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CHARACTERIZATION OF THE SYMMETRY CLASS OF

AN ELASTICITY TENSOR USING POLYNOMIAL

COVARIANTS

M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

Abstract. We produce a minimal set of 70 generators for the covariant
algebra of a fourth-order harmonic tensor, using an original generalized
cross product on totally symmetric tensors. This allows us to formulate
coordinate-free conditions using polynomial covariant tensors for iden-
tifying all the symmetry classes of the elasticity tensor and prove that
these conditions are both necessary and sufficient. Besides, we produce
a new minimal set of 297 generators for the invariant algebra of the
Elasticity tensor, using these tensorial covariants.
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1. Introduction

The problem of the determination of a minimal set of generators for the
invariant algebra of the Elasticity tensor was solved recently [39]. This
definitively answered an old academic question: assuming that one could
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measure the components of the elasticity tensors of two materials, can one
decide by finitely many calculations, whether the two materials are identical
as elastic materials, i.e. that the two tensors are related by a rotation?

Close to this problem, is another academic question: can one decide by
finitely many calculations what is the symmetry class of a given elasticity
tensor?

In the specific case of the Elasticity tensor, it is known [18] that there
are exactly eight symmetry classes: isotropic, cubic, transversely isotropic,
trigonal, tetragonal, orthotropic, monoclinic and triclinic. This problem
has a long history, recalled by Forte and Vianello in [18]. These authors
have definitively clarified the mathematical problem about the symmetry
classes of an elasticity tensor and removed the link with crystallographic
point groups which was extremely confusing and lead to the false assumption
that there were ten, rather than eight, symmetry classes [26, 13, 25]. These
eight classes were confirmed in 2001, using an alternative approach [12],
where symmetry planes rather than rotations play the central role. Note
however that this approach, using symmetry planes, cannot be generalized
to find the symmetry classes of higher order tensorial representations due
to the fact that not all closed subgroups of O(3) can be generated by plane
reflections. Finally, in 2014, a definitive and systematic way to determine
the symmetry classes of any finite dimensional representation of the groups
SO(2), SO(3), O(2) or O(3) was formulated (see [34, 37, 38, 36]). This
method uses clip’s tables and the decomposition of the representation into
irreducible components.

Nevertheless, determining explicitly the symmetry class of a given Elas-
ticity tensor is not an easy task and has been the subject of many researches,
using different means. Moreover, the problem becomes even more compli-
cated if one consider that, in real life, a measured elasticity tensor (assuming
that one can access to all of its components) is subject to experimental er-
rors and has therefore no symmetry but is nevertheless close to a given
theoretical tensor with a given symmetry [21, 32].

Concerning this problem, we would like first to cite the excellent work of
François and coauthors [19, 20] who performed a deep experimental and nu-
merical study of the problem using acoustic measurements on an hexagonal
testing sample of a raw material. The problem is then addressed numeri-
cally by testing how far is a plane reflection snnn from a symmetry of the given
experimental elasticity tensor E (see also [16]). Scanning a large range of
directions nnn lead to build a pole figure, which is a graphical representation
over an hemisphere (representing all the unit vectors nnn up to ±1) of the
distance between E and its transformed snnn ⋆E by snnn. This gives qualitative
information about the possible number of symmetry planes of the material.
This pole figure can then be used to initialize an optimization algorithm to
produce the “nearest” tensor with the expected symmetry.

Besides these experimental and numerical approaches, the literature is
abundant about formulations of coordinate-free criteria to characterize elas-
ticity tensors which have exactly a given symmetry class.

Some authors [10] have used the Kelvin representation [49, 50, 42] of the
Elasticity tensor to achieve this goal. They have formulated necessary and
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sufficient conditions involving the multiplicity of the 6 eigenvalues of the
Kelvin representation and of the eigenvalues of its eigenvectors (the eigen-
strains, which are in fact second order tensors). Such criteria are however
very sensitive to rounding errors: one needs first to find the roots of a degree
6 polynomial and then of several polynomials of degree 3 (for each Kelvin
eigenmodes) which depend on these roots.

Other approaches make use of the harmonic decomposition (H,d′,v′, λ, µ)
of the Elasticity tensor E, where d′ and v′ are respectively the deviatoric
part of the dilatation tensor d = tr12E and the Voigt tensor v = tr13 E.
For instance, following [13], some authors [14, 28, 5, 12] have extracted
information about the symmetry class of E using d′ and v′. However, if this
works well for certain orthotropic or monoclinic tensors E, there are still
many cases where the information on the symmetry class is not carried by
the pair d′,v′. Indeed, there exist orthotropic and monoclinic tensors E for
which d′ and v′ vanish.

In the same spirit, but to avoid loosing the information contained in the
harmonic fourth-order component H, Baerheim [4] has used the harmonic
factorization introduced by Sylvester [48] (see also [2] and [40] for a more
modern treatment). This factorization allows to decompose an harmonic
tensor of order n as an n-tuple of vectors, the so-called Maxwell multi-
poles [2]. Baerheim has formulated criteria on the multipoles to character-
ize the different symmetry classes of E. The difficulties with this approach
is that the multipoles are not uniquely defined [40] and that the only way
to obtain them is to solve a polynomial equation of degree 2n (hence, one
degree eight and two degree four polynomials for the Elasticity tensor).

More recently, in [1], the authors have suggested to reconsider the question
in the general framework of Real Algebraic Invariant Theory. They have used
a generating set of the invariant algebra of fourth-order harmonic tensors
H

4(R3) proposed in [9] to characterize the symmetry classes of a tensor
H ∈ H

4(R3), writing down polynomial equations and inequations involving
the generators of the invariant algebra. However, these relations become
increasingly complicated when the symmetry group becomes smaller and
only the cubic, transversely isotropic, tetragonal, trigonal and orthotropic
classes have been characterized this way. Note also that the same approach
has already been used by Vianello [51] in 1997 for the full 2D Elasticity
tensor, where formulas are considerably much simpler than in 3D.

In this paper, we propose to give a definitive answer to this classification
problem for the full Elasticity tensor, using polynomial covariants rather
than invariants (and avoiding, this way, increasing complexity). The answer
is furnished by Theorem 10.2, which is our main result. In some sense,
our result is particularly simple, since one needs only to check that some
polynomial functions defined on the components of the Elasticity tensor
vanish (we do not need to solve any algebraic equation).

In order to obtain these results, we have been lead to formulate rigorously
what is the covariant algebra of a given representation V of the rotation
group SO(3) (even if this terminology is already well-known in classical
invariant theory of binary forms [41]). It was also necessary to introduce
a generalization of the cross-product for totally symmetric tensors. Using
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these tools, we were able to explicit a minimal set of 70 generators for the
covariant algebra of H4(R3) in Table 2. These fundamental covariants are
the cornerstone which has allowed us to characterize first the symmetry class
of a tensor H ∈ H

4(R3) and then of a full Elasticity tensor E.
A by-product of these achievements is the production of a new set of

minimal generators for the invariant algebra of the Elasticity tensor, using
the polynomial covariants symmetric tensors of Table 2 and the covariant
tensor operations of section 3. They are given in Appendix C and shall
be more useful for the mechanical community than the original invariants
furnished in [39], which were described using transvectants [41].

Organization of the paper. The paper is organized as follows. In sec-
tion 2, we provide basic definitions and recall the link between totally sym-
metric tensors and homogeneous polynomials. In section 3, we recall the
basic covariant operations on tensors and introduce the generalized cross-
product between totally symmetric tensors. Section 4 is devoted to the
definition of polynomial covariants of a linear representation and basic facts
about the covariant algebra. A minimal generating set of 70 polynomial
covariants for H

4(R3) is provided in section 5. The symmetry classes are
introduced in section 6 and a way to compute them is provided. Section 7
provides several lemmas which connect the dimension of covariant spaces
of order one and two to their symmetry class. In section 8, several criteria
which restrict the symmetry class of one or several totally symmetric ten-
sors, using polynomial covariants are formulated. The characterization of
the symmetry class of a fourth-order harmonic tensor H using polynomial
covariants is given in section 9 and the result for a full Elasticity tensor E

is given in section 10. In addition, three appendices are provided. In Ap-
pendix A, we recall the basics about the spaces of binary forms of degree
n, Sn (which are models for irreducible representations of SL(2,C)) and we
relate the invariant algebra of S2n ⊕ S2 to the covariant algebra of S2n. In
Appendix B, we explain how we have been able to compute a minimal set
of generators for the covariant algebra of H4(R3) using the knowledge of a
minimal set of generators for the covariant algebra of S8. Finally, in Ap-
pendix C, we provide a new minimal set of 297 generators for the invariant
algebra of the Elasticity tensor using the tensorial covariants provided in
section 5.

2. Symmetric and harmonic tensors

Let T
n(R3) be the vector space of n-th order tensors on the Euclidean

space R
3. Thanks to the Euclidean product, we do not have to distinguish

between upper and lower indices. Therefore, an n-th order tensor may
always be considered as a n-linear mapping

T : R3 × · · · × R
3 → R, (xxx1, . . . ,xxxn) 7→ T(xxx1, . . . ,xxxn).

The subspace S
n(R3) of totally symmetric tensors can be identified with

the vector space Pn(R
3) of homogeneous polynomials of degree n. This iso-

morphism generalizes, to higher order tensors, the well-known connection
between quadratic forms and symmetric bilinear forms obtained by polar-
ization (see [40] for more details).
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Example 2.1. For instance, the polynomial representation of a totally sym-
metric fourth-order tensor S = (Sijkl) is given by

S1111 x
4 + S2222 y

4 + S3333 z
4 + 12S1122 x

2y2 + 12S1133 x
2z2

+ 12S2233 y
2z2 + 4S1222 xy

3 + 4S1112 yx
3 + 4S1113 zx

3 + 4S1333 xz
3

+ 4S2223 zy
3 + 4S2333 yz

3 + 6S1123 yzx
2 + 6S1223 xzy

2 + 6S1233 xyz
2.

Contracting two indices i, j on a totally symmetric tensor S does not
depend on the particular choice of the pair i, j. Thus, we can refer to this
contraction without any reference to a particular choice of indices. We will
denote this contraction as trS, which is a totally symmetric tensor of order
n− 2 and is called the trace of S.

Definition 2.2. An n-th order totally symmetric and traceless tensor will
be called an harmonic tensor and the subspace of Sn(R3) of harmonic tensors
will be denoted by H

n(R3) (or simply H
n, if there is no ambiguity).

Remark 2.3. In the correspondence between totally symmetric tensors and
homogeneous polynomials, a traceless totally symmetric tensor H corre-
sponds to an harmonic polynomial h (i.e. with vanishing Laplacian: △h =
0) and this justifies the appellation of harmonic tensor. The space of homo-
geneous harmonic polynomials of degree n will be denoted by Hn(R

3).

The natural action of the special orthogonal group SO(3) (or the full
orthogonal group O(3)) on R

3 induces the tensorial representation ρn on
T
n(R3), defined by

(ρn(g)(T))(xxx1, . . . ,xxxn) = (g ⋆T)(xxx1, . . . ,xxxn) := T(g−1xxx1, . . . , g
−1xxxn),

where T ∈ T
n(R3) and g ∈ SO(3). Under this linear representation, the sub-

spaces Sn(R3) andH
n(R3) are invariant. Moreover, Hn(R3) is irreducible [22]

(its only invariant subspaces are itself and the null space).

Theorem 2.4 (Harmonic decomposition). Every finite dimensional repre-
sentation V of the rotation group SO(3) can be decomposed into a direct sum
of irreducible representations, each of them being isomorphic to an harmonic
tensor space H

n(R3), by an equivariant isomorphism.

Remark 2.5. An alternative model for the irreducible representations of
SO(3) is furnished by the spaces of harmonic polynomials Hn(R

3), where
the action of SO(3) on polynomials is given by (g ⋆ p)(xxx) := p(g−1xxx).

Example 2.6. Every homogeneous polynomial of degree n can be decom-
posed [40] as the following:

(2.1) p = h0 + qh1 + · · · + qrhr,

where q = x2 + y2 + z2, r = [n/2] – with [·] integer part – and hk is a
harmonic polynomial of degree n− 2k.

Definition 2.7. Given a homogeneous polynomial p, the highest order com-
ponent in (2.1), namely h0, which is uniquely defined, is called the harmonic
projection of p and denoted (p)0.



6 M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

3. Covariant operations on tensors

In this section, we will introduce three operations on tensors, which com-
mute with the action of the rotation group and are thus called covariant
operations. The first one is the symmetric tensor product.

Definition 3.1 (Symmetric tensor product). The symmetric tensor product
between two tensors T1 ∈ T

p(R3) and S2 ∈ T
q(R3) is defined as

T1 ⊙T2 := (T1 ⊗T2)s ∈ S
p+q(R3),

where the total symmetrisation of a tensor T ∈ T
n(R3), noted Ts ∈ S

n(R3),
is defined as

Ts(xxx1, . . . ,xxxn) :=
1

n!

∑

σ∈Sn

T(xxxσ(1), . . . ,xxxσ(n))

where Sn is the symmetric group on n letters.

Remark 3.2. When restricted to totally symmetric tensors, the polynomial
counterpart of the symmetric tensor product is just the usual product of
polynomials. This product is thus associative and commutative. It is equi-
variant relative to either the rotation group SO(3) and the full orthogonal
group O(3).

Remark 3.3. The harmonic decomposition (2.1) of an homogenous polyno-
mial of degree n leads thus to the following harmonic decomposition of a
totally symmetric tensor S ∈ S

n(R3):

(3.1) S = H0 + q⊙H1 + · · ·+ q⊙r−1 ⊙Hr−1 + q⊙r ⊙Hr,

whereHk is an harmonic tensor of degree n−2k. In this formula, q ∈ S
2(R3)

is the Euclidean metric tensor (which writes as q = (δij) in any orthonormal

basis) and q⊙k means the symmetrized tensorial product of k copies of q.

The second one is the contraction between two tensors T1 ∈ T
p(R3)

and T2 ∈ T
q(R3) over one or several subscripts. This operation uses the

Euclidean structure represented by the canonical Euclidean metric tensor
q = (qij) and its inverse q−1 = (qij). It is defined as follows:

(T1 (r)· T2)i1···ip−rjr+1···jq = qip−r+1j1 · · · qipjrT 1
i1···ip

T 2
j1···jq

.

The r-contraction of two tensors is an O(3)-equivariant mapping

T
p(R3)× T

q(R3) → T
p+q−2r(R3),

and for n = p = q, the n-contraction corresponds to the canonical scalar
product on T

n(R3).

Example 3.4. In an orthonormal basis (eeei), we have

(T1 ·T2)i1···ip−1j2···jq = T 1
i1···ip−1k

T 2
kj2···jq

,

(T1 :T2)i1···ip−2j3···jq = T 1
i1···ip−2kl

T 2
klj3···jq

,

(T1 ...T
2)i1···ip−3j4···jq = T 1

i1···ip−3klm
T 2
klmj4···jq

.
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Definition 3.5 (Symmetric r-contraction). The symmetric r-contraction
between two totally symmetric tensors S1 ∈ S

p(R3) and S2 ∈ S
q(R3) is

defined as

(S1 (r)· S2)s.

Remark 3.6. The polynomial counterpart of the symmetric r-contraction is
obtained as follows. If S1,S2 correspond respectively to the polynomials

p1,p2, then, (S
1
(r)· S2)s corresponds to the polynomial

p =
(p − r)!

p!

(q − r)!

q!

∑

k1+k2+k3=r

r!

k1!k2!k3!

∂rp1
∂xk1∂yk2∂zk3

∂rp2
∂xk1∂yk2∂zk3

.

The third covariant operation is the generalized cross product, which ex-
tends the standard cross product between vectors of R3 to symmetric tensors
of arbitrary order.

Definition 3.7 (Generalized cross product). The generalized cross product
(or Lie-Poisson product) between two totally symmetric tensors S1 ∈ S

p(R3)
and S2 ∈ S

q(R3) is defined as

S1 × S2 := −
(

S1 · εεε · S2
)s ∈ S

p+q−1(R3).

where εεε is the Levi–Civita tensor. In any orthonormal basis, we get

(S1 × S2)i1···ip+q−1
:= (εi1jkS

1
ji2···ip

S2
kip+1···ip+q−1

)s

Remark 3.8. The generalized cross product is skew-symmetric:

S2 × S1 = −S1 × S2.

Its polynomial counterpart is (up to a scaling factor) the Lie–Poisson bracket
on so

∗(3,R), the dual of the Lie algebra of the rotation group (isomorphic
to R

3). More precisely, if p1,p2 are the polynomial representatives of S1,S2,
then the polynomial representative of S1 × S2 is

1

pq
{p1,p2}LP =

1

pq
det(xxx,∇p1,∇p2).

This product is equivariant relative to the rotation group SO(3) but not to
full orthogonal group O(3). In that later case, we get

(g ⋆ S1)× (g ⋆ S2) = (det g)
(

g ⋆ (S1 × S2)
)

.

Remark 3.9. Note that if q is the Euclidean metric tensor, then S×q = 0 for
every totally symmetric tensor S (indeed, the radial function q = x2+y2+z2

is a Casimir function for the Lie-Poisson bracket on so
∗(3,R)). In particular,

S× a = S× a′ for every symmetric second-order tensor a, where

a′ = a− 1

3
tr(a)q

is the deviatoric (i.e. harmonic) part of a.
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4. Polynomial covariants

Let V be a finite dimensional representation of a group G. The linear
action of G on V extends naturally to the algebra R[V] of real polynomial
functions defined on V by

(g ⋆ p)(vvv) := p(g−1 ⋆ vvv), p ∈ R[V], g ∈ G.

A polynomial p ∈ R[V] is invariant if g ⋆ p = p for all g ∈ G. The set
R[V]G, also noted Inv(V), of all invariant polynomials is a sub-algebra of
R[V], called the invariant algebra of V. In [29], Kraft and Procesi have
generalized the concept of invariants in the following way.

Definition 4.1. Given two representations V and W of a group G, we
define Pol(V,W) to be the space of polynomial mappings p from V to W

(i.e each component function is a polynomial expression of the components
of vvv ∈ V, and such in any basis). A polynomial covariant of V of type W is
a G-equivariant polynomial mapping p : V → W, which means that

p(g ⋆ vvv) = g ⋆ p(vvv), ∀vvv ∈ V, ∀g ∈ G.

The problem with this definition is that the set Pol(V,W)G, of polynomial
covariant of V of type W is only a vector space and not an algebra. We will
therefore extend this definition as follows.

Definition 4.2. Let V,W be finite dimensional representations of a group
G. The covariant algebra of V of type W, noted Cov(V,W), is defined as
the invariant algebra

R[V⊕W
∗]G,

where W
∗ is the dual vector space of W.

Remark 4.3. We can define similarly, Con(V,W), the contravariant algebra
of V of type W as R[V⊕W]G. However, if W and W

∗ are equivalent repre-
sentations (for instance if the representation W is unitary), we do not have
to distinguish between these two algebras which are canonically isomorphic.

Note that the covariant algebra Cov(V,W) has a natural bi-graduation.
It is the direct sum of the finite dimensional vector spaces Covd,k(V,W) of
bi-homogeneous polynomial p(vvv, ω):

• of total degree d in vvv ∈ V, called the degree of the covariant,
• and, of total degree k in ω ∈ W

∗, called the order of the covariant.

Furthermore, the subspace of covariants of order 0 is identical to the invari-
ant algebra of V.

Remark 4.4. The vector space of polynomial covariants Pol(V,W)G can thus
be identified with

Cov1(V,W) =

+∞
⊕

k=0

Covk,1(V,W),

the vector space of first-order covariants.
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In this paper, we will only be interested when G = SO(3) and W is the
Euclidean space R

3 (in which case, we do not have to make any difference
between the covariant and the contravariant algebras), and we will set

Cov(V) := R[V⊕ R
3]SO(3).

An element p ∈ Cov(V) is thus a polynomial which can be written as

p(vvv,xxx) =
∑

i,j,k

pijk(vvv)x
iyjzk,

where each coefficient pijk(vvv) is a polynomial function of vvv and such that

p(g ⋆ vvv,xxx) = p(vvv, g−1 ⋆ xxx),

for all vvv ∈ V, xxx ∈ R
3 and g ∈ SO(3).

Remark 4.5. Any homogeneous polynomial covariant of vvv ∈ V of degree d
and of type S

k(R3) can thus be identified with a polynomial in Covd,k(V).

One fundamental result, obtained in the nineteenth century, is that the
invariant and covariant algebras of a finite dimensional representation of a
compact group is finitely generated.

Theorem 4.6 (Hilbert’s Theorem [24]). The covariant algebra Cov(V) is
finitely generated, i.e. there exists a finite set B := {p1, . . . ,ps} in Cov(V)
such that

Cov(V) = R[p1, . . . ,ps].

Moreover, one can always find such a system where the pj are bi-homogeneous,
both in vvv ∈ V and xxx ∈ R

3.

Definition 4.7. A set of generators B forCov(V) is called an integrity basis.
An integrity basis B is minimal if no proper subset of it is an integrity basis.

Example 4.8. Aminimal integrity basis forCov(S2(R3)) is provided by three
invariants tr(a), tr(a2) and tr(a3), three order 2 covariants q, a and a2 and
one order 3 covariant a× a2.

Remark 4.9. Of course, a minimal integrity basis is not unique. However,
its cardinality n(V) is a constant. To see this, as in [17], set

Cov+(V) :=
∑

d+m>0

Covd,m(V),

which is an ideal of the graded algebra Cov(V). Then (Cov+(V))2 is the
space of covariants which can be written as a sum of reducible covariants. For
each (d,m) such that d+m > 0, let δd,m be the codimension of (Cov+(V))2d,m
in Covd,m(V). Since Cov(V) is finitely generated, there exists an integer p
such that δd,m = 0 for d+m ≥ p and we can define

n(V) :=
∑

d,m

δd,m.

Then, any minimal integrity basis is of cardinal n(V). As far as we know,
there is no way to obtain the constant n(V) but to compute a minimal basis.
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5. A minimal integrity basis for the covariant algebra of H
4

In this section, we propose to describe a minimal integrity basis for
Cov(H4). As detailed in Appendix B, Cov(H4) is connected with the in-
variant algebra Inv(S8⊕S2) (Theorem B.3), where Sn is the space of binary
forms of degree n (see Appendix A). This algebra is itself connected to the
covariant algebra of the binary form of degree 8, Cov(S8) (Theorem A.6). A
minimal covariant basis for Cov(S8) is known at least partially since 1880
and was first produced by von Gall [52] (see also [6, 15, 35, 39]). These
results have been used to obtain degrees and orders of a minimal basis for
Cov(H4) which are given in Table 1.

degree / order 0 1 2 3 4 5 6 7 9 # Cum

0 - - 1 - - - - - - 1 1
1 - - - - 1 - - - - 1 2
2 1 - 1 - 1 - 1 - - 4 6
3 1 - 1 1 1 1 1 1 1 8 14
4 1 - 2 1 1 2 1 1 1 10 24
5 1 1 2 2 1 3 - 1 - 11 35
6 1 1 2 3 1 1 - - - 9 44
7 1 2 2 3 - - - - - 8 52
8 1 2 2 2 - - - - - 7 59
9 1 3 1 - - - - - - 5 64
10 1 2 - - - - - - - 3 67
11 - 2 - - - - - - - 2 69
12 - 1 - - - - - - - 1 70

Tot 9 14 14 12 6 7 3 3 2 70

Table 1. Degrees and orders of a minimal covariant basis for Cov(H4)

Once we know the information provided in Table 1, we have a lot of
freedom in the choice of an explicit minimal basis. Checking that a system
of 70 arbitrary covariants satisfying the requirements of Table 1 is a minimal
integrity basis requires moreover the knowledge of the Hilbert series [44]

H(z, t) :=
∑

d,k≥0

ad,kz
dtk,

which encodes the dimension ad,k of each finite dimensional vector space
Covd,k(H

4). However, the Hilbert series H(z, t) is a rational function which
can be computed a priori [44, 45, 30, 47, 7, 8], using the Molien-Weyl for-
mula [47]:

H(z, t) =

∫

SO(3)

1

det(I − tρ1(g))

1

det(I − zρ4(g))
dµ(g)

where dµ is the Haar measure on SO(3) (see [46, Section 4.1]), ρ1 is the
standard representation of SO(3) on R

3 and ρ4 is the representation of SO(3)
on H

4. Thus, for each module Covd,k(H
4) where (d, k) appears in Table 1,

we have checked inductively on n = d + k that adding new covariants of
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immediate superior degree/order to the subspace generated by reducible
covariants of lower order/degree, we obtain a vector space of dimension
ad,k.

Theorem 5.1. The polynomial covariant algebra of H4 is generated by a
minimal basis of 70 homogeneous covariant polynomials, which degree/order
are provided in Table 1. An explicit basis has been computed in Table 2.

In Table 2, we have introduced the following symmetric second-order co-
variants

d2 := tr13H
2, d3 := tr13 H

3, ck := Hk−2 :d2, k ≥ 3.

where Hn := H : Hn−1 for n ≥ 2 and tr13 A of a fourth order tensor A is
defined as (tr13 A)ij := Akikj (in any orthonormal basis). We have also used
the simplified notation ab := a · b, when a and b are second order tensors.

Remark 5.2. Note the following relation

c3 = 2d′
3,

which can be checked by a direct calculation.

Remark 5.3. In addition to d2 and d3, the following second-order covariants
were introduced in [9]:

(5.1)

d4 := d2
2, d5 := d2(H :d2), d6 := d2

3,

d7 := d2
2(H :d2), d8 := d2

2(H2 :d2), d9 := d2
2(H :d2

2),

d10 := d2
2(H2 :d2

2).

For k = 2, 3, 4, 6, the dk are symmetric, while they are not for k = 5, 7, 8, 9, 10.
None of them are harmonic. These covariants were used to define the fol-
lowing invariants:

(5.2) Jk := trdk, k = 2, . . . , 10,

which constitute a minimal integrity basis for H
4 (see [9]). In Table 2, we

did not use the invariants Jk but an alternative set of generators Ik. The
nine invariants Jk are not algebraically independent (neither are the nine
invariants Ik); they are subject to some algebraic relations, which have been
calculated first by Shioda [43] (with some minor errors).

6. Symmetry classes

Symmetry plays a fundamental role in the study of tensor representations.
In this section, we recall the definitions of symmetry groups and symmetry
classes of a vector vvv in a finite dimensional representation V of a compact
group G.

Definition 6.1 (Symmetry group). The symmetry group of a vector vvv ∈ V

is defined as the subgroup

Gvvv := {g ∈ G, g ⋆ vvv = vvv} .
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Definition 6.2 (Symmetry class). The symmetry class (or isotropy class) of
a vector vvv is the conjugacy class of its symmetry group, where the conjugacy
class [H] of a subgroup H is defined as

[H] :=
{

gHg−1, g ∈ G
}

.

There is, of course, no obstruction to extend the concept of symmetry
classes to a finite or infinite family of vectors belonging to different (or
same) representations of G.

Definition 6.3. Let F be a finite or infinite family of vectors belonging to
different (or same) representations of G. We define the isotropy group of F
as the subgroup

GF :=
⋂

vvv∈F

Gvvv.

The symmetry class of F is the conjugacy class of GF in G.

Remark 6.4. Note that if F is a vector space and (vvvi)i∈I is any generating
set of F , then

GF =
⋂

i∈I

Gvvvi .

In particular, if (vvv1, . . . , vvvp) is a basis of F , then

GF =

p
⋂

j=1

Gvvvj .

Since every symmetry group of a vector vvv in V is a closed subgroup of G,
we are mainly interested in the closed subgroups of G up to conjugacy. Now
we have the following result which can be deduced from [11, Proposition
1.9].

Lemma 6.5. The set of conjugacy classes of a compact group G is a par-
tially ordered set (poset) induced by inclusion, which is defined as follows:

[H1] � [H2] if H1 is conjugate to a subgroup of H2 in G.

Definition 6.6. Since the symmetry classes of a given representation V

form a poset, we will say that a vector vvv ∈ V (resp. a family F) is at least
in a given symmetry class [H], if [H] � [Gvvv ] (resp. [H] � [GF ]). Similarly,
we will say that it is at most in the symmetry class [H], if [Gvvv ] � [H] (resp.
[GF ] � [H]).

Since we are interested in representations of the rotation group SO(3), we
will recall the following result [22].

Lemma 6.7. Every closed subgroup of SO(3) is conjugate to one of the
following list:

SO(3), O(2), SO(2), Dn(n ≥ 2), Zn(n ≥ 2), T, O, I, and1

where:

• O(2) is the subgroup generated by all the rotations around the z-
axis and the order 2 rotation σ : (x, y, z) 7→ (x,−y,−z) around the
x-axis;

• SO(2) is the subgroup of all the rotations around the z-axis;
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• for n ≥ 2, Zn is the unique cyclic subgroup of order n of SO(2), the
subgroup of rotations around the z-axis;

• for n ≥ 2, Dn is the dihedral group, of order 2n. It is generated by
Zn and σ : (x, y, z) 7→ (x,−y,−z);

• T is the tetrahedral group, the orientation-preserving symmetry group
of a given tetrahedron, which has order 12;

• O is the octahedral group, the orientation-preserving symmetry group
of a given cube, which has order 24;

• I is the icosahedral group, the orientation-preserving symmetry group
of a given dodecahedron, which has order 60;

• 1 is the trivial subgroup, containing only the unit element.

Remark 6.8 (The octahedral group). The octahedral group O is defined
as the orientation-preserving symmetry group of a cube whose edges are
parallel to the axes of a the canonical basis (eee1, eee2, eee3) of R

3. It corresponds
to the subgroup

{g ∈ SO(3); g ⋆ eeei = ±eeej}
of SO(3) which contains 24 elements:

• the identity I;
• 3 order 2 rotations around the axes eee1, eee2, eee3;
• 6 order 4 rotations around the axes eee1, eee2, eee3;
• 6 order 2 rotations around the axes eee1 ± eee2, eee1 ± eee3, eee2 ± eee3;
• 8 order 3 rotations around the axis eee1 ± eee2 ± eee3.

It is a classical fact, that for any representation V of a Lie group G,
there exists only a finite number of symmetry classes [33, 31]. These classes
have been detailed by Ihrig-Golubistky [27] (see also [35]) for irreducible
representations of SO(3). We get, in particular, the following posets:

(1) For H1: [SO(2)] � [SO(3)].
(2) For H2: [D2] � [O(2)] � [SO(3)].
(3) For H3: see Figure 1.
(4) For H4: see Figure 2 (same as for the elasticity tensor [18]).
(5) For H5: see Figure 3.

The determination of symmetry classes for reducible representations of
SO(3) has been achieved by Olive [35], who formulated an algorithm to
compute theses classes, provided a decomposition into irreducible represen-
tations is known. Using these results and the fact that

S
n(R3) ≃ H

n ⊕H
n−2 ⊕ . . . ⊕H

n−2r, r = [n/2],

by (3.1), we deduce the following proposition.

Proposition 6.9. We have the following results.

(1) The symmetry classes for n (n ≥ 2) first-order tensors are

{[1], [SO(2)], [SO(3)]} .
(2) The symmetry classes for n (n ≥ 2) second-order symmetric tensors

are

{[1], [Z2], [D2], [O(2)], [SO(3)]} .
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(3) The symmetry classes for one third-order totally symmetric tensor
are

{[1], [Z2], [Z3], [D2], [D3], [T], [SO(2)], [SO(3)]} .
(4) The symmetry classes for one fourth-order totally symmetric tensor

are (like for the Elasticity tensor)

{[1], [Z2], [D2], [D3], [D4], [O], [O(2)], [SO(3)]} .
(5) The symmetry classes for one fifth-order totally symmetric tensor

are

{[1], [Z2], [Z3], [Z4], [Z5], [D2], [D3], [D4], [D5], [T], [SO(2)], [SO(3)]} .
Remark 6.10. The harmonic decomposition of a totally symmetric ten-
sor (2.1) of odd order contains only factors H

k with k odd. Moreover, an

isotropic tensor in H
k

vanishes necessarily if k ≥ 1 odd. Thus any totally
symmetric isotropic tensor of odd order vanishes. This is however not true
for an even order totally symmetric isotropic tensor.

Figure 1. The poset of symmetry classes for H3.

7. Dimension of covariant spaces and symmetry

Given a linear representation V of SO(3) and vvv ∈ V, we define Covk(vvv)
as the set of all k-order polynomial covariants of vvv (see section 4). Note
that whereas Cov(V) is a polynomial algebra, and Covk(V) is an infinite
dimensional vector space, Covk(vvv) is the set of all evaluations of these
covariants on the vector vvv. As such, it is a subspace of the finite dimensional
real vector space Pk(R

3) of homogeneous polynomials of degree k on R
3, or

equivalently of the space S
k(R3) of totally symmetric tensors of order k. In

this section, we will focus on polynomial covariants of order one and two of
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Figure 2. The poset of symmetry classes for H4 and Ela.

Figure 3. The poset of symmetry classes for H5.

a vector vvv ∈ V and relate the symmetry class of Cov1(vvv) and Cov2(vvv) with
their respective dimension.

Recall that, thanks to Proposition 6.9, the possible symmetry classes for
the space Cov1(vvv) are

[1], [SO(2)], [SO(3)],

whereas, for Cov2(vvv), they are

[1], [Z2], [D2], [O(2)], [SO(3)].
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Proposition 7.1. Given vvv ∈ V, dimCov1(vvv) is either 0, 1 or 3. Moreover,
the symmetry class of Cov1(vvv) is:

(1) [SO(3)] if and only if Cov1(vvv) = {0};
(2) [SO(2)] if and only if dimCov1(vvv) = 1;
(3) [1] if and only if dimCov1(vvv) = 3.

Proof. (1) If the symmetry class ofCov1(vvv) is [SO(3)], then, every first-order
covariant vanishes and thus Cov1(vvv) = {0}. Conversely, if Cov1(vvv) = 0
then its symmetry class is [SO(3)].

(2) Suppose now that the symmetry class of Cov1(vvv) is [SO(2)]. Without
loss of generality, we can suppose that the isotropy group of Cov1(vvv) is ex-
actly SO(2). Then, dimCov1(vvv) ≥ 1 but all first-order covariant are colinear
to eee3 and thus dimCov1(vvv) = 1. Conversely, suppose that dimCov1(vvv) = 1
and let uuu 6= 0 be a basis of Cov1(vvv). Then the symmetry class of Cov1(vvv)
is just [Guuu] = [SO(2)].

(3) Finally, suppose that the symmetry class of Cov1(vvv) is [1]. Then
dimCov1(vvv) ≥ 2. But if uuu,www are two independent first-order covariants then
uuu ×www is also a first-order covariant, so that dimCov1(vvv) = 3. Conversely,
if dimCov1(vvv) = 3, we can find two independent covariants uuu,www and thus

Guuu ∩Gwww = 1.

�

The case of Cov2(vvv) is more involving. Note first that the Euclidean
second-order tensor q is always in Cov2(vvv), thus dimCov2(vvv) ≥ 1 for every
vvv ∈ V. Moreover, given two covariants a,b in Cov2(vvv), then

(ab)s :=
1

2
(ab+ ba)

belongs to Cov2(vvv), where ab is the standard matrix product.

Lemma 7.2. Let a ∈ S
2(R3). Then,

(1) a is orthotropic if and only if dim〈q,a,a2〉 = 3;
(2) a is transversely isotropic if and only if dim〈q,a,a2〉 = 2.

Proof. Without loss of generality, we can suppose that a = diag(λ1, λ2, λ3).
Then, it is easy to check that q, a, a2 are linearly independent if and only if

(λ2 − λ1)(λ3 − λ1)(λ3 − λ2) 6= 0.

Thus, we get (1). Moreover, if a is transversely isotropic and has thus a
double eigenvalue then dim〈q,a,a2〉 ≤ 2 but it cannot be one, otherwise,
a would be isotropic. Conversely if dim〈q,a,a2〉 = 2, then a has a dou-
ble eigenvalue and is hence at least transversely isotropic but it cannot be
isotropic (otherwise dim〈q,a,a2〉 = 1). This achieves the proof. �

Recall that a pair (a,b) of symmetric second-order tensors is either isotropic,
transversely isotropic, orthotropic, monoclinic or triclinic by Proposition 6.9.
We have, moreover, the following result.

Lemma 7.3. Let (a,b) be a pair of symmetric second-order tensors, which
is either orthotropic, monoclinic or triclinic. Then, there exists a linear
combination of a and b which is orthotropic.
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Proof. If either a or b is orthotropic, we are done. Otherwise, both a and b

are transversely isotropic, neither being isotropic. Let a′ and b′ be the devi-
atoric parts of a and b respectively. Note that a′, b′ are linearly independent
and both transversely isotropic. If we can show that there exists a linear
combination αa′ + βb′ which is orthotropic, then, we are done, because

αa+ βb = αa′ + βb′ +
1

3
(α tr a+ β trb)q

is orthotropic. Let

ã = a′ − tr(a′b′)

tr(b′2)
b′, b̃ = b′

If ã is orthotropic, we are done. Otherwise ã, b̃ are two linearly independent,
transversely isotropic deviators such that tr(ãb̃) = 0. Now, the discriminant
of the characteristic polynomial of a deviatoric tensor d writes as

(tr(d2))3/2− 3(tr(d3))2.

Hence a deviatoric tensor d is orthotropic if and only if

(tr(d2))3 − 6(tr(d3))2 6= 0.

Let d(t) := tã+ (1− t)b̃. Then d(t) is orthotropic if and only if

p(t) := (tr(d(t)2))3 − 6(tr(d(t)3))2 6= 0.

Moreover, a direct computation shows that the coefficient of t2 in the poly-
nomial p(t) is

3 tr(ã2) tr(b̃2)2 6= 0.

Hence, there exists t ∈ R such that p(t) 6= 0 and for this value, d(t) is

orthotropic. We have thus found a linear combination of ã, b̃, and therefore
of a′, b′ which is orthotropic. This achieves the proof. �

Corollary 7.4. Let F be a sub-vector space of S
2(R3) with dimF ≥ 3.

Then, F contains an orthotropic element.

Proof. Suppose that each element in F is at least transversely isotropic.
Then, by Lemma 7.3, each pair (a,b) of elements in F is at least transversely
isotropic. If each element in F is isotropic, then F is of dimension 0 or 1.
If F contains a transversely isotropic element t, then for every a ∈ F , the
pair (t,a) is transversely isotropic and thus a = αt+ βq. Thus dimF ≤ 2.
This achieves the proof. �

Given an orthonormal basis (eee1, eee2, eee3) of R
3, we will consider the following

natural basis of S2(R3)

eii := eeei ⊗ eeei (no sum), eij := eeei ⊗ eeej + eeej ⊗ eeei, (i < j),

which is orthogonal but not orthonormal.

Proposition 7.5. Given vvv ∈ V, dimCov2(vvv) is either 1, 2, 3, 4 or 6.
Moreover, the symmetry class of Cov2(vvv) is:

(1) [SO(3)] if and only if dimCov2(vvv) = 1;
(2) [O(2)] if and only if dimCov2(vvv) = 2;
(3) [D2] if and only if dimCov2(vvv) = 3;
(4) [Z2] if and only if dimCov2(vvv) = 4;
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(5) [1] if and only if dimCov2(vvv) = 6.

Proof. (1) If the symmetry class of Cov2(vvv) is [SO(3)], then, every symmet-
ric second-order covariant is proportional to q and hence dimCov2(vvv) = 1.
Conversely, if dimCov2(vvv) = 1 then q generates Cov2(vvv), and its symmetry
class is [SO(3)].

(2) Suppose that the symmetry class of Cov2(vvv) is [O(2)]. Then, without
loss of generality, we can suppose that each symmetric second-order covari-
ant writes as diag(λ, λ, µ) and hence that dimCov2(vvv) ≤ 2. Since it cannot
be 1, otherwise Cov2(vvv) would be reduced the one-dimensional space gen-
erated by q, it must be 2. Conversely, if dimCov2(vvv) = 2, then, there
exists some non–isotropic second-order covariant a such that (q,a) is basis
of Cov2(vvv). Since a cannot be orthotropic, otherwise (q,a,a2) would be
linearly independent, by Lemma 7.2, a is necessarily transversely isotropic
and so is Cov2(vvv).

(3) Suppose that the symmetry class of Cov2(vvv) is [D2]. Then without
loss of generality we can assume that each symmetric second-order covari-
ant writes as diag(λ1, λ2, λ3) and hence that dimCov2(vvv) ≤ 3. Since this
dimension cannot be 1, neither 2 due to points (1) and (2), its must be
3. Conversely, suppose that dimCov2(vvv) = 3. Then, by Corollary 7.4,
Cov2(vvv) contains an orthotropic tensor c, and we are done by Lemma 7.2
because the orthotropic triplet (q, c, c2) is a basis of Cov2(vvv).

(4) Suppose that the symmetry class of Cov2(vvv) is [Z2]. Then without
loss of generality we can suppose that each symmetric second-order covariant
writes as





a11 a12 0
a12 a22 0
0 0 a33





and hence that dimCov2(vvv) ≤ 4. Since this dimension is necessarily > 3 by
(1), (2) and (3), it is 4. Conversely, suppose that dimCov2(vvv) = 4. Then by
Corollary 7.4, there exists an orthotropic covariant c inCov2(vvv) and without
loss of generality, we can suppose that this covariant is diagonal. Then, by
Lemma 7.2, 〈q, c, c2〉 is a vector basis of the space of diagonal tensors, so
that 〈q, c, c2〉 = 〈e11, e22, e33〉, and thus each eii belongs to Cov2(vvv). Let a
be a second-order covariant such that (e11, e22, e33,a) is a basis of Cov2(vvv).
Without loss of generality, we can assume that

a = a12e12 + a13e13 + a23e23,

where the aij do not vanish altogether, for instance a12 6= 0. Then

(e11a)
s + (e22a)

s − (e33a)
s = a12e12

belongs to Cov2(vvv) and so does e12. Hence

(e11, e22, e33, e12)

is a basis of Cov2(vvv) which has therefore the symmetry [Z2].
(5) Suppose that the symmetry class of Cov2(vvv) is [1]. Then

dimCov2(vvv) ≥ 5,
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by (1), (2), (3) and (4). By Corollary 7.4, there exists an orthotropic co-
variant c in Cov2(vvv), and like in the proof of (4), we can assume that

e11, e22, e33 ∈ Cov2(vvv).

Since, dimCov2(vvv) ≥ 5, the space Cov2(vvv) contains two linearly indepen-
dent covariants, which write

a = a12e12 + a13e13 + a23e23,

b = b12e12 + b13e13 + b23e23,

and we can assume (without loss of generality) that the minor

a12b13 − a13b12 6= 0.

As in the proof of (4), we conclude then that both e12 and e13 belong to
Cov2(vvv). But then

(e12e13)
s =

1

2
e23

belongs to Cov2(vvv) and thus dimCov2(vvv) = 6. Conversely, suppose that
dimCov2(vvv) = 6. Then the only possibility is that the symmetry class of
Cov2(vvv) is [1] by (1), (2), (3) and (4). This achieves the proof. �

8. Covariant criteria for tensor’s symmetry

In this section, we formulate covariant criteria which restrict the symme-
try class of second and fourth order tensors, using the vanishing of some of
their covariants.

8.1. Second order tensors.

Lemma 8.1. Let a be a symmetric second-order tensor. Then, a is at least
transversely isotropic if and only if a× a2 = 0.

Proof. Without loss of generality, we can assume that

a = diag(λ1, λ2, λ3).

Then, the polynomial form of a× a2, writes

(λ2 − λ1) (λ3 − λ1) (λ3 − λ2) xyz.

Thus, it vanishes if and only if a is at least transversely isotropic. This
achieves the proof. �

Lemma 8.2. Let a,b be symmetric second-order tensors and suppose that
a is transversely isotropic. Then, (a,b) is transversely isotropic if and only
if a× b = 0.

Proof. Suppose first that (a,b) is transversely isotropic then a×b is at least
transversely isotropic and since it is a third-order totally symmetric tensor,
it must be isotropic by Proposition 6.9 and thus vanishes by Remark 6.10.
To prove the converse, we will use the polynomial representative a,b of a,b
(see Section 2). The linear equation a×b = 0 reads then det(xxx,∇a,∇b) = 0.
Without loss of generality we can assume that Ga = O(2) and thus that

a = λ(x2 + y2) + µz2, λ 6= µ.

The solution is then
b = k1(x

2

+ y2) + k2z
2,



20 M. OLIVE, B. KOLEV, R. DESMORAT, AND B. DESMORAT

which is invariant by O(2). This achieves the proof. �

Given two symmetric second order tensors a,b on the euclidean space R3,
their commutator, a second-order skew-symmetric tensor

[a,b] := ab− ba

can be recast as the first-order covariant

tr(a× b) =
1

3
εεε : (ab).

We have thus

Lemma 8.3. The three conditions are equivalent :

(1) the pair (a,b) is at least orthotropic.
(2) tr(a× b) = 0.
(3) a,b commute.

Corollary 8.4. Let a,b be symmetric second-order tensors. Then, (a,b)
is orthotropic if and only if tr(a× b) = 0 and

a× a2 6= 0, or b× b2 6= 0, or a× b 6= 0.

Proof. If (a,b) is orthotropic, then the first-order covariant tr(a × b) is
necessarily isotropic by proposition 6.9 and thus vanishes by Remark 6.10.
Moreover, either a or b is orthotropic and thus

a× a2 6= 0, or b× b2 6= 0,

or both of them are transversely isotropic. In that case we necessarily have
a×b 6= 0 by Lemma 8.2. Conversely, if tr(a×b) = 0, then the pair (a,b) is
at least orthotropic by Lemma 8.3. If either a or b is orthotropic, then so is
(a,b). Otherwise, both a and b are at least transversely isotropic, but then
the condition a × b 6= 0 forbids the pair (a,b) to be at least transversely
isotropic. It is thus orthotropic. �

We will now formulate coordinate-free conditions to classify the symmetry
class of an n-tuple of symmetric second-order tensors.

Theorem 8.5. Let (a1, . . . ,an) be an n-tuple of second-order symmetric
tensors. Then:

(1) (a1, . . . ,an) is isotropic if and only if

a′k = 0, 1 ≤ k ≤ n,

where a′k is the deviatoric part of ak.
(2) (a1, . . . ,an) is transversely isotropic if and only if there exists aj

such that
a′j 6= 0, aj × a2j = 0,

and
aj × ak = 0, 1 ≤ k ≤ n.

(3) (a1, . . . ,an) is orthotropic if and only if

tr(ak × al) = 0, 1 ≤ k, l ≤ n,

and there exists aj such that aj×a2j 6= 0 or there exists a pair (ai,aj)
such that ai × aj 6= 0.
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(4) (a1, . . . ,an) is monoclinic if and only if there exists a pair (ai,aj)
such that ωωω := tr(ai × aj) 6= 0 and

(akωωω)×ωωω = 0, 1 ≤ k ≤ n.

Proof. (1) (a1, . . . ,an) is isotropic if and only if ak = λkq for 1 ≤ k ≤ n,
which is equivalent to the condition that a′k = 0 for 1 ≤ k ≤ n.

(2) If (a1, . . . ,an) is transversely isotropic, then, each ak is at least trans-
versely isotropic and one of them, say aj, is transversely isotropic. Thus
a′j 6= 0 and aj × a2j = 0 by Lemma 8.1. Moreover, each pair (aj ,ak) is at
least transversely isotropic and thus aj ×ak = 0 by Lemma 8.2. Conversely,
if conditions in (2) are satisfied, then aj is transversely isotropic and each
pair (aj ,ak) is transversely isotropic by Lemma 8.2. Thus (a1, . . . ,an) is
transversely isotropic.

(3) If (a1, . . . ,an) is orthotropic, then, the ak commute with each other
and thus tr(ak × al) = 0 (1 ≤ k, l ≤ n) by Lemma 8.3. Moreover, either
there exists j ∈ {1, . . . , n} such that aj is orthotropic and thus aj × a2j 6= 0
or all the ak are at least transversely isotropic. In that case, a pair of them,
say (ai,aj) is orthotropic and thus ai×aj 6= 0. Conversely, if tr(ak×al) = 0
for all k, l, then, we can find a basis in which there are all diagonal and the
symmetry class of (a1, . . . ,an) is thus at least [D2]. If there exists aj such
that aj×a2j 6= 0, we are done. Otherwise, all the ak are at least transversely

isotropic, but there exists a pair (ai,aj) such that ai × aj 6= 0. Hence,
both ai,aj are transversely isotropic and the pair (ai,aj) is orthotropic by
Lemma 8.2.

(4) If (a1, . . . ,an) is monoclinic, then, its elements have a common eigen-
vector, ωωω, so that (akωωω)×ωωω = 0 (1 ≤ k ≤ n). Moreover, there exists a pair
(ai,aj) such that tr(ai × aj) 6= 0 and thus tr(ai × aj) = λωωω with λ 6= 0.
Conversely, if ωωω := tr(ai × aj) 6= 0, then (a1, . . . ,an) is at most monoclinic.
But the condition (akωωω)×ωωω = 0 for all k means that ωωω is a common eigen-
vector of a1, . . . ,an and thus the symmetry group of (a1, . . . ,an) contains
the second-order rotation around ωωω. �

8.2. Fourth order tensors.

Lemma 8.6. Let t ∈ S
2(R3) be transversely isotropic and S ∈ S

4(R3).
Then, (S, t) is transversely isotropic if and only if S× t = 0.

Proof. Suppose first that (S, t) is transversely isotropic, then S × t is at
least transversely isotropic and since it is a fifth-order symmetric tensor, it
must be isotropic by Proposition 6.9 and thus vanishes by Remark 6.10. To
prove the converse, let p, t be the polynomial representatives of S, t. Then,
the linear equation S × t = 0 reads det(xxx,∇p,∇t) = 0. Without loss of
generality we can assume that Gt = O(2) and thus that

t = λ(x2 + y2) + µz2, λ 6= µ

and the solution is

p = k1z
4 + k2(x

2

+ y2)z2 + k3(x
2 + y2)2,

which is invariant by O(2). This achieves the proof. �
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Lemma 8.7. Let t ∈ S
2(R3) be transversely isotropic and H ∈ H

4. Then,
(H, t) is at least tetragonal if and only if tr(H× t) = 0.

Proof. Suppose first that (H, t) is at least tetragonal, then tr(H × t) is at
least tetragonal and since it is a third-order symmetric tensor, it must be
isotropic by Proposition 6.9 and thus vanishes by Remark 6.10. To prove
the converse, let p, t be the polynomial representatives of H, t. Then, the
linear equation tr(H× t) = 0 reads △(det(xxx,∇p,∇t)) = 0, where △ is the
Laplacian. Without loss of generality we can assume that Gt = O(2) and
thus that

t = λ(x2 + y2) + µz2, λ 6= µ

and the solution is

p = k1
(

6z2(x2 + y2)− (x4 + y4) + 2z4
)

+ k2
(

6x2y2 − (x4 + y4)
)

+ k3xy
(

x2 − y2
)

,

which is invariant by Z4 and has thus at least the symmetry [D4]. Hence,
(H, t) is at least tetragonal. This achieves the proof. �

The cubic symmetry appears, in practice, as the more subtle to deal with.
We will formulate, in the next lemma, more precise statements which allow
to detect the symmetry class of a pair (H, t) when H is cubic and t is trans-
versely isotropic. In that case, we know from [35] that the symmetry class
of a pair (H, t) is one of the following : triclinic, monoclinic, orthotropic,
trigonal or tetragonal.

Lemma 8.8. Let H be a cubic fourth-order harmonic tensor and t ∈ S
2(R2)

be transversely isotropic. Then

(1) (H, t) is tetragonal if and only if

tr(H× t) = 0;

(2) (H, t) is trigonal if and only if

tr(H× t) 6= 0, and t× (H : t) = 0;

(3) (H, t) is orthotropic if and only if

t× (H : t) 6= 0, and tr (t× (H : t)) = 0;

(4) (H, t) is monoclinic if and only if

tr(t× (H : t)) 6= 0, and tr(t× (H : t))× tr(t × (H : t)2) = 0.

Remark 8.9. The conditions in (3) are equivalent to the fact that the pair
(t,H : t) is orthotropic, whereas in (4) they are equivalent to the fact that
the pair (t,H : t) is monoclinic. The cases (1) and (2) cover all the cases
where the pair (t,H : t) is transversely isotropic.

Proof. We will first investigate the four equations in Lemma 8.8. Without
loss of generality, we can assume that GH = O and thus that the polynomial
form of H is given (up to a scaling factor) by

p(x, y, z) = x4 + y4 + z4 − 3x2y2 − 3x2z2 − 3y2z2.
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Now, every transversely isotropic second-order homogeneous polynomial t
writes as

t(x, y, z) = (µ− λ)(nnn · xxx)2 + λq,

where λ 6= µ, nnn = (n1, n2, n3) is a unit vector and q = x2 + y2 + z2. We get
thus:

• tr(H× t) = 0 if and only if

(8.1) n1n2 = n1n3 = n2n3 = 0;

• t× (H : t) = 0 if and only if

n1n2
(

n21 − n23
)

= n1n3
(

n21 − n22
)

= n2n3
(

n21 − n22
)

= 0,

n1n2
(

n22 − n23
)

= n1n3
(

n22 − n23
)

= n2n3
(

n23 − n21
)

= 0.
(8.2)

• tr (t× (H : t)) = 0 if and only if

(8.3) n1n2
(

n21 − n22
)

= n1n3
(

n21 − n23
)

= n2n3
(

n22 − n23
)

= 0;

• tr(t× (H : t))× tr(t× (H : t)2) = 0 if and only if

n21n2n3(n
2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0,

n1n
2
2n3(n

2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0,

n1n2n
2
3(n

2
2 − n23)(n

2
1 − n23)(n

2
1 − n22) = 0.

(8.4)

Note also that (8.1) =⇒ (8.2) =⇒ (8.3) =⇒ (8.4). We will now prove
each statement of Lemma 8.8.

(1) Suppose first that the pair (H, t) is tetragonal, then tr(H× t) = 0 by
Lemma 8.7. Conversely, if tr(H × t) = 0 holds, then we get (8.1) and nnn is
collinear to either

eee1, eee2, eee3.

Then, both H and t are invariant by the rotation by π/2 around nnn and the
pair (H, t) is tetragonal.

(2) Suppose now that the pair (H, t) is trigonal, then the pair of second-
order covariants (t,H : t) is at least trigonal an thus transversely isotropic by
Proposition 6.9. Thus t×(H : t) = 0 by Lemma 8.2. Moreover, tr(H×t) 6= 0
by point (1). Conversely, if t × (H : t) = 0 and tr(H× t) 6= 0, then we get
(8.2) with at least ninj 6= 0 for a pair (i, j) (i 6= j). In that case, nnn is
collinear to either

eee1 + eee2 + eee3, eee1 − eee2 + eee3, eee1 + eee2 − eee3, eee1 − eee2 − eee3.

Then, both H and t are invariant by the rotation by angle 2π/3 around nnn
and the pair (H, t) is trigonal.

(3) Suppose now that the pair (H, t) is orthotropic, then the first order
covariant tr (t× (H : t)) is at least orthotropic and thus vanishes. Moreover
t × (H : t) 6= 0 by points (1) and (2). Conversely, if tr (t× (H : t)) = 0 and
t× (H : t) 6= 0, then we get (8.3) with at least ni = 0 for some i ∈ {1, 2, 3}.
In that case nnn is collinear to either

eee1 + eee2, eee1 − eee2, eee1 + eee3, eee1 − eee3, eee2 + eee3, eee2 − eee3.

Then, both H and t are invariant by the rotation by angle π (a second-order
rotation) around a pair of axes eeei ± eeej and the pair (H, t) is orthotropic.
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(4) Finally, suppose that the pair (H, t) is monoclinic, then the pair of
first-order covariants (tr(t×(H : t)), tr(t×(H : t)2)) is at least monoclinic and
thus collinear. Moreover, tr(t×H : t) 6= 0 by (1), (2) and (3). Conversely, if

tr(t× (H : t))× tr(t× (H : t)2) = 0,

then we get (8.4). Since tr(t×(H : t)) 6= 0 cases (1), (2) and (3) are excluded
and thus the pair (H, t) is either monoclinic or triclinic, so we are reduced to
show that it is monoclinic. If ni = 0 for some i, both H and t are invariant
by the second-order rotation around eeei. Otherwise, we get ni = ±nj for a
pair (i, j). In that case, both H and t are invariant by the second-order
rotation around nieeei − njeeej. This achieves the proof. �

We will end this section by formulating criteria for detecting orthotropic
and monoclinic symmetry for a general harmonic tensor H ∈ H

4(R3), using
second-order covariants.

Lemma 8.10. Let c ∈ S
2(R3) be orthotropic and H ∈ H

4(R3). Then,

G(c,H : c,H : c2) = G(H,c).

In particular, (H, c) is orthotropic (resp. monoclinic) if and only if

(c,H : c,H : c2)

is orthotropic (resp. monoclinic).

Proof. Note that the inclusion G(H,c) ⊂ G(c,H : c,H : c2) is obvious, since

(c,H : c,H : c2) are covariants of the pair (H, c). To prove the reverse inclu-
sion, we can assume, without loss of generality, that Gc = D2 (an thus that
c is diagonal). Let g ∈ G(c,H : c,H : c2) ⊂ Gc. Then, g is either the identity
or a second-order rotation r around either eee1, eee2, or eee3. Without loss of
generality, we can suppose that r is the rotation around eee3. Then, eee3 is a
common eigenvector of c, H : c and H : c2. Moreover, since H is harmonic,
we have H :q = 0 and thus

[(H :d)eee3]× eee3 = 0, for d = q, c, c2.

Since (q, c, c2) and (e11, e22, e33) generate the same three-dimensional vector
space of diagonal matrices, this last condition can be recast as

[(H : eii)eee3]× eee3 = 0, for i = 1, 2, 3.

and thus

H1113 = H1123 = H1223 = H1333 = H2223 = H2333 = 0,

which means that H is invariant under r, and so r ∈ G(H,c). �

Note that if a, b are transversely isotropic, second-order symmetric ten-
sors, then the pair (a,b) is either monoclinic, orthotropic or transversely
isotropic (see [35]), and we get the following corollary.

Corollary 8.11. Let a, b be transversely isotropic second-order symmetric
tensors and H ∈ H

4(R3).
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(1) If (a,b) is orthotropic, then

G(a,b,H : a,H :b) = G(H,a,b).

In particular, (H,a,b) is orthotropic (resp. monoclinic) if and only
if (a,b,H : a,H :b) is orthotropic (resp. monoclinic).

(2) If (a,b) is monoclinic, then

G(a,b,H :a,H :b,H :(ab)s) = G(H,a,b).

In particular, (H,a,b) is monoclinic if and only if

(a,b,H : a,H :b,H :(ab)s)

is monoclinic.

Proof. (1) Suppose that (a,b) is orthotropic. Then there exists a basis (eeei)
in which both a and b are diagonal. Moreover, (q,a,b) and (e11, e22, e33)
generate the same three-dimensional vector space and the proof is similar
to that of Lemma 8.10.

(2) Suppose that (a,b) is monoclinic. Then, by Lemma 7.3, there exists
a linear combination c of a and b which is orthotropic. But then, c2 is a
linear combination of q, a, b and (ab)s and thus

G(a,b,H : a,H :b,H :(ab)s) ⊂ G(c,H : c,H : c2) = G(H,c),

by Lemma 8.10. Therefore

G(a,b,H : a,H :b,H :(ab)s) ⊂ G(H,c) ∩G(a,b) ⊂ G(H,a,b).

The reverse inclusion being obvious, this achieves the proof. �

9. Characterization of the Symmetry Classes of H
4

In this section, we formulate coordinate-free conditions using covariants
up to order 5 that identify the symmetry class of a given tensor H ∈ H

4

and we prove that these conditions are both necessary and sufficient. The
partially ordered set of symmetry classes for H4 is the same as the one for
the elasticity tensor, pictured in Figure 2. The notations used in this section
are those introduced in section 5. We will start by connecting Cov1(H) and
Cov2(H) by the following lemma.

Lemma 9.1. Let H ∈ H
4 be a fourth order harmonic tensor. Then

(1) Cov1(H) = {0} if and only if Cov2(H) is at least orthotropic;
(2) dimCov1(H) = 1 if and only if Cov2(H) is monoclinic;
(3) dimCov1(H) = 3 if and only if Cov2(H) is triclinic.

Remark 9.2. In the proof of Lemma 9.1, some arguments are general and
relies on Section 7, others depend on the very special case that, Cov1(H

4)
is generated by commutators of elements in Cov2(H

4) (as can be checked
in Table 2).

Proof. (1) If Cov1(H) = {0}, then each commutator of a pair of elements
in Cov2(H) vanishes. Thus all the elements of Cov2(H) commute together
and they can be represented by diagonal matrices in a common basis. All
these second-order covariants are thus invariant by D2 and Cov2(H) is thus
at least orthotropic. Conversely, if Cov2(H) is at least orthotropic, then,
since Cov1(H) is generated by the commutators of Cov2(H), it vanishes.
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(2) If dimCov1(H) = 1, then, by (1) Cov2(H) is either monoclinic or
triclinic (see Proposition 7.5). However, if Cov2(H) was triclinic and thus of
dimension 6 by Proposition 7.5, then Cov2(H) = S

2(R3) and we could build
two linearly independent commutators which belong to Cov1(H), which
would lead to a contradiction. Therefore, Cov2(H) is monoclinic. Con-
versely, if Cov2(H) is monoclinic, then, Cov1(H) (which is generated by
commutators of Cov2(H)) is at least monoclinic and thus monoclinic by
(1).

(3) If dimCov1(H) = 3, then Cov2(H) is necessarily triclinic by (1) and
(2). Conversely, if Cov2(H) is triclinic, then dimCov1(H) ≥ 2 by (1) and
(2) and thus dimCov1(H) = 3 by Proposition 7.1. �

The harmonic tensor H, being a particular elasticity tensor, can be rep-
resented by a symmetric endomorphism of the space S

2(R3), the so-called
Kelvin representation, and thus by the matrix [1]:

(9.1) [H] =

(

A
√
2B√

2Bt 2C

)

where

A :=





Λ2 + Λ3 −Λ3 −Λ2

−Λ3 Λ3 + Λ1 −Λ1

−Λ2 −Λ1 Λ2 + Λ1



 ,

B :=





−X1 Y1 + Y2 −Z2

−X2 −Y1 Z1 + Z2

X1 +X2 −Y2 −Z1



 , C :=





−Λ1 −Z1 −Y1
−Z1 −Λ2 −X1

−Y1 −X1 −Λ3



 ,

and Bt is the transpose matrix of B.

9.1. Case I: Cov2(H) is isotropic.

Theorem 9.3. Let H ∈ H
4 be a fourth order harmonic tensor. The follow-

ing propositions are equivalent.

(1) Cov2(H) is isotropic;
(2) H is either cubic or isotropic;
(3) d2 is isotropic.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) is true, so that we have d2 =

1
3J2q and d3 =

1
3J3q,

since trd2 = J2 and trd3 = J3. Then, the covariants dk defined in (5.1)
write as

(9.2)
d2 =

1
3J2q, d3 =

1
3J3q, d4 =

1
9J2

2q,
d5 = 0, d6 =

1
27J2

3q, d7 = 0,
d8 = 0, d9 = 0, d10 = 0,

and we get

3J4 = J2
2, 9J6 = J2

3, J5 = J7 = J8 = J9 = J10 = 0.

Now, tr(d3
2) is an invariant of degree 6 and should be expressible as a linear

combination of the invariants

J2
3, J3

2, J2J4, J6.
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In fact, the following relation, satisfied by any harmonic tensor H ∈ H
4 can

be checked directly by computation:

240J6 + 39J2
3 + 190J3

2 − 198J2J4 − 540 tr(d3
2) = 0.

When (9.2) are satisfied, this leads to the relation

30J3
2 − J2

3 = 0.

If J2 = 0, then ‖H‖2 = J2 = 0, so that H is isotropic. Otherwise, we get

3J4 = J2
2, J5 = 0, 30J3

2 = J2
3, 9J6 = J2

3,

J7 = 0, J8 = 0, J9 = 0, J10 = 0,

and J2 6= 0, which are, according to [1, Proposition 5.3], necessary and
sufficient conditions for a tensor H ∈ H

4 to be cubic.
The assertion (2) =⇒ (3) is trivial because if H is either cubic or

isotropic, then d2 as a covariant of H inherits its symmetry and is thus
necessarily isotropic.

Suppose that (3) is true, so that d2 = αq, for some scalar α. Then, using
the fact that H :q = tr34 H = 0 we deduce first that

ck = 0, k ≥ 3.

Now, using remark 5.2, we have c3 = 2d′
3 and thus d3 = βq for some scalar

β. Since all first and second-order covariants in Table 2 are build from d2,
d3 and the ck, we deduce that they are all isotropic. But every symmetric
second-order covariant is obtained as a linear combination of either a product
of an invariant with a second-order covariant from Table 2 or the symmetric
product of two first-order covariants from Table 2. Therefore, Cov2(H) is
isotropic. This achieves the proof. �

9.2. Case II: Cov2(H) is transversely isotropic.

Theorem 9.4. Let H ∈ H
4 be a fourth order harmonic tensor. The follow-

ing propositions are equivalent.

(1) Cov2(H) is transversely isotropic;
(2) H is tetragonal, trigonal or transversely isotropic;
(3) the pair (d2, c3) is transversely isotropic.

Remark 9.5. By virtue of Lemma 8.1, Lemma 8.2 and Theorem 9.4, condi-
tion (3) in Theorem 9.4 can be recast as

d2
′ 6= 0, d2 × (d2)

2 = 0, c3 × d2 = 0.

Proof of Theorem 9.4. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) is true, then, without loss of generality, we can

assume that all symmetric second-order covariants are invariant by the sub-
group O(2) and that at least one of them, say a writes as

a = λq+ µτττ , µ 6= 0.

Thus, τττ = diag(1, 1,−2) is an eigenvector of H (because H :q = 0 and H :a
is traceless) and we have

Y2 = 0, X1 +X2 = 0, Z1 = 0, Λ1 = Λ2.
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Now we compute d2 from (9.1) and write that it must be invariant by O(2)
and we get

4Z2X1 + (Λ1 + 4Λ3)Y1 = 0,

(Λ1 + 4Λ3)X1 − 4Z2Y1 = 0.

The solutions of this system break into two alternatives:

(1) either Z2 = 0 and Λ1 = −4Λ3,
(2) or, X1 = Y1 = 0.

In the first case, we get

[H] =

















−3Λ3 −Λ3 4Λ3 −
√
2X1

√
2Y1 0

−Λ3 −3Λ3 −4Λ3 −
√
2X1 −

√
2Y1 0

4Λ3 4Λ3 −8Λ3 0 0 0

−
√
2X1 +

√
2X1 0 8Λ3 0 −2Y1√

2Y1 −
√
2Y1 0 0 8Λ3 −2X1

0 0 0 −2Y1 −2X1 −2Λ3

















which is at least trigonal since g ⋆H = H for all g ∈ Z3. In the second case,
we get

[H] =

















Λ1 + Λ3 −Λ3 −Λ1 0 0 −
√
2Z2

−Λ3 Λ1 + Λ3 −Λ1 0 0
√
2Z2

−Λ1 −Λ1 2Λ1 0 0 0
0 0 0 −2Λ1 0 0
0 0 0 0 −2Λ1 0

−
√
2Z2

√
2Z2 0 0 0 −2Λ3

















which is at least tetragonal since g ⋆H = H for all g ∈ Z4.
The assertion (2) =⇒ (3) is trivial because if (2) is true then the pair

(d2, c3) is either transversely isotropic or isotropic, but it cannot be isotropic
by virtue of Theorem 9.3.

Finally, suppose that (3) is true. Note first that d2 cannot be isotropic,
because of Theorem 9.3. Without loss of generality, we can assume, there-
fore, that

d′
2 = µ2τττ , c3 = µ3τττ ,

where µ2 6= 0 and τττ = diag(1, 1,−2). We get thus

c3 = H :d2 = H :d′
2 = µ2H :τττ = µ3τττ

leading to

H :τττ =
µ3
µ2
τττ ,

which means that τττ is an eigenvector of H. But then

c4 = H : c3 =
µ23
µ2
τττ , c5 = H : c4 =

µ33
µ22
τττ ,

and thus, the triple (d2, c3, c4, c5) is transversely isotropic. We deduce then
from Table 2, that Cov2(H) is transversely isotropic. �

We will now formulate conditions which allow to distinguish between the
three remaining cases: transversely isotropic, trigonal and tetragonal.

Corollary 9.6. Let H ∈ H
4 be a fourth order harmonic tensor. Then
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(1) H is transversely isotropic if and only if d2 is transversely isotropic
and

H× d2 = 0;

(2) H is tetragonal if and only if d2 is transversely isotropic,

H× d2 6= 0, and tr(H× d2) = 0;

(3) H is trigonal if and only if d2 is transversely isotropic,

tr(H× d2) 6= 0, and (H : d2)× d2 = 0.

Proof. Note first that if H is either transversely isotropic, tetragonal or
trigonal then, d2 is necessarily transversely isotropic, by Theorem 9.3.

(1) If H is transversely isotropic, then, H× d2 = 0 by Lemma 8.6. Con-
versely, if d2 is transversely isotropic and H × d2 = 0, then, (H,d2) is
transversely isotropic by Lemma 8.6 and so is H.

(2) If H is tetragonal, then, tr(H×d2) = 0 by Lemma 8.7 and H×d2 6= 0
by (1). Conversely, if the conditions in (2) are satisfied, then, (H,d2) is at
least tetragonal by Lemma 8.7, and so is H. Since H cannot be isotropic or
cubic by Theorem 9.3 (because d2 is assumed to be transversely isotropic),
it is either tetragonal or transversely isotropic, the later case being excluded
by the condition H× d2 6= 0.

(3) If H is trigonal, then, the pair (d2, c3) is transversely isotropic and
thus

(H : d2)× d2 = c3 × d2 = 0,

by Lemma 8.2. Moreover, tr(H×d2) 6= 0 by Lemma 8.7. Conversely, if the
conditions in (3) holds, then, the pair (d2, c3) is transversely isotropic by
Lemma 8.2 and H is either tetragonal, trigonal or transversely isotropic by
Theorem 9.4. Since H cannot be transversely isotropic by Lemma 8.6, nor
tetragonal by Lemma 8.7, it is necessarily trigonal. �

We will end this subsection with two lemmas which characterise the sym-
metry class of a pair (H, t) where H is a fourth-order harmonic tensor and
t is a transversely isotropic second-order symmetric tensor. This completes
the results of Section 8 and will be very useful to prove our main theorem
in Section 10.

Lemma 9.7. Let t ∈ S
2(R3) be transversely isotropic and H ∈ H

4(R3) be
an harmonic fourth-order tensor. Then, the pair (H, t) is trigonal if and
only if

(9.3) (H : t)× t = 0, d2 × t = 0, and tr(H× t) 6= 0.

Proof. Suppose first that (H, t) is trigonal. Then the triplet of second-order
covariants (H : t,d2, t) is at least trigonal and thus transversely isotropic
by Proposition 6.9. We have thus (H : t) × t = 0 and d2 × t = 0 by
Lemma 8.2. Moreover, tr(H × t) 6= 0, by Lemma 8.7. Conversely, suppose
that conditions (9.3) are satisfied. Then, d2 is at least transversely isotropic
by Lemma 8.2.

(1) If d2 is isotropic, then H is cubic by Theorem 9.3 (it cannot vanish
because we assume tr(H × t) 6= 0). But then, (H, t) is trigonal by
Lemma 8.8.
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(2) If d2 is transversely isotropic, then d′
2 = λt′ with λ 6= 0 and thus

(H :d2)× d2 = 0, and tr(H× d2) 6= 0.

Therefore H is trigonal by Corollary 9.6 and so is the pair (H, t).

�

Corollary 9.8. Let t ∈ S
2(R3) be a transversely isotropic and H be an har-

monic fourth-order tensor. Then, the pair (H, t) is either trigonal, tetrag-
onal or transversely isotropic if and only if the triplet (d2, t,H : t) is trans-
versely isotropic.

Proof. Suppose first that (H, t) is either trigonal, tetragonal or transversely
isotropic. Then the triplet of second-order covariants (d2, t,H : t) is at least
transversely isotropic and thus transversely isotropic. Conversely, suppose
that (d2, t,H : t) is transversely isotropic. Then we have

d2 × t = 0, and (H : t)× t = 0,

by Lemma 8.2. If tr(H× t) = 0, then, the pair (H, t) is either tetragonal or
transversely isotropic by Lemma 8.7. If tr(H× t) 6= 0, then, the pair (H, t)
is trigonal by Lemma 9.7. This achieves the proof. �

9.3. Case III: Cov2(H) is orthotropic.

Lemma 9.9. Let H ∈ H
4 be a fourth order harmonic tensor. Then

vvv5 = vvv6 = 0 =⇒ Cov1(H) = {0} ,
where vvv5 := εεε :(d2c3) and vvv6 := εεε :(d2c4).

Proof. If vvv5 = vvv6 = 0, then the commutators [d2, c3] and [d2, c4] vanish.
Without loss of generality, we can assume that d2 and c3 are diagonal ma-
trices. We will now show that

[c3, c4] = 0.

(a) If d2 is orthotropic, then c4 is also diagonal (since [d2, c4] = 0) and
thus [c3, c4] = 0.

(b) If d2 is transversely isotropic, we can assume, without loss of gener-
ality, that d2 = diag(λ, λ, µ) where λ 6= µ. Then, since c3 = H :d2

is also diagonal, we get

X1 +X2 = Y2 = Z1 = 0.

Expressing now that (d2)11 = (d2)22 and (d2)12 = 0, we have

Z2(Λ1 − Λ2) = (Λ3 + 2Λ1 + 2Λ2)(Λ1 − Λ2) = 0.

But, since [d2, c4] = 0 where c4 = H2 :d2, we get

(c4)13 = (c4)23 = 0,

and thus

(Λ1 − Λ2)Y1 = (Λ1 − Λ2)X2 = 0.

• If Λ1 = Λ2, then, (c4)12 = (µ − λ)(Λ2 − Λ1)Z2 = 0. Thus c4 is
diagonal and [c3, c4] = 0.
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• If Λ1 6= Λ2, then

X2 = Y1 = Z2 = 0, Λ3 + 2Λ1 + 2Λ2 = 0

and, once again, c4 is diagonal and thus [c3, c4] = 0.
(c) if d2 is isotropic, then all second order covariants vanish (by Theo-

rem 9.3).

In each case, d2, c3, c4 commute with each other and thus all the first-order
covariants in Table 2 vanish, leading to Cov1(H) = {0}. �

Theorem 9.10. Let H ∈ H
4 be a fourth order harmonic tensor. The fol-

lowing propositions are equivalent.

(1) Cov2(H) is orthotropic;
(2) H is orthotropic;
(3) vvv5 = vvv6 = 0 and the pair (d2, c3) is orthotropic.

In that case, GH = G(d2,c3,c4).

Remark 9.11. Condition (3) implies that the triplet (d2, c3, c4) is orthotropic
by Lemma 9.9. Conversely, if the triplet (d2, c3, c4) is orthotropic, then (3)
holds because if (d2, c3) was at least transversely isotropic, then so would
be Cov2(H) by Theorem 9.4 and Theorem 9.3, which would lead to a con-
tradiction. Thus, these two conditions are equivalent. However, checking
condition (3) requires less computations than checking that (d2, c3, c4) is
orthotropic using Theorem 8.5.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that Cov2(H) is orthotropic and thus of dimension 3 by

Proposition 7.5. Then, by Corollary 7.4, there exists c ∈ Cov2(H) which
is orthotropic. By Lemma 7.2, we deduce that Cov2(H) = 〈q, c, c2〉, and
thus, without loss of generality, we can assume that Cov2(H) is the space
of all diagonal tensors. Now, since H :q = 0, H : c and H : c2 are second-
order symmetric covariants, we deduce moreover that the space of diagonal
matrices is invariant under H, which has thus the matrix representation

(9.4) [H] =

















Λ2 + Λ3 −Λ3 −Λ2 0 0 0
−Λ3 Λ3 +Λ1 −Λ1 0 0 0
−Λ2 −Λ1 Λ1 + Λ2 0 0 0
0 0 0 −2Λ1 0 0
0 0 0 0 −2Λ2 0
0 0 0 0 0 −2Λ3

















which is the normal form of an harmonic tensor which is at least orthotropic.
Since it cannot be of lower symmetry by Theorem 9.4 and Theorem 9.3, we
conclude that H is orthotropic.

Suppose now that H is orthotropic. Then, Cov1(H) = {0} by Propo-
sition 7.1 and thus vvv5 = vvv6 = 0. Moreover, the pair (d2, c3) is at least
orthotropic and thus orthotropic by Theorem 9.4 and Theorem 9.3. Thus
we get (3).

Finally, suppose that (3) holds. Then by Lemma 9.9, Cov1(H) = {0} and
thus Cov2(H) is at least orthotropic by Lemma 9.1 and thus orthotropic
since (d2,d3) is orthotropic. �
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9.4. Case IV: Cov2(H) is monoclinic.

Lemma 9.12. Let H ∈ H
4 be a fourth order harmonic tensor. Then

vvv5 = 0 =⇒ dimCov1(H) ≤ 1,

where vvv5 := εεε :(d2c3).

Proof. If vvv5 = 0, then d2 and c3 commute. We will distinguish 2 cases
whether d2 is orthotropic or transversely isotropic (if d2 is isotropic, the
result already holds by Theorem 9.3).

(1) Suppose that d2 is transversely isotropic. Without loss of generality
we can assume that d2 = diag(λ, λ, µ), λ 6= µ, and that c3 = H :d2 is
diagonal. We get then

X1 +X2 = 0, Y2 = 0, Z1 = 0.

Using these substitutions, we have

(d2)11 = 4Λ2
3 + 2Λ2Λ3 + 4Λ2

2 + 4Z2
2 + 6Y 2

1 + 6X2
1

(d2)22 = 4Λ2
3 + 2Λ1Λ3 + 4Λ2

1 + 4Z2
2 + 6Y 2

1 + 6X2
1

(d2)12 = (Λ1 − Λ2)Z2

(d2)13 = (4Λ3 − 2Λ2 + 3Λ1)Y1 + 4X1Z2

(d2)23 = (4Λ3 − 2Λ1 + 3Λ2)X1 − 4Y1Z2

and thus

(Λ1 − Λ2)Z2 = 0,

(4Λ3 − 2Λ2 + 3Λ1)Y1 + 4X1Z2 = 0,

(4Λ3 − 2Λ1 + 3Λ2)X1 − 4Y1Z2 = 0,

(Λ1 − Λ2)(2Λ1 + 2Λ2 + Λ3) = 0.

(a) If Λ1 = Λ2, we get

(4Λ3 +Λ1)Y1 + 4X1Z2 = 0,

−(4Λ3 +Λ1)X1 + 4Y1Z2 = 0.

Then either the determinant of the system 16Z2
2 + (4Λ3 + Λ1)

2 does not
vanish, and thus X1 = Y1 = 0. In this case we get

X1 = X2 = Y1 = Y2 = 0

and H is invariant under the rotation by angle π around eee3. Otherwise,
we have Z2 = 0 and 4Λ3 + Λ1 = 0. In that case, c4 is also diagonal and
commutes thus with both d2 and c3 and we are done by lemma 9.9.

(b) If Λ1 6= Λ2 , then Z2 = 0 and

Y1(4Λ3 − 2Λ2 + 3Λ1) = 0,

X1(4Λ3 − 2Λ1 + 3Λ2) = 0,

Λ3 + 2Λ2 + 2Λ1 = 0.



COVARIANTS AND SYMMETRY CLASSES 33

If X1 = 0 or Y1 = 0 then, we are done since H is at least monoclinic in
either cases. Thus we can assume that

4Λ3 − 2Λ2 + 3Λ1 = 0,

4Λ3 + 3Λ2 − 2Λ1 = 0,

Λ3 + 2Λ2 + 2Λ1 = 0,

but the unique solution of this linear system is Λ1 = Λ2 = Λ3 = 0, and then
c4 = 0. Again, we are done by Lemma 9.9.

(2) Suppose that d2 is orthotropic. Our strategy will be to show that
vvv6 = εεε :(d2c4) is a common eigenvector of both d2, c3 and c4, in which case
dimCov1(H) = 1 (if vvv6 = 0, then Cov1(H) = {0} by Lemma 9.9). Note
that, if we can prove that vvv6 is an eigenvector of d2, then, we are done
because

d2(c3vvv6) = c3(d2vvv6), d2(c4vvv6) = c4(d2vvv6)

and d2 (which is orthotropic) has only simple eigenvalues. Now d2vvv6 can be
recast as a product of covariants in Table 2. Indeed, we have

(9.5) d2vvv6 = J2vvv6 − vvv8b,

where
vvv6 = εεε :(d2c4), and vvv8b = εεε :(d2

2c4).

Without loss of generality, we can assume that d2 is diagonal, and hence
that (q,d2,d

2
2) is a basis of the space of diagonal matrices. Therefore

(9.6) c3 = αq+ βd2 + γd2
2.

If γ = 0, then
c4 = H : c3 = β(H :d2) = βc3

and we are done by Lemma 9.9. Therefore, we can suppose that γ 6= 0.
Contracting with c4 both sides of (9.6), we get

c4c3 = αc4 + βc4d2 + γc4d
2
2,

and contracting with εεε leads to

(9.7) vvv7b = εεε :(c4c3) = −βvvv6 − γvvv8b.

Now, contracting H with both sides of (9.6), we get

c4 = H : c3 = βH :d2 + γH :d2
2 = βc3 + γH :d2

2.

But H :d2
2 can be recast as a product of covariants in Table 2. Indeed

8H :d2
2 = (−2J2J3 + 8J5)q− 2J3d2 + 7J2c3 + 10c5 − 12(d2c3)

s.

Therefore (remember that d2 and c3 commute), we have

c4 =

(

β +
7γ

8
J2

)

c3 + γ

(

J5 −
J2J3
4

)

q− γ

4
J3d2 +

5γ

4
c5 −

3γ

2
d2c3

and thus

c4c3 =

(

β +
7γ

8
J2

)

c23 + γ

(

J5 −
J2J3
4

)

c3 −
γ

4
J3d2c3 +

5γ

4
c5c3 −

3γ

2
d2c

2
3.

Hence

vvv7b = εεε :(c4c3) =
5γ

3
εεε :(c5c3).
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But εεε :(c5c3) can be recast as a product of covariants in Table 2. Indeed

(9.8) 15εεε :(c5c3) = 4J3vvv5 + 15J2vvv6 + 18vvv8a − 24vvv8b,

where

vvv5 = εεε :(d2c3) = 0, and vvv8a = εεε :(d2c3
2) = 0.

We have thus

vvv7b =
5γ

3
J2vvv6 −

8γ

3
vvv8b.

Using (9.7), we deduce that

5γ

3
J2vvv6 −

8γ

3
vvv8b = vvv7b = −βvvv6 − γvvv8b

and hence that

vvv8b =

(

J2 +
3β

5γ

)

vvv6.

Therefore

d2vvv6 = J2vvv6 − vvv8b =
3β

5γ
vvv6

and vvv6 is an eigenvector of d2, which achieves the proof. �

Corollary 9.13. Let H ∈ H
4 be a fourth order harmonic tensor. Then,

(9.9) vvv5 × [(vvv5 ·H · vvv5)vvv5] = 0 and vvv5 ×
[

(vvv5 ·H2 · vvv5)vvv5
]

= 0,

if and only if H is at least monoclinic.

Proof. Suppose first that (9.9) is satisfied. If vvv5 = 0, we are done by
Lemma 9.12. Otherwise, we can suppose, without loss of generality, that
vvv5 = keee1 with k 6= 0. But then we get

H1112 = H1113 = 0, (H2)1112 = (H2)1113 = 0,

and thus

Y1 + Y2 = 0,

Z2 = 0,

2X1Y2 − (Λ2 − Λ3)Z1 = 0,

(Λ2 − Λ3)Y2 + 2X1Z1 = 0.

If 4X2
1 + (Λ2 − Λ3)

2 6= 0, then Y2 = Z1 = 0 and we are done (since then,
H is a normal form of a monoclinic tensor). Otherwise, we get Λ3 = Λ2

and X1 = 0. Then d2 and c3 commute so that vvv5 = 0, which leads to a
contradiction. Conversely, if H is at least monoclinic, then dimCov1(H) ≤
1 by Proposition 7.1, and thus we get (9.9). This achieves the proof. �

Theorem 9.14. Let H ∈ H
4 be a fourth order harmonic tensor. The fol-

lowing propositions are equivalent.

(1) H is monoclinic;
(2) Cov2(H) is monoclinic;
(3) the triplet (d2, c3, c4) is monoclinic.

In that case, GH = G(d2,c3,c4).
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Proof. We will prove that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Suppose first that (1) holds. Then, Cov2(H) is at least monoclinic. But

Cov2(H) cannot be orthotropic, transversely isotropic, nor isotropic by The-
orems 9.10, 9.4, and 9.3. Thus Cov2(H) is monoclinic.

Suppose now that (2) holds. Then, the triplet (d2, c3, c4) is at least mono-
clinic. Since it cannot be at least orthotropic by Lemma 9.9 and Lemma 9.1,
it is thus monoclinic.

Finally, suppose that (3) holds. Then, H is either monoclinic or triclinic.
Moreover, there exists a basis where each element of the triplet (d2, c3, c4)
can be written as





∗ ∗ 0
∗ ∗ 0
0 0 ∗





and using the results of Table 2, we can conclude that dimCov1(H) = 1.
But then, H is at least monoclinic by Corollary 9.13 and thus monoclinic. �

9.5. Case V: Cov2(H) is triclinic.

Theorem 9.15. Let H ∈ H
4 be a fourth order harmonic tensor. The fol-

lowing propositions are equivalent.

(1) H is triclinic;
(2) Cov2(H) is triclinic;
(3) the triplet (d2, c3, c4) is triclinic.

Proof. We will prove that (1) =⇒ (2) =⇒ (3) =⇒ (1). If (1) holds, then
(2) holds by Theorems 9.3, 9.4, 9.10 and 9.14. If (2) holds, then (3) holds
because if (d2, c3, c4) is at least monoclinic, then dimCov1(H) ≤ 1 and
thus Cov2(H) is at least monoclinic by Lemma 9.1. Finally, if (3) holds,
then H is necessarily triclinic. �

10. Characterization of the Symmetry Class of an Elasticity
tensor

The harmonic decomposition of the elasticity tensor was first obtained by
Backus [2] (see also [14, 3]) and is given by

Ela ≃ H
0 ⊕H

0 ⊕H
2 ⊕H

2 ⊕H
4.

More precisely (see [9] for instance), given an orthonormal frame (eee1, eee2, eee3),
each elasticity tensor E can be written as

Eijkl = λδijδkl + µ(δikδjl + δilδjk)

+ δijakl + δklaij

+ δikbjl + δjlbik + δilbjk + δjkbil

+Hijkl.

(10.1)

In this decomposition, λ, µ (the generalized Lamé coefficients) and the de-
viators a,b are related to the dilatation tensor d := tr12 E and the Voigt
tensor v := tr13 E by the following process [14]. Starting with (10.1), we
get

d = (3λ+ 2µ)q+ 3a+ 4b, v = (λ+ 4µ)q+ 2a+ 5b.
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Taking the traces of each equation, one obtains

tr(d) = 9λ+ 6µ, tr(v) = 3λ+ 12µ,

and, finally:

λ =
1

15
(2 tr(d)− tr(v)), µ =

1

30
(− tr(d) + 3 tr(v)),

a =
1

7
(5d′ − 4v′), b =

1

7
(−2d′ + 3v′),

where d′ := d− 1
3 tr(d)q and v′ := v− 1

3 tr(v)q are the deviatoric parts of
d and v respectively.

The fourth-order harmonic component H is obtained using S := (E)s, the
total symmetrization of E, given by

Sijkl =
1

3
(Eijkl + Eikjl +Eiljk).

The traceless part of S, H, is then given by

H = S− 2

7
q⊙

(

d′ + 2v′
)

− 1

15
(trd+ 2 trv)q⊙ q

where

(a⊙ b)ijkl :=
1

6

(

aijbkl + bijakl + aikbjl + bikajl + ailbjk + bilajk)

if a and b are two symmetric second order tensors.

Remark 10.1. An elasticity tensor E can thus be written as

E = (H,a,b, λ, µ),

where λ, µ are scalars, a,b ∈ H
2 andH ∈ H

4. This decomposition is however
not unique. Indeed, substituting for (a,b) any invertible linear combination
of them would lead to a similar decomposition and the same is true for the
pair of scalars (λ, µ). In particular, in the following theorem, one can use
(d′,v′) instead of (a,b), for instance.

We will now state our main theorem, which characterizes, using polyno-
mial covariants, the symmetry class of an Elasticity tensor.

Theorem 10.2. Let E = (H,a,b, λ, µ) ∈ Ela be an harmonic decomposition
of an Elasticity tensor E, where H ∈ H

4, a,b ∈ H
2 and λ, µ are scalars.

Then

(1) E is isotropic if and only if a = b = d2 = 0.
(2) E is cubic if and only if a = b = d′

2 = 0 and d2 6= 0.
(3) E is transversely isotropic if and only if (d2,a,b) is transversely

isotropic and

H× d2 = H× a = H× b = 0.

(4) E is tetragonal if and only if (d2,a,b) is transversely isotropic,

tr(H× d2) = tr(H× a) = tr(H× b) = 0,

and

H× d2 6= 0, or H× a 6= 0, or H× b 6= 0.
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(5) E is trigonal if and only if (d2,a,b) is transversely isotropic,

d2 × (H :d2) = a× (H : a) = b× (H :b) = 0,

and

tr(H× d2) 6= 0, or tr(H× a) 6= 0, or tr(H× b) 6= 0.

(6) E is orthotropic if and only if the family of second-order tensors

Fo :=
{

d2,a,b, c3, c4,H : a,H :b,H : a2,H :b2
}

is orthotropic.
(7) E is monoclinic if and only if the family of second-order tensors

Fm :=
{

d2,a,b, c3, c4,H : a,H :b,H :a2,H :b2,

H :(ab)s,H :(ad2)
s,H :(bd2)

s}
is monoclinic.

(8) E is triclinic if and only if none of the preceding conditions holds.

Remark 10.3. Explicit covariant relations on a finite family F of second-
order tensors which characterize its symmetry class are provided by Theo-
rem 8.5.

Proof of Theorem 10.2. Note first that the symmetry class of E is the same
as the symmetry class of the triplet (H,a,b) (see Section 6).

(1) If E is isotropic, then, H,a,b are all isotropic and thus vanish, since
they all belong to irreducible representations. Conversely, if a = b = d2 = 0,
then, H vanishes because ‖H‖2 = trd2. Thus, (H,a,b) is isotropic.

(2) If E is cubic, then, all second-order symmetric covariant are isotropic.
Thus, a = b = d′

2 = 0 but d2 6= 0 (otherwise, (H,a,b) would be isotropic,
by point (1)). Conversely, if a = b = d′

2 = 0 and d2 6= 0, then, H is cubic
according to Theorem 9.3 and so is (H,a,b).

For the sequel of the proof, note that, so far, that we have proved that E is
either isotropic, or cubic if and only if the family of second-order covariants

Fi := {d2,a,b}
is isotropic.

(3) If E is transversely isotropic, then, the triplet (a,b,d2) is thus trans-
versely isotropic. Moreover, each pair (H,d2), (H,a), (H,b) is at least
transversely isotropic and thus

H× d2 = H× a = H× b = 0,

by Lemma 8.6 and Remark 3.9. Conversely, if the conditions in (3) are
satisfied, then, at least one of the covariants a, b, d2 (call it t) is transversely
isotropic and

H× t = 0.

Therefore, the pair (H, t) is transversely isotropic according to Lemma 8.6
and so is the triplet (H,a,b).

(4) If E is tetragonal, then, each pair of covariants (H,d2), (H,a), (H,b)
is at least tetragonal and thus

tr(H× d2) = tr(H× a) = tr(H× b) = 0,
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by Lemma 8.7 and Remark 3.9. Now, since (a,b,d2) is transversely isotropic,
at least one of the covariants d2, a, b is transversely isotropic and thus

H× d2 6= 0, or H× a 6= 0, or H× b 6= 0,

by Lemma 8.6 (otherwise, one of the pairs (H,d2), (H,a), (H,b) would
be at least transversely isotropic and so would be (H,a,b)). Conversely, if
conditions in (4) are satisfied, we can find a covariant t among a, b, d2 such
that

tr(H× t) = 0, and H× t 6= 0.

Then, t is necessarily transversely isotropic by Remark 3.9 and thus (H, t) is
at least tetragonal by Lemma 8.7. Moreover, (H, t) cannot be transversely
isotropic, nor isotropic by Lemma 8.6. Since it cannot be either cubic (since
t is transversely isotropic), it is in fact tetragonal, and so is the triplet
(H,a,b).

(5) If E is trigonal, then, Cov2(E) is at least transversely isotropic and
we get, in particular,

d2 × (H :d2) = a× (H : a) = b× (H :b) = 0,

by Lemma 8.2 and Remark 3.9. Moreover, (a,b,d2) is transversely isotropic
and thus at least one of the covariants a, b, d2 (call it t) is transversely
isotropic. But then,

GE = G(H,a,b) = GH ∩G(d2,a,b) = GH ∩Gt.

Thus, the pair (H, t) is trigonal and tr(H×t) 6= 0 by Lemma 9.7. Conversely,
if conditions in (5) are satisfied, we can find a covariant t among a, b, d2

(and thus at least transversely isotropic) such that

t× (H : t) = 0, d2 × t = 0, and tr(H× t) 6= 0.

Then, t is necessarily transversely isotropic by Remark 3.9 and thus (H, t)
is trigonal by Lemma 9.7, and so is the triplet (H,a,b).

For the sequel of the proof, note that, so far, that we have proved that
E is either transversely isotropic, tetragonal or trigonal if and only if the
family of second-order covariants

Fti := {d2,a,b, c3,H :a,H :b}
is transversely isotropic.

(6) If E is orthotropic, then, the family of second-order covariants Fo is
at least orthotropic. Since, moreover,

Fi ⊂ Fti ⊂ Fo,

Fo cannot be isotropic by points (1) and (2), neither transversely isotropic
by points (3), (4) and (5). It is thus orthotropic. Conversely, if Fo is or-
thotropic, then (H,a,b) is either orthotropic, monoclinic or triclinic because
(H,a,b) cannot have higher symmetry than its covariants. If either a or
b is orthotropic, then, (H,a,b) is orthotropic by Lemma 8.10. The same
conclusion holds if either d2 or c3 is orthotropic by Theorem 9.10. Other-
wise, a, b, d2 and c3 are each at least transversely isotropic. In that case, if
either (a,b), (a,d2), (a, c3), (b,d2), (b, c3) or (d2, c3) is orthotropic, then,
(H,a,b) is orthotropic by Corollary 8.11 and the fact that c3 = H :d2 and
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c4 = H : c3. Thus, we can assume that the quadruplet (a,b,d2, c3) is trans-
versely isotropic (it cannot be isotropic, otherwise, so would be Fo, because
H :q = 0). Note that, in this case, the alternative d2 transversely isotropic
is excluded, otherwise, (d2, c3) would be transversely isotropic and so would
be Fo by Theorem 9.4. Therefore, d′

2 = 0 and H is either isotropic or
cubic by Theorem 9.3. The case where H is isotropic (and thus vanishes)
is excluded because then, Fo would be at least transversely isotropic. We
can thus finally assume that H is cubic. Then, either a or b is transversely
isotropic. Let suppose it is a. Then b is collinear to a (since a and b are
deviators) and the pair (a,H : a) has the same symmetry group as Fo and
is thus orthotropic. Therefore,

tr(a× (H : a)) = 0, a× (H :a) 6= 0,

and (H,a) is orthotropic by Lemma 8.8, and so is (H,a,b).
(7) If E is monoclinic then the family of covariants Fm is at least mono-

clinic and thus monoclinic, by points (1)–(6) and because

Fi ⊂ Fti ⊂ Fo ⊂ Fm.

Conversely, suppose that
GFm = {id, r} ,

where r is a second-order rotation. Then, (H,a,b) is at most monoclinic,
because it cannot have higher symmetry than its covariants. Besides,

r ∈ GFm ⊂ G(a,b),

so we have only to check that r ∈ GH, to prove that

r ∈ GE = GH ∩G(a,b).

Now, since
r ∈ GFm ⊂ G(d2,c3,c4),

H is at least monoclinic by Theorem 9.15. If H is either monoclinic or
orthotropic, then, we are done by Theorem 9.14 and Theorem 9.10, because,
in these cases we have

GH = G(d2,c3,c4).

If H is either transversely isotropic, tetragonal or trigonal, then (d2, c3) is
transversely isotropic by Theorem 9.4. Thus d2 is transversely isotropic and
d2 × c3 = 0 with c3 = H :d2. But then, the triplet (d2,a,b) is at most
orthotropic, otherwise the family Fm would have the same symmetry group
as (d2,H :d2) and would be transversely isotropic. Therefore, either a or b
(let call it c) is orthotropic, and we are done by Lemma 8.10, because

r ∈ GFm ⊂ G(c,H : c,H : c2) = G(H,c) ⊂ GH,

or a and b are both transversely isotropic but one of the three pair (a,b),
(a,d2) or (b,d2) (let call it (t1, t2)) is either orthotropic or monoclinic, and
we are done by Corollary 8.11 (since c3 = H :d2), because then

r ∈ GFm ⊂ G(H,t1,t2) ⊂ GH.

Suppose now that H is cubic. If either a or b is orthotropic, then, we are
done by Lemma 8.10 and the same conclusion holds, by Corollary 8.11, if a
and b are transversely isotropic but the pair (a,b) is orthotropic or mono-
clinic. We can thus assume that the pair of deviators (a,b) is transversely
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isotropic (it cannot be isotropic otherwise, so would be Fm). In that case,
either a or b does not vanish and is thus transversely isotropic. Suppose,
for instance, that a 6= 0. Then, b is collinear to a and

GFm = G(a,H :a).

Thus, (a,H : a) is monoclinic and

r ∈ G(a,H : a) = G(a,H),

by Lemma 8.8 and Remark 8.9. Finally, if H is isotropic, H = 0 and we are
done. This achieves the proof. �

Appendix A. Covariants of binary forms

A binary form f of degree n is a homogeneous complex polynomial in two
variables u, v of degree n:

f(ξξξ) = a0u
n + a1u

n−1v + · · · + an−1uv
n−1 + anv

n,

where ξξξ = (u, v) and ak ∈ C. The set of all binary forms of degree n is a
complex vector space of dimension n+ 1 which will be denoted by Sn. The
special linear group

SL(2,C) :=

{

γ :=

(

a b
c d

)

, ad− bc = 1

}

acts naturally on C
2 and induces a left action on Sn, given by

(γ ⋆ f)(ξξξ) := f(γ−1ξξξ),

where γ ∈ SL(2,C). The spaces Sn are irreducible representations of SL(2,C)
(see [46] for instance) and every complex linear representation V of SL(2,C)
can be decomposed into a direct sum

V ≃ Sn1
⊕ . . .⊕ Snp .

Definition A.1. The transvectant of index r of two binary forms f ∈ Sn
and g ∈ Sp is defined as

{f ,g}r =
r

∑

i=0

(−1)i
(

r

i

)

∂rf

∂r−iu∂iv

∂rg

∂iu∂r−iv
,

which is a binary form of degree n + p − 2r, if r ≤ min(n, p) and zero
otherwise.

Example A.2. For two n-th powers binary forms

(A.1) (aξξξ)n := (a1u+ a2v)
n, (bξξξ)p := (b1u+ b2v)

p,

we get the particularly simple form

{(aξξξ)n, (bξξξ)p}r =
n!

(n− r)!

p!

(p− r)!
(ab)r(aξξξ)n−r(bξξξ)p−r,

where by definition (ab) := a1b2 − a2b1.

Definition A.3. The covariant algebra of V is defined as

Cov(V ) := C[V ⊕ C
2]SL(2,C).

The degree of a covariant h ∈ Cov(V ) is called the total degree d of h in
f ∈ V , whereas the total degree k of h in ξ ∈ C

2 is called the order of h.



COVARIANTS AND SYMMETRY CLASSES 41

The key point is that the transvectant of two binary forms is SL(2,C)-
equivariant and that Cov(V ) is generated by the infinite set of iterated
transvectants [23, 41, 35]:

f1, . . . , fp {fi, fj}r, {fi, {fj , fk}r}s, . . .

Remark A.4. A consequence of this observation is that for every integer
n ≥ 1, the covariant algebraCov(S2n) is generated by even order covariants.

The remarkable achievement of Gordan is that he was able to provide a
constructive (and extremely efficient) way to obtain a finite generating set of
transvectants for the covariant algebra of finite dimensional representation
of SL(2,C). This algorithm is now known as Gordan’s algorithm (see [35]).
There are in fact two versions of this algorithm; one of them produces a ba-
sis for Cov(Sn), provided we know bases for Cov(Sk), for each k < n. The
other one produces a basis for Cov(V1 ⊕ V2), if we know bases for Cov(V1)
and Cov(V2). More precisely, if {f1, . . . , fp} and {g1, . . . ,gq} generate re-
spectively Cov(V1) and Cov(V2), then the covariant algebra Cov(V1 ⊕ V2)
is generated by the finite family of transvectants

{fα1

1 · · · fαp
p ,gβ1

1 · · · gβq
q }r,

where the integers (αi, βi, u, v, r) are the irreducible solutions of the Dio-
phantine equation

p
∑

i=1

aiαi = u+ r,

p
∑

j=1

bjβj = v + r

and ai, bj are the orders of fi,gj .
Using this algorithm, we will formulate a theorem which connects gener-

ating sets for Cov(S2n) and Inv(S2n ⊕ S2). First, observe that there is a
natural covariant mapping

ψ : C2 → S2, ξξξ 7→ wξξξ,

where

wξξξ(ηηη) := (ξ1η2 − ξ2η1)
2.

By pullback, this mapping induces an algebra homomorphism

ψ∗ : C[S2n ⊕ S2]
SL(2,C) → C[S2n ⊕ C

2]SL(2,C) = Cov(S2n)

given by

ψ∗(g)(f , ξξξ) = g(f ,wξξξ).

This homomorphism is moreover surjective, because every covariant

g(f , ξξξ) ∈ Cov(S2n)

is even in ξξξ (see remark A.4).
Consider now the linear mapping

ς : Cov(S2n) → C[S2n ⊕ S2]
SL(2,C),

defined by

(A.2) ς(h) :=
1

(r!)2
{h,wr}2r
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when h is an homogeneous covariant of degree r, and extended linearly on
Cov(S2n). We have the following result.

Lemma A.5. The linear mapping ς is a section of ψ∗. In other words

ψ∗ ◦ ς = Id.

Proof. We have

(ψ∗ ◦ ς)(h)(f , ξξξ) = 1

(r!)2
{h,wr

ξξξ}2r.

Thus if h = (aηηη)2r is a 2r-th power binary form, we get

(ψ∗ ◦ ς)(h)(f , ξξξ) = (aξξξω)2r = h(f , ξξξ)

by virtue of (A.1) and where ξξξω := (−ξ2, ξ1). Since every binary form of
degree 2r is a linear combination of 2r-th power binary forms, this achieves
the proof. �

Theorem A.6. Let {h1, . . . ,hN} be a minimal basis for Cov(S2n). Then
a minimal basis for the joint invariant algebra

C[S2n ⊕ S2]
SL(2,C)

is given by
{ς(h1), . . . , ς(hN ),∆}

where ∆ := b21 − b0b2, if g := b0u
2 + b1uv + b2v

2 ∈ S2.

Remark A.7. The result is still true if we replace, in the theorem, S2n by a
direct sum of binary forms of even degree S2n1

⊕ · · · ⊕ S2nk
.

Proof. Applying Gordan’s algorithm to obtain a basis for Inv(S2n⊕S2), and
since Cov(S2) is generated by the binary form w itself and the invariant
∆, we deduce that a generating set for Inv(S2n ⊕ S2) is given by ∆ and
transvectants

{hα1

1 · · ·hαN

N ,wr}2r,
where (αi, 2r) is an irreducible solution of

(A.3)
N
∑

i=1

αiai = 2r

and h1, . . . ,hN are generators for Cov(S2n), all of them being of even order.
Now observe that, if a product hα1

1 · · ·hαN

N contains more than two factors,
then (αi, 2r) is reducible. Indeed it can be written as a sum of two non-trivial
solutions (α1

i , 2r1) and (α2
i , 2r2) of (A.3), where 2r1+2r2 = 2r. Thus, a finite

set of generators for Inv(S2n ⊕ S2) is given by ∆ and

{hi,w
ri}2ri , i = 1, . . . , N

where ri is the order of hi. To achieve the proof, it remains to show that if
{h1, . . . ,hN} is minimal the same is true for {ς(h1), . . . , ς(hN ),∆}. To do
so, observe that if for some i ∈ {1, . . . , N}, there exists a polynomial P such
that

ς(hi) = P (∆, ς(hj)), j 6= i,

then using the fact that ψ∗ is an algebra homomorphism, we get

hi = ψ∗(ς(hi)) = P (ψ∗(∆), ψ∗(ς(hi))) = P (0,hi),

which leads to a contradiction. �
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Appendix B. Covariants of harmonic tensors

There is a closed relation between covariant/invariant algebras of har-
monic polynomials of three variables and those of binary forms which is
recalled in this section (see [39, Appendix B] for more details). The com-
plexification of the SO(3)-representation on the real space of harmonic poly-
nomials Hn(R

3) extends to a representation of the complex group

SO(3,C) :=
{

P ∈ M3(C); P
tP = I, detP = 1

}

on the space of complex harmonic polynomials Hn(C
3), which remains irre-

ducible.
There is, moreover, a well-known group homomorphism [39, Appendix B]

π : SL(2,C) → SO(3,C), γ 7→ Adγ .

When restricted to the real Lie group

SU(2) :=
{

γ ∈ SL(2,C); γ̄tγ = I
}

,

this homomorphism induces the well-known homomorphism

π : SU(2) → SO(3), γ 7→ Adγ .

Using these constructions, Hn(C
3) becomes an SL(2,C)-representation if

we set

γ ⋆ h := π(γ) ⋆ h, h ∈ Hn(C
3), γ ∈ SL(2,C),

and Hn(R
3) becomes an SU(2)-representation if we set

γ ⋆ h := π(γ) ⋆ h, h ∈ Hn(R
3), γ ∈ SU(2),

both of them remaining irreducible, and we have the following result (see [39,
Theorem 5.1]).

Theorem B.1. The linear mapping Φn : Hn(C
3) → S2n(C

2) defined by

(Φn(h))(u, v) := h

(

u2 − v2

2
,
u2 + v2

2i
, uv

)

.

is an SL(2,C)-equivariant isomorphism

Remark B.2. The restriction of Φn to Hn(R
3) defines a real subspace of

binary forms

(B.1) SR2n := Φn(Hn(R
3))

which can be characterised as the space of binary forms f such that

f(u, v) = f(−v, u).
This space is invariant under the action of SU(2) and is irreducible for this
action.

We will now detail the complexification process which leads to the deter-
minacy of a finite set of generators for the covariant algebra

Cov(V) = R[V⊕ R
3]SO(3)

where

V := Hn1
(R3)⊕ · · · ⊕ Hnp(R

3).
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First, using the group morphism π : SU(2) → SO(3,R) and the isomorphism
introduced in Theorem B.1, we deduce an explicit isomorphism

Cov(V) ≃ R[SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2 ]
SU(2),

where we have made the trivial identification R
3 = H1(R

3).

Theorem B.3. Let {g1, . . . ,gN} be a minimal generating set of the complex
covariant algebra

C[S2n1
⊕ · · · ⊕ S2np ⊕ S2]

SL(2,C)

obtained by iterated transvectants. Then, by restriction, the set {g1, . . . ,gN}
defines a minimal generating set of the real invariant algebra

R[SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2 ]
SU(2).

A detailed proof was already written in [39, Section 6.3], so we will not
repeat it here. Just recall that the main observation is that

f ∈ SR2p, g ∈ SR2q =⇒ {f ,g}r ∈ SR2p+2q−2r.

Therefore, if gk is an iterated transvectant of order 0 (an invariant), we get

gk(f1, . . . , fp,w) = gk(f1, . . . , fp,w), k = 1, . . . , N

and the restrictions of g1, . . . ,gN to

SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2

are thus real polynomials, which can be checked to generate minimally

R[SR2n1
⊕ · · · ⊕ SR2np

⊕ SR2 ]
SU(2).

Remark B.4. To obtain explicitly a basis for the SO(3)-covariant algebra

Cov(Hn1
(R3)⊕ · · · ⊕ Hnp(R

3))

starting from the knowledge of a basis

{g1, . . . ,gN}

for the SL(2,C)-covariant algebra

Cov(S2n1
⊕ · · · ⊕ S2np),

we set

pk(h1, . . . ,hp,xxx) = ς(gk)(Φn1
(h1), . . . ,Φnp(hp),Φ2(xxx)),

where the mapping ς was defined in (A.2). Then

{q,p1, . . . ,pN}

is a basis for

Cov(Hn1
(R3)⊕ · · · ⊕ Hnp(R

3)),

where

q := x2 + y2 + z2 = ∆(Φ2).



COVARIANTS AND SYMMETRY CLASSES 45

Appendix C. Invariants of the elasticity tensor

A minimal integrity basis for the Elasticity tensor E = (H,a,b, λ, µ)
was produced for the first time in [39], using Gordan’s algorithm [35]. In
this appendix, we provide an alternative minimal integrity basis, using the
covariants of H given in Table 2.

This basis has been checked to be correct using the Hilbert series of
Inv(Ela) and using the method which was outlined in section 5. This basis
consists in:

(1) 15 simple invariants:
• λ, µ;
• the simple invariants of a and b: tr a2, tr a3, trb2, trb3:
• and the nine simple invariants of H, computed first in [9]:

trd2, trd3, trd2
2, tr (d2d3) , trd3

2,

tr
(

d2
2d3

)

, tr
(

d2d
2
3

)

, trd3
3, tr

(

d2
2d

2
3

)

;

(2) 4 joint invariants of (a,b):

tr (ab) , tr
(

a2b
)

, tr
(

ab2
)

, tr
(

a2b2
)

(3) 52 joint invariants of (H,a), and similarly 52 joint invariants of
(H,b) given in Table 3, where

3,3CCC = tr
(

H× d2

)

, 4b,5CCC =
(

H2
)s × d2, vvv5 = εεε :

(

d2c3
)

.

(4) 174 joint invariant of (H,a,b) given in Table 4 and Table 5, where

3,7CCC = H×
(

H2
)s
, 3,9CCC =

((

H ·H
)s ×H

)

,

3,5CCC = H× d2,
4,7CCC =

(

H×
(

H3
)s)

.
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[20] M. Francois, Y. Berthaud, and G. Geymonat. Determination of the symmetries of

an experimentally determined stiffness tensor: application to acoustic measurements.
Int. J. Solids Structures, 35:4091–4106, 1998.

[21] D. Gazis, I. Tadjbakhsh, and R. Toupin. The elastic tensor of given symmetry nearest
to an anisotropic elastic tensor. Acta Crystallographica, 16:917–922, 1963.

[22] M. Golubitsky, I. Stewart, and D. G. Schaeffer. Singularities and groups in bifurcation
theory. Vol. II, volume 69 of Applied Mathematical Sciences. Springer-Verlag, New
York, 1988.

[23] J. H. Grace and A. Young. The algebra of invariants. Cambridge Library Collection.
Cambridge University Press, Cambridge, 2010. Reprint of the 1903 original.

[24] D. Hilbert. Theory of algebraic invariants. Cambridge University Press, Cambridge,
1993.

[25] Y.-Z. Huo and G. D. Piero. On the completeness of the crystallographic symmetries
in the description of the symmetries of the elastic tensor. J. Elasticity, 25:203–246,
1991.

[26] F. F. I. Theory of Elastic Waves in Crystals. Plenum Press, New York, 1968.
[27] E. Ihrig and M. Golubitsky. Pattern selection with O(3) symmetry. Phys. D, 13(1-

2):1–33, 1984.
[28] J. P. Jaric. On the conditions for the existence of a plane of symmetry for anisotropic

elastic material. Mechanics Research Communications, 21(2):153–174, 1994.
[29] H. Kraft and C. Procesi. Classical Invariant Theory, a Primer. Lectures notes avaiable

at http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf, 2000.
[30] P. Littelmann and C. Procesi. On the Poincaré series of the invariants of binary forms.
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F-94235 Cachan Cedex, France

E-mail address: desmorat@lmt.ens-cachan.fr

(Boris Desmorat) Sorbonne Université, UMPC Univ Paris 06, CNRS, UMR
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# Cov. Deg. Ord. Formula # Cov. Deg. Ord. Formula

0 0,2CCC 0 2 q 35 8b,2CCC 8 2 c4
2

1 I2 2 0 tr(d2) 36 9,2CCC 9 2 (d2
2c5)

s

2 I3 3 0 tr(d3) 37 3,3CCC 3 3 tr(H× d2)

3 I4 4 0 tr(d2
2) 38 4,3CCC 4 3 tr(H× c3)

4 I5 5 0 tr(d2d3) 39 5a,3CCC 5 3 d2 × c3

5 I6 6 0 tr(d2
3) 40 5b,3CCC 5 3 tr(H× d2

2)

6 I7 7 0 tr(d2
2d3) 41 6a,3CCC 6 3 d2 × d2

2

7 I8 8 0 tr(d2d3
2) 42 6b,3CCC 6 3 d2 × c4

8 I9 9 0 tr(d3
3) 43 6c,3CCC 6 3 tr(H× c5)

9 I10 10 0 tr(d2
2d3

2) 44 7a,3CCC 7 3 d2
2 × c3

10 5,1CCC 5 1 vvv5 = εεε :(d2c3) 45 7b,3CCC 7 3 c3 × c4
11 6,1CCC 6 1 vvv6 = εεε :(d2c4) 46 7c,3CCC 7 3 d2 × c5
12 7a,1CCC 7 1 vvv7a = εεε :(d2

2c3) 47 8a,3CCC 8 3 d2 × c3
2

13 7b,1CCC 7 1 vvv7b = εεε :(c4c3) 48 8b,3CCC 8 3 c3 × c5

14 8a,1CCC 8 1 vvv8a = εεε :(d2c3
2) 49 1,4CCC = H 1 4 H

15 8b,1CCC 8 1 vvv8b = εεε :(d2
2c4) 50 2,4CCC 2 4 (H2)s

16 9a,1CCC 9 1 vvv9a = εεε :(d2c4c3) 51 3,4CCC 3 4 (H3)s

17 9b,1CCC 9 1 vvv9b = εεε :(c3d2c4) 52 4,4CCC 4 4 (H4)s

18 9c,1CCC 9 1 vvv9c = εεε :(d2c3c4) 53 5,4CCC 5 4 (H · d2
2)s

19 10a,1CCC 10 1 vvv10a = εεε :(d2
2c3

2) 54 6,4CCC 6 4 (H2 · d2
2)s

20 10b,1CCC 10 1 vvv10b = εεε :(c3
2c4) 55 3,5CCC 3 5 H× d2

21 11a,1CCC 11 1 vvv11a = εεε :(c3c4
2) 56 4a,5CCC 4 5 H× c3

22 11b,1CCC 11 1 vvv11b = εεε :(d2
2c3c4) 57 4b,5CCC 4 5 (H2)s × d2

23 12,1CCC 12 1 vvv12 = εεε :(d2c3
2c4) 58 5a,5CCC 5 5 H× d2

2

24 2,2CCC 2 2 d2 59 5b,5CCC 5 5 H× c4
25 3,2CCC 3 2 c3 60 5c,5CCC 5 5 (H2)s × c3
26 4a,2CCC 4 2 c4 61 6,5CCC 6 5 H× c5

27 4b,2CCC 4 2 d2
2 62 2,6CCC 2 6 (H ·H)s

28 5a,2CCC 5 2 c5 63 3,6CCC 3 6 (H2 ·H)s

29 5b,2CCC 5 2 (d2c3)
s 64 4,6CCC 4 6 (H2 ·H2)s

30 6a,2CCC 6 2 (d2c4)
s 65 3,7CCC 3 7 H× (H2)s

31 6b,2CCC 6 2 c3
2 66 4,7CCC 4 7 H× (H3)s

32 7a,2CCC 7 2 (d2
2c3)

s 67 5,7CCC 5 7 (H2)s × (H3)s

33 7b,2CCC 7 2 (c4c3)
s 68 3,9CCC 3 9 (H ·H)s ×H

34 8a,2CCC 8 2 (d2c3
2)s 69 4,9CCC 4 9 (H ·H)s × (H2)s

Table 2. A minimal covariant basis for Cov(H4)



COVARIANTS AND SYMMETRY CLASSES 49

# Deg. M. deg. Inv. # Deg. M. deg. Inv.

ja1 3 (2,1,0) tr
(

ad2

)

ja27 7 (4,3,0) a :
(

H4
)s

:a2

ja2 3 (1,2,0) a :H : a ja28 7 (4,3,0) tr
(

H× c3
) ...

(

a2 × a
)

ja3 4 (2,2,0) tr
(

a2d2

)

ja29 7 (4,3,0) a :
(

a :
(

H2 ·H2
)s

:a
)

ja4 4 (3,1,0) tr
(

ad3

)

ja30 7 (5,2,0) a :
(

H · d2
2

)s
: a

ja5 4 (1,3,0) a :H : a2 ja31 7 (5,2,0) c5 :a
2

ja6 4 (2,2,0) a :
(

H2
)s

:a ja32 7 (5,2,0) (d2c3) : a
2

ja7 5 (1,4,0) a2 :H : a2 ja33 7 (6,1,0) (d2c4) : a

ja8 5 (2,3,0) a :
(

H2
)s

: a2 ja34 7 (6,1,0) c23 : a

ja9 5 (2,3,0) a :
(

a :
(

H ·H
)s

: a
)

ja35 8 (7,1,0)
(

d2
2c3

)

:a

ja10 5 (3,2,0) a :(H3)s :a ja36 8 (7,1,0)
(

c4c3
)

:a

ja11 5 (3,2,0) tr
(

a2d3

)

ja37 8 (6,2,0)
(

d2c4
)

:a2

ja12 5 (4,1,0) tr
(

ad4

)

ja38 8 (6,2,0) c23 :a
2

ja13 5 (4,1,0) a :
(

H2
)s

:d2 ja39 8 (6,2,0) a :
(

H2 · d2
2

)s
:a

ja14 6 (2,4,0) a2 :
(

H2
)s

:a2 ja40 8 (5,3,0) tr
(

H× d2
2

) ...
(

a2 × a
)

ja15 6 (2,4,0) a2 :
(

a :
(

H ·H
)s

:a
)

ja41 8 (5,3,0) a :
(

H · d2
2

)s
: a2

ja16 6 (3,3,0) a :
(

a :
(

H2 ·H
)s

:a
)

ja42 8 (4,4,0) a :
(

4b,5CCC
...
(

a2 × a
))

ja17 6 (3,3,0) a :
(

H3
)s

: a2 ja43 8 (4,4,0) a :
(

a :
(

H2 ·H2
)s

: a2
)

ja18 6 (3,3,0) tr
(

H× d2

) ...
(

a2 × a
)

ja44 8 (3,5,0) a2 :
(

a2 :
(

H2 ·H
)s

:a
)

ja19 6 (4,2,0) d2
2 :a

2 ja45 9 (6,3,0)
(

3,3CCC : a
)

· a ·
(

3,3CCC : a
)

ja20 6 (4,2,0) a :
(

H4
)s

:a ja46 9 (7,2,0)
(

c4c3
)

: a2

ja21 6 (4,2,0) a2 : c4 ja47 9 (7,2,0)
(

d2
2c3

)

:a2

ja22 6 (5,1,0) a :(d2d3) ja48 9 (8,1,0)
(

d2c
2
3

)

:a

ja23 6 (5,1,0) a :
(

H3
)s

:d2 ja49 9 (8,1,0) c24 : a

ja24 7 (2,5,0) a :
(

a2 :
(

H ·H
)s

: a2
)

ja50 10 (8,2,0) c24 :a
2

ja25 7 (3,4,0) a :
((

H× d2

) ...
(

a2 × a
))

ja51 10 (9,1,0)
(

d2
2c5

)

:a

ja26 7 (3,4,0) a :
(

a :
(

H2 ·H
)s

: a2
)

ja52 11 (10,1,0) vvv5 · a · vvv5
Table 3. Joint Invariants of (H,a)
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# Deg. M. deg. Inv. # Deg. M. deg. Inv.

Ji1 3 (1,1,1) a :H :b Ji32 6 (2,1,3) b :
(

H2
)s

:(ab2)
Ji2 4 (1,1,2) a :H :b2 Ji33 6 (2,1,3) b2 :

(

H2
)s

:(ab)
Ji3 4 (1,1,2) b :H :(ab) Ji34 6 (2,2,2) b :

(

H2
)s

:(a2b)
Ji4 4 (1,2,1) b :H : a2 Ji35 6 (2,2,2) (ab) :

(

H2
)s

:(ab)
Ji5 4 (1,2,1) a :H :(ab) Ji36 6 (2,2,2) a2 :

(

H2
)s

:b2

Ji6 4 (2,1,1) a :(d2b) Ji37 6 (2,3,1) a2 :
(

H2
)s

:(ab)
Ji7 4 (2,1,1) a :

(

H2
)s

:b Ji38 6 (2,3,1) a :
(

H2
)s

:(a2b)
Ji8 5 (1,1,3) b2 :H : (ab) Ji39 6 (2,1,3) b2 :

(

a :
(

H ·H
)s

:b
)

Ji9 5 (1,1,3) b :H :
(

ab2
)

Ji40 6 (2,1,3) b :
(

b :
(

H ·H
)s

:(ab)
)

Ji10 5 (1,2,2) a2 :H :b2 Ji41 6 (2,2,2) b :
(

b :
(

H ·H
)s

:a2
)

Ji11 5 (1,2,2) b :H :
(

a2b
)

Ji42 6 (2,3,1) a :
(

a :
(

H ·H
)s

:(ab)
)

Ji12 5 (1,2,2) (ab) :H : (ab) Ji43 6 (2,3,1) a :
(

b :
(

H ·H
)s

:a2
)

Ji13 5 (1,3,1) a2 :H : (ab) Ji44 6 (2,2,2) a :
(

b :
(

H ·H
)s

:(ab)
)

Ji14 5 (1,3,1) a :H :
(

a2b
)

Ji45 6 (2,2,2) a :
(

a :
(

H ·H
)s

:b2
)

Ji15 5 (2,1,2) a :
(

H2
)s

:b2 Ji46 6 (3,1,2) tr
(

H× d2

) ...
(

a× b2
)

Ji16 5 (2,1,2) a :
(

b :
(

H ·H
)s

:b
)

Ji47 6 (3,2,1) tr
(

H× d2

) ...
(

a× (ab)s
)

Ji17 5 (2,2,1) b :
(

a :
(

H ·H
)s

:a
)

Ji48 6 (3,1,2) tr
(

H× d2

) ...
(

b× (ab)s
)

Ji18 5 (2,1,2) a :
(

b2d2

)

Ji49 6 (3,2,1) tr
(

H× d2

) ...
(

a2 × b
)

Ji19 5 (2,2,1) a2 :
(

bd2

)

Ji50 6 (3,1,2) a :
(

H3
)s

:b2

Ji20 5 (2,2,1) b :
(

H2
)s

: a2 Ji51 6 (3,1,2) b :
(

H3
)s

: (ab)
Ji21 5 (2,2,1) a :

(

H2
)s

: (ab) Ji52 6 (3,2,1) b :
(

H3
)s

:a2

Ji22 5 (3,1,1) a :
(

H3
)s

:b Ji53 6 (3,2,1) a :
(

H3
)s

: (ab)

Ji23 5 (3,1,1) (ab) :d3 Ji54 6 (3,1,2) b :
((

H× d2

) ...
(

a× b
))

Ji24 5 (2,1,2) b :
(

H2
)s

: (ab) Ji55 6 (3,2,1) a :
((

H× d2

) ...
(

a× b
))

Ji25 5 (3,1,1) tr
(

H× d2

) ...
(

a× b
)

Ji56 6 (3,1,0) a :
(

b :
(

H2 ·H
)s

:b
)

Ji26 6 (1,1,4) b2 :H :(ab2) Ji57 6 (3,2,1) b :
(

a :
(

H2 ·H
)s

: a
)

Ji27 6 (1,2,3) b :H :(a2b2) Ji58 6 (4,1,1) d2
2 : (ab)

Ji28 6 (1,2,3) (ab) :H :(ab2) Ji59 6 (4,1,1) c4 : (ab)

Ji29 6 (1,3,2) (ab) :H :(a2b) Ji60 6 (4,1,1) tr
(

H× c3
) ...

(

a× b
)

Ji30 6 (1,3,2) a :H :(a2b2) Ji61 6 (4,1,1) a :
(

H4
)s

:b
Ji31 6 (1,4,1) a2 :H :(a2b)

Table 4. Joint Invariants of (H,a,b) (degree ≤ 6)
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# Deg. M. deg. Inv. # Deg. M. deg. Inv.

Ji62 7 (2,1,4) b :
(

b :
(

H ·H
)s

:
(

ab2
))

Ji118 8 (3,3,2) b :
(

a2 :
(

H2 ·H
)s

: (ab)
)

Ji63 7 (2,1,4) a :
(

b2 :
(

H ·H
)s

:b2
)

Ji119 8 (3,1,4) b :
(

3,7CCC
...
(

b× (ab)s
))

:b

Ji64 7 (2,1,4) b :
(

b2 :
(

H ·H
)s

: (ab)
)

Ji120 8 (3,2,3) a :
(

3,7CCC
...
(

b× (ab)s
))

:b

Ji65 7 (2,3,2) b :
(

b :
(

H ·H
)s

:
(

a2b
))

Ji121 8 (3,3,2) a :
(

3,7CCC
...
(

a× (ab)s
))

:b

Ji66 7 (2,2,3) a :
(

b2 :
(

H ·H
)s

: (ab)
)

Ji122 8 (3,1,4) b :
((

3,9CCC
...
(

a× b
))

:b
)

:b

Ji67 7 (2,3,2) b :
(

a2 :
(

H ·H
)s

: (ab)
)

Ji123 8 (3,4,1) a :
((

3,9CCC
...
(

a× b
))

: a
)

: a

Ji68 7 (2,3,2) a :
(

b :
(

H ·H
)s

:
(

a2b
))

Ji124 8 (3,3,2) a :
((

3,9CCC
...
(

a× b
))

:a
)

:b

Ji69 7 (2,3,2) a :
(

a2 :
(

H ·H
)s

:b2
)

Ji125 8 (3,2,3) a :
((

3,9CCC
...
(

a× b
))

:b
)

:b

Ji70 7 (2,4,1) a :
(

a2 :
(

H ·H
)s

: (ab)
)

Ji126 8 (3,4,1) a :
(

3,7CCC
...
(

a× (ab)s
))

: a

Ji71 7 (2,4,1) a :
(

a :
(

H ·H
)s

:
(

a2b
))

Ji127 8 (4,3,1) a :
(

4b,5CCC
...
(

a× (ab)s
))

Ji72 7 (2,4,1) b :
(

a2 :
(

H ·H
)s

: a2
)

Ji128 8 (4,3,1) a :
(

4b,5CCC
...
(

a2 × b
))

Ji73 7 (2,3,2) a :
(

(ab) :
(

H ·H
)s

: (ab)
)

Ji129 8 (4,2,2) b :
(

4b,5CCC
...
(

a2 × b
))

Ji74 7 (2,2,3) b :
(

(ab) :
(

H ·H
)s

: (ab)
)

Ji130 8 (4,1,3) a :
(

b :
(

H2 ·H2
)s

:b2
)

Ji75 7 (2,2,3) b :
(

a2 :
(

H ·H
)s

:b2
)

Ji131 8 (4,3,1) a :
(

b :
(

H2 ·H2
)s

:a2
)

Ji76 7 (3,1,3) b :
(

3,5CCC
...
(

b× (ab)s
))

Ji132 8 (4,3,1) a :
(

a :
(

H2 ·H2
)s

: (ab)
)

Ji77 7 (3,2,2) a :
(

3,5CCC
...
(

b× (ab)s
))

Ji133 8 (4,1,3) b :
(

b :
(

H2 ·H2
)s

: (ab)
)

Ji78 7 (3,2,2) a :
(

3,5CCC
...
(

a× b2
))

Ji134 8 (4,2,2) a :
(

b :
(

H2 ·H2
)s

: (ab)
)

Ji79 7 (3,2,2) b :
(

3,5CCC
...
(

a2 × b
))

Ji135 8 (4,2,2) b :
(

b :
(

H2 ·H2
)s

: a2
)

Ji80 7 (3,3,1) a :
(

3,5CCC
...
(

a2 × b
))

Ji136 8 (4,2,2) a :
(

a :
(

H2 ·H2
)s

:b2
)

Ji81 7 (3,3,1) a :
(

3,5CCC
...
(

a× (ab)s
))

Ji137 8 (4,1,3) b :
(

4,7CCC
...
(

a× b
))

:b

Ji82 7 (3,3,1) b :
(

3,5CCC
...
(

a2 × a
))

Ji138 8 (4,3,1) a :
(

4,7CCC
...
(

a× b
))

: a

Ji83 7 (3,1,3) b :
(

3,5CCC
...
(

a× b2
))

Ji139 8 (4,2,2) b :
(

4,7CCC
...
(

a× b
))

: a

Ji84 7 (3,1,3) a :
(

3,5CCC
...
(

b2 × b
))

Ji140 8 (4,3,1) a :
(

4b,5CCC
...
(

a× (ab)s
))

Ji85 7 (3,2,2) (ab) :
(

H3
)s

: (ab) Ji141 8 (4,2,2) a :
(

4b,5CCC
...
(

b× (ab)s
))

Ji86 7 (3,1,3) b :
(

b :
(

H2 ·H
)s

: (ab)
)

Ji142 8 (4,1,3) b :
(

4b,5CCC
...
(

a× b2
))

Ji87 7 (3,1,3) a :
(

b :
(

H2 ·H
)s

:b2
)

Ji143 8 (5,2,1) a :
(

H · d2
2

)s
: (ab)

Ji88 7 (3,2,2) a :
(

a :
(

H2 ·H
)s

:b2
)

Ji144 8 (5,2,1) b :
(

H · d2
2

)s
:a2

Ji89 7 (3,2,2) a :
(

b :
(

H2 ·H
)s

: (ab)
)

Ji145 8 (5,1,2) b :
(

H · d2
2

)s
: (ab)

Ji90 7 (3,2,2) b :
(

b :
(

H2 ·H
)s

:a2
)

Ji146 8 (5,1,2) a :
(

H · d2
2

)s
:b2

Ji91 7 (3,3,1) a :
(

b :
(

H2 ·H
)s

: a2
)

Ji147 8 (5,1,2) b :
((

H× d2
2

) ...
(

a× b
))

Ji92 7 (3,3,1) a :
(

a :
(

H2 ·H
)s

: (ab)
)

Ji148 8 (5,2,1) a :
((

H× c4
) ...

(

a× b
))

Ji93 7 (3,1,3) b :
(

3,7CCC :
(

a× b
))

:b Ji149 8 (5,1,2) b :
((

H× c4
) ...

(

a× b
))

Ji94 7 (3,2,2) a :
(

3,7CCC :
(

a× b
))

:b Ji150 8 (5,2,1) a :
(((

H2
)s × c3

) ...
(

a× b
))

Ji95 7 (3,3,1) a :
(

3,7CCC :
(

a× b
))

:a Ji151 8 (5,1,2) b :
(((

H2
)s × c3

) ...
(

a× b
))

Ji96 7 (4,1,2) tr
(

H× c3
) ...

(

a× b2
)

Ji152 8 (5,2,1) a :
((

H× d2
2

) ...
(

a× b
))

Ji97 7 (4,1,2) tr
(

H× c3
) ...

(

b× (ab)s
)

Ji153 8 (5,2,1) tr
(

H× d2
2

) ...
(

a2 × b
)

Ji98 7 (4,2,1) tr
(

H× c3
) ...

(

a× (ab)s
)

Ji154 8 (5,1,2) tr
(

H× d2
2

) ...
(

a× b2
)

Ji99 7 (4,2,1) tr
(

H× c3
) ...

(

a2 × b
)

Ji155 8 (6,1,1)
(

d2c4
)s

: (ab)
Ji100 7 (4,1,2) b :

(

H4
)s

: (ab) Ji156 8 (6,1,1) c23 : (ab)

Ji101 7 (4,2,1) a :
(

H4
)s

: (ab) Ji157 8 (6,1,1) tr
(

H× c5
) ...

(

a× b
)

Ji102 7 (4,2,1) b :
(

H4
)s

: a2 Ji158 8 (6,1,1)
(

d2 × c4
) ...

(

a× b
)

Ji103 7 (4,1,2) a :
(

H4
)s

:b2 Ji159 8 (6,1,1) a :
(

H2 · d2
2

)s
:b

Ji104 7 (4,1,2) b :
((

H× c3
) ...

(

a× b
))

Ji160 9 (6,2,1) v5 · a ·
(

H
...
(

a× b
))

Ji105 7 (4,2,1) a :
((

H× c3
) ...

(

a× b
))

Ji161 9 (6,1,2) v5 · b ·
(

H
...
(

a× b
))

Ji106 7 (4,1,2) b :
(

4b,5CCC
...
(

a× b
))

Ji162 9 (6,1,2)
(

3,3CCC :b
)

· a ·
((

3,3CCC
)

:b
)

Ji107 7 (4,2,1) a :
(

4b,5CCC
...
(

a× b
))

Ji163 9 (6,2,1)
(

3,3CCC :a
)

· b ·
((

3,3CCC
)

: a
)

Ji108 7 (4,1,2) a :
(

b :
(

H2 ·H2
)s

:b
)

Ji164 9 (6,1,2) b :
((

H× c5
) ...

(

a× b
))

Ji109 7 (4,2,1) a :
(

a :
(

H2 ·H2
)s

:b
)

Ji165 9 (6,2,1) a :
((

H× c5
) ...

(

a× b
))

Ji110 7 (5,1,1) c5 : (ab) Ji166 9 (7,1,1) d2 :
((

a× b
)

:vvv5
)

Ji111 7 (5,1,1)
(

d2c3
)s

: (ab) Ji167 9 (7,1,1)
(

c3 × c4
) ...

(

a× b
)

Ji112 7 (5,1,1)
(

d2 × c3
) ...

(

a× b
)

Ji168 9 (7,1,1)
(

c4c3
)s

: (ab)

Ji113 7 (5,1,1) tr
(

H× d2
2

) ...
(

a× b
)

Ji169 9 (7,1,1)
(

d2
2c3

)s
: (ab)

Ji114 7 (5,1,1) a :
(

H · d2
2

)s
:b Ji170 10 (8,1,1) vvv8a ·

(

εεε :
(

ab
))

Ji115 8 (3,1,4) b :
(

b2 :
(

H2 ·H
)s

: (ab)
)

Ji171 10 (8,1,1) c24 : (ab)
Ji116 8 (3,2,3) b :

(

(ab) :
(

H2 ·H
)s

: (ab)
)

Ji172 11 (9,1,1) vvv9a ·
(

εεε :
(

ab
))

Ji117 8 (3,1,4) b :
(

a2 :
(

H2 ·H
)s

:a2
)

Ji173 11 (9,1,1) vvv9b ·
(

εεε :
(

ab
))

Ji174 11 (9,1,1)
(

d2
2c5

)

:
(

(ab)s
)

Table 5. Joint Invariants of (H,a,b) (degree ≥ 7)
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