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Abstract 

In order to give insights into how anisotropic nano-objects interact with living cell membranes, 

and possibly self-assemble, we designed magnetic nanorods with average size around 100 nm 

x 1µm by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. 

We then explored the nano-bio interface at the cell membrane under the influence of a 

rotating magnetic field. We observed a complex structuration of the nanorods intertwined 

with the membranes. Unexpectedly, after a magnetic rotating stimulation, the resulting 

macrorods were able to rotate freely for multiple rotations, revealing the creation of a bio-

magnetic torsion pendulum.  
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In addition to their recognized potential for advancing diagnostics and therapies, 

nanomagnetic materials were recently described as tools to probe or act on the cell membrane.  

In magnetic manipulation of cell membranes, an external rotating magnetic field is used to act 

at a distance, with precisely controlled intensity, direction and localization of the applied 

magnetic torque. Magnetically driven rotating or oscillating magnetic nanoparticles could thus 

be used to probe cells' mechanical properties,[1-3] to deliver drugs,[4-8] or to kill cells by 

physical membrane rupture.[9-16] In this last application, anisotropic nanoparticles in disk- or 

rod-like shapes, stimulated with low-frequency magnetic fields, could compromise the cell 

membrane and thereby trigger apoptotic or necrotic programmed cell death. Another 

promising and recent field of research takes advantage of field-mediated magnetic 

nanoparticle bioassembly to activate biochemical signaling mechanisms.[17-23] When 

localized to the cell membrane,[17-21] the resulting clustering or orientation of targeted 

receptors can be seen as a nanomagnetic switch to trigger cell responses.  

In parallel, chemical synthesis has yielded magnetic nanomaterials with anisotropic 

geometries, often rod-like shapes. [15, 24] Synthesis or self-assembly of magnetic particles 

under a magnetic field is then frequently used to form super-organized anisotropic structures. 

[25-29] However, how magnetic anisotropic nano-objects interact and assemble with cell 

membranes under the action of a remote magnetic field has rarely been investigated. Here, we 

addressed this field by producing highly magnetic nanorods, by assembling them at the cell 

membrane into larger macrorods through remote spinning by a rotating magnetic field, and by 

exploring the macrorod bio-structuration and dynamic response. 

 

Magnetic macrorod formation at the cell membrane 

Nanorods were prepared by self-aggregation of iron oxide nanocubes (20-nm edge) embedded 

within a polymeric matrix (loaded with FITC dye) in the presence of a 0.05 T magnetic field. 
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The resulting fluorescent magnetic nanorods (Figure 1A1) are (1.1±0.1) µm long and 

(110±15) nm wide (Figure 1A1) and exhibit strong magnetization (80 emu/g). The nanorods 

spontaneously attach to the cell membrane (Figure 1A2) and are then internalized when 

incubated overnight in absence of a magnetic field (Figure 1A3). However, if incubation 

takes place in a magnetic field (Figures 1B and Figure 1C), internalization is prevented. The 

nanorods are then forced to assemble at the membrane into larger anisotropic structures 

aligned in the direction of the magnetic field, which we call macrorods. The formation of such 

macrorods is a two-step process. First, dipolar magnetic interactions (created by a 0.2-T static 

vertical magnetic field) forces the assembly of multiple nanorods into thin micron-long 

elongated clusters (Figure 1B) during their first stage of attachment to the cell membrane. In 

the second step, cells are subjected to a spinning 0.28-T magnetic field rotating around a 45°C 

cone, for 30 min at 1 Hz. This conical rotating field is created by two permanent magnets that 

generate a horizontal 0.2-T magnetic field in-between the magnets and spin around the sample, 

itself within the vertical 0.2-T magnetic field (see experimental. The thin nanorod clusters 

then merge, forming larger ellipsoid "macrorods" (average length: 22±11μm and diameter: 

4±1μm). SEM and confocal images of typical macrorods are shown in Figures 1C1-3. 

First step was to evaluate the impact of the magnetic stimulations on cell viability (Figure 1D). 

It demonstrated that neither the static magnetic field nor the rotating one result in any cell 

damage, as quantified by measuring the cells metabolic activity (relative to untreated control 

cells) the day after the magnetic stimulations. The nanorods / cell membrane interactions thus 

do not induce any significant alteration of cells viability and proliferation capacity, even in the 

rotating setting, contrary to some other studies reporting membrane physical rupture triggered 

by rotating magnetic nanoparticles, generally targeted to a specific receptor.[9-16] Here it 

shows that cells can also adapt to a rotating stress and avoid massive harm. 
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Free rotation 

Right after the rotating stimulation, we removed the cells from the magnetic fields (rotating 

and static) and observed them under the microscope. As expected from the cell viability 

measurements, cells morphologies were similar to control, with no cell rounding or 

detachment. However, and surprisingly, some of the macrorods continued rotating, with no 

external energy source (magnetic or other) to explain this motion (Figure 1D, see also 

supplementary Movie S1 – accelerated 5 times). This "spontaneous" rotation reveals in fact 

the remarkable adaptability of cell membrane materials. Indeed, the macrorods rotated in the 

direction opposite to the magnetic field rotation to which the rods were exposed. This 

phenomenon is impressive, as it implies that the cell membranes confer a very efficient elastic 

energy storage ability on the macrorods. This energy accumulated during the forced magnetic 

excitation is release by free rotations in the opposite direction when the stimulation is stopped 

(hundreds of free rotations were sometimes recorded). 

 

Macrorods: intertwined nanorods and membrane filaments 

The explanation for this elastic response comes first from the microscopic structure of the 

macrorods. Macrorods are composed not only of nanorods but are mingled with membrane 

structures all along their axis. This is clearly illustrated by the typical confocal image of a 

macrorod in Figure 2A, with the cell membranes labeled with the red Pkh26 membrane 

marker, and nanorod fluorescence collected in the green channel (FITC). Note that the 

membrane labels are present all along the macrorod. Looking at the same samples with 

scanning electron microscopy (SEM, Figure 2B) an intertwining of membrane filaments and 

nanorods are observed (Figure 2B2). Membrane fragments are also detected on transmission 

electron microscopy (TEM) images (Figure 2C) of macrorods detached from cells.  

The use of the rotating magnetic conical field is decisive to structure the anchor point of the 

nanorods within the membrane. It is responsible for membrane-rods entanglement and for 
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radial organization of membrane filaments around the macrorod. Indeed, these hybrid 

membrane/nanorod structures are absent when rods are assembled without rotation (Figure 

2B1).  

 

Biomagnetic macrorods at the cell membrane: a torsion pendulum?  

To model and quantify the observed free rotation, the rotating stimulation process was 

explored. A programmable electromagnetic rotating field was used to impose the same 

rotating cone under the microscope as that generating macrorod formation. Both the magnetic 

rotating stimulation and the free relaxation could then be video-monitored (supplementary 

Movie S2 – accelerated 5 times). Because the field intensity was now lower (30 mT) and thus 

not sufficient to form the macrorods, they were first formed as previously described with 

rotating permanent magnets (130 mT). The electromagnetic field was programmed to spin the 

macrorods counterclockwise, for a given number of rotations (generally 20), at 2 Hz. When 

the forcing was stopped, and thus in absence of a magnetic field, the macrorods rotated 

clockwise, some of them up to 20 times, while others rotated only a few degrees (Figure 3).  

We propose a torsion pendulum model to describe this free rotation.  

The membrane structure at the anchor point during the forced rotation generates an elastic 

torque C and the rod is subjected to a rotational viscous friction  when it moves. As inertia 

can be neglected (low Reynolds number ≈ 10-2), the rod’s angle  obeys the equation 

 RC
dt

d



  , with R the total of relaxation rotation (in degrees), and can thus be 

simply written as   



















t

=t R exp1  with 
C

=


 . The fitting in Figure 3A 

demonstrates the correct matching of this torsion pendulum model. The parameters  and R 

reflect the peculiar coiling of cellular membranes around and within the macrorod. Figure 3B 

shows the plot of as a function of R for different rods. Two groups emerge: the first one 
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corresponds to rods relaxing only few tens of degrees (black symbols), while the second 

corresponds to rods relaxing through more than a thousand degrees (> 3 rotations). For this 

second group, the rod’s anchor point is organized such that it enables extremely efficient 

energy storage during forced rotations as the membrane filament tension increases. In contrast, 

for the first group, either the organization is inappropriate or the coiling structure may be 

damaged during the forced rotation, resulting in an abrupt energy release that would prevent 

free rotation. 

Interestingly, the typical relaxation curve shown in Figure 3A presents a succession of angular 

jumps that follow the exponential trend described above. This could be explained by different 

coiling modes of the membrane at the anchor point. Jumps would be associated with twisted 

membrane filaments, whereas the overall relaxation would correspond to membrane filaments 

coiled around the rod. The supplementary movie S2 illustrate these two modes.  

Within the framework of the torsion pendulum model, successive excitations of a rod is 

expected to damage the anchor point organization as tension increases and exceeds the 

membrane filament resistance. This is illustrated by Figure 3C. In this case, rods were 

subjected to successive periods of magnetic field rotation and immobilization. The intensity of 

the magnetic field in the immobilized phase is half the intensity of the rotating field, so that a 

rod with a proper coiling at the anchor point can relax if the elastic restoring force is stronger 

than the magnetic torque. In the particular example shown in Figure 3C, this is the case for the 

two first excitations: the rod is able to relax for one rotation despite the magnetic field 

(indicated with black stars). The increase in tension against the magnetic forcing at the anchor 

point is materialized in Figure 3C with events (indicated with red crosses) when the rod slows 

down and stops before being caught up by the magnetic field after an additional rotation. The 

occurrence of such events increases with successive excitations until the structure at the 

anchor is damaged (red arrow). After that the rod follows perfectly the magnetic field: the 

damaged structure cannot store anymore elastic energy efficiently.  
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Taken together, all those observations confirm the simple torsion pendulum model based on a 

specific membrane coiling that enable energy storage and restitution.  

 

In summary, by remote assembly of magnetic nanorods during their first stage of attachment 

to cell membranes through the application of a rotating magnetic field, we managed to create 

a super-assembly (macrorod) trapping within and wrapping around membrane filaments. As a 

result, this biomagnetic structure exhibited an elastic behavior which provided an impressive 

numbers of free rotations, when the rotating field is released and no other stimulation applied. 

This movement, evidences a remarkable pool of membranes available and the possibility to 

arrange them in a biomagnetic torsion pendulum. 

 

Experimental section 

Magnetic nanorods preparation 

The preparation method is based on iron oxide nanocubes assembly into a polymeric matrix, 

in presence of a static magnetic field, as adapted by a procedure previously described for 

spherical magnetic nanoparticles [29]. Briefly, the polymeric anisotropic construct is obtained 

by mixing nanocubes with the poly(maleic anhydride alt-1 octadecene) polymer, in 

chloroform. The nanoparticles dispersion was placed in an ultrasound bath under the influence 

of two opposite permanent magnets placed against each other on the vial wall, generating a 

0.05 T magnetic field. The slow and controlled addition of acetonitrile induces a change in the 

solubility of both the nanocubes and polymer and promotes their aggregation. The application 

of a permanent magnetic field promoted the formation of elongated superstructure. The 

magnetic nanorods were finally magnetically sorted and resuspended in water. 

The iron oxide nanocubes, about 20 nm in cube-edge, were synthesized by thermal 

decomposition technique detailed as detailed in [30]. Briefly, they were prepared by mixing 1 

mmol of iron(III) acetylacetonate and 4 mmol of decanoic acid in 25 mL of dibenzyl ether, 
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heating the solution to 200°C (5°C/min) for 2.5 h. The temperature is then increased further to 

reflux temperature (300°C at a rate of 10°C/min) for 1 h. At the end of the process, nanocubes 

are dispersed in chloroform. 

Magnetic field stimulations 

Different magnetic devices were designed and fabricated. The simplest one dedicated to 

macrorods formation (Figure 4A) consists in a permanent magnet (neodymium, 50x40x20 

mm, Supermagnet) placed below the cell sample. It creates a magnetic field of 130 mT in the 

sample region. The second one (Figure 4B) is adapted to this first one by adding a set of two 

permanent magnets facing one to the other and fixed to a motor controlling a gear wheel 

(frequency up to 2 Hz). This set of magnets creates a horizontal field of 130 mT, so that the 

resulting field (about 180 mT) makes an angle of 45° with the vertical axis. As a result, when 

the motorized magnets are rotated, the magnetic field spins, describing a 45° cone. Both 

devices contain a cylindrical 20 mm cradle to welcome the cell sample, and are thermostated 

by water circulation. The third device (Figure 4C) was designed to be adapted to a 

microscope and to allow switching on and off the magnetic field at will. It is composed of 

four coils which cores are made of soft iron, connected by pairs and supplied by an alternative 

current. The space between each core is about 1cm and it creates in between a 30 mT 

magnetic field. To generate a rotating 45°C rotating cone, this magnetic device is placed 2 cm 

beneath the cell sample. The magnetic field on the cells is then reduced to 10 mT. To generate 

the rotating field in the plane of the magnetic coils, the two pairs of coils are supplied with 

sinusoidal currents (2A amplitude) displaying the same frequency (up to 5 Hz) but 90° out of 

phase. Finally, the whole set-up was mounted on the vertical arm of a Leica DMIRB with 

control of the z position, and the microscope was thermostated at 37°C by cube&box (Life 

Imaging Services).  

Nanorods incubation with cells and macrorods formation 
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PC3 cancer cells were cultured in DMEM supplemented with 10% fetal bovine serum, L-

glutamine and penicillin/streptomycin. Prior to experiments, cells were transferred into 20 

mm cylindrical home-made cuves with glass bottom which fit within the magnetic fields 

devices. When cells reached 80-90 % of confluency, nanorods were incubated at an iron 

concentration of 1 mM, corresponding roughly to 106 nanorods per ml, or equivalently to 103 

nanorods per cell. This concentration was adjusted by testing a range of concentration, 

observing the cells with confocal microscopy, and selecting concentration where nanorods 

were numerous on the cells membrane, but still quasi-individual.  

After the 2-hour incubation period, the cells were immediately transferred into the 

thermostated magnetic field devices, first the permanent static field for 30 min, then the 

spinning magnetic field for 30 min.  

Cell viability was assessed by Alamar Blue metabolic assay (Thermo Fisher Scientific). 

Fluorescence (appearing post-metabolization of the active ingredient, Resaruzin), was 

quantified with a microplate reader (excitation 550 nm, detection 590 nm). In brief, 100 000 

cells were first seeded in the cuves (3 per conditions). 24 hours after, nanorods incubation was 

performed (2-hours at 1mMFe, except for the control conditions) and the cuves were submitted 

either to the static magnetic field only (30 min, condition B in Figure 1), or to both the static 

and rotating magnetic field (30 min + 30 min, condition C in Figure 1). 24 hours after, all 

cuves were incubated (800 µl total) with 10 % Alamar Blue in DMEM for 2 hours, and the 

reagent was transferred to 96-well plate for analysis (200 µl per well). All values are 

expressed relative to control (normalized at 100% viability).  

Imaging 

Nanorods and macrorods were imaged by scanning (SEM) and transmission (TEM) electron 

microscopy, by confocal microscopy, and by conventional transmission microscopy. TEM 

was used to observe nanorods in aqueous suspension, or macrorods extracted from the cells. 

For this second case, the cells were first fixed with paraformaldehyde (2%) for 30 min right 
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after the whole stimulation protocol. Culture medium was then washed and replaced with 

ultra-pure water to avoid salts contaminations, and cells were scratched in order to detach 

cells and macrorods. For both nanorods and macrorods TEM observation, a small drop of 

suspension (5µl) was pipetted onto a copper grid, and observed after total evaporation of the 

liquid with a Phillips Tecnai 12. 

SEM was used to observe whole cells. Cells were fixed with glutaraldehyde (2% in 0.1 M 

cacodylate buffer), and dehydrated by soaking in a graded series of ethanol before critical-

point drying under CO2. Samples were mounted on aluminum stubs with conductive silver 

paint and sputter coated with gold palladium for 200 s at 10 mA. Samples were then imaged 

with a Hitachi S4500 instrument. 

For confocal microscopy, cells were labeled either by Pkh26 label (20 min incubation, 

according to manufacturer’s instruction, Sigma) which binds to the plasma membrane, or with 

phalloidin to see actin filaments, or with DAPI to image the nuclei. Cells were observed by 

means of an Olympus JX81/ BX61 Device/Yokogawa CSU Device spinning disk microscope 

(Andor Technology plc, Belfast, Northern Ireland), equipped with a 60x Plan-ApoN oil 

objective lens.  

Conventional transmission microscopy was carried out with a DMIRB Leica microscope, 

equipped with a Cube & Box device to maintain the cells at 37°C during experiment. 

Macrorods imposed and free rotations were captured with an ultra-fast camera. Time 

sampling was used in between 100 to 10 images per second. Image J home-made plugins 

(succession of thresholding, selecting and measuring) were used to analyze the macrorods 

rotational movements. 
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Figure 1 (2 columns / 16 cm): Assembly process of magnetic nanorods into a macrorod at 

the cell membrane. A. Nanorods dispersed in the cells culture medium interact individually 

with the cell membrane without magnetic field. (A1) shows transmission electron microscopy 

(TEM) image of the magnetic nanorods before cellular interaction (in aqueous dispersion) and 

identifies iron oxide nanocubes embedded in polymer (insert). (A2) shows confocal image 

after 1 hour incubation, where nanorods (FITC, green channel) are detected on the cell 
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membranes (Pkh26, red channel). Nuclei are labeled with DAPI (blue channel). (A3) shows 

confocal image of the nanorods after a 24h incubation and illustrates their complete 

internalization in cell cytoplasm. B. Formation of small clusters still attached to the membrane 

under the application of a static vertical magnetic field. (B1) shows a scanning electron 

microscopy (SEM) picture of these nanorods clusters on cell membrane; (B2-3) shows 

confocal microscopy of nanorods clusters spread on all membranes (nanorods in green, 

membranes in red, nuclei in blue): 4-µm width stacked image (B2) or Z views (B3: 

reconstruction from Z stacks acquired with a 0.5 μm interslice with Image J Volume Viewer 

plugin, with 45° x tilt angle). C. Rotating stimulation process: the magnetic field spins, 

describing a cone around its initial vertical direction. This rotating motion forces the nanorods 

clusters to interact over wider range, and form a larger magnetic macrorod. (C1) and (C2) 

show SEM images of macrorods attached to cell membranes. (C3) shows confocal 

microscopy (3D stack reconstruction) of a macrorod (green) fixed by one end on the cell 

surface (here F-actin in red – phalloidin staining). C4 illustrates the free rotations of the 

macrorods: large view (right) of the cells at the end of the magnetic field rotation process, and 

superimposition of 60 images (separated by 1s) for the 4 zones delimited by a square (left). It 

clearly shows that these macrorods rotate, freely, in absence of magnetic field stimulation. 

The corresponding movie can be seen as supplementary movie S1. D. Cell viability measured 

by quantifying the metabolic activity (Alamar blue) of cells incubated with the magnetic 

nanorods in presence of the static magnetic field (condition “static”, similar to part B), and 

under the influence of the rotating magnetic field (condition “rotating”, similar to part C), and 

compared to control cells (seeded at the same exact number of cells, see Experimental 

Section). 
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Figure 2 (1.5 column / 12 cm): A. Confocal microscopy image of a macrorod in the red 

channel (membrane, left), green channel (nanorods, middle), and superposition of both (plus 

nucleus in the blue channel, right). One can clearly see that membranes are trapped all 

through the macrorod. B. SEM pictures of two macrorods either formed with magnetic field 

rotation (B2), or without (B1). On the right image, membrane filaments are present all along 

the macrorod (arrows). By contrast, on the left image, it corresponds to “clean” nanorods 

clusters without membrane entanglements. C. TEM pictures of a magnetic macrorod after 

removal from cell surface. Membrane fragments are detected all around the rod, stuck 

between the nanorods. This macrorod was probably fixed to the cell by its left end.  
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Figure 3 (1.5 column / 12 cm): A. Typical angular evolution of two macrorods after the same 

forced excitation (20 rotations at 2Hz). One relaxes on 20 rotations (grey) whereas the other 

relaxes only a few degrees (black). The inset shows a magnification around the time when the 

magnetic stimulation stops. Both relaxation curves are fitted with 
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tt
=t R  . The fitting curve is superimposed (dotted line). B. Fitting 

parameters  as a function of R for all analyzed macrorods. Two populations of macrorods 

emerge. C. Successive coiling of the anchor point and its damage. The spinning excitation 

follows the periodic pattern: 8 counterclockwise rotations at 3.2Hz followed by 5 seconds 

where the magnetic field position is fixed. Four stimulation cycles are applied. The 

cumulative angle of a typical macrorod (grey) as well as the magnetic field position modulo 
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360° (black) are plotted as a function of time. Of note, the intensity of the spinning magnetic 

field is twice the intensity of the fixed magnetic field. Stars () indicate the macrorod 

relaxations. Instants when the macrorod does not follow the magnetic field are marked with 

crosses (x). The arrow indicates the time when the anchor point is probably damaged. After 

that the macrorod follows perfectly the rotating magnetic field. 

 

 

 

Figure 4 (one column / 8 cm): Magnetic set-ups. A. For macrorods formation: a home-made 

culture dish is placed on a permanent magnet generating a 30 mT vertical magnetic field for 

30 min. B. The dish is then placed in between two magnets fixed on a motorized axis 

generating the spinning conical magnetic field (130 mT). C. Electromagnetic set-up designed 

to manipulate the macrorods once they are formed: two pairs of coils are arranged 

perpendicularly to create a rotating magnetic field in an upper plane over the dish, resulting in 

a spinning field in the plane of the dish (left = side view / right = top view). 
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Table of contents entry  

 

Assembling nanorods at the cell membrane by a remote spinning magnetic field leads to a 

complex bio-magnetic macrorod constituted of both nanorods and intertwined cell membrane. 

This new object behaves as a torsion pendulum able to store elastic energy: it is able to freely 

rotate over multiple turns in response to the spinning stimulation. 
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