
HAL Id: hal-01845273
https://hal.science/hal-01845273

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Overlapping Domain Decomposition Applied to the
Navier-Stokes Equations

Oana Ciobanu, Laurence Halpern, Xavier Juvigny, Juliette Ryan

To cite this version:
Oana Ciobanu, Laurence Halpern, Xavier Juvigny, Juliette Ryan. Overlapping Domain Decomposition
Applied to the Navier-Stokes Equations. Domain Decomposition Methods in Science and Engineering
XXII, pp.461-470, 2016, �10.1007/978-3-319-18827-0_47�. �hal-01845273�

https://hal.science/hal-01845273
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Overlapping Domain Decomposition Applied

to the Navier–Stokes Equations

Oana Ciobanu, Laurence Halpern, Xavier Juvigny, and Juliette Ryan

1 Introduction

This article focuses on the research field of laminar flow of an ideal gas, on the

resolution of aerodynamic multi-scale problems that are costly and difficult to solve

in their original form. In order to solve these large data systems several techniques

of parallel computing have been developed but some convergence problems may

occur for large number of sub-domains.

Robust and fast methods are now available, which combine non-linear and linear

solvers requiring less memory capacity. In the context of long term simulations,

global implicit approaches have proven their superiority as they are able to simulate

a quasi-steady-state behaviour without being restricted to short time steps to ensure

convergence. Implementing these approaches on GPUs can certainly improve the

efficiency versus a simple CPU implementation, as will be shown below, but

by combining this implementation with domain decomposition another scale of

efficiency could be achieved. In this paper, we propose an improved parallel time-

space method for steady/unsteady problems modelled by Euler and Navier-Stokes

equations for a direct numerical simulation.

Domain decomposition methods split large problems into smaller sub-problems

that can be solved in parallel. Usually, only space domain decomposition method

is used to provide high-performing algorithms in many fields of numerical applica-

tions. To achieve full performance on large clusters with up to 100,000 nodes (such
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as recently the IBM Sequoia, or GPUs) the time dimension has to be taken into

account. An essential gain to be obtained from time-space domain decomposition

is the ability to apply different time-space discretisation on sub-domains thus

improving efficiency and convergence of implicit schemes.

In practice, we are often working with large computational domains where only

a small part is highly interactive and a wide region of the domain is close to

equilibrium state. What is usually done is that the sub-domains are balanced in

space so that each processor finishes the simulation at the same moment and the

computation is done, on each sub-domain with the same time step, the global one.

The time step depends on the CFL condition, the value of the flow velocity and the

space step. This means that the part of the simulation domain which is not dominated

by strong non-linearities is solved with a much higher precision than is needed.

Some sub-domains are over-solved. The sub-domain close to the equilibrium state

converges in fewer iterations and it is less costly, but it has to wait for the high

reactive sub-domain to end in order to continue the simulation. To avoid this loss of

efficiency and optimize the computational cost, the time step should be computed

locally and the distribution of flow in sub-domains should take into consideration

several factors: closeness to equilibrium region, strong non-linearities region and

time step influence.

Our work focuses on the improvement of the Schwarz waveform relaxation

(SWR) Method introduced under this name by Gander [4] at the 10th Domain

Decomposition Conference to solve parabolic equations. It was previously pre-

sented by Gander and Stuart [5] as a multi-splitting formulation on overlapping sub-

domains [9] combined with a waveform relaxation algorithm [12] in space-time for

the heat equation. The purpose is to solve the space-time partial differential equation

in each sub-domain in parallel, and to transmit domain boundary information to the

neighbours at the end of the time interval. Originally applied to linear PDEs, the

SWR algorithm was extended and optimised to the non-linear reactive transport

equations by Haeberlein [6] and Haeberlein and Halpern [7]. With the SWR method

different time-space discretisation can be applied on sub-domains thus improving

efficiency and convergence of the schemes.

2 Navier–Stokes Solvers

The Navier–Stokes equations are given by three conservation laws.

• Mass conservation:
@�

@t
C r:.�u/ D 0

• Momentum conservation:
@�u

@t
C r:.u ˝ .�u// C r:pI � r:� D 0

• Energy conservation:
@�E

@t
C r:.u.�E C p//�r:.�u � q/ D 0

2



where �; u; E; �; q are, respectively density, velocity, energy, viscous tensor and

heat flux. Three algorithms are presented. They are all based on the same time

discretisation (second order implicit Backward Differentiation Formula), the non-

linear problem is solved with the Newton method and linear problems are solved

directly (.L C D/D�1.D C U/ factorisation). The first method is a classical non-

linear domain decomposition method [10, 11] which consists in semi-discretising

uniformly in time the system, in applying a global Newton linearisation, then

dividing the linear system in several local overlapping subsystems that we can solve

in parallel. This algorithm is referred to as the Newton-Schwarz algorithm.

Newton-Schwarz Algorithm: � Semi-discretisation in time

� Linearisation (Newton)

� Space Schwarz DDM

–Solve the local linear system

In some cases, one Schwarz iteration is sufficient to achieve convergence of

Newton to the solution of the problem. Space decomposition and linearisation are

independent. The next idea is to first do the decomposition and then solve in each

sub-domain the non-linear system. This algorithm is the same as the one introduced

by Cai and Keyes [1], but using a different linear solver.

Schwarz-Newton Algorithm: � Semi-discretisation in time

� Space Schwarz DDM

–Solve the local non-linear system

To achieve full speed-up performance, a SWR method is used, as it allows local

space and time stepping. The whole time interval of study is split into sub-intervals

or time windows, then space is decomposed into sub-domains. For each time

window the space-time Navier-Stokes equations are solved in each sub-domain in

parallel. Boundary conditions are transmitted at the end of the time window.

SWR Algorithm: � Schwarz DDM over time windows

� For each sub-domain:

–Semi-discretisation in time

–Solve the local non-linear system

SWR uses time windowing techniques that doesn’t degrade the solution and

exchanges less information between processors. After each iteration we proceed

to the improvement of the interface condition in each sub-domain. This can lead

to a completely different time step to satisfy either a stability criteria (for explicit

schemes) or an accuracy bound, both based on the CFL number, thus the necessity

to locally recompute the time step which is an improvement of the classical SWR

algorithm. In this paper we propose, within the SWR iterative process, an adaptive

time stepping technique to improve the scheme consistency, thus different time steps

in each sub-domain and inside each time window. In the following we shall test the

scalability of these three algorithms.
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3 Numerical Results

Space discretisation is achieved with finite volumes on cartesian non-conforming

grids. The Euler fluxes are computed using the MUSCL-Hancock (Monotone

Upstream centred Scheme for Conservative Laws) second order scheme combined

with the AUSMC-UP (Advection Upstream Splitting Method) scheme. The advan-

tage of the AUSMC-UP developed by Liou [13] is that it was conceived to be

uniformly valid for all speed regimes. The viscous fluxes are computed with a

second order Finite Difference scheme. First, we solve the global domain for a

simple configuration on CPU and we compare the results with those found using

exactly the same second order algorithm, but on GPUs. Then, performances of the

different parallel computing strategies (using OpenMP, MPI) are compared on the

inviscid and viscous motion of a 2D isolated vortex in an uniform free-stream based

on [15] and on the case of the mixing layer. The sub-domains overlap region has the

stencil size. We use a second order projection method to exchange data in time and

in space. All implicit algorithms are second order in time and space.

3.1 GPU Versus CPU for Euler Equations

First, these algorithms can be accelerated using GPUs. GPUs are used to solve a

global problem or a local one using a massive parallel architecture. We start by

solving the global problem on a GPU (NVidia Corporation GF110 [Geforce GTX

580] Compute Capability 2.0) with CUDA [3] launched from a CPU and compare

its computational cost with one running on a CPU (7.8 GB, 2 Cores at 3.33 GHz)

with OpenMP. The computational domain is a rectangular one with an imposed

inflow velocity at each time step. On Table 1 is shown the ratio of the computation

on a CPU with OpenMP with the computation on CPU-GPU. As can be seen there

is a definite gain to be obtained on the CPU-GPU configuration with one domain,

and the greater the number of points the better is the ratio. GPU code is portable

on any NVidia GPUs using CUDA programming model, though, it should be noted

that performances on GPUs vary a great deal depending on the GPU specifications.

Table 1 CPU-OPENMP time cost/CPU-GPU time cost

Grid size Time step 2D fluxes Update step Boundary update Total

130 � 130 43.08 1.63 8.62 0.31 3.72

260 � 260 109.26 1.71 15.90 1.58 4.65

525 � 525 164.83 2.81 40.37 1.38 6.88

1050 � 1050 392.72 2.58 321.21 2.39 7.80
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3.2 2D Isentropic Vortex for Euler Equations

We present results on a convective vortex with .u1; v1/ D .1; 1/ for a perfect

gas:  D 1:4,
p

� D 1. The computational domain is Œ�5:; 5:� � Œ�5:; 5:�. The initial

condition equals the mean flow field plus an isentropic vortex with no perturbation in

entropy. We use periodic boundary conditions and Dirichlet transmission conditions.

This test is interesting as the isentropic vortex is an exact solution of the Euler

equations. At the end of each cycle that lasts 10 s the vortex equals the initial

solution.

� D .T1 C ıT/
1

�1 D .1 �
.�1/ˇ2

8�
e1�.x2Cy2//

1
�1

�u D �.u1 C ıu/ D �.1 �
ˇ

2�
e

1�.x2Cy2/
2 /

�v D �.v1 C ıv/ D �.1 C
ˇ

2�
e

1�.x2Cy2/
2 /

p D �

e D
p

�1
C

1
2
�.u2 C v2/

3.2.1 Accuracy Study

Let us begin with an accuracy study of the Euler equations computing L2 and L1

slopes of errors in the case of non adaptive time steps. First, let us fix the number of

sub-domains to 2 � 2 and a common time step. We increase the global number of

space cells from 40 � 40 cells to 60 � 60 cells and 80 � 80 cells (the time step varies

in the same ratio as the space step) We consider that we have converged when we

reach an error less than a tolerance equal to 1:e � 6 for both Newton and Schwarz

stopping criteria.

As can be seen in Fig. 1, all presented methods are second order in time and close

to second order in space, depending on the Van Albada limiter chosen in MUSCL

scheme. Velocity, pressure and energy errors behave similarly for all presented

methods. The method denoted as Newton in Fig. 1 is the Newton-Schwarz method

using only one Schwarz iteration, it only has order one accuracy showing that

Schwarz is a good preconditioner for our scheme.

3.2.2 Computational Cost

To evaluate the cost (machine independent), a good indicator is the number of local

linear solves, given by the product between the number of Newton iterations and the

number of Schwarz iterations. This cost is a linear function of the number of cells.

On Table 2 are shown the average number of local linear solves per time step for

the Newton-Schwarz (NS) method, the Schwarz-Newton (SN) method and for the
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Fig. 1 L2 error over density

field

SWR-Newton (SWR) method for an increasing number of sub-domains with a fixed

number of size cells in each sub-domain (weak scalability). The sub-domain size is

fixed to 20�20 points and the CFL number has the value 0.5. For the SWR-Newton

scheme, we choose ıt the same time step on each sub-domain and �T D 5ıt

the time window. The Newton stopping tolerance is set to 1e � 6. The Schwarz

convergence tolerance is varying as shown on Table 2. This table shows the good

weak scalability of all considered methods. Moreover, it proves that a tolerance of

1e�2 in the Schwarz stopping criteria decreases the number of linear solves without

affecting the precision of the non-linear system. Thus, we can conclude that there

is no need to achieve convergence in Schwarz. The SWR method is competitive

with the Newton-Schwarz, but two times less efficient than the Schwarz-Newton

scheme. On Table 2, in order to compute one time window the four processors

communicate in average over all time windows 18.6 times (average number of

Schwarz iterations per window) when a SWR-Newton scheme is chosen. In order to

reach the same time window the Schwarz-Newton scheme communicates in average

35.45 times (Schwarz iterations � window size) and the Newton-Schwarz scheme

communicates in average 250 times (Newton iterations � Schwarz iterations �

window size). The SWR method is thus ideal for clusters with high latencies. Note:

It should be mentioned that higher order coupling conditions like unsteady Robin

type conditions can improve the efficiency of the algorithm and should positively

influence the number of Schwarz iterates (cf. [7]).

The adaptive time step SWR method converges to the solution in exactly the

same way as the fixed time step SWR method. The gain of the SWR method comes

from the improved stability of the scheme since the time step is recomputed at each

iteration thus less communication between the sub-domains as it appears that when
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the coupling conditions are improved, larger times steps are usually needed. This

also leads to less CPU memory when fewer coupling conditions need to be stored.

3.3 Sound Generation in a 2D Low-Reynolds Mixing Layer

The second case presented here if the case of a 2D low-Reynolds mixing layer

where a high precision scheme is required. It is studied especially focusing on

the acoustic waves emitted by the vortex pairings in a perturbed mixing layer.

The flow configuration is the same as the one proposed by Colonius et al. [2]

consisting in a slightly perturbed hyperbolic tangential shape velocity profile, u D

Nu C 0:125 tanh.2y/, with Nu D .u1 C u�1/=2 and u1 D 0:5, u�1 D 0:25,

and �1 D ��1 D 1 and p1 D p�1 D 1= , respectively, with  D 1:4.

We fix the Reynolds number at 250 and add a sponge layer as shown in Fig. 2 to

absorb the flow. This is a particularly sensitive case in acoustics and phenomena

are quite different within each subdomain. The results presented on Table 3 are for

simulations between t D 200 s and t D 250 s, interval inside which all sub-domains

are interacting. The initial solution was computed with an explicit second order

Runge-Kutta method. We have fixed the stopping criterion in the Newton algorithm

to a tolerance of 1:e � 4 and the stopping criterion of the Schwarz decomposition to

a tolerance of 1:e � 2 (cf. Sect. 3.2) which gives a good solution. The time window

inside the SWR methods equal 5 times the smallest global time step and the global

domain was divided in 22 sub-domains : 18 sub-domains of equal size 107�21 cells

in the middle region and 4 sponge sub-domains with 107 � 41 in the sponge area.

The number of linear solves is no longer a good measure since sub-domains with

different size have been computed and we adapt the time step after each iteration

for SWR and for all time steps in SWRA the adaptive SWR. On Table 3 we vary the

Fig. 2 Mixing layer acoustic pressure field. Initial condition (left) and computational domain with

sponge layer (right)
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Table 3 Global computational costs for �T D 5ıt, Schwarz tol. = 1:e � 2 and Newton tol. =

1:e � 4

SchemenCFL 0.5 1 2 5 10

NS 333.56 167.65 116.45 24.20 18.79

SN 129.97 76.07 89.41 26.76 10.45

SWR 189.13 189.65 121.77 21.90 5.87

SWRA 189.82 191.08 121.54 21.86 5.12

Fig. 3 Mixing layer acoustic pressure field (top) and vorticity (bottom)

time window length and show only the total computational time cost for all three

methods. For low CFL (less than 2) SWR is less efficient than SN. For higher CFL,

SWR becomes the most efficient, the SWR with adaptive step becoming the leader

in terms of performance.

Results obtained with the time adaptive SWR scheme (see Fig. 3) compare well

with those obtained with an explicit third order Runge Kutta Discontinuous Galerkin

solver developed by Halpern et al. [8].

4 Conclusion and Remarks

A variation on the non-linear SWR algorithm has been developed using an

adaptive time stepping approach to simulate 2D multi-scale Euler and Navier-Stokes

problems. The above results show that the method has the ability to treat large

data systems without loss of parallel efficiency. This SWR algorithm has similar

computational efficiency as the original SWR and adds a new flexibility to the SWR

9



method. There are at least three ways to improve the SWR technique. One is to

optimize the time space interface condition, another is to implement the pipeline

SWR iterations as presented by Ong et al. [14] and of course the use of GPUs that

can considerably improve the efficiency.
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