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Robust humanoid control using a QP solver with integral gains

Rafael Cisneros1,∗, Mehdi Benallegue1, Abdelaziz Benallegue2,4, Mitsuharu Morisawa1,
Hervé Audren5, Pierre Gergondet2, Adrien Escande2, Abderrahmane Kheddar2,3 and Fumio Kanehiro1

Abstract— We propose a control framework for torque con-
trolled humanoid robots that efficiently minimizes the tracking
error in a Quadratic Programming (QP) formulated as a multi-
objective weighted tasks with constraints. It results in an opti-
mal dynamically-feasible reference that can be tracked robustly,
with exponential convergence, without joint torque feedback, in
the presence of non modelled torque bias and low-frequency
bounded disturbances. This is achieved by introducing integral
gains in a Lyapunov-stable torque control, which exploit the
passivity properties of the dynamical model of the robot and
their effect on the dynamic constraints of the QP solver. The
robustness of this framework is demonstrated in simulation by
commanding our robot, the HRP-5P, to achieve simultaneously
several objectives in the configuration and the Cartesian spaces,
in the presence of non-modeled static and kinetic joint friction,
as well as an uncertain torque scale.

Index Terms— Robust control, Torque control, Passivity,
Quadratic programming, Humanoid robots

I. INTRODUCTION

Humanoid robots’ controllers are designed to achieve
simultaneously multiple tasks in environments that are uncer-
tain and subject to disturbances [1]. To achieve these tasks,
a motion has to be generated through joint torques produced
by actuators, often through high-ratio gearboxes. The relation
between the joint torques and the second order kinematics
is modeled using only inertial and geometry allowing for a
perfect control of an ideal robot. Yet, these parameters are
usually not perfectly known [2] and the transmission of the
torque often creates reactive friction forces [3]. Although
these parameters could be partially identified [2], [3] the
accuracy and the precision of these methods are far from
allowing seamless generation of kinematic acceleration.

To avoid these problems, a number of controllers resort
to stiff position-controlled joints [4]; e.g. the case of the
HRP humanoids series. Another method is to equip the robot
with joint-level torque sensors, which can measure the effect
of friction and compensate for them [5]. However these
sensors are costly, heavy and very fragile. Other techniques,
grounded in the field of manipulators [6] rely rather on more
robust control, using for example integral gains.

The latter, referred also as joint velocity and position feed-
back gains, have been adapted to humanoid robots to improve
robustness of torque control [7], [8], but this integration lacks
theoretical grounding, especially at the whole-body level.
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Indeed, beyond zeroing static errors, other interesting
properties can emerge from a careful choice of the integral
gain. A nice example for manipulators is to exploit the
natural passivity of the robot to design a controller which
provides efficient motions with ground convergence proofs
and effective parameter adaptation [9], [10]. We call this
scheme passivity-based control.

What prevents direct applicability of these results to hu-
manoid robots is under-actuation: a humanoid is not ground-
fixed to the environment, and we model that by choosing a
floating base among the body parts (generally the waist). The
floating base can freely rotate and translate along 6 degrees
of freedom, but has no dedicated actuator to control this
motion, and relies on external contact forces instead. Since
these forces are not directly controlled, we cannot simply add
integral terms to the under-actuated modes of the motion.

Kinematic tasks often require the tracking of reference
joint and floating-base accelerations. The under-actuation
imposes feasibility constraints on these accelerations to hold.
This limitation, together with contact-related constraints and
torque and joint limits are today already accounted using
efficient online controllers. One popular solution is based on
using QP for the generation of constraint-compliant multi-
objective second order kinematics [11].

In this paper we introduce the integral gains in QP con-
trollers on a torque-controlled humanoid robot without joint
torque feedback. This new QP generates optimal gradient-
based acceleration w.r.t the constraints and the integral gains,
in closed-loop with a feedback composed by joint encoders
and floating-base kinematics. This method allows also to
decouple the kinematic task stiffness which describes the
desired rate of convergence of the task, from the stiffness of
the torque control which allows to control the compliance.

We show in high-fidelity simulations the humanoid per-
forming multiple concurrent tasks, including stepping, sub-
ject to modeling errors and non-modeled joint friction. The
simulation allows to compare the performance of a robot
equipped with passivity-based integral gains compared to a
robot without integral gains and a simple high-gain QP.

II. LYAPUNOV-STABLE TORQUE CONTROL

A. Robot dynamics

We consider a rigid multi-body robot with n degrees of
freedom (dof) and configuration space Q. We note q ∈ Q its
configuration and α ∈ Rn the corresponding configuration
velocity1. α̇ ∈ Rn is the configuration acceleration [12].

1If Q is Euclidean, then α = q̇



It is possible to derive singularity-free dynamic equa-
tions using minimal and globally valid Euclidean and non-
Euclidean configuration coordinates, see [13], [14], such that
the dynamical model of the robot writes

M(q)α̇+C(q,α)α+ g(q) = u+
∑

JTi Fi, (1)

where M ∈ Rn×n is a symmetric positive definite matrix
representing the mass matrix of the robot, C ∈ Rn×n is a
specific matrix factorization accounting for the Coriolis and
centripetal effects such that Ṁ(q,α)−2C(q,α) is a skew-
symmetric matrix2, g ∈ Rn is the vector of gravitational
effects, Fi ∈ R6 the i-th external wrench (force and torque),
Ji ∈ R6×n the absolute Jacobian of its point of application,
and u ∈ Rn is a vector of input generalized forces which
includes actuated and unactuated dof (zero entries).

B. Fully actuated systems torque control

Let us first give a summary of some torque control
schemes applied for fully actuated systems:

1) Inverse dynamics control: Inverse dynamics con-
trol [16] seeks a nonlinear feedback control law u = ur
(reference torque) for (1) given by

ur =M(q)α̇r +C(q,α)α+ g(q)− ue, (2)

where ue is the vector of external torques as a result of
(ue =

∑
JTi Fi) and α̇r is the reference configuration

acceleration. With this control on a perfect model, we
achieve the ideal control α̇ = α̇r.

2) Integral gain torque control: Let us add an integral
term to (2) to get the torque control law u = up with:

up = ur +Ls, (3)

where L ∈ Rn×n is an integral gain, s = αr − α and
αr (t) =

∫ t
t0
α̇r (ι) dι.

Remark 1: The produced acceleration of this control is
not α̇r anymore but α̇ = α̇r +M

−1(q)Ls.
3) Passivity-based control: A great advantage of

passivity-based controllers is that they provide certain
robustness [17]. Let us consider a passivity-based controller
by choosing an integral gain L:

L = C(q,α) +K, (4)

where K ∈ Rn×n is any strictly positive definite matrix;
that is, K > 0.

Using (4) in (3), we get the following torque control law:

up =M(q)α̇r +C(q,α)αr + g(q)− ue +Ks, (5)

Proposition 1 (Passivity-based controller): The feedback
control law given by u = up from (5) achieves exponential
stability for the velocity error s.

2The matrix C is not unique. The resulting generalized inertial force
Cα however, does not depend upon the particular choice of factorization.
Furthermore, a matrix C may or not satisfy the skew-symmetric property,
and if it does, the factorization is not unique. One analytical factorization
that satisfies the skew-symmetric property was proposed in [15].

Proof: By substituting (5) into (1), we get

M(q)ṡ = −C(q,α)s−Ks. (6)

Now, let us consider the following Lyapunov function:

V =
1

2
sTM(q)s. (7)

Its time derivative is given by

V̇ =
1

2
sT (Ṁ(q,α)s+ 2M(q)ṡ), (8)

which evaluated along the trajectories of (1) gives

V̇ =
1

2
sT (Ṁ(q,α)s− 2C(q,α)s− 2Ks)

= −sTKs < 0,
(9)

where we used the fact that Ṁ − 2C is a skew-symmetric
matrix, exploiting the passivity of the system.

From equation (9), we can write

V̇ ≤ −2 σmin(K)

σmax(M)
V, (10)

where σmin(X) and σmax(X) are the minimum and max-
imum eigenvalues of X , respectively. This represents a
differential inequation whose solution is

V ≤ V (0) exp

(
−2 σmin(K)

σmax(M)
t

)
, (11)

giving the exponential convergence of the velocity error.
Note that given the expression of this Lyapunov function,

it could be seen as the kinetic energy of the error, decaying
exponentially with this controller. Furthermore, the controller
is able to track the reference configuration acceleration:

Proposition 2: The control law expressed in (5) achieves
exponential convergence of s, and convergence of the accel-
eration error, ṡ.

Proof: According to equation (6) and given that s→ 0
as t→∞ exponentially, it can be concluded that ṡ→ 0 as
t→∞ since M(q) is non-singular.

As seen from the proof of Proposition 1, K is associated
with the exponential decay for convergence. The larger its
elements are, the faster the joint trajectories will converge to
the reference. This gain matrix K can be arbitrarily chosen
as long as K > 0.

A simple solution is to choose K as an identity matrix
1n ∈ Rn×n scaled by a factor λ, or in a more elegant way,
according to the following remark:

Remark 2: If the gain matrix is chosen as time-varying
K = λM , where M is the mass matrix and λ > 0, then
the time derivative of the Lyapunov function is given by

V̇ = −sTKs = −λsTMs = −2λV < 0, (12)

which is a differential equation with an exact analytical
solution:

V = V (0) exp(−2λt). (13)
This choice for K, proposed here, not only gives a

weighting factor that is related to the inertia driven by each
of the generalized coordinate, but also to the coupling effect
that lies between them, since the gain is non-diagonal.



C. Error dynamics in joint trajectory tracking

We show here an example on how these schemes are intro-
duced in a closed-loop trajectory tracking and the properties
of the produced error dynamics. Consider a fully actuated
robot in an Euclidean configuration space (Q = Rn). Let
us use the reference configuration acceleration α̇r to track
a desired configuration trajectory (qd, αd, α̇d) with a
Proportional-Derivative (PD) compensation scheme:

α̇r = kp (qd − q) + kv (αd −α) + α̇d (14)
= kpe+ kvė+ α̇d (15)

where e = (qd − q) is the joint position error and kp and
kv are positive scalars. Substituting (15) into (3) gives

up = ur +K
′
vė+K

′
pe+K

′
i

∫ t
t0
e(ι)dι (16)

where K′
i = kpL and K′

p = (kpM + kvL) whereas K′
v =

(kvM +L); that is, it introduces an integral configuration
term, while simultaneously increasing the effective gains of
the proportional and derivative terms.

More specifically, in the case of passivity-based control,
Proposition 1 provides exponential convergence to zero of
s = ė + kve + kp

∫ t
t0
e(ι)dι which implies the exponen-

tial convergence of the error integral
∫ t
t0
e(ι)dι. Similarly,

Proposition 2 gives the convergence of the error e to zero.
The convergence of the error integral is known to provide

robustness with regard to several kinds of perturbations and
modeling errors: the constant biases are compensated with no
static error and even for non constant bounded disturbances
it produces only bounded errors [16].

D. The case of underactuated systems

Let us suppose that the articulated rigid multi-body robot
described in Section II-A is underactuated in a number b of
DoF. We can assume that u can be partitioned as follows:

u =
[
uTB uTθ

]T
, (17)

where uB ∈ Rb is a vector of “fictitious” generalized forces
(that cannot be applied), uθ ∈ Rn−b is the vector of torques
(or forces) applied to each joint of the robot. This means that
the acceleration α̇ of (1) is feasible only if uB = 0 holds.

This feasibility constraint means that the reference accel-
eration α̇r in the inverse dynamics control of (2) must ensure
that the unactuated part of the reference torque ur,B is null.
However, when applying the passivity-based control up, in
order for the Proposition 1 and 2 to hold, the integral gains
of (3) have to be added to the full torque vector ur with
a positive definite integral gain matrix K in (4). We show
next that this control scheme is not possible.

Lemma 1: If ur,B = 0 there exists no gain matrix K > 0
of (4) such that ∀q,α,αr, the torque up of (3) is feasible
(i.e. up,B = 0, where up,B is the unactuated part of up).

Proof: Assume that the conclusion of the lemma does
not hold true, that is there exists K > 0 such that upB =
0 if urB = 0. Based on (3) and considering the partition
proposed in (17), up,B = 0 with ur,B = 0 is equivalent to:

(CB(q,α) +KB) (αr −α) = 0, (18)

where CB,KB ∈ Rb×n correspond to the first b rows of
C,K (the ones associated to the non-actuated dof). Let us
take the case where α = 0, such that C(q,α) = 0 too.
Thus, we have KBαr = 0. Let us take αr 6= 0. Then
because it is required that K > 0, then KB must be full
rank, which gives that KBαr 6= 0, contradicting (18).

As a consequence of the above lemma, we see that if the
reference acceleration α̇r is feasible then the passivity-based
control can generally not be applied. That means that α̇r
must not be feasible but must be rather constrained in order
for the resulting passivity-based torque up,B to be feasible.

Within this feasibility condition, Propositions 1 and 2 still
hold for underactuated systems. However, the example of
joint trajectory tracking in Section II-C cannot be totally ap-
plied since not all joint trajectories are feasible. Nevertheless,
even if it cannot be proven formally, some of the resulting
robustness shown in that example should be conserved with
an appropriate control scheme. There are tools allowing to
produce the best possible feasible passivity-based control,
not only with regard to joint trajectory tracking but also
for various kind of kinematic and dynamic tasks. In the
next section we present the optimal multi-objective humanoid
motion controller based on quadratic programming.

III. MULTI-OBJECTIVE HUMANOID MOTION CONTROL

A. Humanoid robots

Humanoid robots consist of redundant tree structure of
several kinematic chains which, by means of external uni-
lateral contact forces, provide a way to control the position
and orientation of the underactuated floating base.

Let us consider the dynamic model of an articulated rigid
multi-body robot described in Section II-A. The configura-
tion of a humanoid robot with n dof can be described as
q = (pB,RB, qθ), where pB ∈ R3 is the position of the
floating base, RB ∈ SO(3) is a rotation matrix representing
its orientation and qθ ∈ Rn−6 comprises all the joint angles
of the robot (considering only rotational joints). That is, the
number of non-controlled dof is b = 6, as we cannot exert
directly a wrench on the base.

The linear and angular velocities of the floating base of
the humanoid robot, vB and ωB , are computed as:

vB = ṗB, ωB = (ṘBR
T
B)
∨, (19)

where (·)∨ : R3×3 → R3, such that if S = −ST ∈ R3×3

we have Sx = (S)
∨×x, ∀x ∈ R3. Then, the configuration

velocity α can be expressed by

α =
[
vTB ωTB q̇Tθ

]T
. (20)

A humanoid robot has a large number of dof, such that it
can fulfill several objectives (or tasks) simultaneously, while
satisfying kinematic and dynamic constraints, e.g. the ones
imposed by external forces arising from unilateral contacts,
whose force distribution is not unique either.



Fig. 1. Lumped reaction forces acting on contact surfaces, constrained in
friction cones (or its pyramidal approximation).

B. Unilateral contacts

A particular surface belonging to a link of the robot
that is in contact with the environment can be described
with a k-tuple of xy-points defined with respect to the
surface, representing the vertices of a polygonal shape that
approximates the contact region. See Fig. 1.

Let’s assume that the contact force distribution on that
surface can be approximated by k lumped reaction force
vectors placed at the vertices of the contact region. In order
to hold a unilateral contact: (a) the surface frame must
be constrained relative to the environment surface, (b) the
normal component of each force vector must be positive and
(c) each force vector must remain inside the corresponding
friction cone, i.e. fc ∈ C, to avoid tipping and slipping.

To fulfill both force requirements, we employ pyramidal
approximations of the friction cones, P ⊂ C, described by
4 unitary bases (βj) arranged as columns of a matrix βc ∈
R3×4, such that

fc = βcρc (21)

where ρc ∈ R4 is a vector of non-negative coefficients
that constrains each force fc to be inside of the pyramidal
approximation of the friction cone, see Fig. 1 and [18].

C. Multi-objective motion solver

We use a QP solver to minimize the tracking error for
several weighted tasks (to resolve conflicts), by computing
an optimal reference configuration acceleration, α̇r, and
a feasible reference of external forces ue,r parameterized
by the vector ρr (made up by concatenating every ρc),
while satisfying linear equality, inequality and bounding
constraints; that is, to solve[

α̇r
ρr

]
= arg min

x

1

2
‖W (Aobx− bob)‖2 +

1

2
γ ‖x‖2 ,

s.t. Aeqx = beq, Ax ≤ b, lb ≤ x ≤ ub,
(22)

where W = blkdiag (W1, . . . ,Wg,k) is a block diagonal
matrix made up of individual diagonal matrices that assign
a weight to each component of the k tasks in order to solve
conflicts among them [12] [18], and γ is a small weight (1E-
4) introduced to minimize α̇r and ρr ensuring, at the same
time, the positive definiteness of the Hessian matrix [19].

The matrices Aob, Aeq, A, and vectors bob, beq, b, lb, ub
are made up by vertically concatenating the corresponding
ones for each task or constraint.

D. Tasks
For the jth task, Aob,j and bob,j are calculated as

Aob,j = Jg, bob,j = g̈ob − J̇gα, (23)

where, g̈ob is an acceleration objective and Jg , J̇g are the
task Jacobian and its derivative, such that g̈ob = Jgα̇+J̇gα.

Here we consider only three different kind of tasks, tracked
in a similar way as in (15):

1) Posture task: The acceleration objective is g̈ob = q̈θ,ob,

q̈θ,ob = kp (qθ,d − qθ) + kv (q̇θ,d − q̇θ) + q̈θ,d. (24)

2) Position task: In this case, g̈ob = v̇ob, the acceleration
of a point described in the world frame, such that its desired
trajectory (pd, vd, v̇d) is tracked as

v̇ob = kp (pd − p) + kv (vd − v) + v̇d. (25)

3) Orientation task: Here, g̈ob = ω̇ob, the angular accel-
eration of a particular frame with respect to the world frame,
such that its desired trajectory (Rd, ωd, ω̇d) is tracked as

ω̇ob = kpΩ̃ + kv (ωd − ω) + ω̇d, (26)

with Ω̃ = (log
{
RdR

T
}
)∨ the error vector in orientation.

E. Constraints
Here we consider only four types constraints:
1) Underactuation / torque constraint: The underactua-

tion constraint ensures the generation of a feasible motion
for the floating base, provided by adequate unilateral contact
forces with the environment; it is an equality constraint. The
torque constraint ensures that the required torques are within
the limitations of the actuators (minimum and maximum
torques:

¯
τ and τ̄ ); it is an inequality (box) constraint.

Let us define a matrix D, such that ue,r =Dρr, as well
as consider that x =

[
α̇Tr ρTr

]T
. Then, the underactua-

tion and torque constraints are, respectively, specified as[
MB −DB

]
x = −CBα− gB,

(27)

¯
τ −Cjα− gj ≤

[
Mj −Dj

]
x ≤ τ̄ −Cjα− gj ,

(28)

where the subscript B stands for the first 6 rows of the
matrices M(q), D, C(q,α) and g(q), while the subscript
j stands for the remaining rows.

2) Joint limits constraints: Joint range and speed limits
can be specified using inequality constraints, as done in [19].

3) Friction constraint: To meet the force constraints ex-
plained in Section III-B, it is necessary to ensure that 0 < ρ.
This can be done by using bounding constraints.

4) Surface frame constraint: To constrain the surface
frame (sf) relative to the environmental frame we track it
down to a desired position and orientation, psf,d and Rsf,d,
with zero linear and angular velocity:

Jgα̇ref + J̇gα =Kp

[
psf,d − psf

Ω̃sf

]
−Kv

[
vsf
ωsf

]
, (29)

where Ω̃sf is defined as in (26), and Kp, Kv are matrices
of PD gains, such that it is possible to activate / deactivate
the constraint on a specific dof of the contact.



F. Introduction of integral gains

We introduce the integral term Ls by adding it to the
reference force input as in (3):

up =M(q)α̇r +C(q,α)α+ g(q)− ue,r +Ls, (30)

This raises two main issues for the case of humanoids:
(i) in order to take profit from the theoretical niceties of
the integral gains, the integral term has to be included into
the entire vector of input generalized forces, including the
unactuated components, and then be compensated on these
components; (ii) these additional terms alter the whole body
dynamics. For instance when adding this term, the real
acceleration of the robot is different from the reference one,
that is:

α̇ = α̇r +M
−1Ls, (31)

and this difference needs to be accounted for when ensuring
the feasibility of the resulting desired acceleration. These two
aspects are a major part of our contribution in this paper that
we describe in what follows.

1) Underactuation / torque constraint: Without the inte-
gral gains, this constraint, written as uB = 0, was respected
thanks to (27). This constraint needs then to be modified to
include the integral term:[

MB −DB
]
x = −CBα− gB +LBs, (32)

where LB are the unactuated rows of L. This integral term
can be regarded as an “artificial external generalized force”,
for which the QP solver needs to be aware to respect the
underactuation constraint (as well as the others). The QP
will then find the optimal acceleration with regard to this
integral term, including, by doing so, the history of tracking
error inside the task-based control.

Similarly, we also update the torque limit constraint by
introducing the integral gain:

¯
τ −Cjα− gj +Ljs ≤

[
Mj −Dj

]
x

≤ τ̄ −Cjα− gj +Ljs, (33)

where Lj are the actuated lines of L.
2) Other feasibility constraints: The most important ad-

ditional feasibility condition is the surface frame constraint
given (29). This can be updated using (31), giving:

Jgα̇ref+JgM
−1Ls+ J̇gα

=Kp

[
psf,des − psf

Ω̃sf

]
−Kv

[
vsf
ωsf

]
. (34)

Joint position and speed limit constraints can also be
updated using the same process, but for the case of our sim-
ulations, we noticed that because they are already relatively
conservative, the actual constraints remain respected. Fig. 2
illustrates the proposed control framework.

Fig. 2. Description of the framework architecture.

IV. SIMULATION RESULTS

A. Simulation Environment

To test our control framework we use our humanoid
robot, the HRP-5P. It is 1.819 m height when the legs are
fully extended and weighs 104.835 kg. It has 35 structural
dof: two legs of 6 dof each, two arms of 9 dof each, a
waist with 3 dof and a head with a neck of 2 dof. Our
humanoid is modeled in Matlab Simscape Multibody™, by
using the mass distribution parameters given by the CAD
model. The actuators on the joints are implemented by taking
into account the mechanical effects of an ideal gear box, the
rotor inertia and a friction model consisting of the sum of
the Stribeck, Coulomb3 and the viscous components.

The values of the gear ratio and the rotor inertia for each
joint were taken from the actuator datasheet, whereas the
friction parameters were chosen based on realistic values,
inspired in the ones identified for the robot ABB IRB 6620
in [20] (see Table I), and applied equally to all the joints.

TABLE I
FRICTION PARAMETERS USED FOR EVERY JOINT.

Parameter Value
Breakaway Friction Torque 0.05 Nm
Breakaway Friction Velocity 0.2 rad/s
Coulomb Friction Torque 0.04 Nm
Viscous Friction Coefficient 0.0005 Nm / (rad/s)

The input to the actuators is the joint torque, scaled
by the gear ratio and a non-modeled torque scale (0.9)
representing an unknown gain arising when the actuators
have no electrical current feedback –and for which the motor
torque reference is not respected. Electrical dynamics were
neglected, as the current loop is assumed to have a very high
bandwidth.

The contact model between the feet and the ground is
implemented using the free Simscape Multibody Contact
Forces Library [21]. This one considers that each vertex
of the foot is attached to a tiny fictitious sphere, such that
the wrench resulting from the contact of each sphere with
the ground is calculated by using penalty for the normal
component, and a Stick-Slip continuous friction model for
the tangential component (see Table II). This allows to
simulate collision and sliding motion.

3The Stribeck and Coulomb components correspond to a continuous
model representing the effect of the static and kinetic friction [20].



TABLE II
CONTACT PARAMETERS BETWEEN FEET AND GROUND.

Parameter Value
Contact Stiffness 1E7 N/m
Contact Damping 1E3 n/(m/s)
Static & Kinetic Friction Coefficients 0.4 & 0.3
Velocity Threshold 0.001 m/s

The controller is implemented in discrete time with a
step size of T = 0.005s by using common blocks of
Simulink™ and the QP Solver (quadprog) provided by
Matlab’s Optimization Toolbox™.

The controller uses a model of the robot that does not
consider the joint friction, neither the torque scale. Further-
more, it includes a modeling error of the inertial parameters
induced by randomly incrementing or decrementing the mass
of each link up to 10% of its value. The random seed is the
same for every simulation, in order to consider the same
mass distribution. The feedback received by the controller is
a set of clean signals given as an output by the Simscape
model; that is, the controller is also fully aware of the actual
position and orientation of the body, which in reality can only
be estimated but not measured. As for α, it is computed by
using finite differences.

Let us compare the performance of the proposed passivity-
based controller not only with the classical inverse dynam-
ics controller, but also with a controller representing the
approaches taken by different teams during the DARPA
Robotics Challenge (DRC) [22], [18], which used the in-
tegral of the reference acceleration to close a velocity /
position loop superimposed to the torque command, without
theoretical proof nor the consideration of the integral term
within the constraints of the QP and not based on passivity.
This decoupled approach can be written using (3) with
L = λdiag(M), providing a gain proportional to the mass
driven by each joint.

The performance comparison is done by testing two se-
quences of motions: “Bowing” and “Lifting Feet”, each one
using (a) the Inverse Dynamics Control, (b) the Decoupled
Integral Term Control and (c) the Passivity-Based Control,
just to properly label the approaches.

The solver used to run the simulations in Matlab
Simulink™ is ode15s(stiff/NDF), with max-step size
10−2, rel. tolerance 10−4 and abs. tolerance 10−5.

The tasks considered are: (a) posture task (q), (b) position
task of CoM (com), (c) pose task (position + orientation) of
floating Base (poseB), (d) pose task of Chest (poseCh),
(e) pose task of Right and Left Hands (poseRH, poseLH),
and (f) pose task of Right and Left Feet (poseRF, poseLF).

The constraints considered are: (a) motion, (b) torque,
(c) joint range and speed limits, and (d) surface frame con-
straints of Right and Left Feet Soles (RFSole, LFSole).

In both simulations the initial configuration corresponds to
all joints angles at 0 deg. The default weight used by both
simulations is shown in Table III, where W = diag(W mask)
× W val. The default PD gain matrices for the constraints
used by both simulations are shown in Table IV.

Notice that we have released the contact dof corresponding
to the position and yaw orientation of the soles (not their
velocities), as when the robot is standing it is not possible to
correct those without sliding. However, the dof correspond-
ing to the pitch and roll orientations are tracked back to 0 deg
if the foot starts to tilt due to a disturbance. The default
state of the task or constraint is also shown in both tables
(active). Notice that if a sole constraint is active, the pose
task for the corresponding foot is not, and vice-versa.4

The value of the integral gain of the passivity-based
control is λ = 200, whereas the one of the decoupled
approach is λ = 30, the latter representing the largest value
empirically found for which the closed-loop was stable.

TABLE III
DEFAULT TASK PARAMETER VALUES.

Task Parameter Value Task Parameter Value

q
active X

poseCh
active X

W val 10 W val 500
W mask ones(1, n) W mask [0 0 0 1 1 1]

com
active X poseRH active X
W val 1000 & W val 100

W mask [1 1 0] poseLH W mask [1 1 1 1 1 1]

poseB
active X poseRF active 7
W val 200 & W val 500

W mask [0 0 5 2 2 2] poseLF W mask [1 1 1 1 1 1]

TABLE IV
DEFAULT CONSTRAINT PARAMETER VALUES.

Constraint Parameter Value
RFSole active X

& Kp diag([0 0 0 1 1 0]) * 100
LFSole Kv diag([1 1 1 1 1 1]) * 200

B. Bowing simulation and results

Let the HRP-5P perform the following motion: (1) go to
half-sitting, (2) incline the chest by 60deg and (3) return.

This bowing motion is performed by setting, as step
command, the desired inclination of the chest. Additionally,
an arbitrary half-sitting configuration is used for the low-
weighted posture task during the whole motion. Its purpose is
to deal with the initial singularity to bend the knees correctly,
and to help the solver to decide a final configuration for the
9 dof arms, or otherwise they would keep on moving within
the null space of the cumulative task Jacobian.

We set the PD gains of all the tasks to the same values
(kp = 50, kv = 15) except for PoseCh, and simulate this
motion using two sets of PD gains for PoseCh: (a) (kp = 50,
kv = 15) and (b) (kp = 100, kv = 20), as well as considering
the three controllers (a total of six simulations). The plot
showing the pitch orientation of the Chest is shown in Fig. 3.

As it can be seen, even though the desired motion is
abrupt, the use of comparatively low PD gains lead to

4Within this scheme, the weights (and masks) represent the most critical
parameters, as switching off some dof or setting “low” values may degrade
the quality of the task tracking, leading to a possible fall. In our case, these
weights were heuristically tuned based on the “importance” of each task.
On the other hand, the PD gains of the tasks can be seen as kinematic gains,
used to build a trajectory reference (output of the QP) which tracks faster
or slower the desired one, allowing some freedom in their specification.



a reference trajectory that was slower than the desired
one. However, the decoupled integral term control and the
passivity-based control achieved a zero steady-state error
with apparent similar performance (very similar curves). The
advantage of the latter over the former will show up in
Section IV-C. In the case of the inverse dynamics control, to
diminish the steady-state error it is necessary to follow the
desired trajectory faster (increasing the PD gains), leading to
motions that may not be feasible. The comparatively faster
motion of the passivity-based control with respect to the
inverse dynamics one was explained in Section II-C. Fig. 4
shows one screenshot of the motion.

Fig. 3. Pitch Chest (“Bowing”).

C. Lifting feet simulation and results
Let the HRP-5P perform the following motion: (1) go to

half-sitting, (2) rise the hands (hands↑), (3) place the CoM
over the right foot (CoM→ r), (4) lift the left ankle (LF↑),
(5) put the left foot on the ground (LF↓), (6) place the CoM
over the left foot (CoM→ l), (7) lift the right ankle (RF↑).
(8) put the right foot on the ground (RF↓), and (9) return.

The PD gains of all tasks are set to the same values (kp =
100, kv = 20). Also, the desired trajectories are specified
instead of set-point tasks. These ones are generated by using
Linear Segments Parabolic Blends (LSPB) interpolation [16],
using as final values the ones marked with ∗ in Table V.

This motion was simulated using each controller (three
simulations), and their performance compared through the
plots of (i) the horizontal trajectory of the CoM + the height
of the floating Base (Fig. 6), (ii) the trajectory of the Right
Hand position (Fig. 7), (iii) the trajectory of the Left Foot
position (Fig. 8), and (iv) the contact forces acting on the
Left Foot, calculated vs. measured (Fig. 9).

As we can see, the performance of the inverse dynamics
control is not good in the presence of modeling errors.

Fig. 4. “Bowing”, with passivity-
based control (t = 3 s).

Fig. 5. “Lifting Feet”, with
passivity-based control (t = 6 s).

Actually, when using this controller, the robot tilted before
returning to half-sitting posture, but could recover (luckily)
and didn’t fall. The decoupled integral term control and
the passivity-based control showed a very good performance
until the moment when the CoM was transferred over the left
foot. Then, the robot suddenly fell to the left when using the
decoupled controller. This happens because the QP has no
knowledge of the extra torque sent to the robot, assuming
a wrong contact model and violating the conditions to hold
the contact5; This can be seen in Fig. 9, where the difference
between the calculated and measured normal force for this
controller only is 500N (the smaller discrepancy of the
other two is because of the modeling errors). Furthermore,
besides not being reliable, it is also possible to exceed the
torque limits by using this approach. On the other hand, the
passivity-based controller, whose QP is aware of the added
torque, succeeds to perform the motion without falling and
always within the torque limits, converging to the desired
trajectory in almost all the cases: except for the final height
of the hands. This is because the tasks for the hand positions
and the CoM are in conflict, producing an averaged reference
trajectory. Fig. 5 shows one screenshot of the motion.

V. CONCLUSIONS AND FUTURE WORK

We have presented a framework for a QP-based multi-
objective closed-loop torque-control with integral gains. The
key idea is to use the QP to generate optimal reference
accelerations which take into account integral gains in the
feasibility constraint. The scheme provides not only robust-
ness to modeling errors and joint friction, but also, in the
case of passivity-based control, guarantees theoretically good
performances regarding disturbances with a Lyapunov global
exponential convergence. These developments were tested on
a high-fidelity dynamical simulator, where we could observe
the improvements compared to the classical control. The
future developments include (i) a study on other sources
of disturbances, such as flexible structures, or estimation
errors, (ii) the integration of force feedback and stabilization
control, (iii) a finer control of the control compliance, and
(iv) conclude all these adding with real experiments.
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