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A ferromagnet can exert a strong influence on a Josephson junction (JJ), particularly, the superconductorferromagnet-superconductor (SFS) JJ oscillates between 0-and π-junctions as the thickness of the ferromagnet increases [1][2][3][4][5][6]. In a closed superconducting loop with π-junction a spontaneous circulating current appears without applied magnetic flux [7]. A very special situation is possible when the weak link is a non-centrosymmetric magnetic metal with broken inversion symmetry like MnSi or FeGe. In this case, Rashba-type spin-orbit coupling leads to a general current-phase relation j = j c sin(ϕ-ϕ 0 ), where ϕ 0 is proportional to the strength of the broken inversion symmetry magnetic interaction [8][9][10]. An important issue is that the ϕ 0 -junction provides a mechanism for direct coupling between the suppercurrent (superconducting phase) and the magnetic moment.

The mechanical analog of a simple pendulum with applied torque is very useful to gain insight into the physics of Josephson devices [START_REF] Barone | Physics and Applications of the Josephson Effect[END_REF]. Here we introduce another analog between the magnetic ϕ 0 -junction and a pendulum with an oscillating point of suspension. A particle moving simultaneously in a permanent field and in a field oscillating with a high frequency, demonstrates a very interesting feature: new stability points appear at some parameters of the particle and fields [START_REF] Kapitza | [END_REF]13]. The system in which this feature was first studied is called the Kapitza pendulum. Particularly, in a pendulum with a vibrating point of suspension (pivot point), the external sinusoidal force can invert the stability position of the pendulum [START_REF] Kapitza | [END_REF]14,15]. In this case the bottom equilibrium position is no longer stable. Any tiny deviation from the vertical increases in amplitude with time. In the presence of a periodic drive, the unstable fixed point can become dynamically stable. Kapitza provided an analytical insight into the reasons for stability, by splitting the motion into "fast" and "slow" variables, and by introducing an effective potential. His result was first obtained in the high-frequency limit. By averaging the classical equations of motion over the fast oscillations of the drive, Kapitza found that the "upper" equilibrium point becomes stable for large enough driving amplitudes, while the "lower" point becomes unstable. Kapitza's pioneering work initiated the field of vibrational mechanics, and his method is used to describe periodic processes in a variety of different physical systems, ranging from atomic physics, plasma physics, to cybernetical physics (see [16][17][18][19][20][21] and references therein). In the nonlinear control theory the Kapitza pendulum is used as an example of a parametric oscillator that demonstrates the concept of "dynamic stabilization".

In this paper we study the dynamics of a ϕ 0 -junction with direct coupling between the magnetic moment and Josephson current [22,23]. We find that the application of an external voltage may lead to different stability regions for the magnetization, i.e., Kapitza pendulum features in the ϕ 0 -junction. Developing our previous approach [24], we investigate the effect of superconducting current on the dynamics of the magnetic moment. We show that, starting with magnetization along the z-axis, the character of the m dynamics changes crucially as a stable position of m develops between the z-and y-axes, depending on the parameters of the system.

The ac Josephson effect provides an ideal tool to study magnetic dynamics in a ϕ 0 -junction. To realize the ac Josephson effect, we apply a constant voltage V to the ϕ 0 -junction. In this case the superconducting phase varies with time, as ϕ(t) = ω J t, where ω J = 2 eV/h is the Josephson frequency [23,[START_REF] Josephson | Superconductivity[END_REF]. The dynamics of the considered system is then described by the Landau-Lifshitz-Gilbert equation

dM dt = γH eff × M + α M 0 M × dM dt , (1) 
with effective magnetic field H eff in the form [23] 

H eff = K M 0 Γ sin ωt -ϕ 0 y + M z M 0 z , ( 2 
)
where γ is the gyromagnetic ratio, α is the phenomenological damping constant, M 0 = M , and M i are the components of M. Below we use the normalized components m i = Mi M0 . Furthermore, ϕ 0 = r My M0 , r = lυ so /υ F , l = 4hL/hυ F , L is the length of the F -layer, h is the exchange field of the F layer, Γ = Gr, G = E J /(KV), and E J = Φ 0 I c /2π is the Josephson energy. Here Φ 0 is the flux quantum, I c is the critical current, υ F is the Fermi velocity, and the parameter υ so /υ F characterizes a relative strength of spin-orbit interaction, while K is the anisotropic constant, and V is the volume of the F layer. To investigate the dynamics of considered system numerically, we write eq. ( 1) in the dimensionless form (see system of equations ( 1) in the Supplementary Material Supplementarymaterial.pdf (SM)). In that system the time is normalized to the inverse ferromagnetic resonance frequency ω F = γK/M 0 : (t → tω F ), so ω is normalized to the ω F .

First we present results of numerical simulations of the system (1) and (2). Figure 1 shows the dynamics of the magnetization components m z and m y at different values of the parameter G, demonstrating the re-orientation of the oscillations around the z-axis to the oscillations around the y-axis. With increase in G, the component m y goes from zero to m y = 1. and in the middle of time interval is shown in the insets. We see that the average value of m z deviates from one. Figure 1(b) shows the corresponding oscillation of m y . Figure 1(c) shows a stabilization of m y oscillations around some average value of m y , between the z-and y-directions with increase in G, i.e., it shows the re-orientation of the oscillations at three values of G = 10π, 20π, 50π. With an increase in G, the time of re-orientation from the z-direction to the y-direction decreases substantially. At a sufficiently large value of G, the average value of m y becomes close to 1, as we see in fig. 1(c We note that the effect of r leads to similar features as we observe for changes in G. So, the situation is reminiscent of the Kapitza pendulum, i.e., a pendulum whose point of suspension vibrates, leading to the inversion of the stability positions of the pendulum [START_REF] Kapitza | [END_REF].

Variation of average m y as a function of frequency ω and G is shown in fig. 2. We see that an increase in G makes orientation of m y along the y-axis stable, but that the frequency dependence differs from the characteristic Kapitza pendulum behavior, as we can see in fig. 4. The system of equations ( 1), describing the dynamics of the magnetic moment in the angular variables m z = cos θ, m x = sin θ cos φ, m y = sin θ sin φ, can be written as

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φ = cos θ 1 + α 2 - Gr 1+α 2 1 sin θ [cos θ sin φ -α cos φ] sin [ωτ -r sin θ sin φ], θ = - α sin 2θ 2(1 + α 2 ) + Gr 1 + α 2 [α cos θ sin φ + cos φ] sin [ωτ -r sin θ sin φ].
(3) In the case of no coupling between the magnetic moment and the Josephson junction, at G = 0, we have

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ φ = cos θ 1 + α 2 , θ = - α sin 2θ 2(1 + α 2 ) . ( 4 
)
The solution to eq. ( 4) has the form

θ(τ ) = ArcTan exp log tan θ 0 - ατ 1 + α 2 , ( 5 
)
where tan θ 0 is considered to be positive for simplicity. So, the characteristic scale in time to order the magnetic moment along the easy axes is τ = 1+α 2 α . To realize the Kapitza pendulum we should investigate the case ω 2π τ = 2πα 1+α 2 , where ω is the frequency of the external fastvarying field.

Let us make the replacements

θ → Θ + ξ, φ → Φ + η. ( 6 
)
Here Θ and Φ describe slow movement, while ξ and η are coordinates for fast-varying movement. Conditions for ξ and η are discussed in the SM. We consider θ = Θ, φ = Φ, where averaging is taken over the period of the fast-varying force T = 2π ω . The system of equations for slow movement has a form (see SM)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Φ = cos Θ 1 + α 2 - (Gr) 2 rα 2ω(1 + α 2 ) 2 • 1 sin Θ [cos Θ sin Φ -α cos Φ] 1 -sin 2 Θ sin 2 Φ , Θ = - α sin 2Θ 2(1 + α 2 ) + (Gr) 2 rα 2ω(1 + α 2 ) 2 [α cos Θ sin Φ + cos Φ] 1 -sin 2 Θ sin 2 Φ . (7)
There are some equilibrium points of the system following from Θ = 0, Φ = 0.

The first pair is located on the equator

Θ 0 = π/2, Φ 0 = π/2 and Θ 0 = π/2, Φ 0 = 3π/2. ( 8 
)
Linearization of ( 7) after substitution Φ = Φ 0 + δφ,

Θ = Θ 0 + δθ gives ⎧ ⎪ ⎨ ⎪ ⎩ δ φ = 1 1 + α 2 δθ, δθ = α 1 + α 2 δθ. (9)
It is clear that δθ ∼ e ατ 1+α 2 , so these points are unstable. Using (7) we find that the equilibrium points at Φ 0 = π 2 are described by equation

sin Θ 0 = -1 + 1 + 4β 2 2β , ( 10 
)
where β = (Gr) 2 rα 2ω(1+α 2 ) , which can be approximated as sin Θ 0 = β at small β. It has two solutions in the interval 0 ≤ Θ 0 ≤ π. Note that at Φ 0 = 3π 2 we have sin

Θ 0 = 1- √ 1+4β 2 2β
which leads to the negative sin Θ 0 , but Θ is always positive. So, there are not any stable points at Φ 0 = 3π 2 . To find out if these points are stable we have linearized eq. ( 7) near the points, and tested the eigenvalues of the linearized system. This straightforward calculation shows that the real parts of eigenvalues of the corresponding system are always negative. It means that the second pair of points are always stable (see SM). Figure 3 shows the location of the unstable and stable pairs of equilibrium points.

Results of numerical calculations of the averaged m y as a function G at different frequencies are presented in fig. 4. We see that system reminiscent the Kapitza pendulum behavior: the averaged m y component characterizing changes of stability direction is growing with G. The character of behavior depends essentially on the frequency of the fast-varying field getting very sharp at small ω. Figure 4 also compares the m y (G) dependence obtained by analytical and numerical calculations. We see results at three frequencies: ω = 0.5, 20 and 70. The analytical dependence is calculated according to formula (10). Two methods are used for numerics: numerics-1 is based on the standard program "Mathematica" (shown by triangles, calculated for ω = 70) and numerics-2 presents results of the direct solution of system (1) based on the Runge-Kutta fourth order. Both numerics give practically the same results. An excellent agreement between analytical and numerical results is obtained at low G, depending on the frequency of the fast-varying field. For high frequencies the coincidence is still good at rather large G.

Table 1 shows the values of the averaged m y obtained by analytic and numerical calculations at different G. The difference in values of the averaged m y obtained by all the three used methods is rather small. There is an essential difference between the original Kapitza pendulum and our system. In the Kapitza pendulum the stability of a new equilibrium point is determined by the amplitude and frequency of the external force. In our case, two new points are always stable and their positions on the unit sphere is determined by the parameters of the system. Figure 5 shows the vector fields in the plane 0 ≤ Φ ≤ 2π, 0 < Θ < π according to eq. ( 7) at two different values of G: 5π and 50π. This demonstrates that with an increase in G the two equilibrium positions approach the unstable point at Φ = π 2 , Θ = 0. This result is in agreement with (10), which shows that an increase in G leads to an increase in β, and to the convergence of sin Θ 0 to one.

There is another interesting phenomenon which is realized in our case. With changing parameters of the system, the stable equilibrium positions of the "slow" movement are approaching the unstable one at Φ = π 2 , Θ = π/2. When the distance between them becomes comparable to the amplitude of the "fast" motion, all the three special points of the "slow" system effectively merge.

Finally, we specify the set of ferromagnetic layer parameters and junction geometry that make it possible to reach the values used in our numerical calculations, for the possible experimental observation of the predicted effect. In our model the interaction between the Josephson current and the magnetization is determined by the parameter G = E J /K * V , which describes the ratio between the Josephson energy and the magnetic anisotropy energy. To have a strong interaction, one needs to choose a ferromagnet with weak magnetic anisotropy, like, for example, the permalloy with K ∼ 4 * 10 -5 K Å-3 [START_REF] Rusanov | [END_REF], and a junction with a relatively high critical current. Recently, a high critical current density of (3 * 10 5 -5 * 10 6 ) A/cm 2 was reported for a Nb/NiGdNi/Nb junction [27]. For the volume V of the ferromagnetic film V = 10 -15 cm 3 (10 -5 cm × 10 -4 cm × 10 -6 cm), we find G ∼ 20-200, for these parameters.

The strength of the specific Rashba-type spin-orbit interaction in our case is controlled by the parameter Γ = Gr, which should be stronger in metals with large atomic number Z. A suitable candidate may be a permalloy doped with Pt [28]. In Pt the spin-orbit interaction plays a crucial role in electronic band formation and the parameter v so /v F ∼ 1. The doping of the permalloy by Pt, up to 10 percent, did do not change the magnetic properties significantly, and therefore we may expect to have v so /v F ∼ 0.1, in this case. If the length of the ferromagnetic layer is of the order of the magnetic decaying length, i.e., l ∼ 1, we have r ∼ 0.1, the value of the parameter Γ is in the range 2-20. Note that ferromagnets without inversion symmetry, like MnSi or FeGe, may also be interesting candidates for the observation of the discussed phenomena.

In conclusion, we have demonstrated that the direct coupling between the magnetic moment and Josephson current in a ϕ 0 -junction may effectively lead to strong re-orientation of the magnetic easy axis in response to an applied voltage. This serves as a manifestation of Kapitzalike pendulum behavior and opens a new way to control the magnetization via a superconducting current.
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 11 Fig. 1: (Color online) (a) Dynamics of the mz component at G = 5π, r = 0.1; (b) the same for my; (c) effect of G at r = 0.5. The numbers show the G value.

  ), for case G = 50π. The oscillations show periodically splashing related to the Josephson frequency. The inset demonstrates the jumps of m y from the value m y = 1 with Josephson frequency. The amplitudes of the jumps decrease in time, becoming smaller and shorter in time, with an increase in G.
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 2 Fig. 2: (Color online) The ω-G diagram for averaged my shown by the color scale.
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 34 Fig. 3: (Color online) Demonstration of the equilibrium points of eq. (7). Arrows show stable points, the other two points are unstable.

Fig. 5 :

 5 Fig. 5: (Color online) Phase planes (7) at G = 10π (left) and G = 50π (right). Here r = 0.5, α = 1, ω = 70. Red points are stable equilibrium points which are calculated from (10), black points are unstable(8). With increase in G the stable red points are approaching unstable ones Φ0 = π/2, Θ0 = π/2.

Table 1 :

 1 m y from the theory and the numerical results.

	G	Θ 0	analytic m y numerics-1 numerics-2
	15.7 1.462	0.109	0.108	0.109
	31.4 0.387	0.369	0.376	0.378
	47.1 0.663	0.577	0.611	0.616
	62.8 0.859	0.689	0.748	0.756
	157 1.272	0.817	0.945	0.956
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