loss of generality, we can assume that

a = diag(λ1, λ2, λ3).

Then, the polynomial form of a× a2, writes

(λ2 − λ1) (λ3 − λ1) (λ3 − λ2) xyz.

Thus, it vanishes if and only if a is at least transversely isotropic. This achieves the proof. �

Remark 8.2. If a is not orthotropic, then a× a2 vanishes and is thus isotropic. Otherwise, the
polynomial form of a×a2 writes k xyz, with k = (λ2 − λ1) (λ3 − λ1) (λ3 − λ2) 6= 0. This form is,
of course, invariant by D2 but it has more symmetries. Indeed, it is invariant by the fourth-order
rotations around Ox, Oy and Oz. Considering the symmetry classes of S3(R3) (proposition 6.9),
and Figure 1, we conclude that a × a2 has tetrahedral symmetry [T]. An immediate corollary
of this result is that tr(a × a2) = 0 and thus that a × a2 is harmonic, independently of the
symmetry of a.

Lemma 8.3. Let a,b be symmetric second-order tensors and suppose that a is transversely
isotropic. Then, (a,b) is transversely isotropic if and only if a× b = 0.

Proof. Suppose first that (a,b) is transversely isotropic then a × b is at least transversely
isotropic and since it is a third-order totally symmetric tensor, it must be isotropic by propo-
sition 6.9 and thus vanishes by Remark 6.10. To prove the converse, we will use the poly-
nomial representative a,b of a,b (see Section 2). The linear equation a × b = 0 reads then
det(xxx,∇a,∇b) = 0. Without loss of generality we can assume that Ga = O(2) and thus that

a = λ(x2 + y2) + µz2, λ 6= µ.

The solution is then
b = k1(x

2

+ y2) + k2z
2,

which is invariant by O(2). This achieves the proof. �

Given two symmetric second order tensors a,b on the euclidean space R3, their commutator,
a second-order skew-symmetric tensor

[a,b] := ab− ba

can be recast as the first-order covariant

tr(a× b) =
1

3
εεε : (ab).

We have thus

Lemma 8.4. The three conditions are equivalent :

(1) the pair (a,b) is at least orthotropic.
(2) tr(a× b) = 0.
(3) a,b commute.

Corollary 8.5. Let a,b be symmetric second-order tensors. Then, (a,b) is orthotropic if and
only if tr(a× b) = 0 and

a× a2 6= 0, or b× b2 6= 0, or a× b 6= 0.

Proof. If (a,b) is orthotropic, then the first-order covariant tr(a× b) is necessarily isotropic by
proposition 6.9 and thus vanishes by Remark 6.10. Moreover, either a or b is orthotropic and
thus

a× a2 6= 0, or b× b2 6= 0,

or both of them are transversely isotropic. In that case we necessarily have a × b 6= 0 by
lemma 8.3. Conversely, if tr(a×b) = 0, then the pair (a,b) is at least orthotropic by lemma 8.4.
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If either a or b is orthotropic, then so is (a,b). Otherwise, both a and b are at least transversely
isotropic, but then the condition a × b 6= 0 forbids the pair (a,b) to be at least transversely
isotropic. It is thus orthotropic. �

We will now formulate coordinate-free conditions to classify the symmetry class of an n-tuple
of symmetric second-order tensors.

Theorem 8.6. Let (a1, . . . ,an) be an n-tuple of second-order symmetric tensors. Then:

(1) (a1, . . . ,an) is isotropic if and only if

a′k = 0, 1 ≤ k ≤ n,

where a′k is the deviatoric part of ak.
(2) (a1, . . . ,an) is transversely isotropic if and only if there exists aj such that

a′j 6= 0, aj × a2j = 0,

and

aj × ak = 0, 1 ≤ k ≤ n.

(3) (a1, . . . ,an) is orthotropic if and only if

tr(ak × al) = 0, 1 ≤ k, l ≤ n,

and there exists aj such that aj×a2j 6= 0 or there exists a pair (ai,aj) such that ai×aj 6= 0.

(4) (a1, . . . ,an) is monoclinic if and only if there exists a pair (ai,aj) such that ωωω := tr(ai×
aj) 6= 0 and

(akωωω)×ωωω = 0, 1 ≤ k ≤ n.

Proof. (1) (a1, . . . ,an) is isotropic if and only if ak = λkq for 1 ≤ k ≤ n, which is equivalent to
the condition that a′k = 0 for 1 ≤ k ≤ n.

(2) If (a1, . . . ,an) is transversely isotropic, then, each ak is at least transversely isotropic and
one of them, say aj, is transversely isotropic. Thus a′j 6= 0 and aj × a2j = 0 by lemma 8.1.

Moreover, each pair (aj ,ak) is at least transversely isotropic and thus aj×ak = 0 by lemma 8.3.
Conversely, if conditions in (2) are satisfied, then aj is transversely isotropic and each pair
(aj,ak) is transversely isotropic by lemma 8.3. Thus (a1, . . . ,an) is transversely isotropic.

(3) If (a1, . . . ,an) is orthotropic, then, the ak commute with each other and thus tr(ak×al) = 0
(1 ≤ k, l ≤ n) by lemma 8.4. Moreover, either there exists j ∈ {1, . . . , n} such that aj is
orthotropic and thus aj × a2j 6= 0 or all the ak are at least transversely isotropic. In that case,

a pair of them, say (ai,aj) is orthotropic and thus ai × aj 6= 0. Conversely, if tr(ak × al) = 0
for all k, l, then, we can find a basis in which there are all diagonal and the symmetry class of
(a1, . . . ,an) is thus at least [D2]. If there exists aj such that aj×a2j 6= 0, we are done. Otherwise,

all the ak are at least transversely isotropic, but there exists a pair (ai,aj) such that ai×aj 6= 0.
Hence, both ai,aj are tran sversely isotropic and the pair (ai,aj) is orthotropic by lemma 8.3.

(4) If (a1, . . . ,an) is monoclinic, then, its elements have a common eigenvector, ωωω, so that
(akωωω) × ωωω = 0 (1 ≤ k ≤ n). Moreover, there exists a pair (ai,aj) such that tr(ai × aj) 6= 0
and thus tr(ai × aj) = λωωω with λ 6= 0. Conversely, if ωωω := tr(ai × aj) 6= 0, then (a1, . . . ,an)
is at most monoclinic. But the condition (akωωω) × ωωω = 0 for all k means that ωωω is a common
eigenvector of a1, . . . ,an and thus the symmetry group of (a1, . . . ,an) contains the second-order
rotation around ωωω. �

8.2. Fourth order tensors.

Lemma 8.7. Let t ∈ S
2(R3) be transversely isotropic and S ∈ S

4(R3). Then, (S, t) is trans-
versely isotropic if and only if S× t = 0.

Proof. Suppose first that (S, t) is transversely isotropic, then S × t is at least transversely
isotropic and since it is a fifth-order symmetric tensor, it must be isotropic by proposition 6.9 and
thus vanishes by Remark 6.10. To prove the converse, let p, t be the polynomial representatives
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of S, t. Then, the linear equation S× t = 0 reads det(xxx,∇p,∇t) = 0. Without loss of generality
we can assume that Gt = O(2) and thus that

t = λ(x2 + y2) + µz2, λ 6= µ

and the solution is
p = k1z

4 + k2(x
2

+ y2)z2 + k3(x
2 + y2)2,

which is invariant by O(2). This achieves the proof. �

Lemma 8.8. Let t ∈ S
2(R3) be transversely isotropic and H ∈ H

4. Then, (H, t) is at least
tetragonal if and only if tr(H× t) = 0.

Proof. Suppose first that (H, t) is at least tetragonal, then tr(H× t) is at least tetragonal and
since it is a third-order symmetric tensor, it must be isotropic by proposition 6.9 and thus
vanishes by Remark 6.10. To prove the converse, let p, t be the polynomial representatives of
H, t. Then, the linear equation tr(H × t) = 0 reads △(det(xxx,∇p,∇t)) = 0, where △ is the
Laplacian. Without loss of generality we can assume that Gt = O(2) and thus that

t = λ(x2 + y2) + µz2, λ 6= µ

and the solution is

p = k1
(

6z2(x2 + y2)− (x4 + y4) + 2z4
)

+ k2
(

6x2y2 − (x4 + y4)
)

+ k3xy
(

x2 − y2
)

,

which is invariant by Z4 and has thus at least the symmetry [D4]. Hence, (H, t) is at least
tetragonal. This achieves the proof. �

The cubic symmetry appears, in practice, as the more subtle to deal with. We will formulate,
in the next lemma, more precise statements which allow to detect the symmetry class of a pair
(H, t) when H is cubic and t is transversely isotropic. In that case, we know from [39] that
the symmetry class of a pair (H, t) is one of the following : triclinic, monoclinic, orthotropic,
trigonal or tetragonal.

Lemma 8.9. Let H be a cubic fourth-order harmonic tensor and t ∈ S2(R2) be transversely
isotropic. Then

(1) (H, t) is tetragonal if and only if

tr(H× t) = 0;

(2) (H, t) is trigonal if and only if

tr(H× t) 6= 0, and t× (H : t) = 0;

(3) (H, t) is orthotropic if and only if

t× (H : t) 6= 0, and tr (t× (H : t)) = 0;

(4) (H, t) is monoclinic if and only if

tr(t× (H : t)) 6= 0, and tr(t× (H : t))× tr(t × (H : t)2) = 0.

Remark 8.10. The conditions in (3) are equivalent to the fact that the pair (t,H : t) is or-
thotropic, whereas in (4) they are equivalent to the fact that the pair (t,H : t) is monoclinic.
The cases (1) and (2) cover all the cases where the pair (t,H : t) is transversely isotropic.

Proof. We will first investigate the four equations in lemma 8.9. Without loss of generality, we
can assume that GH = O and thus that the polynomial form of H is given (up to a scaling
factor) by

p(x, y, z) = x4 + y4 + z4 − 3x2y2 − 3x2z2 − 3y2z2.

Now, every transversely isotropic second-order homogeneous polynomial t writes as

t(x, y, z) = (µ− λ)(nnn · xxx)2 + λq,

where λ 6= µ, nnn = (n1, n2, n3) is a unit vector and q = x2 + y2 + z2. We get thus:
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• tr(H× t) = 0 if and only if

(8.1) n1n2 = n1n3 = n2n3 = 0;

• t× (H : t) = 0 if and only if

n1n2
(

n21 − n23
)

= n1n3
(

n21 − n22
)

= n2n3
(

n21 − n22
)

= 0,

n1n2
(

n22 − n23
)

= n1n3
(

n22 − n23
)

= n2n3
(

n23 − n21
)

= 0.
(8.2)

• tr (t× (H : t)) = 0 if and only if

(8.3) n1n2
(

n21 − n22
)

= n1n3
(

n21 − n23
)

= n2n3
(

n22 − n23
)

= 0;

• tr(t× (H : t))× tr(t× (H : t)2) = 0 if and only if

n21n2n3(n
2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0,

n1n
2
2n3(n

2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0,

n1n2n
2
3(n

2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0.

(8.4)

Note also that (8.1) =⇒ (8.2) =⇒ (8.3) =⇒ (8.4). We will now prove each statement of
lemma 8.9.

(1) Suppose first that the pair (H, t) is tetragonal, then tr(H × t) = 0 by lemma 8.8. Con-
versely, if tr(H× t) = 0 holds, then we get (8.1) and nnn is collinear to either

eee1, eee2, eee3.

Then, both H and t are invariant by the rotation by π/2 around nnn and the pair (H, t) is
tetragonal.

(2) Suppose now that the pair (H, t) is trigonal, then the pair of second-order covariants
(t,H : t) is at least trigonal an thus transversely isotropic by proposition 6.9. Thus t×(H : t) = 0
by lemma 8.3. Moreover, tr(H × t) 6= 0 by point (1). Conversely, if t × (H : t) = 0 and
tr(H× t) 6= 0, then we get (8.2) with at least ninj 6= 0 for a pair (i, j) (i 6= j). In that case, nnn
is collinear to either

eee1 + eee2 + eee3, eee1 − eee2 + eee3, eee1 + eee2 − eee3, eee1 − eee2 − eee3.

Then, both H and t are invariant by the rotation by angle 2π/3 around nnn and the pair (H, t)
is trigonal.

(3) Suppose now that the pair (H, t) is orthotropic, then the first order covariant tr (t× (H : t))
is at least orthotropic and thus vanishes. Moreover t × (H : t) 6= 0 by points (1) and (2). Con-
versely, if tr (t× (H : t)) = 0 and t× (H : t) 6= 0, then we get (8.3) with at least ni = 0 for some
i ∈ {1, 2, 3}. In that case nnn is collinear to either

eee1 + eee2, eee1 − eee2, eee1 + eee3, eee1 − eee3, eee2 + eee3, eee2 − eee3.

Then, both H and t are invariant by the rotation by angle π (a second-order rotation) around
a pair of axes eeei ± eeej and the pair (H, t) is orthotropic.

(4) Finally, suppose that the pair (H, t) is monoclinic, then the pair of first-order covariants
(tr(t×(H : t)), tr(t×(H : t)2)) is at least monoclinic and thus collinear. Moreover, tr(t×H : t) 6= 0
by (1), (2) and (3). Conversely, if

tr(t× (H : t))× tr(t× (H : t)2) = 0,

then we get (8.4). Since tr(t× (H : t)) 6= 0 cases (1), (2) and (3) are excluded and thus the pair
(H, t) is either monoclinic or triclinic, so we are reduced to show that it is monoclinic. If ni = 0
for some i, both H and t are invariant by the second-order rotation around eeei. Otherwise, we
get ni = ±nj for a pair (i, j). In that case, both H and t are invariant by the second-order
rotation around nieeei − njeeej . This achieves the proof. �

We will end this section by formulating criteria for detecting orthotropic and monoclinic
symmetry for a general harmonic tensor H ∈ H

4(R3), using second-order covariants.
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Lemma 8.11. Let c ∈ S
2(R3) be orthotropic and H ∈ H

4(R3). Then,

G(c,H : c,H : c2) = G(H,c).

In particular, (H, c) is orthotropic (resp. monoclinic) if and only if

(c,H : c,H : c2)

is orthotropic (resp. monoclinic).

Proof. Note that the inclusion G(H,c) ⊂ G(c,H : c,H : c2) is obvious, since (c,H : c,H : c2) are co-
variants of the pair (H, c). To prove the reverse inclusion, we can assume, without loss of
generality, that Gc = D2 (an thus that c is diagonal). Let g ∈ G(c,H : c,H : c2) ⊂ Gc. Then, g
is either the identity or a second-order rotation r around either eee1, eee2, or eee3. Without loss of
generality, we can suppose that r is the rotation around eee3. Then, eee3 is a common eigenvector
of c, H : c and H : c2. Moreover, since H is harmonic, we have H :q = 0 and thus

[(H :d)eee3]× eee3 = 0, for d = q, c, c2.

Since (q, c, c2) and (e11, e22, e33) generate the same three-dimensional vector space of diagonal
matrices, this last condition can be recast as

[(H : eii)eee3]× eee3 = 0, for i = 1, 2, 3.

and thus

H1113 = H1123 = H1223 = H1333 = H2223 = H2333 = 0,

which means that H is invariant under r, and so r ∈ G(H,c). �

Note that if a, b are transversely isotropic, second-order symmetric tensors, then the pair
(a,b) is either monoclinic, orthotropic or transversely isotropic (see [39]), and we get the fol-
lowing corollary.

Corollary 8.12. Let a, b be transversely isotropic second-order symmetric tensors and H ∈
H

4(R3).

(1) If (a,b) is orthotropic, then

G(a,b,H : a,H :b) = G(H,a,b).

In particular, (H,a,b) is orthotropic (resp. monoclinic) if and only if (a,b,H : a,H :b)
is orthotropic (resp. monoclinic).

(2) If (a,b) is monoclinic, then

G(a,b,H :a,H :b,H :(ab)s) = G(H,a,b).

In particular, (H,a,b) is monoclinic if and only if

(a,b,H : a,H :b,H :(ab)s)

is monoclinic.

Proof. (1) Suppose that (a,b) is orthotropic. Then there exists a basis (eeei) in which both a

and b are diagonal. Moreover, (q,a,b) and (e11, e22, e33) generate the same three-dimensional
vector space and the proof is similar to that of lemma 8.11.

(2) Suppose that (a,b) is monoclinic. Then, by lemma 7.3, there exists a linear combination
c of a and b which is orthotropic. But then, c2 is a linear combination of q, a, b and (ab)s and
thus

G(a,b,H : a,H :b,H :(ab)s) ⊂ G(c,H : c,H : c2) = G(H,c),

by lemma 8.11. Therefore

G(a,b,H : a,H :b,H :(ab)s) ⊂ G(H,c) ∩G(a,b) ⊂ G(H,a,b).

The reverse inclusion being obvious, this achieves the proof. �
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9. Characterization of the Symmetry Classes of H
4

In this section, we formulate coordinate-free conditions using covariants up to order 5 that
identify the symmetry class of a given tensor H ∈ H

4 and we prove that these conditions are
both necessary and sufficient. The partially ordered set of symmetry classes for H4 is the same
as the one for the Elasticity tensor, pictured in Figure 2. The notations used in this section
are those introduced in section 5. We will start by connecting Cov1(H) and Cov2(H) by the
following lemma.

Lemma 9.1. Let H ∈ H
4 be a fourth order harmonic tensor. Then

(1) Cov1(H) = {0} if and only if Cov2(H) is at least orthotropic;
(2) dimCov1(H) = 1 if and only if Cov2(H) is monoclinic;
(3) dimCov1(H) = 3 if and only if Cov2(H) is triclinic.

Remark 9.2. In the proof of lemma 9.1, some arguments are general and relies on Section 7,
others depend on the very special case that, Cov1(H

4) is generated by commutators of elements
in Cov2(H

4) (as can be checked in Table 2).

Proof. (1) If Cov1(H) = {0}, then each commutator of a pair of elements in Cov2(H) vanishes.
Thus all the elements of Cov2(H) commute together and they can be represented by diagonal
matrices in a common basis. All these second-order covariants are thus invariant by D2 and
Cov2(H) is thus at least orthotropic. Conversely, if Cov2(H) is at least orthotropic, then, since
Cov1(H) is generated by the commutators of Cov2(H), it vanishes.

(2) If dimCov1(H) = 1, then, by (1) Cov2(H) is either monoclinic or triclinic (see proposi-
tion 7.5). However, if Cov2(H) was triclinic and thus of dimension 6 by proposition 7.5, then
Cov2(H) = S

2(R3) and we could build two linearly independent commutators which belong to
Cov1(H), which would lead to a contradiction. Therefore, Cov2(H) is monoclinic. Conversely,
if Cov2(H) is monoclinic, then, Cov1(H) (which is generated by commutators of Cov2(H)) is
at least monoclinic and thus monoclinic by (1).

(3) If dimCov1(H) = 3, then Cov2(H) is necessarily triclinic by (1) and (2). Conversely,
if Cov2(H) is triclinic, then dimCov1(H) ≥ 2 by (1) and (2) and thus dimCov1(H) = 3 by
proposition 7.1. �

The harmonic tensor H, being a particular Elasticity tensor, can be represented by a sym-
metric endomorphism of the space S

2(R3), the so-called Kelvin representation, and thus by the
matrix [1]:

(9.1) [H] =

(

A
√
2B√

2Bt 2C

)

where

A :=





Λ2 + Λ3 −Λ3 −Λ2

−Λ3 Λ3 + Λ1 −Λ1

−Λ2 −Λ1 Λ2 + Λ1



 ,

B :=





−X1 Y1 + Y2 −Z2

−X2 −Y1 Z1 + Z2

X1 +X2 −Y2 −Z1



 , C :=





−Λ1 −Z1 −Y1
−Z1 −Λ2 −X1

−Y1 −X1 −Λ3



 ,

and Bt is the transpose matrix of B.

9.1. Case I: Cov2(H) is isotropic.

Theorem 9.3. Let H ∈ H
4 be a fourth order harmonic tensor. The following propositions are

equivalent.

(1) Cov2(H) is isotropic;
(2) H is either cubic (d2 6= 0) or isotropic (d2 = 0);
(3) d2 is isotropic.
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Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) is true, so that we have d2 = 1

3J2q and d3 = 1
3J3q, since trd2 = J2

and trd3 = J3. Then, the covariants dk defined in (5.1) write as

(9.2)
d2 =

1
3J2q, d3 =

1
3J3q, d4 =

1
9J2

2q,
d5 = 0, d6 =

1
27J2

3q, d7 = 0,
d8 = 0, d9 = 0, d10 = 0,

and we get

3J4 = J2
2, 9J6 = J2

3, J5 = J7 = J8 = J9 = J10 = 0.

Now, tr(d3
2) is an invariant of degree 6 and should be expressible as a linear combination of the

invariants

J2
3, J3

2, J2J4, J6.

In fact, the following relation, satisfied by any harmonic tensor H ∈ H
4 can be checked directly

by computation:

240J6 + 39J2
3 + 190J3

2 − 198J2J4 − 540 tr(d3
2) = 0.

When (9.2) are satisfied, this leads to the relation

30J3
2 − J2

3 = 0.

If J2 = 0, then ‖H‖2 = J2 = 0, so that H = 0 is isotropic. Otherwise, we get

(9.3)
3J4 = J2

2, J5 = 0, 30J3
2 = J2

3, 9J6 = J2
3,

J7 = 0, J8 = 0, J9 = 0, J10 = 0,

and J2 6= 0, which are, according to [1, Proposition 5.3], necessary and sufficient conditions for
a tensor H ∈ H

4 to be cubic.
The assertion (2) =⇒ (3) is trivial because if H is either cubic or isotropic, then d2 as a

covariant of H inherits its symmetry and is thus necessarily isotropic.
Suppose that (3) is true, so that d2 = αq, for some scalar α. Then, using the fact that

H :q = tr34 H = 0 we deduce first that

ck = 0, k ≥ 3.

Now, using remark 5.2, we have c3 = 2d′
3 and thus d3 = βq for some scalar β. Since all first and

second-order covariants in Table 2 are build from d2, d3 and the ck, we deduce that they are
all isotropic. But every symmetric second-order covariant is obtained as a linear combination
of either a product of an invariant with a second-order covariant from Table 2 or the symmetric
product of two first-order covariants from Table 2. Therefore, Cov2(H) is isotropic. This
achieves the proof. �

Remark 9.4. According to [1, Proposition 5.3], an harmonic tensor H ∈ H
4 is either cubic or

isotropic if and only if the relations (9.3) are satisfied. Surprisingly, a consequence of theorem 9.3
(which uses this result) is that an harmonic tensor H ∈ H

4 is either cubic or isotropic if and
only if 3J4 = J2

2 (one only needs to check the first relation of (9.3)). Indeed, by theorem 9.3,
H is at least cubic if and only if d2 is isotropic, which is equivalent to d′

2 = 0. But

‖d′
2‖2 = tr

(

d2 −
1

3
J2q

)2

= tr

(

d2
2 −

2

3
J2d2 +

1

9
J2
2q

)

=
1

3

(

3J4 − J2
2
)

.

The magic here is that in the proof of theorem 9.3, the knowledge of an integrity basis ofCov(H4)
(given in Table 2) has been used (it was not known when [1] was written). This remark is
important because it has always been pointed out by the elders that the knowledge of covariants,
rather than invariants, is the cornerstone to understand the geometry of a representation. This
statement is thus illustrated here.
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9.2. Case II: Cov2(H) is transversely isotropic.

Theorem 9.5. Let H ∈ H
4 be a fourth order harmonic tensor. The following propositions are

equivalent.

(1) Cov2(H) is transversely isotropic;
(2) H is tetragonal, trigonal or transversely isotropic;
(3) the pair (d2, c3) is transversely isotropic.

Remark 9.6. By virtue of lemma 8.1, lemma 8.3 and theorem 9.5, condition (3) in theorem 9.5
can be recast as

d2
′ 6= 0, d2 × (d2)

2 = 0, c3 × d2 = 0.

Proof of theorem 9.5. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) is true, then, without loss of generality, we can assume that all symmetric

second-order covariants are invariant by the subgroup O(2) and that at least one of them, say
a writes as

a = λq+ µτττ , µ 6= 0.

Thus, τττ = diag(1, 1,−2) is an eigenvector of H (because H :q = 0 and H :a is traceless) and we
have

Y2 = 0, X1 +X2 = 0, Z1 = 0, Λ1 = Λ2.

Now we compute d2 from (9.1) and write that it must be invariant by O(2) and we get

4Z2X1 + (Λ1 + 4Λ3)Y1 = 0,

(Λ1 + 4Λ3)X1 − 4Z2Y1 = 0.

The solutions of this system break into two alternatives:

(1) either Z2 = 0 and Λ1 = −4Λ3,
(2) or, X1 = Y1 = 0.

In the first case, we get

[H] =

















−3Λ3 −Λ3 4Λ3 −
√
2X1

√
2Y1 0

−Λ3 −3Λ3 −4Λ3 −
√
2X1 −

√
2Y1 0

4Λ3 4Λ3 −8Λ3 0 0 0

−
√
2X1 +

√
2X1 0 8Λ3 0 −2Y1√

2Y1 −
√
2Y1 0 0 8Λ3 −2X1

0 0 0 −2Y1 −2X1 −2Λ3

















which is at least trigonal since g ⋆H = H for all g ∈ Z3. In the second case, we get

[H] =

















Λ1 + Λ3 −Λ3 −Λ1 0 0 −
√
2Z2

−Λ3 Λ1 + Λ3 −Λ1 0 0
√
2Z2

−Λ1 −Λ1 2Λ1 0 0 0
0 0 0 −2Λ1 0 0
0 0 0 0 −2Λ1 0

−
√
2Z2

√
2Z2 0 0 0 −2Λ3

















which is at least tetragonal since g ⋆H = H for all g ∈ Z4.
The assertion (2) =⇒ (3) is trivial because if (2) is true then the pair (d2, c3) is either

transversely isotropic or isotropic, but it cannot be isotropic by virtue of theorem 9.3.
Finally, suppose that (3) is true. Note first that d2 cannot be isotropic, because of theorem 9.3.

Without loss of generality, we can assume, therefore, that

d′
2 = µ2τττ , c3 = µ3τττ ,

where µ2 6= 0 and τττ = diag(1, 1,−2). We get thus

c3 = H :d2 = H :d′
2 = µ2H :τττ = µ3τττ

leading to

H :τττ =
µ3
µ2
τττ ,
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which means that τττ is an eigenvector of H. But then

c4 = H : c3 =
µ23
µ2
τττ , c5 = H : c4 =

µ33
µ22
τττ ,

and thus, the triple (d2, c3, c4, c5) is transversely isotropic. We deduce then from Table 2, that
Cov2(H) is transversely isotropic. �

We will now formulate conditions which allow to distinguish between the three remaining
cases: transversely isotropic, trigonal and tetragonal.

Corollary 9.7. Let H ∈ H
4 be a fourth order harmonic tensor. Then

(1) H is transversely isotropic if and only if d2 is transversely isotropic and

H× d2 = 0;

(2) H is tetragonal if and only if d2 is transversely isotropic,

H× d2 6= 0, and tr(H× d2) = 0;

(3) H is trigonal if and only if d2 is transversely isotropic,

tr(H× d2) 6= 0, and (H : d2)× d2 = 0.

Proof. Note first that if H is either transversely isotropic, tetragonal or trigonal then, d2 is
necessarily transversely isotropic, by theorem 9.3.

(1) If H is transversely isotropic, then, H × d2 = 0 by lemma 8.7. Conversely, if d2 is
transversely isotropic and H× d2 = 0, then, (H,d2) is transversely isotropic by lemma 8.7 and
so is H.

(2) If H is tetragonal, then, tr(H×d2) = 0 by lemma 8.8 and H×d2 6= 0 by (1). Conversely, if
the conditions in (2) are satisfied, then, (H,d2) is at least tetragonal by lemma 8.8, and so is H.
Since H cannot be isotropic or cubic by theorem 9.3 (because d2 is assumed to be transversely
isotropic), it is either tetragonal or transversely isotropic, the later case being excluded by the
condition H× d2 6= 0.

(3) If H is trigonal, then, the pair (d2, c3) is transversely isotropic and thus

(H : d2)× d2 = c3 × d2 = 0,

by lemma 8.3. Moreover, tr(H × d2) 6= 0 by lemma 8.8. Conversely, if the conditions in (3)
holds, then, the pair (d2, c3) is transversely isotropic by lemma 8.3 and H is either tetragonal,
trigonal or transversely isotropic by theorem 9.5. Since H cannot be transversely isotropic by
lemma 8.7, nor tetragonal by lemma 8.8, it is necessarily trigonal. �

We will end this subsection with two lemmas which characterise the symmetry class of a pair
(H, t) where H is a fourth-order harmonic tensor and t is a transversely isotropic second-order
symmetric tensor. This completes the results of Section 8 and will be very useful to prove our
main theorem in Section 10.

Lemma 9.8. Let t ∈ S
2(R3) be transversely isotropic and H ∈ H

4(R3) be an harmonic fourth-
order tensor. Then, the pair (H, t) is trigonal if and only if

(9.4) (H : t)× t = 0, d2 × t = 0, and tr(H× t) 6= 0.

Proof. Suppose first that (H, t) is trigonal. Then the triplet of second-order covariants (H : t,d2, t)
is at least trigonal and thus transversely isotropic by proposition 6.9. We have thus (H : t)×t = 0
and d2× t = 0 by lemma 8.3. Moreover, tr(H× t) 6= 0, by lemma 8.8. Conversely, suppose that
conditions (9.4) are satisfied. Then, d2 is at least transversely isotropic by lemma 8.3.

(1) If d2 is isotropic, then H is cubic by theorem 9.3 (it cannot vanish because we assume
tr(H× t) 6= 0). But then, (H, t) is trigonal by lemma 8.9.

(2) If d2 is transversely isotropic, then d′
2 = λt′ with λ 6= 0 and thus

(H :d2)× d2 = 0, and tr(H× d2) 6= 0.

Therefore H is trigonal by corollary 9.7 and so is the pair (H, t).
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�

Corollary 9.9. Let t ∈ S
2(R3) be a transversely isotropic and H be an harmonic fourth-order

tensor. Then, the pair (H, t) is either trigonal, tetragonal or transversely isotropic if and only
if the triplet (d2, t,H : t) is transversely isotropic.

Proof. Suppose first that (H, t) is either trigonal, tetragonal or transversely isotropic. Then
the triplet of second-order covariants (d2, t,H : t) is at least transversely isotropic and thus
transversely isotropic. Conversely, suppose that (d2, t,H : t) is transversely isotropic. Then we
have

d2 × t = 0, and (H : t)× t = 0,

by lemma 8.3. If tr(H×t) = 0, then, the pair (H, t) is either tetragonal or transversely isotropic
by lemma 8.8. If tr(H × t) 6= 0, then, the pair (H, t) is trigonal by lemma 9.8. This achieves
the proof. �

9.3. Case III: Cov2(H) is orthotropic.

Lemma 9.10. Let H ∈ H
4 be a fourth order harmonic tensor. Then

vvv5 = vvv6 = 0 =⇒ Cov1(H) = {0} ,
where vvv5 := εεε :(d2c3) and vvv6 := εεε :(d2c4).

Proof. If vvv5 = vvv6 = 0, then the commutators [d2, c3] and [d2, c4] vanish. Without loss of
generality, we can assume that d2 and c3 are diagonal matrices. We will now show that

[c3, c4] = 0.

(a) If d2 is orthotropic, then c4 is also diagonal (since [d2, c4] = 0) and thus [c3, c4] = 0.
(b) If d2 is transversely isotropic, we can assume, without loss of generality, that d2 =

diag(λ, λ, µ) where λ 6= µ. Then, since c3 = H :d2 is also diagonal, we get

X1 +X2 = Y2 = Z1 = 0.

Expressing now that (d2)11 = (d2)22 and (d2)12 = 0, we have

Z2(Λ1 − Λ2) = (Λ3 + 2Λ1 + 2Λ2)(Λ1 − Λ2) = 0.

But, since [d2, c4] = 0 where c4 = H2 :d2, we get

(c4)13 = (c4)23 = 0,

and thus

(Λ1 − Λ2)Y1 = (Λ1 − Λ2)X2 = 0.

• If Λ1 = Λ2, then, (c4)12 = (µ − λ)(Λ2 − Λ1)Z2 = 0. Thus c4 is diagonal and
[c3, c4] = 0.

• If Λ1 6= Λ2, then

X2 = Y1 = Z2 = 0, Λ3 + 2Λ1 + 2Λ2 = 0

and, once again, c4 is diagonal and thus [c3, c4] = 0.
(c) if d2 is isotropic, then all second order covariants vanish (by theorem 9.3).

In each case, d2, c3, c4 commute with each other and thus all the first-order covariants in Table 2
vanish, leading to Cov1(H) = {0}. �

Theorem 9.11. Let H ∈ H
4 be a fourth order harmonic tensor. The following propositions are

equivalent.

(1) Cov2(H) is orthotropic;
(2) H is orthotropic;
(3) vvv5 = vvv6 = 0 and the pair (d2, c3) is orthotropic.

In that case, GH = G(d2,c3,c4).
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Remark 9.12. Condition (3) implies that the triplet (d2, c3, c4) is orthotropic by lemma 9.10.
Conversely, if the triplet (d2, c3, c4) is orthotropic, then (3) holds because if (d2, c3) was at least
transversely isotropic, then so would be Cov2(H) by theorem 9.5 and theorem 9.3, which would
lead to a contradiction. Thus, these two conditions are equivalent. However, checking condition
(3) requires less computations than checking that (d2, c3, c4) is orthotropic using theorem 8.6.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that Cov2(H) is orthotropic and thus of dimension 3 by proposition 7.5. Then,

by corollary 7.4, there exists c ∈ Cov2(H) which is orthotropic. By lemma 7.2, we deduce that
Cov2(H) = 〈q, c, c2〉, and thus, without loss of generality, we can assume that Cov2(H) is the
space of all diagonal tensors. Now, since H :q = 0, H : c and H : c2 are second-order symmetric
covariants, we deduce moreover that the space of diagonal matrices is invariant under H, which
has thus the matrix representation

(9.5) [H] =

















Λ2 + Λ3 −Λ3 −Λ2 0 0 0
−Λ3 Λ3 + Λ1 −Λ1 0 0 0
−Λ2 −Λ1 Λ1 + Λ2 0 0 0
0 0 0 −2Λ1 0 0
0 0 0 0 −2Λ2 0
0 0 0 0 0 −2Λ3

















which is the normal form of an harmonic tensor which is at least orthotropic. Since it cannot
be of lower symmetry by theorem 9.5 and theorem 9.3, we conclude that H is orthotropic.

Suppose now that H is orthotropic. Then, Cov1(H) = {0} by proposition 7.1 and thus vvv5 =
vvv6 = 0. Moreover, the pair (d2, c3) is at least orthotropic and thus orthotropic by theorem 9.5
and theorem 9.3. Thus we get (3).

Finally, suppose that (3) holds. Then by lemma 9.10, Cov1(H) = {0} and thus Cov2(H) is
at least orthotropic by lemma 9.1 and thus orthotropic since (d2,d3) is orthotropic. �

9.4. Case IV: Cov2(H) is monoclinic.

Lemma 9.13. Let H ∈ H
4 be a fourth order harmonic tensor. Then

vvv5 = 0 =⇒ dimCov1(H) ≤ 1,

where vvv5 := εεε :(d2c3).

Proof. If vvv5 = 0, then d2 and c3 commute. We will distinguish 2 cases whether d2 is orthotropic
or transversely isotropic (if d2 is isotropic, the result already holds by theorem 9.3).

(1) Suppose that d2 is transversely isotropic. Without loss of generality we can assume that
d2 = diag(λ, λ, µ), λ 6= µ, and that c3 = H :d2 is diagonal. We get then

X1 +X2 = 0, Y2 = 0, Z1 = 0.

Using these substitutions, we have

(d2)11 = 4Λ2
3 + 2Λ2Λ3 + 4Λ2

2 + 4Z2
2 + 6Y 2

1 + 6X2
1

(d2)22 = 4Λ2
3 + 2Λ1Λ3 + 4Λ2

1 + 4Z2
2 + 6Y 2

1 + 6X2
1

(d2)12 = (Λ1 − Λ2)Z2

(d2)13 = (4Λ3 − 2Λ2 + 3Λ1)Y1 + 4X1Z2

(d2)23 = (4Λ3 − 2Λ1 + 3Λ2)X1 − 4Y1Z2

and thus

(Λ1 − Λ2)Z2 = 0,

(4Λ3 − 2Λ2 + 3Λ1)Y1 + 4X1Z2 = 0,

(4Λ3 − 2Λ1 + 3Λ2)X1 − 4Y1Z2 = 0,

(Λ1 − Λ2)(2Λ1 + 2Λ2 + Λ3) = 0.
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(a) If Λ1 = Λ2, we get

(4Λ3 +Λ1)Y1 + 4X1Z2 = 0,

−(4Λ3 +Λ1)X1 + 4Y1Z2 = 0.

Then either the determinant of the system 16Z2
2 + (4Λ3 + Λ1)

2 does not vanish, and thus
X1 = Y1 = 0. In this case we get

X1 = X2 = Y1 = Y2 = 0

and H is invariant under the rotation by angle π around eee3. Otherwise, we have Z2 = 0 and
4Λ3 +Λ1 = 0. In that case, c4 is also diagonal and commutes thus with both d2 and c3 and we
are done by lemma 9.10.

(b) If Λ1 6= Λ2 , then Z2 = 0 and

Y1(4Λ3 − 2Λ2 + 3Λ1) = 0,

X1(4Λ3 − 2Λ1 + 3Λ2) = 0,

Λ3 + 2Λ2 + 2Λ1 = 0.

If X1 = 0 or Y1 = 0 then, we are done since H is at least monoclinic in either cases. Thus we
can assume that

4Λ3 − 2Λ2 + 3Λ1 = 0,

4Λ3 + 3Λ2 − 2Λ1 = 0,

Λ3 + 2Λ2 + 2Λ1 = 0,

but the unique solution of this linear system is Λ1 = Λ2 = Λ3 = 0, and then c4 = 0. Again, we
are done by lemma 9.10.

(2) Suppose that d2 is orthotropic. Our strategy will be to show that vvv6 = εεε :(d2c4) is a
common eigenvector of both d2, c3 and c4, in which case dimCov1(H) = 1 (if vvv6 = 0, then
Cov1(H) = {0} by lemma 9.10). Note that, if we can prove that vvv6 is an eigenvector of d2,
then, we are done because

d2(c3vvv6) = c3(d2vvv6), d2(c4vvv6) = c4(d2vvv6)

and d2 (which is orthotropic) has only simple eigenvalues. Now d2vvv6 can be recast as a product
of covariants in Table 2. Indeed, we have

(9.6) d2vvv6 = J2vvv6 − vvv8b,

where
vvv6 = εεε :(d2c4), and vvv8b = εεε :(d2

2c4).

Without loss of generality, we can assume that d2 is diagonal, and hence that (q,d2,d
2
2) is a

basis of the space of diagonal matrices. Therefore

(9.7) c3 = αq+ βd2 + γd2
2.

If γ = 0, then
c4 = H : c3 = β(H :d2) = βc3

and we are done by lemma 9.10. Therefore, we can suppose that γ 6= 0. Contracting with c4
both sides of (9.7), we get

c4c3 = αc4 + βc4d2 + γc4d
2
2,

and contracting with εεε leads to

(9.8) vvv7b = εεε :(c4c3) = −βvvv6 − γvvv8b.

Now, contracting H with both sides of (9.7), we get

c4 = H : c3 = βH :d2 + γH :d2
2 = βc3 + γH :d2

2.

But H :d2
2 can be recast as a product of covariants in Table 2. Indeed

8H :d2
2 = (−2J2J3 + 8J5)q− 2J3d2 + 7J2c3 + 10c5 − 12(d2c3)

s.
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Therefore (remember that d2 and c3 commute), we have

c4 =

(

β +
7γ

8
J2

)

c3 + γ

(

J5 −
J2J3
4

)

q− γ

4
J3d2 +

5γ

4
c5 −

3γ

2
d2c3

and thus

c4c3 =

(

β +
7γ

8
J2

)

c23 + γ

(

J5 −
J2J3
4

)

c3 −
γ

4
J3d2c3 +

5γ

4
c5c3 −

3γ

2
d2c

2
3.

Hence

vvv7b = εεε :(c4c3) =
5γ

3
εεε :(c5c3).

But εεε :(c5c3) can be recast as a product of covariants in Table 2. Indeed

(9.9) 15εεε :(c5c3) = 4J3vvv5 + 15J2vvv6 + 18vvv8a − 24vvv8b,

where
vvv5 = εεε :(d2c3) = 0, and vvv8a = εεε :(d2c3

2) = 0.

We have thus

vvv7b =
5γ

3
J2vvv6 −

8γ

3
vvv8b.

Using (9.8), we deduce that

5γ

3
J2vvv6 −

8γ

3
vvv8b = vvv7b = −βvvv6 − γvvv8b

and hence that

vvv8b =

(

J2 +
3β

5γ

)

vvv6.

Therefore

d2vvv6 = J2vvv6 − vvv8b =
3β

5γ
vvv6

and vvv6 is an eigenvector of d2, which achieves the proof. �

Corollary 9.14. Let H ∈ H
4 be a fourth order harmonic tensor. Then,

(9.10) vvv5 × [(vvv5 ·H · vvv5)vvv5] = 0 and vvv5 ×
[

(vvv5 ·H2 · vvv5)vvv5
]

= 0,

if and only if H is at least monoclinic.

Proof. Suppose first that (9.10) is satisfied. If vvv5 = 0, we are done by lemma 9.13. Otherwise,
we can suppose, without loss of generality, that vvv5 = keee1 with k 6= 0. But then we get

H1112 = H1113 = 0, (H2)1112 = (H2)1113 = 0,

and thus

Y1 + Y2 = 0,

Z2 = 0,

2X1Y2 − (Λ2 − Λ3)Z1 = 0,

(Λ2 − Λ3)Y2 + 2X1Z1 = 0.

If 4X2
1 + (Λ2 − Λ3)

2 6= 0, then Y2 = Z1 = 0 and we are done (since then, H is a normal form
of a monoclinic tensor). Otherwise, we get Λ3 = Λ2 and X1 = 0. Then d2 and c3 commute
so that vvv5 = 0, which leads to a contradiction. Conversely, if H is at least monoclinic, then
dimCov1(H) ≤ 1 by proposition 7.1, and thus we get (9.10). This achieves the proof. �

Theorem 9.15. Let H ∈ H
4 be a fourth order harmonic tensor. The following propositions are

equivalent.

(1) H is monoclinic;
(2) Cov2(H) is monoclinic;
(3) the triplet (d2, c3, c4) is monoclinic.

In that case, GH = G(d2,c3,c4).
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Proof. We will prove that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) holds. Then, Cov2(H) is at least monoclinic. But Cov2(H) cannot be

orthotropic, transversely isotropic, nor isotropic by Theorems 9.11, 9.5, and 9.3. Thus Cov2(H)
is monoclinic.

Suppose now that (2) holds. Then, the triplet (d2, c3, c4) is at least monoclinic. Since it
cannot be at least orthotropic by lemma 9.10 and lemma 9.1, it is thus monoclinic.

Finally, suppose that (3) holds. Then, H is either monoclinic or triclinic. Moreover, there
exists a basis where each element of the triplet (d2, c3, c4) can be written as





∗ ∗ 0
∗ ∗ 0
0 0 ∗





and using the results of Table 2, we can conclude that dimCov1(H) = 1. But then, H is at
least monoclinic by corollary 9.14 and thus monoclinic. �

9.5. Case V: Cov2(H) is triclinic.

Theorem 9.16. Let H ∈ H
4 be a fourth order harmonic tensor. The following propositions are

equivalent.

(1) H is triclinic;
(2) Cov2(H) is triclinic;
(3) the triplet (d2, c3, c4) is triclinic.

Proof. We will prove that (1) =⇒ (2) =⇒ (3) =⇒ (1). If (1) holds, then (2) holds by
Theorems 9.3, 9.5, 9.11 and 9.15. If (2) holds, then (3) holds because if (d2, c3, c4) is at least
monoclinic, then dimCov1(H) ≤ 1 and thus Cov2(H) is at least monoclinic by lemma 9.1.
Finally, if (3) holds, then H is necessarily triclinic. �

10. Characterization of the Symmetry Class of an Elasticity tensor

The harmonic decomposition of the Elasticity tensor was first obtained by Backus [2] (see
also [18, 3]) and is given by

Ela ≃ H
0 ⊕H

0 ⊕H
2 ⊕H

2 ⊕H
4.

More precisely (see [9] for instance), given an orthonormal frame (eee1, eee2, eee3), each Elasticity
tensor E can be written as

Eijkl = λδijδkl + µ(δikδjl + δilδjk)

+ δijakl + δklaij

+ δikbjl + δjlbik + δilbjk + δjkbil

+Hijkl.

(10.1)

In this decomposition, λ, µ (the generalized Lamé coefficients) and the deviators a,b are related
to the dilatation tensor d := tr12 E and the Voigt tensor v := tr13E by the following process [18].
Starting with (10.1), we get

d = (3λ+ 2µ)q+ 3a+ 4b, v = (λ+ 4µ)q+ 2a+ 5b.

Taking the traces of each equation, one obtains

tr(d) = 9λ+ 6µ, tr(v) = 3λ+ 12µ,

and, finally:

λ =
1

15
(2 tr(d)− tr(v)), µ =

1

30
(− tr(d) + 3 tr(v)),

a =
1

7
(5d′ − 4v′), b =

1

7
(−2d′ + 3v′),

where d′ := d− 1
3 tr(d)q and v′ := v− 1

3 tr(v)q are the deviatoric parts of d and v respectively.
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The fourth-order harmonic component H is obtained using S := (E)s, the total symmetriza-
tion of E, given by

Sijkl =
1

3
(Eijkl + Eikjl +Eiljk).

The traceless part of S, H, is then given by

H = S− 2

7
q⊙

(

d′ + 2v′
)

− 1

15
(trd+ 2 trv)q⊙ q

where

(a⊙ b)ijkl :=
1

6

(

aijbkl + bijakl + aikbjl + bikajl + ailbjk + bilajk)

if a and b are two symmetric second order tensors.

Remark 10.1. An Elasticity tensor E can thus be written as

E = (H,a,b, λ, µ),

where λ, µ are scalars, a,b ∈ H
2 and H ∈ H

4. This decomposition is however not unique.
Indeed, substituting for (a,b) any invertible linear combination of them would lead to a similar
decomposition and the same is true for the pair of scalars (λ, µ). In particular, in the following
theorem, one can use (d′,v′) instead of (a,b), for instance.

We will now state our main theorem, which characterizes, using polynomial covariants, the
symmetry class of an Elasticity tensor.

Theorem 10.2. Let E = (H,a,b, λ, µ) ∈ Ela be an harmonic decomposition of an Elasticity
tensor E, where H ∈ H

4, a,b ∈ H
2 and λ, µ are scalars. Then

(1) E is isotropic if and only if a = b = d2 = 0.
(2) E is cubic if and only if a = b = d′

2 = 0 and d2 6= 0.
(3) E is transversely isotropic if and only if (d2,a,b) is transversely isotropic and

H× d2 = H× a = H× b = 0.

(4) E is tetragonal if and only if (d2,a,b) is transversely isotropic,

tr(H× d2) = tr(H× a) = tr(H× b) = 0,

and
H× d2 6= 0, or H× a 6= 0, or H× b 6= 0.

(5) E is trigonal if and only if (d2,a,b) is transversely isotropic,

d2 × (H :d2) = a× (H : a) = b× (H :b) = 0,

and
tr(H× d2) 6= 0, or tr(H× a) 6= 0, or tr(H× b) 6= 0.

(6) E is orthotropic if and only if the family of second-order tensors

Fo :=
{

d2,a,b, c3, c4,H : a,H :b,H : a2,H :b2
}

is orthotropic.
(7) E is monoclinic if and only if the family of second-order tensors

Fm :=
{

d2,a,b, c3, c4,H : a,H :b,H : a2,H :b2,H :(ab)s,H :(ad2)
s,H :(bd2)

s
}

is monoclinic.
(8) E is triclinic if and only if none of the preceding conditions holds.

Remark 10.3. Explicit covariant relations on a finite family F of second-order tensors which
characterize its symmetry class are provided by theorem 8.6.

Remark 10.4. Note that if the family Fo is transversely isotropic, then, the triplet (d2,a,b) is
transversely isotropic. Otherwise, it would be isotropic but then, E would be either isotropic
or cubic by points (1) and (2), and Fo would be isotropic itself, because covariants of E cannot
have less symmetry than E itself. This would lead to a contradiction. Hence, if the family Fo is
transversely isotropic, then, (d2,a,b) is transversely isotropic and thus E is either transversely
isotropic (3), tetragonal (4), or trigonal (5).
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Proof of theorem 10.2. Note first that the symmetry class of E is the same as the symmetry
class of the triplet (H,a,b) (see Section 6).

(1) If E is isotropic, then, H,a,b are all isotropic and thus vanish, since they all belong
to irreducible representations. Conversely, if a = b = d2 = 0, then, H vanishes because
‖H‖2 = trd2. Thus, (H,a,b) is isotropic.

(2) If E is cubic, then, all second-order symmetric covariant are isotropic. Thus, a = b =
d′
2 = 0 but d2 6= 0 (otherwise, (H,a,b) would be isotropic, by point (1)). Conversely, if

a = b = d′
2 = 0 and d2 6= 0, then, H is cubic according to theorem 9.3 and so is (H,a,b).

For the sequel of the proof, note that, so far, that we have proved that E is either isotropic,
or cubic if and only if the family of second-order covariants

Fi := {d2,a,b}
is isotropic.

(3) If E is transversely isotropic, then, the triplet (a,b,d2) is thus transversely isotropic.
Moreover, each pair (H,d2), (H,a), (H,b) is at least transversely isotropic and thus

H× d2 = H× a = H× b = 0,

by lemma 8.7 and Remark 3.9. Conversely, if the conditions in (3) are satisfied, then, at least
one of the covariants a, b, d2 (call it t) is transversely isotropic and

H× t = 0.

Therefore, the pair (H, t) is transversely isotropic according to lemma 8.7 and so is the triplet
(H,a,b).

(4) If E is tetragonal, then, each pair of covariants (H,d2), (H,a), (H,b) is at least tetragonal
and thus

tr(H× d2) = tr(H× a) = tr(H× b) = 0,

by lemma 8.8 and Remark 3.9. Now, since (a,b,d2) is transversely isotropic, at least one of the
covariants d2, a, b is transversely isotropic and thus

H× d2 6= 0, or H× a 6= 0, or H× b 6= 0,

by lemma 8.7 (otherwise, one of the pairs (H,d2), (H,a), (H,b) would be at least transversely
isotropic and so would be (H,a,b)). Conversely, if conditions in (4) are satisfied, we can find a
covariant t among a, b, d2 such that

tr(H× t) = 0, and H× t 6= 0.

Then, t is necessarily transversely isotropic by Remark 3.9 and thus (H, t) is at least tetragonal
by lemma 8.8. Moreover, (H, t) cannot be transversely isotropic, nor isotropic by lemma 8.7.
Since it cannot be either cubic (since t is transversely isotropic), it is in fact tetragonal, and so
is the triplet (H,a,b).

(5) If E is trigonal, then, Cov2(E) is at least transversely isotropic and we get, in particular,

d2 × (H :d2) = a× (H : a) = b× (H :b) = 0,

by lemma 8.3 and Remark 3.9. Moreover, (a,b,d2) is transversely isotropic and thus at least
one of the covariants a, b, d2 (call it t) is transversely isotropic. But then,

GE = G(H,a,b) = GH ∩G(d2,a,b) = GH ∩Gt.

Thus, the pair (H, t) is trigonal and tr(H×t) 6= 0 by lemma 9.8. Conversely, if conditions in (5)
are satisfied, we can find a covariant t among a, b, d2 (and thus at least transversely isotropic)
such that

t× (H : t) = 0, d2 × t = 0, and tr(H× t) 6= 0.

Then, t is necessarily transversely isotropic by Remark 3.9 and thus (H, t) is trigonal by
lemma 9.8, and so is the triplet (H,a,b).

For the sequel of the proof, note that, so far, that we have proved that E is either transversely
isotropic, tetragonal or trigonal if and only if the family of second-order covariants

Fti := {d2,a,b, c3,H :a,H :b}
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is transversely isotropic.
(6) If E is orthotropic, then, the family of second-order covariants Fo is at least orthotropic.

Since, moreover,
Fi ⊂ Fti ⊂ Fo,

Fo cannot be isotropic by points (1) and (2), neither transversely isotropic by points (3), (4) and
(5). It is thus orthotropic. Conversely, if Fo is orthotropic, then (H,a,b) is either orthotropic,
monoclinic or triclinic because (H,a,b) cannot have higher symmetry than its covariants. If
either a or b is orthotropic, then, (H,a,b) is orthotropic by lemma 8.11. The same conclusion
holds if either d2 or c3 is orthotropic by theorem 9.11. Otherwise, a, b, d2 and c3 are each at least
transversely isotropic. In that case, if either (a,b), (a,d2), (a, c3), (b,d2), (b, c3) or (d2, c3) is
orthotropic, then, (H,a,b) is orthotropic by corollary 8.12 and the fact that c3 = H :d2 and
c4 = H : c3 . Thus, we can assume that the quadruplet (a,b,d2, c3) is transversely isotropic
(it cannot be isotropic, otherwise, so would be Fo, because H :q = 0). Note that, in this case,
the alternative d2 transversely isotropic is excluded, otherwise, (d2, c3) would be transversely
isotropic and so would be Fo by theorem 9.5. Therefore, d′

2 = 0 and H is either isotropic or
cubic by theorem 9.3. The case where H is isotropic (and thus vanishes) is excluded because
then, Fo would be at least transversely isotropic. We can thus finally assume that H is cubic.
Then, either a or b is transversely isotropic. Let suppose it is a. Then b is collinear to a (since
a and b are deviators) and the pair (a,H :a) has the same symmetry group as Fo and is thus
orthotropic. Th erefore,

tr(a× (H : a)) = 0, a× (H :a) 6= 0,

and (H,a) is orthotropic by lemma 8.9, and so is (H,a,b).
(7) If E is monoclinic then the family of covariants Fm is at least monoclinic and thus

monoclinic, by points (1)–(6) and because

Fi ⊂ Fti ⊂ Fo ⊂ Fm.

Conversely, suppose that
GFm = {id, r} ,

where r is a second-order rotation. Then, (H,a,b) is at most monoclinic, because it cannot
have higher symmetry than its covariants. Besides,

r ∈ GFm ⊂ G(a,b),

so we have only to check that r ∈ GH, to prove that

r ∈ GE = GH ∩G(a,b).

Now, since
r ∈ GFm ⊂ G(d2,c3,c4),

H is at least monoclinic by theorem 9.16. If H is either monoclinic or orthotropic, then, we are
done by theorem 9.15 and theorem 9.11, because, in these cases we have

GH = G(d2,c3,c4).

If H is either transversely isotropic, tetragonal or trigonal, then (d2, c3) is transversely isotropic
by theorem 9.5. Thus d2 is transversely isotropic and d2 × c3 = 0 with c3 = H :d2. But
then, the triplet (d2,a,b) is at most orthotropic, otherwise the family Fm would have the same
symmetry group as (d2,H :d2) and would be transversely isotropic. Therefore, either a or b

(let call it c) is orthotropic, and we are done by lemma 8.11, because

r ∈ GFm ⊂ G(c,H : c,H : c2) = G(H,c) ⊂ GH,

or a and b are both transversely isotropic but one of the three pair (a,b), (a,d2) or (b,d2)
(let call it (t1, t2)) is either orthotropic or monoclinic, and we are done by corollary 8.12 (since
c3 = H :d2), because then

r ∈ GFm ⊂ G(H,t1,t2) ⊂ GH.

Suppose now that H is cubic. If either a or b is orthotropic, then, we are done by lemma 8.11
and the same conclusion holds, by corollary 8.12, if a and b are transversely isotropic but the
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pair (a,b) is orthotropic or monoclinic. We can thus assume that the pair of deviators (a,b) is
transversely isotropic (it cannot be isotropic otherwise, so would be Fm). In that case, either a
or b does not vanish and is thus transversely isotropic. Suppose, for instance, that a 6= 0. Then,
b is collinear to a and

GFm = G(a,H :a).

Thus, (a,H : a) is monoclinic and

r ∈ G(a,H : a) = G(a,H),

by lemma 8.9 and Remark 8.10. Finally, if H is isotropic, H = 0 and we are done. This achieves
the proof. �

Appendix A. Covariants of binary forms

A binary form f of degree n is a homogeneous complex polynomial in two variables u, v of
degree n:

f(ξξξ) = a0u
n + a1u

n−1v + · · · + an−1uv
n−1 + anv

n,

where ξξξ = (u, v) ∈ C
2 and ak ∈ C. The set of all binary forms of degree n is a complex vector

space of dimension n+ 1 which will be denoted by Sn. The special linear group

SL(2,C) :=

{

γ :=

(

a b
c d

)

, ad− bc = 1

}

acts naturally on C
2 and induces a left action on Sn, given by

(γ ⋆ f)(ξξξ) := f(γ−1ξξξ),

where γ ∈ SL(2,C). The spaces Sn are irreducible representations of SL(2,C) (see [51] for
instance) and every complex algebraic linear representation V of SL(2,C) can be decomposed
into a direct sum

V ≃ Sn1
⊕ . . .⊕ Snp .

Definition A.1. The transvectant of index r of two binary forms f ∈ Sn and g ∈ Sp is defined
as

(A.1) {f ,g}r =
(n− r)!

n!

(p− r)!

p!

r
∑

i=0

(−1)i
(

r

i

)

∂rf

∂r−iu∂iv

∂rg

∂iu∂r−iv
,

which is a binary form of degree n+ p− 2r (which vanishes if r > min(n, p)).

Example A.2. For two n-th powers binary forms

(A.2) (aξξξ)n := (a1u+ a2v)
n, (bξξξ)p := (b1u+ b2v)

p,

we get the particularly simple form

{(aξξξ)n, (bξξξ)p}r = (ab)r(aξξξ)n−r(bξξξ)p−r,

where by definition (ab) := a1b2 − a2b1.

Definition A.3. The covariant algebra of V is defined as

Cov(V ) := C[V ⊕ C
2]SL(2,C).

The degree of a covariant h ∈ Cov(V ) is the total degree d of h in f ∈ V , whereas the total
degree k of h in ξ ∈ C

2 is called the order of h.

The key point is that the transvectant of two binary forms is SL(2,C)-equivariant and that
Cov(V ) is generated by the infinite set of iterated transvectants [27, 46, 39]:

f1, . . . , fp {fi, fj}r, {fi, {fj , fk}r}s, . . .

Remark A.4. A consequence of this observation is that for every integer n ≥ 1, the covariant
algebra Cov(S2n) is generated by even order covariants.
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The remarkable achievement of Gordan is that he was able to provide a constructive (and
extremely efficient) way to obtain a finite generating set of transvectants for the covariant algebra
of finite dimensional representation of SL(2,C). This algorithm is now known as Gordan’s
algorithm (see [39]). There are in fact two versions of this algorithm; one of them produces
a basis for Cov(Sn), provided we know bases for Cov(Sk), for each k < n. The other one
produces a basis for Cov(V1 ⊕ V2), if we know bases for Cov(V1) and Cov(V2). More precisely,
if {f1, . . . , fp} and {g1, . . . ,gq} generate respectively Cov(V1) and Cov(V2), then the covariant
algebra Cov(V1 ⊕ V2) is generated by the finite family of transvectants

{fα1

1 · · · fαp
p ,gβ1

1 · · · gβq
q }r,

where the integers (αi, βi, u, v, r) are the irreducible solutions of the Diophantine equation
p

∑

i=1

aiαi = u+ r,

p
∑

j=1

bjβj = v + r

and ai, bj are the orders of fi,gj .
Using this algorithm, we will formulate a theorem which connects generating sets forCov(S2n)

and Inv(S2n ⊕ S2). First, observe that there is a natural covariant mapping

ψ : C2 → S2, η 7→ wη,

where
wη(ξξξξξξξξξ) := (η1v − η2u)

2, ξξξ = (u, v).

By pullback, this mapping induces an algebra homomorphism

ψ∗ : C[S2n ⊕ S2]
SL(2,C) → C[S2n ⊕ C

2]SL(2,C) = Cov(S2n)

given by

ψ∗(p)(f , ξξξ) = p(f ,wη), p ∈ C[S2n ⊕ S2]
SL(2,C).

Consider now the covariant linear mapping

(A.3) ς : Cov(S2n) → C[S2n ⊕ S2]
SL(2,C), h 7→ p(f ,w) :=

r
∑

k=0

{h2k,w
k}2k

where h(f , ξξξ) =
∑r

k=0 h2k(f , ξξξ) is the decomposition of h into homogeneous covariants of order
2k (see remark A.4). We have the following result.

Lemma A.5. The algebra homomorphism ψ∗ is surjective and ς is a linear equivariant section
of ψ∗. In other words

ψ∗ ◦ ς = Id.

Proof. Note first that ς is linear but is not an algebra homomorphism. We will show that ς is
a section of ψ∗ (as a linear mapping) and the surjectivity will follow. If h is homogeneous of
order 2r, we have

ς(h) = {h,wr}2r,
and hence

[(ψ∗ ◦ ς)(h)](f , η) = {h,wr
η}2r.

Thus, if h(f , ξξξ) = (aξξξξξξξξξ)2r = (a1u+ a2v)
2r is a 2r-th power binary form, we get

(ψ∗ ◦ ς)(h)(f , η) = {(a1u+ a2v)
2r, (η1v − η2u)

2r}2r = (a1η1 + a2η2)
2r = h(f , η),

by virtue of (A.2). Since every binary form of degree 2r is a linear combination of 2r-th power
binary forms, this achieves the proof. �

Theorem A.6. Let {h1, . . . ,hN} be a minimal basis for Cov(S2n). Then a minimal basis for
the joint invariant algebra

C[S2n ⊕ S2]
SL(2,C)

is given by
{ς(h1), . . . , ς(hN ),∆}

where ∆(w) := b21 − b0b2, if w(ξξξ) := b0u
2 + b1uv + b2v

2 ∈ S2.
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Remark A.7. The result is still true if we replace, in the theorem, S2n by a direct sum of binary
forms of even degree S2n1

⊕ · · · ⊕ S2nk
.

Proof. Applying Gordan’s algorithm to obtain a basis for Inv(S2n ⊕ S2), and since Cov(S2) is
generated by the binary form w itself and the invariant ∆, we deduce that a generating set for
Inv(S2n ⊕ S2) is given by ∆ and transvectants

{hα1

1 · · ·hαN

N ,wr}2r,
where (αi, 2r) is an irreducible solution of

(A.4)
N
∑

i=1

αiai = 2r

and h1, . . . ,hN are generators for Cov(S2n), all of them being of even order.
Now observe that, if a product h

α1

1 · · ·hαN

N contains more than two factors, then (αi, 2r) is
reducible. Indeed it can be written as a sum of two non-trivial solutions (α1

i , 2r1) and (α2
i , 2r2)

of (A.4), where 2r1 + 2r2 = 2r. Thus, a finite set of generators for Inv(S2n ⊕ S2) is given by ∆
and

{hi,w
ri}2ri , i = 1, . . . , N

where 2ri (see remark A.4) is the order of hi. To achieve the proof, it remains to show that if
{h1, . . . ,hN} is minimal the same is true for {ς(h1), . . . , ς(hN ),∆}. To do so, observe that if for
some i ∈ {1, . . . , N}, there exists a polynomial P such that

ς(hi) = P (∆, ς(hj)), j 6= i,

then using the fact that ψ∗ is an algebra homomorphism, we get

hi = ψ∗(ς(hi)) = ψ∗(P (∆, ς(hj))) = P (ψ∗(∆), ψ∗(ς(hj))) = P (0,hj),

because ψ∗(∆) = ∆(wη) = ∆((η1v − η2u)
2) = 0, which leads to a contradiction. �

Appendix B. Covariants of harmonic tensors

There is a closed relation between covariant/invariant algebras of harmonic polynomials of
three variables and those of binary forms which is recalled in this section (see also [44, Appendix
B]).

The complexification of the SO(3)-representation on the real space of harmonic polynomials
Hn(R

3) extends to a representation of the complex algebraic group

SO(3,C) :=
{

P ∈ M3(C); P
tP = I, detP = 1

}

on the space of complex harmonic polynomials Hn(C
3), which remains irreducible. There is,

moreover, a group homomorphism [44, Appendix B]

π : SL(2,C) → SO(3,C), γ 7→ Adγ ,

where
Adγ :M 7→ γMγ−1, γ ∈ SL(2,C), M ∈ sl(2,C)

is the adjoint action of SL(2,C) on its Lie algebra sl(2,C). When restricted to the real Lie group

SU(2,C) :=
{

γ ∈ SL(2,C); γ̄tγ = I
}

,

it induces the well-known two-fold covering

π : SU(2,C) → SO(3,R), γ 7→ Adγ .

Using these constructions, Hn(C
3) becomes an SL(2,C)-representation if we set

(B.1) γ ⋆ h := π(γ) ⋆ h, h ∈ Hn(C
3), γ ∈ SL(2,C),

and Hn(R
3) becomes an SU(2,C)-representation if we set

γ ⋆ h := π(γ) ⋆ h, h ∈ Hn(R
3), γ ∈ SU(2,C),

both of them remaining irreducible.
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Now, there is an equivariant isomorphism between the space Hn(C
3) of complex harmonic

polynomials of degree n and binary forms of degree 2n. This isomorphism derives from an
equivariant mapping introduced first in Cartan’s theory of spinors going back to 1913 (see [12,
Chapter 3]) and rediscovered later by Backus [2]. More precisely, let us introduce the Cartan
map

(B.2) φ : C2 → sl(2,C), ξξξ 7→ ξξξ ξξξω =

(

−uv u2

−v2 uv

)

,

where

ξξξ =

(

u
v

)

, ξξξω =
(

−v u
)

,

and ξξξω means the covariant version of the vector ξξξ, defined using the determinant ω on C
2

(a nondegenerate bilinear form). The main property of this mapping is that it is SL(2,C)-
equivariant, meaning that

φ(γξξξ) = Adγ φ(ξξξ), ∀γ ∈ sl(2,C).

Choosing the following basis
(

0 1
−1 0

)

,

(

0 i
i 0

)

,

(

i 0
0 −i

)

,

of the Lie algebra sl(2,C) (corresponding to multiplication by i of Pauli matrices), allows us to
identify sl(2,C) with C

3, using the parametrization
(

iz x+ iy
−x+ iy −iz

)

.

In this basis, the Cartan map (B.2) writes

(B.3) φ : C2 → C
3, (u, v) 7→

(

x =
u2 + v2

2
, y =

u2 − v2

2i
, z = iuv

)

.

By pullback, the Cartan map φ induces an equivariant isomorphism

φ∗ : Hn(C
3) → S2n, h 7→ h ◦ φ,

which is equivariant in the following sense (using (B.1))

φ∗(Adγ ⋆h) = γ ⋆ φ∗(h), h ∈ Hn(C
3), γ ∈ SL(2,C).

Theorem B.1. The linear mapping φ∗ : Hn(C
3) → S2n defined by

(φ∗(h))(u, v) := h

(

u2 + v2

2
,
u2 − v2

2i
, iuv

)

.

is an SL(2,C)-equivariant isomorphism. The invariant algebras C[Hn(C
3)]SO(3,C) and C[S2n]

SL(2,C)

are thus isomorphic.

Remark B.2. The equivariant isomorphism φ∗ : Hn(C
3) → S2n is unique, up to a scaling fac-

tor, thanks to Schur’s lemma. A different basis and thus a different representation has been
considered by Backus in its study of the Elasticity tensor, as [2, Eq. 50]

(u, v) 7→
(

u2 − v2,−i(u2 + v2), 2uv
)

.

Note also that a different representation was given in [44, Theorem 5.1], as

(u, v) 7→
(

u2 − v2

2
,
u2 + v2

2i
, uv

)

.

However, expression (B.3) seems to be finally more convenient, especially when one works with
transvectants.
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Let SR2n := φ∗(Hn(R
3)) be the space of binary forms which correspond to real harmonic

polynomials. This space is characterized as follows

SR2n = {f ∈ S2n; Sf = f} ,
where S is the linear involution of S2n defined by

(Sf)(u, v) = f̄(−v, u),
and where f̄(u, v) := f(ū, v̄). This means that if

f =
2n
∑

k=0

aku
kv2n−k,

then,
f ∈ SR2n ⇐⇒ a2n−k = (−1)kak, k = 0, . . . , 2n.

Note that SR2n is invariant under the action of SU(2,C) and that the decomposition of the
space S2n into irreducible components of SU(2,C) writes

S2n = SR2n ⊕ iSR2n,

where iSR2n is characterized by the functional equation Sf = −f . Moreover, since we have the
following commuting relations

∂u ◦ S = S ◦ ∂v, ∂v ◦ S = −S ◦ ∂u,
we deduce that

{Sf , Sg}r = S{f ,g}r ,
by (A.1). Therefore, we have the following result.

Lemma B.3. Let f ∈ SR2n and g ∈ SR2p. Then {f ,g}2r ∈ SR2n+2p−2r.

In particular, an iterated transvectant of order 0 (i.e. an invariant) is necessary real when
evaluated on binary forms in SR2n, because SR0 = R. Therefore, if I1, . . . , IN are invariants of
binary forms in S2n1

⊕ · · · ⊕ S2np obtained by such a transvectant process, they become real

polynomials when evaluated on SR2n1
⊕ · · · ⊕ SR2np

.
Consider now the covariant algebra

Cov(V) = R[V⊕ R
3]SO(3)

where
V := Hn1

(R3)⊕ · · · ⊕ Hnp(R
3).

Then, using the group morphism π : SU(2,C) → SO(3,R) and the isomorphism introduced in
theorem B.1, we deduce an explicit real algebra isomorphism

Cov(V) ≃ R[SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2 ]
SU(2,C),

where we have made the trivial identification R
3 = H1(R

3) and we have the following result.

Theorem B.4. Let {g1, . . . ,gN} be a minimal generating set of the complex covariant algebra

C[S2n1
⊕ · · · ⊕ S2np ⊕ S2]

SL(2,C)

obtained by iterated transvectants. Then, by restriction, the set {g1, . . . ,gN} defines a minimal
generating set of the real invariant algebra

R[SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2 ]
SU(2,C).

In practice, to obtain an explicit basis of the covariant algebra

Cov(Hn1
(R3)⊕ · · · ⊕ Hnp(R

3))

starting from the knowledge of a basis

{h1, . . . ,hN}
of the covariant algebra

Cov(S2n1
⊕ · · · ⊕ S2np),
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obtained by iterated transvectants, one can use lemma B.5 to translate these iterated transvec-
tants and obtained tensorial expressions (or their polynomial counterparts, using the results of
Section 3) for the generators of

Cov(Hn1
(R3)⊕ · · · ⊕ Hnp(R

3)),

don’t omitting to add q := x2 + y2 + z2 to this list.

Lemma B.5. Let H1 ∈ H
n(R3) and H2 ∈ H

p(R3) be two harmonic tensors. Then we have

(B.4) {φ∗H1, φ
∗H2}2r = 2−rφ∗((H1

(r)· H2)
s
0)

and

(B.5) {φ∗H1, φ
∗H2}2r+1 = κ(n, p, r)φ∗((trr(H1 ×H2))0)

where

κ(n, p, r) =
1

22r+1

(n+ p− 1)!(n − r − 1)!(p − r − 1)!

(n+ p− 1− 2r)!(n − 1)!(p − 1)!
.

Appendix C. Invariants of the Elasticity tensor

A minimal integrity basis for the Elasticity tensor E = (H,a,b, λ, µ) was produced for the
first time in [44], using Gordan’s algorithm [39]. In this appendix, we provide an alternative
minimal integrity basis, using the covariants of H given in Table 2.

This basis has been checked to be correct using the Hilbert series of Inv(Ela) and using the
method which was outlined in section 5. This basis consists in:

(1) 15 simple invariants:
• λ, µ;
• the simple invariants of a and b: tr a2, tr a3, trb2, trb3:
• and the nine simple invariants of H, computed first in [9]:

trd2, trd3, trd2
2, tr (d2d3) , trd3

2,

tr
(

d2
2d3

)

, tr
(

d2d
2
3

)

, trd3
3, tr

(

d2
2d

2
3

)

;

(2) 4 joint invariants of (a,b):

tr (ab) , tr
(

a2b
)

, tr
(

ab2
)

, tr
(

a2b2
)

(3) 52 joint invariants of (H,a), and similarly 52 joint invariants of (H,b) given in Table 3,
where

3,3CCC = tr
(

H× d2

)

, 4b,5CCC =
(

H2
)s × d2, vvv5 = εεε :

(

d2c3
)

.

(4) 174 joint invariant of (H,a,b) given in Table 4, Table 5 and Table 6, where
3,7CCC = H×

(

H2
)s
, 3,9CCC =

((

H ·H
)s ×H

)

,

3,5CCC = H× d2,
4,7CCC =

(

H×
(

H3
)s)

.
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[38] M. Olive. Géométrie des espaces de tenseurs, une approche effective appliquée à la mécanique des milieux
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(Boris Desmorat) Sorbonne Université, UMPC Univ Paris 06, CNRS, UMR 7190, Institut d’Alembert,

F-75252 Paris Cedex 05, France & Univ Paris Sud 11, F-91405 Orsay, France

E-mail address, Boris Desmorat: boris.desmorat@sorbonne-universite.fr



COVARIANTS AND SYMMETRY CLASSES 41

# Cov. Deg. Ord. Formula

1 I2 2 0 tr(d2)

2 I3 3 0 tr(d3)

3 I4 4 0 tr(d2
2)

4 I5 5 0 tr(d2d3)

5 I6 6 0 tr(d2
3)

6 I7 7 0 tr(d2
2d3)

7 I8 8 0 tr(d2d3
2)

8 I9 9 0 tr(d3
3)

9 I10 10 0 tr(d2
2d3

2)

10 5,1CCC 5 1 vvv5 = εεε :(d2c3)

11 6,1CCC 6 1 vvv6 = εεε :(d2c4)

12 7a,1CCC 7 1 vvv7a = εεε :(d2
2c3)

13 7b,1CCC 7 1 vvv7b = εεε :(c4c3)

14 8a,1CCC 8 1 vvv8a = εεε :(d2c3
2)

15 8b,1CCC 8 1 vvv8b = εεε :(d2
2c4)

16 9a,1CCC 9 1 vvv9a = εεε :(d2c4c3)

17 9b,1CCC 9 1 vvv9b = εεε :(c3d2c4)

18 9c,1CCC 9 1 vvv9c = εεε :(d2c3c4)

19 10a,1CCC 10 1 vvv10a = εεε :(d2
2c3

2)

20 10b,1CCC 10 1 vvv10b = εεε :(c3
2c4)

21 11a,1CCC 11 1 vvv11a = εεε :(c3c4
2)

22 11b,1CCC 11 1 vvv11b = εεε :(d2
2c3c4)

23 12,1CCC 12 1 vvv12 = εεε :(d2c3
2c4)

0 0,2CCC 0 2 q

24 2,2CCC 2 2 d2

25 3,2CCC 3 2 c3

26 4a,2CCC 4 2 c4

27 4b,2CCC 4 2 d2
2

28 5a,2CCC 5 2 c5

29 5b,2CCC 5 2 (d2c3)
s

30 6a,2CCC 6 2 (d2c4)
s

31 6b,2CCC 6 2 c3
2

32 7a,2CCC 7 2 (d2
2c3)

s

33 7b,2CCC 7 2 (c4c3)
s

# Cov. Deg. Ord. Formula

34 8a,2CCC 8 2 (d2c3
2)s

35 8b,2CCC 8 2 c4
2

36 9,2CCC 9 2 (d2
2c5)

s

37 3,3CCC 3 3 tr(H× d2)

38 4,3CCC 4 3 tr(H× c3)
39 5a,3CCC 5 3 d2 × c3

40 5b,3CCC 5 3 tr(H× d2
2)

41 6a,3CCC 6 3 d2 × d2
2

42 6b,3CCC 6 3 d2 × c4
43 6c,3CCC 6 3 tr(H× c5)
44 7a,3CCC 7 3 d2

2 × c3

45 7b,3CCC 7 3 c3 × c4
46 7c,3CCC 7 3 d2 × c5
47 8a,3CCC 8 3 d2 × c3

2

48 8b,3CCC 8 3 c3 × c5

49 1,4CCC = H 1 4 H

50 2,4CCC 2 4 (H2)s

51 3,4CCC 3 4 (H3)s

52 4,4CCC 4 4 (H4)s

53 5,4CCC 5 4 (H · d2
2)s

54 6,4CCC 6 4 (H2 · d2
2)s

55 3,5CCC 3 5 H× d2

56 4a,5CCC 4 5 H× c3

57 4b,5CCC 4 5 (H2)s × d2

58 5a,5CCC 5 5 H× d2
2

59 5b,5CCC 5 5 H× c4
60 5c,5CCC 5 5 (H2)s × c3
61 6,5CCC 6 5 H× c5

62 2,6CCC 2 6 (H ·H)s

63 3,6CCC 3 6 (H2 ·H)s

64 4,6CCC 4 6 (H2 ·H2)s

65 3,7CCC 3 7 H× (H2)s

66 4,7CCC 4 7 H× (H3)s

67 5,7CCC 5 7 (H2)s × (H3)s

68 3,9CCC 3 9 (H ·H)s ×H

69 4,9CCC 4 9 (H ·H)s × (H2)s

Table 2. A minimal covariant basis for Cov(H4)



42 M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

# Deg. M. deg. Inv.

ja1 3 (2,1,0) tr
(

ad2

)

ja2 3 (1,2,0) a :H :a

ja3 4 (2,2,0) tr
(

a2d2

)

ja4 4 (3,1,0) tr
(

ad3

)

ja5 4 (1,3,0) a :H :a2

ja6 4 (2,2,0) a :
(

H2
)s

: a

ja7 5 (1,4,0) a2 :H :a2

ja8 5 (2,3,0) a :
(

H2
)s

:a2

ja9 5 (2,3,0) a :
(

a :
(

H ·H
)s

: a
)

ja10 5 (3,2,0) a :(H3)s : a

ja11 5 (3,2,0) tr
(

a2d3

)

ja12 5 (4,1,0) tr
(

ad2
2

)

ja13 5 (4,1,0) a :
(

H2
)s

:d2

ja14 6 (2,4,0) a2 :
(

H2
)s

: a2

ja15 6 (2,4,0) a2 :
(

a :
(

H ·H
)s

: a
)

ja16 6 (3,3,0) a :
(

a :
(

H2 ·H
)s

: a
)

ja17 6 (3,3,0) a :
(

H3
)s

:a2

ja18 6 (3,3,0) tr
(

H× d2

) ...
(

a2 × a
)

ja19 6 (4,2,0) d2
2 : a

2

ja20 6 (4,2,0) a :
(

H4
)s

: a

ja21 6 (4,2,0) a2 : c4

ja22 6 (5,1,0) a :(d2d3)

ja23 6 (5,1,0) a :
(

H3
)s

:d2

ja24 7 (2,5,0) a :
(

a2 :
(

H ·H
)s

: a2
)

ja25 7 (3,4,0) a :
((

H× d2

) ...
(

a2 × a
))

ja26 7 (3,4,0) a :
(

a :
(

H2 ·H
)s

: a2
)

ja27 7 (4,3,0) a :
(

H4
)s

:a2

# Deg. M. deg. Inv.

ja28 7 (4,3,0) tr
(

H× c3
) ...

(

a2 × a
)

ja29 7 (4,3,0) a :
(

a :
(

H2 ·H2
)s

:a
)

ja30 7 (5,2,0) a :
(

H · d2
2

)s
: a

ja31 7 (5,2,0) c5 :a
2

ja32 7 (5,2,0) (d2c3) : a
2

ja33 7 (6,1,0) (d2c4) : a

ja34 7 (6,1,0) c23 : a

ja35 8 (7,1,0)
(

d2
2c3

)

:a

ja36 8 (7,1,0)
(

c4c3
)

:a

ja37 8 (6,2,0)
(

d2c4
)

: a2

ja38 8 (6,2,0) c23 :a
2

ja39 8 (6,2,0) a :
(

H2 · d2
2

)s
:a

ja40 8 (5,3,0) tr
(

H× d2
2

) ...
(

a2 × a
)

ja41 8 (5,3,0) a :
(

H · d2
2

)s
:a2

ja42 8 (4,4,0) a :
(

4b,5CCC
...
(

a2 × a
))

ja43 8 (4,4,0) a :
(

a :
(

H2 ·H2
)s

: a2
)

ja44 8 (3,5,0) a2 :
(

a2 :
(

H2 ·H
)s

:a
)

ja45 9 (6,3,0)
(

3,3CCC :a
)

· a ·
(

3,3CCC : a
)

ja46 9 (7,2,0)
(

c4c3
)

: a2

ja47 9 (7,2,0)
(

d2
2c3

)

: a2

ja48 9 (8,1,0)
(

d2c
2
3

)

:a

ja49 9 (8,1,0) c24 : a

ja50 10 (8,2,0) c24 :a
2

ja51 10 (9,1,0)
(

d2
2c5

)

:a

ja52 11 (10,1,0) vvv5 · a · vvv5
Table 3. Joint Invariants of (H,a)
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# Deg. M. deg. Inv.

Ji1 3 (1,1,1) a :H :b

Ji2 4 (1,1,2) a :H :b2

Ji3 4 (1,1,2) b :H :(ab)

Ji4 4 (1,2,1) b :H :a2

Ji5 4 (1,2,1) a :H :(ab)

Ji6 4 (2,1,1) a :(d2b)

Ji7 4 (2,1,1) a :
(

H2
)s

:b

Ji8 5 (1,1,3) b2 :H : (ab)

Ji9 5 (1,1,3) b :H :
(

ab2
)

Ji10 5 (1,2,2) a2 :H :b2

Ji11 5 (1,2,2) b :H :
(

a2b
)

Ji12 5 (1,2,2) (ab) :H : (ab)

Ji13 5 (1,3,1) a2 :H : (ab)

Ji14 5 (1,3,1) a :H :
(

a2b
)

Ji15 5 (2,1,2) a :
(

H2
)s

:b2

Ji16 5 (2,1,2) a :
(

b :
(

H ·H
)s

:b
)

Ji17 5 (2,2,1) b :
(

a :
(

H ·H
)s

:a
)

Ji18 5 (2,1,2) a :
(

b2d2

)

Ji19 5 (2,2,1) a2 :
(

bd2

)

Ji20 5 (2,2,1) b :
(

H2
)s

:a2

Ji21 5 (2,2,1) a :
(

H2
)s

: (ab)

Ji22 5 (3,1,1) a :
(

H3
)s

:b

Ji23 5 (3,1,1) (ab) :d3

Ji24 5 (2,1,2) b :
(

H2
)s

: (ab)

Ji25 5 (3,1,1) tr
(

H× d2

) ...
(

a× b
)

Ji26 6 (1,1,4) b2 :H :(ab2)

Ji27 6 (1,2,3) b :H :(a2b2)

Ji28 6 (1,2,3) (ab) :H :(ab2)

Ji29 6 (1,3,2) (ab) :H :(a2b)

Ji30 6 (1,3,2) a :H :(a2b2)

Ji31 6 (1,4,1) a2 :H :(a2b

# Deg. M. deg. Inv.

Ji32 6 (2,1,3) b :
(

H2
)s

:(ab2)

Ji33 6 (2,1,3) b2 :
(

H2
)s

:(ab)

Ji34 6 (2,2,2) b :
(

H2
)s

:(a2b)

Ji35 6 (2,2,2) (ab) :
(

H2
)s

:(ab)

Ji36 6 (2,2,2) a2 :
(

H2
)s

:b2

Ji37 6 (2,3,1) a2 :
(

H2
)s

:(ab)

Ji38 6 (2,3,1) a :
(

H2
)s

:(a2b)

Ji39 6 (2,1,3) b2 :
(

a :
(

H ·H
)s

:b
)

Ji40 6 (2,1,3) b :
(

b :
(

H ·H
)s

:(ab)
)

Ji41 6 (2,2,2) b :
(

b :
(

H ·H
)s

:a2
)

Ji42 6 (2,3,1) a :
(

a :
(

H ·H
)s

:(ab)
)

Ji43 6 (2,3,1) a :
(

b :
(

H ·H
)s

:a2
)

Ji44 6 (2,2,2) a :
(

b :
(

H ·H
)s

:(ab)
)

Ji45 6 (2,2,2) a :
(

a :
(

H ·H
)s

:b2
)

Ji46 6 (3,1,2) tr
(

H× d2

) ...
(

a× b2
)

Ji47 6 (3,2,1) tr
(

H× d2

) ...
(

a× (ab)s
)

Ji48 6 (3,1,2) tr
(

H× d2

) ...
(

b× (ab)s
)

Ji49 6 (3,2,1) tr
(

H× d2

) ...
(

a2 × b
)

Ji50 6 (3,1,2) a :
(

H3
)s

:b2

Ji51 6 (3,1,2) b :
(

H3
)s

: (ab)

Ji52 6 (3,2,1) b :
(

H3
)s

:a2

Ji53 6 (3,2,1) a :
(

H3
)s

: (ab)

Ji54 6 (3,1,2) b :
((

H× d2

) ...
(

a× b
))

Ji55 6 (3,2,1) a :
((

H× d2

) ...
(

a× b
))

Ji56 6 (3,1,2) a :
(

b :
(

H2 ·H
)s

:b
)

Ji57 6 (3,2,1) b :
(

a :
(

H2 ·H
)s

: a
)

Ji58 6 (4,1,1) d2
2 : (ab)

Ji59 6 (4,1,1) c4 : (ab)

Ji60 6 (4,1,1) tr
(

H× c3
) ...

(

a× b
)

Ji61 6 (4,1,1) a :
(

H4
)s

:b

Table 4. Joint Invariants of (H,a,b) (degree ≤ 6)



44 M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

# Deg. M. deg. Inv.

Ji62 7 (2,1,4) b :
(

b :
(

H ·H
)s

:
(

ab2
))

Ji63 7 (2,1,4) a :
(

b2 :
(

H ·H
)s

:b2
)

Ji64 7 (2,1,4) b :
(

b2 :
(

H ·H
)s

: (ab)
)

Ji65 7 (2,2,3) b :
(

b :
(

H ·H
)s

:
(

a2b
))

Ji66 7 (2,2,3) a :
(

b2 :
(

H ·H
)s

: (ab)
)

Ji67 7 (2,3,2) b :
(

a2 :
(

H ·H
)s

: (ab)
)

Ji68 7 (2,3,2) a :
(

b :
(

H ·H
)s

:
(

a2b
))

Ji69 7 (2,3,2) a :
(

a2 :
(

H ·H
)s

:b2
)

Ji70 7 (2,4,1) a :
(

a2 :
(

H ·H
)s

: (ab)
)

Ji71 7 (2,4,1) a :
(

a :
(

H ·H
)s

:
(

a2b
))

Ji72 7 (2,4,1) b :
(

a2 :
(

H ·H
)s

:a2
)

Ji73 7 (2,3,2) a :
(

(ab) :
(

H ·H
)s

: (ab)
)

Ji74 7 (2,2,3) b :
(

(ab) :
(

H ·H
)s

: (ab)
)

Ji75 7 (2,2,3) b :
(

a2 :
(

H ·H
)s

:b2
)

Ji76 7 (3,1,3) b :
(

3,5CCC
...
(

b× (ab)s
))

Ji77 7 (3,2,2) a :
(

3,5CCC
...
(

b× (ab)s
))

Ji78 7 (3,2,2) a :
(

3,5CCC
...
(

a× b2
))

Ji79 7 (3,2,2) b :
(

3,5CCC
...
(

a2 × b
))

Ji80 7 (3,3,1) a :
(

3,5CCC
...
(

a2 × b
))

Ji81 7 (3,3,1) a :
(

3,5CCC
...
(

a× (ab)s
))

Ji82 7 (3,3,1) b :
(

3,5CCC
...
(

a2 × a
))

Ji83 7 (3,1,3) b :
(

3,5CCC
...
(

a× b2
))

Ji84 7 (3,1,3) a :
(

3,5CCC
...
(

b2 × b
))

Ji85 7 (3,2,2) (ab) :
(

H3
)s

: (ab)

Ji86 7 (3,1,3) b :
(

b :
(

H2 ·H
)s

: (ab)
)

Ji87 7 (3,1,3) a :
(

b :
(

H2 ·H
)s

:b2
)

Ji88 7 (3,2,2) a :
(

a :
(

H2 ·H
)s

:b2
)

Ji89 7 (3,2,2) a :
(

b :
(

H2 ·H
)s

: (ab)
)

# Deg. M. deg. Inv.

Ji90 7 (3,2,2) b :
(

b :
(

H2 ·H
)s

: a2
)

Ji91 7 (3,3,1) a :
(

b :
(

H2 ·H
)s

:a2
)

Ji92 7 (3,3,1) a :
(

a :
(

H2 ·H
)s

: (ab)
)

Ji93 7 (3,1,3) b :
(

3,7CCC
...
(

a× b
))

:b

Ji94 7 (3,2,2) a :
(

3,7CCC
...
(

a× b
))

:b

Ji95 7 (3,3,1) a :
(

3,7CCC
...
(

a× b
))

: a

Ji96 7 (4,1,2) tr
(

H× c3
) ...

(

a× b2
)

Ji97 7 (4,1,2) tr
(

H× c3
) ...

(

b× (ab)s
)

Ji98 7 (4,2,1) tr
(

H× c3
) ...

(

a× (ab)s
)

Ji99 7 (4,2,1) tr
(

H× c3
) ...

(

a2 × b
)

Ji100 7 (4,1,2) b :
(

H4
)s

: (ab)

Ji101 7 (4,2,1) a :
(

H4
)s

: (ab)

Ji102 7 (4,2,1) b :
(

H4
)s

:a2

Ji103 7 (4,1,2) a :
(

H4
)s

:b2

Ji104 7 (4,1,2) b :
((

H× c3
) ...

(

a× b
))

Ji105 7 (4,2,1) a :
((

H× c3
) ...

(

a× b
))

Ji106 7 (4,1,2) b :
(

4b,5CCC
...
(

a× b
))

Ji107 7 (4,2,1) a :
(

4b,5CCC
...
(

a× b
))

Ji108 7 (4,1,2) a :
(

b :
(

H2 ·H2
)s

:b
)

Ji109 7 (4,2,1) a :
(

a :
(

H2 ·H2
)s

:b
)

Ji110 7 (5,1,1) c5 : (ab)

Ji111 7 (5,1,1)
(

d2c3
)s

: (ab)

Ji112 7 (5,1,1)
(

d2 × c3
) ...

(

a× b
)

Ji113 7 (5,1,1) tr
(

H× d2
2

) ...
(

a× b
)

Ji114 7 (5,1,1) a :
(

H · d2
2

)s
:b

Table 5. Joint Invariants of (H,a,b) (degree 7)
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# Deg. M. deg. Inv.

Ji115 8 (3,1,4) b :
(

b2 :
(

H2 ·H
)s

: (ab)
)

Ji116 8 (3,2,3) b :
(

(ab) :
(

H2 ·H
)s

: (ab)
)

Ji117 8 (3,4,1) b :
(

a2 :
(

H2 ·H
)s

:a2
)

Ji118 8 (3,3,2) b :
(

a2 :
(

H2 ·H
)s

: (ab)
)

Ji119 8 (3,1,4) b :
(

3,7CCC
...
(

b× (ab)s
))

:b

Ji120 8 (3,2,3) a :
(

3,7CCC
...
(

b× (ab)s
))

:b

Ji121 8 (3,3,2) a :
(

3,7CCC
...
(

a× (ab)s
))

:b

Ji122 8 (3,1,4) b :
((

3,9CCC
...
(

a× b
))

:b
)

:b

Ji123 8 (3,4,1) a :
((

3,9CCC
...
(

a× b
))

: a
)

: a

Ji124 8 (3,3,2) a :
((

3,9CCC
...
(

a× b
))

:a
)

:b

Ji125 8 (3,2,3) a :
((

3,9CCC
...
(

a× b
))

:b
)

:b

Ji126 8 (3,4,1) a :
(

3,7CCC
...
(

a× (ab)s
))

:a

Ji127 8 (4,3,1) a :
(

4b,5CCC
...
(

a× (ab)s
))

Ji128 8 (4,3,1) a :
(

4b,5CCC
...
(

a2 × b
))

Ji129 8 (4,2,2) b :
(

4b,5CCC
...
(

a2 × b
))

Ji130 8 (4,1,3) a :
(

b :
(

H2 ·H2
)s

:b2
)

Ji131 8 (4,3,1) a :
(

b :
(

H2 ·H2
)s

:a2
)

Ji132 8 (4,3,1) a :
(

a :
(

H2 ·H2
)s

: (ab)
)

Ji133 8 (4,1,3) b :
(

b :
(

H2 ·H2
)s

: (ab)
)

Ji134 8 (4,2,2) a :
(

b :
(

H2 ·H2
)s

: (ab)
)

Ji135 8 (4,2,2) b :
(

b :
(

H2 ·H2
)s

: a2
)

Ji136 8 (4,2,2) a :
(

a :
(

H2 ·H2
)s

:b2
)

Ji137 8 (4,1,3) b :
(

4,7CCC
...
(

a× b
))

:b

Ji138 8 (4,3,1) a :
(

4,7CCC
...
(

a× b
))

: a

Ji139 8 (4,2,2) b :
(

4,7CCC
...
(

a× b
))

:a

Ji140 8 (4,3,1) a :
(

4b,5CCC
...
(

a× (ab)s
))

Ji141 8 (4,2,2) a :
(

4b,5CCC
...
(

b× (ab)s
))

Ji142 8 (4,1,3) b :
(

4b,5CCC
...
(

a× b2
))

Ji143 8 (5,2,1) a :
(

H · d2
2

)s
: (ab)

Ji144 8 (5,2,1) b :
(

H · d2
2

)s
:a2

Ji145 8 (5,1,2) b :
(

H · d2
2

)s
: (ab)

Ji146 8 (5,1,2) a :
(

H · d2
2

)s
:b2

# Deg. M. deg. Inv.

Ji147 8 (5,1,2) b :
((

H× d2
2

) ...
(

a× b
))

Ji148 8 (5,2,1) a :
((

H× c4
) ...

(

a× b
))

Ji149 8 (5,1,2) b :
((

H× c4
) ...

(

a× b
))

Ji150 8 (5,2,1) a :
(((

H2
)s × c3

) ...
(

a× b
))

Ji151 8 (5,1,2) b :
(((

H2
)s × c3

) ...
(

a× b
))

Ji152 8 (5,2,1) a :
((

H× d2
2

) ...
(

a× b
))

Ji153 8 (5,2,1) tr
(

H× d2
2

) ...
(

a2 × b
)

Ji154 8 (5,1,2) tr
(

H× d2
2

) ...
(

a× b2
)

Ji155 8 (6,1,1)
(

d2c4
)s

: (ab)

Ji156 8 (6,1,1) c23 : (ab)

Ji157 8 (6,1,1) tr
(

H× c5
) ...

(

a× b
)

Ji156 8 (6,1,1) c23 : (ab)

Ji157 8 (6,1,1) tr
(

H× c5
) ...

(

a× b
)

Ji158 8 (6,1,1)
(

d2 × c4
) ...

(

a× b
)

Ji159 8 (6,1,1) a :
(

H2 · d2
2

)s
:b

Ji160 9 (6,2,1) vvv5 · a ·
(

H
...
(

a× b
))

Ji161 9 (6,1,2) vvv5 · b ·
(

H
...
(

a× b
))

Ji162 9 (6,1,2)
(

3,3CCC :b
)

· a ·
((

3,3CCC
)

:b
)

Ji163 9 (6,2,1)
(

3,3CCC :a
)

· b ·
((

3,3CCC
)

:a
)

Ji164 9 (6,1,2) b :
((

H× c5
) ...

(

a× b
))

Ji165 9 (6,2,1) a :
((

H× c5
) ...

(

a× b
))

Ji166 9 (7,1,1) d2 :
((

a× b
)

· vvv5
)

Ji167 9 (7,1,1)
(

c3 × c4
) ...

(

a× b
)

Ji168 9 (7,1,1)
(

c4c3
)s

: (ab)

Ji169 9 (7,1,1)
(

d2
2c3

)s
: (ab)

Ji170 10 (8,1,1) vvv8a ·
(

εεε :
(

ab
))

Ji171 10 (8,1,1) c24 : (ab)

Ji172 11 (9,1,1) vvv9a ·
(

εεε :
(

ab
))

Ji173 11 (9,1,1) vvv9b ·
(

εεε :
(

ab
))

Ji174 11 (9,1,1)
(

d2
2c5

)

:
(

(ab)s
)

Table 6. Joint Invariants of (H,a,b) (degree 8 to 11)
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