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Fast transforms over finite fields of characteristic two?

Nicholas Coxon

INRIA and Laboratoire d’Informatique de l’École polytechnique, Palaiseau, France.

Abstract

We describe new fast algorithms for evaluation and interpolation on the “novel” polynomial
basis over finite fields of characteristic two introduced by Lin, Chung and Han (FOCS 2014).
Fast algorithms are also described for converting between their basis and the monomial basis,
as well as for converting to and from the Newton basis associated with the evaluation points
of the evaluation and interpolation algorithms. Combining algorithms yields a new truncated
additive fast Fourier transform (FFT) and inverse truncated additive FFT which improve upon
some previous algorithms when the field possesses an appropriate tower of subfields.

Keywords: Fast Fourier transform, Newton basis, finite field, characteristic two

1. Introduction

Let F be a finite field of characteristic two, and β = (β0, . . . , βn−1) ∈ Fn have entries that are
linearly independent over F2. Enumerate the F2-linear subspace of F generated by the entries
of β as {ω0, . . . , ω2n−1} by setting ωi =

∑n−1
k=0[i]kβk for i ∈ {0, . . . , 2n − 1}, where [ · ]k : N→ {0, 1}

for k ∈ N such that i =
∑

k∈N 2k[i]k for i ∈ N. For i ∈ {0, . . . , 2n − 1}, define polynomials

Xi =

n−1∏
k=0

2k[i]k−1∏
j=0

x − ω j

ω2k − ω j
and Ni =

i−1∏
j=0

x − ω j

ωi − ω j
.

Then the definition of the functions [ · ]k implies that Xi has degree equal to i, while it is clear
that Ni also has degree equal to i. Letting F[x]` denote the space of polynomials over F with
degree strictly less than `, it follows that {X0, . . . , X`−1} and {N0, . . . ,N`−1} are bases of F[x]`
over F for ` ∈ {1, . . . , 2n}. The former basis was introduced by Lin, Chung and Han (2014), and is
referred to hereafter as the Lin–Chung–Han basis, or simply the LCH basis, of F[x]` associated
with β. The polynomials N0, . . . ,N2n−1 are scalar multiples of the Newton basis polynomials
associated with the points ω0, . . . , ω2n−1, with the scalars chosen such that Ni(ωi) = 1. However,
we simply refer to {N0, . . . ,N`−1} as the Newton basis of F[x]` associated with β. The space F[x]`
also comes equipped with the monomial basis {1, x, . . . , x`−1}.

In this paper, we describe new fast algorithms for evaluation and interpolation on the LCH
basis, and for conversion between the LCH and either of the Newton or monomial bases. These
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algorithms may in turn be combined to obtain fast algorithms for evaluation and interpolation
on the Newton or monomial bases, and for converting between the Newton and monomial bases.
The resulting algorithm for evaluation on the monomial basis provides a new additive fast Fourier
transform (FFT). The designation as “additive” reflects the fact that FFTs have traditionally eval-
uated polynomials at each element of a cyclic multiplicative group, whereas the evaluation points
ω0, . . . , ω2n−1 of our FFT form an additive group. To avoid confusion, we refer to algorithms
that evaluate over a multiplicative group as multiplicative FFTs hereafter. Additive FFTs have
been investigated as an alternative to multiplicative FFTs for use in multiplication algorithms
for binary polynomials (von zur Gathen and Gerhard, 1996; Brent et al., 2008; Mateer, 2008;
Chen et al., 2017a, 2018; Li et al., 2018), and have also found applications in coding theory and
cryptography (Bernstein et al., 2013; Bernstein and Chou, 2014; Chen et al., 2018; Chou, 2017;
Ben-Sasson et al., 2017).

Additive FFTs first appeared in the 1980s with the of algorithm of Wang and Zhu (1988),
which was subsequently rediscovered by Cantor (1989). For characteristic two finite fields, the
Wang–Zhu–Cantor algorithm requires β to be a so-called Cantor basis: its entries must satisfy
β0 = 1 and βk−1 = β2

k − βk for k ∈ {1, . . . , n − 1}. The algorithm then takes the coefficients on the
monomial basis of a polynomial in F[x]2n and evaluates it at each of the points ω0, . . . , ω2n−1 with
O(2nnlog2 3) additions in F, and O(2nn) multiplications in F. Gao and Mateer (2010) subsequently
improve upon this complexity by describing an algorithm that performs O(2nn log n) additions
and O(2nn) multiplications. However, as for the Wang–Zhu–Cantor algorithm, this complexity is
only obtained in a limited setting, since a finite field of characteristic two admits a Cantor basis of
dimension n if and only if it contains F22dlog2 ne as a subfield (Gao and Mateer, 2010, Appendix A).

The additive FFT of von zur Gathen and Gerhard (1996) removes the restriction that β must
be a Cantor basis, allowing the vector to be chosen subject only to the requirement of linear inde-
pendence of its entries. Their algorithm performs O(2nn2) additions in F, and O(2nn2) multipli-
cations in F. Gao and Mateer (2010) subsequently describe an algorithm that performs O(2nn2)
additions and only O(2nn) multiplications. Bernstein, Chou and Schwabe (2013) in turn gener-
alise the algorithm of Gao and Mateer so that time is not wasted manipulating coefficients that
are known to be zero when the polynomial being evaluated by the transform belongs to F[x]` for
some ` < 2n. They also describe how to replace some multiplications in their algorithm with less
time consuming additions. Bernstein and Chou (2014) contribute several more improvements to
the algorithm in the case that β is a Cantor basis.

The generalisation of Bernstein, Chou and Schwabe is obtained by reducing to the case ` = 2n

and disregarding parts of the algorithm that involve manipulating coefficients that are known to
be zero. This technique is often referred to as truncation (or pruning (Markel, 1971; Sorensen and
Burrus, 1993)). This term is also applied when only part of a transform is computed by perform-
ing only those steps of the algorithm that are relevant to the computation of the desired outputs.
Truncation is used in FFT-based polynomial multiplication to ensure that running times vary rel-
atively smoothly in the length of the problem. To achieve such behaviour it is also necessary to
invert truncated transforms. However, simply examining the output of a truncated transform may
not allow its inversion. An elegant solution to this problem is provided by van der Hoeven (2004,
2005) who took the crucial step of augmenting the output with information about known zero
coefficients in the input, allowing him to provide a multiplicative truncated Fourier transform to-
gether with its corresponding inverse truncated Fourier transform (see also Harvey, 2009; Harvey
and Roche, 2010; Larrieu, 2017). While truncated additive FFTs have been investigated (von zur
Gathen and Gerhard, 1996; Mateer, 2008; Brent et al., 2008; Bernstein et al., 2013; Bernstein
and Chou, 2014; Chen et al., 2017a, 2018; Li et al., 2018), existing methods for their inversion

2



lack the effectiveness and elegance of the approach introduced by van der Hoeven.
Alongside the introduction of their basis, Lin, Chung and Han (2014) describe fast algo-

rithms for evaluation and interpolation on the basis that yield lower complexities than addi-
tive FFTs. Their evaluation algorithm takes the coefficients on the LCH basis of a polynomial
in F[x]2n together with an element λ ∈ F and evaluates the polynomial at each of the points
ω0 + λ, . . . , ω2n−1 + λ with O(2nn) additions in F, and O(2nn) multiplications in F. Their interpo-
lation algorithm inverts this transformation with the same complexity. Lin, Chung and Han then
demonstrate the usefulness of their “novel” basis by using the algorithms to provide fast encod-
ing and decoding algorithms for Reed–Solomon codes. This application is further explored in
the subsequent works of Lin, Al-Naffouri and Han (2016a) and Lin, Al-Naffouri, Han and Chung
(2016b), while Ben-Sasson et al. (2018) utilise the algorithms within their zero-knowledge proof
system.

Lin, Al-Naffouri, Han and Chung (2016b) additionally consider the problem of converting
between the LCH basis and the monomial basis. They provide a pair of algorithms that al-
low polynomials in F[x]2n to be converted between the two bases with O(2nn2) additions in F,
and O(2nn) multiplications in F. Moreover, they provide a second pair of algorithms that allow
the conversions to be performed with O(2nn log n) additions and no multiplications in the case
that β is a Cantor basis. Their algorithms use ideas introduced by Gao and Mateer (2010), and
they note that combining their algorithms with the evaluation algorithm of Lin, Chung and Han
(2014) yields two additive FFTs, one for arbitrary β and one for Cantor bases, that are “alge-
braically similar” to the two provided by Gao and Mateer. The additive FFT for Cantor bases
is applied to the problem of binary polynomial multiplication in a series of papers (Chen et al.,
2017a, 2018; Li et al., 2018).

The (standard) Newton basis of F[x]` associated with ` points α0, . . . , α`−1 ∈ F consists of
the polynomials

∏i−1
j=0(x − α j) for i ∈ {0, . . . , ` − 1}. If the points have no special structure, then

evaluation and interpolation with respect to the basis, and with evaluation points α0, . . . , α`−1,
can be performed with O(M(`) log `) operations in F by the algorithm of Bostan and Schost
(2005), where M(`) denotes the cost of multiplying two polynomials in F[x]`. However, both
evaluation and interpolation are known to be less expensive by a logarithmic factor for some
special sequences of points (Bostan and Schost, 2005; Smarzewski and Kapusta, 2007), e.g.,
when the points form a geometric progression only M(`) + O(`) operations in F are required.
Similarly, algorithms for converting between the Newton basis and the monomial basis have
asymptotic complexity belonging to the class O(M(`) log `) in the general case (Gerhard, 2000;
Bostan and Schost, 2005), while once again allowing a logarithmic factor to be saved for some
special sequences of points (Bostan and Schost, 2005).

The techniques developed for additive FFTs have yet to be applied to evaluation, interpola-
tion and basis conversion problems involving the Newton basis associated with their evaluation
points. However, fast algorithms for converting between the monomial and Newton bases, and
for evaluation and interpolation with respect to the Newton basis, would find applications in
multivariate evaluation and interpolation algorithms (van der Hoeven and Schost, 2013; Coxon,
2019) and systematic encoding algorithms for Reed–Muller and multiplicity codes (Coxon,
2019). The conversion algorithms would also complement algorithms proposed by van der Ho-
even and Schost (2013) for converting between the monomial basis and the Newton basis asso-
ciated with the radix-2 truncated Fourier transform points (van der Hoeven, 2004, 2005), since
their algorithms are not suited to finite fields of characteristic two.
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Our contribution
The evaluation, interpolation and basis conversion problems considered in this paper all in-

volve the LCH basis. Consequently, we begin in Section 2 by reviewing properties of the basis
that are utilised in the development of our algorithms.

In Section 3, we describe algorithms for converting between the Newton and LCH bases.
The algorithms follow the divide-and-conquer paradigm that is characteristic of FFTs, and al-
low conversion in either direction to be performed for polynomials in F[x]` ⊆ F[x]2n with
`(log2 `)/2 + O(`) additions in F, and `(log2 `)/2 + O(`) multiplications in F. Moreover, the
algorithms may be implemented so that only O(log2 `) field elements are required to be stored in
auxiliary space, i.e., in the space used by each algorithm in addition to the space required to store
its inputs or outputs. We address the difference between our definition of the Newton basis and
the standard definition by showing that the algorithms are readily modified to instead convert to
and from the standard Newton basis associated with the points ω0, . . . , ω2n−1, and at the cost of
having to perform only O(`) additional operations in F.

In Section 4, we use truncation to generalise the algorithms of Lin, Chung and Han (2014) to
allow fast evaluation and interpolation with respect to the LCH basis for polynomials in F[x]` ⊆
F[x]2n and with evaluations points of the form ω0 + λ, . . . , ωc−1 + λ for some c ∈ {1, . . . , 2n}

and λ ∈ F, where c = ` in the case of interpolation. Thus, we provide analogues of van der
Hoeven’s truncated FFT and inverse truncated FFT (van der Hoeven, 2004). The algorithms
each perform at most cdlog2 min(`, c)e + 2` + c + O(log2 max(`, c)) additions in F, and at most
cdlog2 min(`, c)e/2 + 2` + O(log2 max(`, c)) multiplications in F, and may be implement so that
only O(log2 max(`, c)) field elements are required to be stored in auxiliary space.

Combining the algorithms of Sections 3 and 4 allows for fast evaluation and interpolation
with respect to the Newton basis. For example, for polynomials in F[x]` ⊆ F[x]2n , evaluation
and interpolation at the points ω0 + λ, . . . , ω`−1 + λ for some λ ∈ F can be performed with
3`(log2 `)/2 + O(`) additions and ` log2 ` + O(`) multiplications. Thus, our algorithms provide
new special sequences in F for which its possible to improve upon the generic complexity of
O(M(`) log `) for Newton evaluation and interpolation.

In the final section of the paper, Section 5, we describe algorithms for converting between
the monomial and LCH bases. The algorithms assume the β comes equipped with a tower of
subfields F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F such that dm−1 < n ≤ dm, and βi/βdtbi/dtc ∈ F2dt

for i ∈ {0, . . . , n − 1} and t ∈ {0, . . . ,m − 1}. Then for polynomials in F[x]` ⊆ F[x]2n such that
2ds < ` ≤ 2ds+1 for some s ∈ {0, . . . ,m − 1}, the algorithms allow conversion in either direction to
be performed with at most

` log2 `

4

 log2 `

ds
+

s−1∑
t=0

(
dt+1

dt
− 1

) + O(` log `) (1.1)

additions in F, and at most ` log2 `+ O(`) multiplications in F. Moreover, the algorithms may be
implemented so as to require only O(log `) field elements to be stored in auxiliary space.

Excluding the trivial case of F = F2, where the monomial and LCH bases coincide, it is
always possible to take m = 1 and dm = [F : F2]. The algorithms then perform at most
`(log2

2 `)/4+O(` log `) additions in F, matching the asymptotic complexity obtained by Lin et al.
(2016b) for generic β. However, each subfield of degree less than log2 ` in the tower contributes
to the performance of the algorithms by reducing the number of additions and multiplications
they perform. The cumulative effect of these contributions is demonstrated by considering the
family of towers that have quotients dt+1/dt bounded by a constant c ≥ 2. For β equipped with
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a tower belonging to this family, our algorithms perform O(`(log `)(log log `)) additions, match-
ing the bound obtained by Lin et al. for Cantor bases. Consequently, the algorithms provide
additional families of β for which it is possible to improve upon the complexity obtained by
Lin et al. for the generic case. To take advantage of this improvement, we describe a method
of constructing such a vector when provided with its desired dimension n and an appropriate
tower of subfields. We also show how to reduce the number of multiplications performed by
the algorithms when the tower contains some quadratic extensions by exploiting freedom in the
construction.

The bound (1.1) is in Ω(`(log `) log log `), suggesting that the algorithms of Section 5 are un-
able to surpass the asymptotic complexity obtained by Lin et al. for Cantor bases. Consequently,
when the algorithms are combined with those of Sections 3 and 4, we do not obtain additive FFTs
with asymptotic complexities matching those of the fastest multiplicative FFTs, nor do we obtain
algorithms for converting between the monomial and Newton bases with asymptotic complexi-
ties matching those of algorithms for other special sequences of points (Bostan and Schost, 2005;
van der Hoeven and Schost, 2013). Thus, the problem of converting between the monomial and
LCH bases is in need of further attention.

2. Properties of the Lin–Chung–Han basis

It follows from the definition of the LCH basis associated with β that

X2k =

2k−1∏
i=0

x − ωi

ω2k − ωi
for k ∈ {0, . . . , n − 1}.

Thus, the roots of X2k form an F2-linear subspace of F, generated by β0, . . . , βk−1. As most work
on additive transforms pre-dates the introduction of the LCH basis, it is typical in the literature
to study the properties of the subspace (vanishing) polynomials associated with these subspaces.
We instead choose to study the properties of the basis polynomials X20 , . . . , X2n−1 , which are
simply scalar multiples of the subspace polynomials: the subspace polynomial of a subspace
W ⊆ F is defined to be

∏
ω∈W (x − ω). Consequently, the properties of the LCH basis presented

in the section are either found in (Lin et al., 2014, 2016a,b), or are analogous to properties of
subspace polynomials found in (Cantor, 1989; von zur Gathen and Gerhard, 1996; Mateer, 2008).

An important property of subspace polynomials, which is inherited by X20 , . . . , X2n−1 , is that
they are linearised. A polynomial in F[x] is Fq-linearised (alternatively, a q-polynomial) if it
can be written in the form

∑k
i=0 fixqi

with f0, . . . , fk ∈ F. The following lemma shows that the
polynomials X20 , . . . , X2n−1 are F2-linearised, and establishes several additional properties of the
LCH basis that are used in the development of our algorithms.

Lemma 2.1. The following properties hold for k ∈ {0, . . . , n − 1}:

1. X2k+ j = X2k X j for j ∈ {0, . . . , 2k − 1},
2. X2k (ω2k i+ j) = i for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1},
3. X2k = x/β0 if k = 0, and X2k = (X2k−1 (x)2 − X2k−1 (x))/(X2k−1 (βk)2 − X2k−1 (βk)) otherwise,
4. X2k is F2-linearised,
5. X2k (x + λ) = X2k (x) + X2k (λ) for λ ∈ F.
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Proof. Let k ∈ {0, . . . , n − 1}. Then, for i ∈ {0, 1}, j ∈ {0, . . . , 2k − 1} and t ∈ {0, . . . , n − 1}, we
have [2ki]t = 0 and [ j]t = [2ki + j]t if t < k, and [2ki]t = [2ki + j]t and [ j]t = 0 if t ≥ k. Thus,

X2k+ j =

n−1∏
t=0

2t[2k+ j]t−1∏
s=0

x − ωs

ω2t − ωs
=

n−1∏
t=0

2t[2k]t−1∏
s=0

x − ωs

ω2t − ωs


2t[ j]t−1∏

s=0

x − ωs

ω2t − ωs

 = X2k X j

and

ω2k i+ j =

n−1∑
t=0

[2ki + j]tβt =

n−1∑
t=0

[2ki]tβt +

n−1∑
t=0

[ j]tβt = ω2k i + ω j

for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1}. As {ω0, . . . , ω2k−1} forms an additive group, it follows that

X2k (ω2k i+ j) =

2k−1∏
s=0

ω2k i+ j − ωs

ω2k − ωs
=

2k−1∏
s=0

ω2k i + ω j − ωs

ω2k − ωs
=

2k−1∏
s=0

ω2k i − ωs

ω2k − ωs
= i

for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1}. Therefore, properties (1) and (2) hold.
If k = 0, then X2k = (x−ω0)/(ω1−ω0) = x/β0. If k ∈ {1, . . . , n−1}, then property (2) implies

that X2k−1 (ωi)2−X2k−1 (ωi) = 0 and X2k (ωi) = 0 for i ∈ {0, . . . , 2k−1}. As X2k and X2
2k−1 −X2k−1 both

have degree equal to 2k, it follows that X2k = (X2
2k−1 − X2k−1 )/δ for some nonzero element δ ∈ F.

Observing that X2k (βk) = X2k (ω2k ) = 1 then shows that δ = X2k−1 (βk)2 − X2k−1 (βk), completing the
proof of property (3).

Property (4) follows from property (3) since it shows that X1 is F2-linearised, and the recur-
sive formula implies that if X2k−1 is F2-linearised for some k ∈ {1, . . . , n − 1}, then so too is X2k .
Property (5) follows from property (4) since F has characteristic equal to two.

3. Conversion between the Newton and LCH bases

The algorithms of this sections are the simplest of the paper, which we take advantage of
to introduce several techniques that are applied again in later sections. The simplicity of the
algorithms follows from the observation that the Newton basis polynomials exhibit a factorisation
property which closely mimics that of the LCH basis described in property (1) of Lemma 2.1.

Lemma 3.1. We have N2k+i = X2k (x)Ni(x + βk) for k ∈ {0, . . . , n − 1} and i ∈ {0, . . . , 2k − 1}.

Proof. Let k ∈ {0, . . . , n − 1} and i ∈ {0, . . . , 2k − 1}. Then the definition of ω0, . . . , ω2n−1 implies
that ω2k+ j = ω j + βk for j ∈ {0, . . . , 2k − 1}. Moreover, the definition of the Newton basis
polynomials implies that N2k+i(ω j) = 0 for j ∈ {0, . . . , 2k+i−1}, and N2k+i(ω2k+i) = 1. Combining
with property (2) of Lemma 2.1, it follows that X2k (ω j)Ni(ω j + βk) = 0 × Ni(ω j + βk) = 0 for j ∈
{0, . . . , 2k−1}, X2k (ω2k+ j)Ni(ω2k+ j+βk) = Ni(ω j) = 0 for j ∈ {0, . . . , i−1}, and X2k (ω2k+i)Ni(ω2k+i+

βk) = Ni(ωi) = 1. Thus, N2k+i(x) and X2k (x)Ni(x + βk) are equal, since they agree on 2k + i + 1
distinct values and both have degree 2k + i.

Roughly speaking, Lemma 3.1 and property (1) of Lemma 2.1 allow the quotient and remain-
der of polynomials in F[x]2k+1 upon division by X2k , k ∈ {0, . . . , n− 1}, to be efficiently computed
with respect to the Newton and LCH bases. As the quotient and remainder are unique and belong
to F[x]2k , equating their different representations on the two bases provides a means of reducing
the conversion problem to shorter instances, suggesting that it may be solved efficiently by a
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divide-and-conquer approach. However, the shift of variables that appears in the factorisations
of the Newton basis polynomials only permits the quotients to be computed on the Newton basis
with a shift of variables. As a result, we generalise the conversion problem itself to include a
shift of variables in order to facilitate the development of divide-and-conquer algorithms.

Lemma 3.2. Let ` ∈ {2, . . . , 2n} and k = dlog2 `e − 1. Then

`−1∑
i=0

fiNi (x + λ) =

`−1∑
i=0

hiXi(x) (3.1)

for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F if and only if

2k−1∑
i=0

fiNi (x + λ) =

`−2k−1∑
i=0

(hi + X2k (λ)h2k+i) Xi(x) +

2k−1∑
i=`−2k

hiXi(x) (3.2)

and
`−2k−1∑

i=0

f2k+iNi (x + λ + βk) =

`−2k−1∑
i=0

h2k+iXi(x). (3.3)

Proof. Let ` ∈ {2, . . . , 2n} and k = dlog2 `e−1. Then k ∈ {0, . . . , n−1} and `−2k ≤ 2k+1−2k = 2k.
Thus, for i ∈ {0, . . . , `−2k−1} and λ ∈ F, Lemma 3.1 implies that N2k+i(x+λ) = X2k (x+λ)Ni(x+

λ + βk), while properties (1) and (5) of Lemma 2.1 imply that

X2k+i = X2k (x + λ + λ) Xi(x) = X2k (x + λ) Xi(x) + X2k (λ) Xi(x).

It follows that for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F, the polynomials on either side of (3.2), which
each have degree less than max(` − 2k, 2k) = 2k, are equal to the remainder upon division by
X2k (x + λ) of the polynomial on their respective side of (3.1). Similarly, the polynomials on
either side of (3.3) are equal to the quotient upon division by X2k (x+λ) of the polynomial on their
respective side of (3.1). Uniqueness of the quotient and remainder therefore implies that (3.1)
holds for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F if and only if (3.2) and (3.3) hold.

3.1. Conversion algorithms
Lemma 3.2 suggests recursive algorithms for converting polynomials in F[x]` ⊆ F[x]2n be-

tween the LCH basis and the basis of shifted Newton polynomials {Ni(x +λ) | i ∈ {0, . . . , 2n − 1}}
for a given shift parameter λ ∈ F. Given the coefficients fi on the left-hand side of (3.1), recursive
calls can be made on the polynomials (3.2) and (3.3) to compute their coefficients on the LCH
basis. These coefficients can in turn be used to compute the coefficients hi on the right-hand side
of (3.1) by performing ` − 2k additions, and ` − 2k multiplications by X2k (λ). For the inverse
conversion, where we start with the coefficients hi on the right-hand side of (3.1), performing
the same additions and multiplications yields the coefficients of the polynomials (3.2) and (3.3)
on the LCH basis. Then recursive calls can be made to obtain their coefficients on the shifted
Newton bases {Ni(x+λ) | i ∈ {0, . . . , 2n−1}} and {Ni(x+λ+βk) | i ∈ {0, . . . , 2n−1}}, respectively,
and thus the coefficients fi on the left-hand side of (3.1).

To efficiently compute the elements X2k (λ) by which we multiply during the algorithms,
we take advantage of the property (5) of Lemma 2.1 and the observation that the initial shift
parameter is only augmented for the recursive calls by the addition of entries of β. To this end,
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we assume that X2i (β j) for 0 ≤ i < j < dlog2 `e have been precomputed. The pseudocode for the
conversion from a shifted Newton basis to the LCH basis is presented in Algorithm 1, while the
pseudocode for the inverse conversion is presented in Algorithm 2. Each algorithm operates on a
vector (ai)0≤i<` of field elements which initially contains the coefficients of a polynomial on the
input basis, and has it entries overwritten by the algorithm with the coefficients of the polynomial
on the output basis.

Algorithm 1 NewtonToLCH(`, (X2i (λ))0≤i<dlog2 `e, (ai)0≤i<`)
Input: an integer ` ∈ {1, . . . , 2n}; the vector (X2i (λ))0≤i<dlog2 `e for some λ ∈ F; and the vector

(ai)0≤i<` such that ai = fi ∈ F for i ∈ {0, . . . , ` − 1}.
Output: ai = hi ∈ F for i ∈ {0, . . . , ` − 1} such that (3.1) holds.

1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′ ← ` − 2k, k′ ← dlog2 `

′e

3: NewtonToLCH(2k, (X2i (λ))0≤i<k, (ai)0≤i<2k )
4: NewtonToLCH(`′, (X2i (λ) + X2i (βk))0≤i<k′ , (a2k+i)0≤i<`′ )
5: for i = 0, . . . , `′ − 1 do
6: ai ← ai + X2k (λ)a2k+i

Algorithm 2 LCHToNewton(`, (X2i (λ))0≤i<dlog2 `e, (ai)0≤i<`)
Input: an integer ` ∈ {1, . . . , 2n}; the vector (X2i (λ))0≤i<dlog2 `e for some λ ∈ F; and the vector

(ai)0≤i<` such that ai = hi ∈ F for i ∈ {0, . . . , ` − 1}.
Output: ai = fi ∈ F for i ∈ {0, . . . , ` − 1} such that (3.1) holds.

1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′ ← ` − 2k, k′ ← dlog2 `

′e

3: for i = 0, . . . , `′ − 1 do
4: ai ← ai + X2k (λ)a2k+i

5: LCHToNewton(2k, (X2i (λ))0≤i<k, (ai)0≤i<2k )
6: LCHToNewton(`′, (X2i (λ) + X2i (βk))0≤i<k′ , (a2k+i)0≤i<`′ )

Theorem 3.3. Algorithms 1 and 2 are correct.

Proof. We prove correctness for Algorithm 1 by induction on `. The proof of correctness for
Algorithm 2 uses similar arguments, and is omitted here. Alternatively, one may note that the
transformation performed on the vector (ai)0≤i<` by the for-loop in Algorithm 1 is an involution.
Algorithm 2 reverses the order of these transformations, thus performing the inverse transforma-
tion to Algorithm 1 overall.

Algorithm 1 is correct for all inputs with ` = 1, since X0 = N0 = 1. Therefore, sup-
pose that for some ` ∈ {2, . . . , 2n}, the algorithm produces the correct output for all inputs with
smaller values of `. Moreover, suppose that the algorithm is given ` as an input, together with
(X2i (λ))0≤i<dlog2 `e for some λ ∈ F, and the vector (ai)0≤i<` with ai = fi ∈ F for i ∈ {0, . . . , ` − 1}.
Let k = dlog2 `e − 1, `′ = ` − 2k and k′ = dlog2 `

′e, as computed in Line 2 of the algorithm, and
h0, . . . , h`−1 ∈ F be the unique elements that satisfy (3.1). Then Lemma 3.2 implies that (3.2)
and (3.3) both hold. Therefore, as 2k < `, (3.2) and the induction hypothesis imply that Line 3
sets ai = hi + h2k+iX2k (λ) for i ∈ {0, . . . , `′ − 1}, and ai = hi for i ∈ {`′, . . . , 2k − 1}. Property (5)
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of Lemma 2.1 implies that (X2i (λ) + X2i (βk))0≤i<k′ = (X2i (λ + βk))0≤i<k′ . Consequently, as `′ < `,
(3.3) and the induction hypothesis imply that Line 4 sets ai = hi for i ∈ {2k, . . . , ` − 1}. It follows
that Lines 5 and 6 set ai = (hi + h2k+iX2k (λ)) + h2k+iX2k (λ) = hi for i ∈ {0, . . . , `′ − 1}. Thus, the
algorithm terminates with ai = hi for i ∈ {0, . . . , ` − 1}, as required.

3.2. Complexity
When implementing Algorithms 1 and 2, subvectors of the input vector (ai)0≤i<` may be rep-

resented by a parameter that indicates the offset of their first entry, rather than by replicating the
subvector in memory. Moreover, if the vectors (X2i (λ))0≤i<dlog2 `e and (X2i (λ)+X2i (βk))0≤i<k′ are al-
ways cleared from memory when the algorithm returns, then storing the vectors and those of any
subsequent recursive calls requires only O(log2 `) fields elements to be stored in auxiliary space
at all times. It follows that Algorithms 1 and 2 can be implemented so that only O(log2 `) field
elements are required to be stored in auxiliary space, which includes the storage of precomputed
elements.

The recurrence relation of property (3) of Lemma 2.1 allows X2i (β j) for 0 ≤ i < j < dlog2 `e
to be computed with O(log2 `) operations in F (see Remark 5.6). Subsequently, the recurrence
relation can again be used to compute (X2i (λ))0≤i<dlog2 `e for a desired λ ∈ F with a further O(log `)
operations. If λ = 0, then the vector simply contains all zeros. It follows that all precomputations
for Algorithms 1 and 2 can be performed with O(log2 `) operations in F. The following theorem
bounds the number of operations then performed by the algorithms themselves.

Theorem 3.4. Algorithms 1 and 2 perform at most (b`/2c − 1) dlog2 `e + ` − 1 additions in F,
and at most b`/2cdlog2 `e multiplications in F.

Proof. We prove the bounds for Algorithm 1 only, since it is clear that the two algorithms per-
form the same number of operations when given identical values of `. If ` = 1, then Algorithm 1
performs no additions or multiplications, matching the bounds of the theorem. Proceeding by
induction, suppose that the algorithm is called with ` ∈ {2, . . . , 2n}, and that the two bounds
hold for all smaller values of `. Let k = dlog2 `e − 1, `′ = ` − 2k and k′ = dlog2 `

′e, as
computed in Line 2 of the algorithm. Then, as 2k < `, the induction hypothesis implies that
Line 3 performs at most (2k−1 − 1)k + 2k − 1 additions and at most 2k−1k multiplications. The
computation of the vector (X2i (λ) + X2i (βk))0≤i<k′ in Line 4 requires k′ additions, where k′ ≤ k
since `′ = ` − 2k ≤ 2k+1 − 2k = 2k. Thus, as `′ < `, the induction hypothesis implies that
Line 4 performs at most b`′/2ck′ + `′ − 1 ≤ (b`/2c − 2k−1)k + ` − 2k − 1 additions and at most
b`′/2ck′ ≤ (b`/2c − 2k−1)k multiplications. Lines 5 and 6 perform `′ = `− d2k+1/2e ≤ `− d`/2e =

b`/2c additions and multiplications. Summing these bounds, it follows that the algorithms per-
forms at most (b`/2c − 1)(k + 1) + ` − 1 = (b`/2c − 1)dlog2 `e + ` − 1 additions, and at most
b`/2c(k + 1) = b`/2cdlog2 `e multiplications.

3.3. Conversion between the standard Newton basis and the LCH basis
For i ∈ {0, . . . , 2n − 1}, define polynomials

X̄i =

n−1∏
k=0

2k[i]k−1∏
j=0

(x − ω j) and N̄i =

i−1∏
j=0

(x − ω j).

Then {N̄0, . . . , N̄2n−1} is what is usually defined to be the Newton basis associated with the points
ω0, . . . , ω2n−1. Consequently, we refer to the basis as the standard Newton basis, and hereafter
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refer to {N0, . . . ,N2n−1} as the scaled Newton basis. The two bases coincide when β is a Cantor ba-
sis, since X20 , . . . , X2n−1 ∈ F2[x] (see Gao and Mateer, 2010, Appendix A), and, thus, Lemma 3.1
implies that the polynomials of the scaled Newton basis are all monic. However, the bases do
not coincide in general.

The polynomials X̄i and N̄i share many of the properties of their respective scalar multiples
Xi and Ni. In particular, X̄20 , . . . , X̄2n−1 are F2-linearised, and Lemma 3.2 still holds if all Xi’s
and Ni’s are replaced by their counterparts X̄i and N̄i. It follows that Algorithms 1 and 2 can
be used to convert between the standard Newton basis and the basis {X̄0, . . . , X̄2n−1} by similarly
replacing Xi’s by X̄i’s in the algorithms. Property (3) of Lemma 2.1 implies that X̄20 = x and
X̄2k = X̄2

2k−1 − X̄2k−1 (βk−1)X̄2k−1 for k ∈ {1, . . . , n − 1} (see also von zur Gathen and Gerhard, 1996,
Section 2). Thus, the precomputations for the modified algorithms can once again be performed
with O(log2 `) operations in F.

Let Xi = X̄i/∆i for i ∈ {0, . . . , 2n − 1}. Then ∆i =
∏n−1

k=0 X̄2k (βk)[i]k for i ∈ {0, . . . , 2n − 1}.
Thus, for k ∈ N, the elements of the set {∆0, . . . ,∆2k−1} can be computed with O(2k) operations
in F by traversing the set using the k-bit binary reflected Gray code (see Bitner et al., 1976;
Knuth, 2005), so that first computed element is ∆0 = 1, and each successive element can be
computed by multiplying or dividing the previous element by one of X̄20 (β0), . . . , X̄2n−1 (βn−1). It
follows that conversion between {X̄0, . . . , X̄2n−1} and the LCH basis for polynomials in F[x]` can
be performed with O(`) operations in F. Therefore, it possible to convert polynomials in F[x]`
between the standard Newton basis and the LCH basis with only O(`) additional operations in F
than required by the algorithms of Section 3.1 for conversion between the scaled Newton basis
and the LCH basis.

4. Truncated evaluation and interpolation on the LCH basis

In this section, we consider evaluation and interpolation with respect to the LCH basis for
polynomials in F[x]` and evaluations points of the form ω0 +λ, . . . , ωc−1 +λ for `, c ∈ {1, . . . , 2n}

and λ ∈ F, where c = ` in the case of interpolation. We build upon the work of Lin, Chung
and Han (2014) who propose quasi-linear time algorithms for the case ` = c = 2k+1 for some
k ∈ {0, . . . , n−1}. However, we do not reduce solving the general problems to applications of their
algorithms by embedding into instances with such parameters, e.g., by zero padding. Instead, we
provide “truncated” algorithms in the style of van der Hoeven’s algorithms for multiplicative
FFTs (van der Hoeven, 2004). Moreover, we combine techniques developed in Section 3 with
additional novel methods to ensure a polylogarithmic bound on the number of field elements that
are required to be stored in auxiliary space by the algorithms.

4.1. Reductions

Consider a polynomial f =
∑2k+1−1

i=0 hiXi with k ∈ {0, . . . , n − 1} and h0, . . . , h2k+1−1 ∈ F. Then
properties (1) and (2) of Lemma 2.1 imply that X2k+i(ω j) = 0 and X2k+i(ω2k+ j) = Xi(ω2k+ j) for
i, j ∈ {0, . . . , 2k − 1}. Thus, the polynomials

f0 =

2k−1∑
i=0

hiXi and f1 =

2k−1∑
i=0

(hi + h2k+i) Xi

satisfy f (ω j) = f0(ω j) and f (ω2k+ j) = f1(ω2k+ j) for j ∈ {0, . . . , 2k − 1}. Given the coefficients
of f on the LCH basis, only 2k additions are needed to compute those of f0 and f1, and vice
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versa. Thus, the problem of evaluating f at the points ω0, . . . , ω2k+1−1 can be efficiently reduced
to evaluating f0 at the points ω0, . . . , ω2k−1, and f1 at the points ω2k , . . . , ω2k+1−1. Similarly, the
problem of recovering the coefficients of f on the LCH basis given f (ω0), . . . , f (ω2k+1−1) can be
efficiently reduced to that of recovering the coefficients of f0 and f1 given f0(ω0), . . . , f0(ω2k−1)
and f1(ω2k ), . . . , f1(ω2k+1−1).

Both {ω0, . . . , ω2k+1−1} and {ω0, . . . , ω2k−1} are linear subspaces of F, while {ω2k , . . . , ω2k+1−1}

is only an affine subspace, since ω2k+i = ωi + βk for i ∈ {0, . . . , 2k − 1}. This observation leads
Lin, Chung and Han to instead consider evaluation points of the form ω0 + λ, . . . , ω2k+1−1 + λ for
some λ ∈ F, so as to facilitate the development of divide-and-conquer algorithms. The following
lemma, for which the case ` = 2k+1 is due to Lin, Chung and Han, and which provides the
foundations of our algorithms, then generalises the above reduction accordingly.

Lemma 4.1. Let ` ∈ {1, . . . , 2n}, f =
∑`−1

i=0 hiXi with h0, . . . , h`−1 ∈ F, and λ ∈ F. For some
k ∈ {0, . . . , n − 1} such that k ≥ dlog2 `e − 1, define `′ = min(`, 2k), `′′ = ` − `′ and

ft =

`′′−1∑
i=0

(hi + (t + X2k (λ)) h2k+i) Xi +

`′−1∑
i=`′′

hiXi for t ∈ {0, 1}. (4.1)

Then f (ω2k t+s + λ) = ft(ωs + λ + tβk) for t ∈ {0, 1} and s ∈ {0, . . . , 2k − 1}.

Proof. Let ` ∈ {1, . . . , 2n}, λ ∈ F, k ∈ {0, . . . , n − 1} such that k ≥ dlog2 `e − 1, `′ = min(`, 2k)
and `′′ = ` − `′. Then it follows from the definition of ω0, . . . , ω2n−1 that Xi(ω2k t+s + λ) =

Xi(ωs + λ + tβk) for i ∈ {0, . . . , `′ − 1}, t ∈ {0, 1} and s ∈ {0, . . . , 2k − 1}. The choice of k implies
that `′′ = max(` − 2k, 0) ≤ 2k. Thus, properties (1), (2) and (5) of Lemma 2.1 imply that

X2k+i (ω2k t+s + λ) = X2k (ω2k t+s + λ) Xi (ω2k t+s + λ)

= (X2k (ω2k t+s) + X2k (λ)) Xi (ωs + λ + tβk)

= (t + X2k (λ)) Xi (ωs + λ + tβk)

for i ∈ {0, . . . , `′′ − 1}, t ∈ {0, 1} and s ∈ {0, . . . , 2k − 1}. Therefore, the lemma holds if f = Xi for
some i ∈ {0, . . . , `′ − 1} ∪ {2k, . . . , 2k + `′′ − 1} = {0, . . . , ` − 1}, and, thus, for all f of the form∑`−1

i=0 hiXi with h0, . . . , h`−1 ∈ F by linearity.

4.2. Truncated evaluation on the LCH basis
Given the coefficients of a polynomial f ∈ F[x]` ⊆ F[x]2n on the LCH basis, Lemma 4.1

suggests a recursive algorithm for evaluating the polynomial at c ∈ {1, . . . , 2n} evaluation points
of the form ω0 +λ, . . . , ωc−1 +λ for some λ ∈ F. If ` = c = 1, then the algorithm only has to return
the provided coefficient since f is a constant polynomial. For the remaining cases, after letting
k = dlog2 max(`, c)e − 1 and taking f0 and f1 to be the polynomials defined in (4.1), Lemma 4.1
then reduces the problem to recursively evaluating f0 at the points ω0 +λ, . . . , ωmin(c,2k)−1 +λ and,
if c > 2k, evaluating f1 at the points ω0 + (λ + βk), . . . , ωc−2k−1 + (λ + βk). The coefficients of
f0 on the LCH basis can be computed with `′′ = max(` − 2k, 0) additions and `′′ multiplications
by X2k (λ). Then, if needed, (4.1) implies that the coefficients of f1 can be computed with a
further `′′ additions.

Simultaneously storing the coefficients of f0 and f1 naively requires space for 2`′ field el-
ements. However, if ` ≥ 2dlog2 max(`,c)e−1, then 2`′ = 2dlog2 max(`,c)e is potentially almost double
the length max(`, c) of the evaluation problem, preventing a polylogarithmic bound on auxiliary
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space. This problem does not arise for parameters ` = c = 2k+1 for some k ∈ {0, . . . , n − 1},
as considered by Lin, Chung and Han, since it then holds that 2`′ = max(`, c). To address the
problem, we observe that (4.1) implies that f0 and f1 have `′ − `′′ coefficients in common, which
we use to store their coefficients with only `′ + `′′ = ` field elements. However, we then have to
ensure that the common coefficients are available to both recursive evaluations. That is, we must
ensure that they are preserved by the first of two recursive evaluations. We enforce this require-
ment by augmenting the evaluation problem itself to additionally require that the coefficients of
Xc, . . . , X`−1 in f are returned alongside the evaluations of the polynomial if c < `.

The pseudocode for our algorithm that solves the augmented evaluation problem is presented
in Algorithm 3. Similar to the algorithms of Section 3, the algorithm is presented under the
assumption that X2i (β j) for 0 ≤ i < j < dlog2 max(`, c)e have been precomputed for the input
values of ` and c. If ` < c, then the input requirements of the algorithm do not specify the
initial value of ai for i ∈ {`, . . . , c − 1}. These entries are overwritten by Lines 8 and 9 over
the course of the algorithm, so may be initially filled with any combination of field elements,
e.g., zeros. In Line 11 of the algorithm, (a2k+i)0≤i<t′′ ‖(ai)t′′≤i<t′ denotes the concatenation of the
vectors (a2k+i)0≤i<t′′ and (ai)t′′≤i<t′ , which is taken to be (a2k+i)0≤i<t′′ if t′ = t′′.

Algorithm 3 LCHEval(`, c, (X2i (λ))0≤i<dlog2 `e, (ai)0≤i<max(`,c))
Input: integers `, c ∈ {1, . . . , 2n}; the vector (X2i (λ))0≤i<dlog2 `e for some λ ∈ F; and the vector

(ai)0≤i<max(`,c) such that ai = hi ∈ F for i ∈ {0, . . . , ` − 1}.
Output: ai = f (ωi + λ) for i ∈ {0, . . . , c − 1}, where f =

∑`−1
i=0 hiXi; and, if c < `, ai = hi for

i ∈ {c, . . . , ` − 1}.
1: if ` = 1 and c = 1 then return
2: k ← dlog2 max(`, c)e − 1, `′ ← min(`, 2k), `′′ ← ` − `′, c0 ← min(c, 2k), c1 ← c − c0
3: for i = 0, . . . , `′′ − 1 do
4: ai ← ai + X2k (λ)a2k+i

5: if c1 > 0 then
6: for i = 0, . . . , `′′ − 1 do
7: a2k+i ← ai + a2k+i

8: for i = `′′, . . . ,min(`′, c1) − 1 do
9: a2k+i ← ai

10: t′ ← max(`′, c1), t′′ ← max(`′′, c1)
11: LCHEval(`′, c1, (X2i (λ) + X2i (βk))0≤i<dlog2 `

′e, (a2k+i)0≤i<t′′ ‖(ai)t′′≤i<t′ )
12: for i = c1, . . . , `

′′ − 1 do
13: a2k+i ← ai + a2k+i

14: LCHEval(`′, c0, (X2i (λ))0≤i<dlog2 `
′e, (ai)0≤i<2k )

15: for i = c0, . . . , `
′′ − 1 do

16: ai ← ai + X2k (λ)a2k+i

Theorem 4.2. Algorithm 3 is correct.

Proof. We prove the theorem by induction on dlog2 max(`, c)e. If dlog2 max(`, c)e = 0, then
` = c = 1 and Algorithm 3 produces the correct output since f = h0 is a constant polynomial.
Therefore, for some k ∈ {0, . . . , n − 1}, suppose that the algorithm produces the correct output
for all inputs with dlog2 max(`, c)e ≤ k. Let `, c ∈ {1, . . . , 2n} such that dlog2 max(`, c)e = k + 1
and h0, . . . , h`−1 ∈ F. Suppose that the algorithm is called with ` and c as inputs, together with
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(X2i (λ))0≤i<dlog2 `e for some λ ∈ F, and ai = hi for i ∈ {0, . . . , ` − 1}. Define integers k, `′, `′′, c0

and c1 as in Line 2 of the algorithm. Finally, define f =
∑`−1

i=0 hiXi as in the output requirements
of the algorithm, and f0, f1 ∈ F[x]`′ by (4.1).

We have `′ ≤ 2k and {0, . . . , `′ − 1} ∪ {2k, . . . , 2k + `′′ − 1} = {0, . . . , `− 1}. Thus, after Lines 3
and 4 have been performed, the entries of the subvector (ai)0≤i<2k satisfy

ai =


hi + X2k (λ)h2k+i if i < `′′,
hi if `′′ ≤ i < `′,
∗ otherwise,

(4.2)

where an asterisks denotes an entry that is unspecified by the input requirements of the algorithm
and has so far not been overwritten. In particular, comparing with (4.1) shows that Lines 3 and 4
fill the subvector (ai)0≤i<`′ with the coefficients of f0 on the LCH basis.

We assume to begin with that c1 > 0. Define t′ = max(`′, c1) and t′′ = max(`′′, c1) as in
Line 10 of the algorithm. Then 2k + t′′ = max(`, c) and t′′ ≤ t′ ≤ max(`, c), since `′′ ≤ `′ ≤ `
and c1 ≤ c. Thus, (a2k+i)0≤i<t′′ and (ai)t′′≤i<t′ are indeed subvectors of (ai)0≤i<max(`,c), and their
concatenation (a2k+i)0≤i<t′′ ‖(ai)t′′≤i<t′ has length t′ = max(`′, c1), as required to be consistent with
the remaining inputs of the recursive call of Line 11.

The entries of the subvector (a2k+i)0≤i<t′′ are unchanged by Lines 3 and 4 of the algorithm.
Thus, a2k+i = h2k+i for i ∈ {0, . . . , `′′ − 1}, as on input, when the for-loop commences in Line 6.
Therefore, (4.2) implies that after Lines 6 to 9 have been performed, the entries of the subvector
(a2k+i)0≤i<t′′ satisfy

a2k+i =


hi + (1 + X2k (λ))h2k+i if i < `′′,
hi if `′′ ≤ i < min(`′, c1),
∗ otherwise.

(4.3)

That is, Lines 6 to 9 fill the subvector with as many coefficients of f1 on the LCH basis as
possible.

If t′ , `′, then c1 > `
′ ≥ `′′ and, thus, t′ = t′′. It follows in this case that {`′′, . . . ,min(`′, c1)−

1} and {t′′, . . . , t′ − 1} are disjoint and their union is {`′′, . . . , `′ − 1}. If t′ = `′, then

{`′′, . . . ,min(`′, c1) − 1} = {`′′, . . . , c1 − 1} = {`′′, . . . , t′′ − 1}

and {t′′, . . . , t′−1} = {t′′, . . . , `′−1} are once again disjoint and have union equal to {`′′, . . . , `′−1}.
Therefore, if we let (bi)0≤i<t′ = (a2k+i)0≤i<t′′ ‖(ai)t′′≤i<t′ be the vector that is passed to the recursive
call of Line 11, then (4.2) and (4.3) imply that its entries satisfy

bi =


hi + (1 + X2k (λ))h2k+i if i < `′′,
hi if `′′ ≤ i < `′,
∗ otherwise.

It follows that the subvector (bi)0≤i<`′ contains the coefficients of f1 on the LCH basis. Prop-
erty (5) of Lemma 2.1 implies that the third input passed to the recursive call of Line 11 is
(X2i (λ) + X2i (βk))0≤i<dlog2 `

′e = (X2i (λ + βk))0≤i<dlog2 `
′e. Thus, as dlog2 max(`′, c1)e ≤ k, the induc-

tion hypothesis implies that after Line 11 has been performed, the entries of (bi)0≤i<t′ satisfy

bi =


f1(ωi + λ + βk) if i < c1,

hi + (1 + X2k (λ))h2k+i if c1 ≤ i < `′′,
hi otherwise.
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Consequently, Lemma 4.1 implies that Line 11 sets a2k+i = f (ω2k+i + λ) for i ∈ {0, . . . , c1 − 1}.
Moreover, the subvector (ai)t′′≤i<t′ is unchanged by Line 11, since {t′′, . . . , t′−1} ⊆ {`′′, . . . , `′−1}.
Thus, the entries of (ai)0≤i<2k still satisfy (4.2) when the for-loop commences in Line 12. It
follows that Lines 12 and 13 set a2k+i = (hi + X2k (λ)h2k+i) + (hi + (1 + X2k (λ))h2k+i) = h2k+i for
i ∈ {c1, . . . , `

′′ − 1}, restoring the entries to their initial values. Therefore, if c1 > 0, then after
Lines 5 to 13 have been performed, the entries of the subvector (ai)0≤i<2k satisfy (4.2), and the
entries of the subvector (a2k+i)0≤i<t′′ satisfy

a2k+i =

 f (ω2k+i + λ) if i < c1,

hi otherwise.
(4.4)

This statement also holds if c1 = 0. Indeed, Lines 5 to 13 have no effect in this case, and a2k+i is
initially equal to h2k+i for i ∈ {0, . . . , t′′ − 1}, since 2k + t′′ = 2k + `′′ = `.

We have dlog2 max(`′, c0)e = k, since the definition of k implies that ` ≥ 2k or c ≥ 2k.
Thus, the subvector (ai)0≤i<2k has length that is consistent with the inputs `′ and c0 of the recur-
sive call of Line 14. Moreover, as (4.2) holds for i ∈ {0, . . . , 2k − 1}, the induction hypothesis
and Lemma 4.1 imply that after recursive call has been performed, the entries of the subvector
(ai)0≤i<2k satisfy

ai =


f (ωi + λ) if i < c0,

hi + X2k (λ)h2k+i if c0 ≤ i < `′′,
hi otherwise.

As c1 ≤ c0, `′′ ≤ t′′ and (4.4) holds for i ∈ {0, . . . , t′′ − 1}, Lines 15 and 16 then set ai = (hi +

X2k (λ)h2k+i) + X2k (λ)h2k+i = hi for i ∈ {c0, . . . , `
′′ − 1}, restoring the entries to their initial values.

Hence, the algorithm terminates with ai = f (ωi +λ) for i ∈ {0, . . . , c0−1}∪ {2k, . . . , 2k +c1−1} =

{0, . . . , c−1}, and ai = hi for i ∈ {c0, . . . , 2k−1}∪{2k +c1, . . . , 2k +t′′−1} = {c0, . . . ,max(`, c)−1},
as required.

In Line 11 of Algorithm 3, the vector (a2k+i)0≤i<t′′ ‖(ai)t′′≤i<t′ can be obtained as the subvector
formed by the last t′ entries of the cyclic left shift by t′ − t′′ positions of (ai)t′′≤i<max(`,c). Thus,
Line 11 of the algorithm can be realised by first cyclically shifting (ai)t′′≤i<max(`,c) left by t′ − t′′

positions, then passing its last t′ entries to the recursive call, and finally cyclically shifting the
vector right by t′ − t′′ positions. Using in-place algorithms (see Gries and Mills, 1981; Shene,
1997; Furia, 2014) the cyclic shifts can be performed with only O(1) additional field elements
stored in auxiliary space, and, since the vector has length max(`, c) − t′′ = 2k, O(2k) movements
of its entries, where a movement involves either assigning a value into an entry of the vector
or copying one of its entries elsewhere. It follows that O(max(`, c)) movements are performed
overall, since the difference t′ − t′′ for the initial call of the algorithm and each of its subsequent
recursive calls is always zero if the initial parameters satisfy max(`, c) = 2dlog2 max(`,c)e, nonzero
at most once if the parameters satisfy c ≤ `, and nonzero at most twice otherwise. We note that
this bound also holds for the entire algorithm, since Line 9 is performed max(c− `, 0) times over
the course of the algorithm.

Combining the method of cyclic shifts with techniques described in Section 3, such as
representing subvectors by an offset variable, Algorithm 3 can be implemented so that only
O(log2 max(`, c)) field elements are required to be stored auxiliary space. Similarly, all precom-
putations for the algorithm can be performed with O(log2 max(`, c)) operations in F. The number
of field operations performed by the algorithm itself is bounded by the following theorem.

14



Theorem 4.3. Algorithm 3 performs at most (c − 1)(dlog2 min(`, c)e + 1) + 2(` − 1) additions
in F, and at most (c − 1)dlog2 min(`, c/2)e/2 + 2(` − 1) multiplications in F.

We prove Theorem 4.3 with the aid of the following lemma.

Lemma 4.4. If ` ≤ 2r and c = 2r for some r ∈ {0, . . . , n}, then Algorithm 3 performs at most
(2r − 1)(dlog2 `e + 1) additions in F, and at most 2r−1dlog2 `e multiplications in F.

Proof. We prove the lemma by induction on r. If r = 0, then ` = c = 1 and Algorithm 3
performs no operations in F, matching the bounds of the lemma. Therefore, suppose that the
bounds of the lemma hold for some r ∈ {0, . . . , n − 1}. Then, when Algorithm 3 is called with
parameters ` ≤ 2r+1 and c = 2r+1, Line 2 sets k = r, `′ = min(`, 2r), `′′ = max(` − 2r, 0) and
c0 = c1 = 2r > 0. It follows that Lines 3 to 10 perform 2`′′ additions and `′′ multiplications. The
induction hypothesis implies that Lines 11 and 14 perform at most 2(2r−1)(dlog `′e+1)+dlog2 `

′e

additions, and at most 2rdlog2 `
′e multiplications. Finally, Lines 12, 13, 15 and 16 perform no

operations in F, since `′′ ≤ 2r = ci for i ∈ {0, 1}. Summing these bounds, it follows that the
algorithm performs at most (2r+1−1)(dlog2 `

′e+1)+2`′′−1 additions, and at most 2rdlog2 `
′e+`′′

multiplications. If ` ≤ 2r, then `′ = ` and `′′ = 0. If ` > 2r, then dlog2 `
′e = r = dlog2 `e − 1

and `′′ ≤ 2r. In either case, we find that the algorithm performs at most (2r+1 − 1)(dlog2 `e + 1)
additions, and at most 2rdlog2 `e multiplications.

Proof of Theorem 4.3. We prove the theorem by induction on dlog2 max(`, c)e. If dlog2 max(`, c)e
is equal to zero, then ` = c = 1 and Algorithm 3 performs no operations in F, matching the
bounds of the theorem. Therefore, for some k ∈ {0, . . . , n − 1}, suppose that the bounds stated in
the theorem hold for all inputs with dlog2 max(`, c)e ≤ k. Moreover, suppose that the algorithm
is called with inputs `, c ∈ {1, . . . , 2n} such that dlog2 max(`, c)e = k + 1. Let `′ = min(`, 2k),
`′′ = ` − `′, c0 = min(c, 2k) and c1 = c − c0, as computed in Line 2 of the algorithm.

Suppose to begin with that c1 = 0. Then c ≤ 2k < `, `′ = 2k, c0 = c, dlog2 min(`′, c0)e =

dlog2 min(`, c)e and dlog2 min(`′, c0/2)e = dlog2 min(`, c/2)e. Thus, Lines 3 and 4 perform `′′ =

` − 2k additions and multiplications, while Lines 5 to 13 perform no operations in F. Moreover,
as dlog2 max(`′, c0)e = k, the induction hypothesis implies that Line 14 performs at most (c −
1)(dlog2 min(`, c)e + 1) + 2(2k − 1) additions, and at most (c − 1)dlog2 min(`, c/2)e/2 + 2(2k − 1)
multiplications. Finally, Lines 15 and 16 perform max(`′′ − c, 0) ≤ `′′ = ` − 2k additions
and multiplications. Summing these bounds, it follows that Algorithm 3 performs at most (c −
1)(dlog2 min(`, c)e + 1) + 2(` − 1) additions, and at most (c − 1)dlog2 min(`, c/2)e/2 + 2(` − 1)
multiplications.

Suppose now that c1 > 0. Then Lines 3 to 9 of the algorithm perform 2`′′ additions
and `′′ multiplications. As dlog2 min(`′, c1)e ≤ k and dlog2 min(`′, c1/2)e ≤ dlog2 min(`′, c1)e ≤
dlog2 `

′e, the induction hypothesis implies that Line 11 performs at most

(c1 − 1)
(⌈

log2 `
′⌉ + 1

)
+ 2

(
`′ − 1

)
+

⌈
log2 `

′⌉
additions, and at most (c1 − 1)dlog2 `

′e/2 + 2(`′ − 1) multiplications. Lines 12 and 13 perform
max(`′′ − c1, 0) additions. As `′ ≤ 2k and c0 = 2k, Lemma 4.4 implies that Line 14 performs at
most (c0 − 1)(dlog2 `

′e+ 1) additions, and at most c0dlog2 `
′e/2 multiplications. Finally, Lines 15

and 16 perform no operations in F, since `′′ ≤ 2k = c0. As `′ + `′′ = ` and c0 + c1 = c, it follows
by summing these bounds that the algorithm performs at most

(c − 1)
(⌈

log2 `
′⌉ + 1

)
+ 2 (` − 1) + max

(
`′′ − c1, 0

)
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additions, and at most (c − 1)dlog2 `
′e/2 + 2(` − 1) multiplications. If ` ≤ 2k, then `′′ = 0

and dlog2 `
′e = dlog2 min(`, c)e = dlog2 min(`, c/2)e. If ` > 2k, then `′′ = ` − 2k ≤ 2k ≤

c − 1 and dlog2 `
′e = dlog2 min(`, c)e − 1 ≤ dlog2 min(`, c/2)e. In either case, we find that

Algorithm 3 performs at most (c − 1)(dlog2 min(`, c)e + 1) + 2(` − 1) additions, and at most
(c − 1)dlog2 min(`, c/2)e/2 + 2(` − 1) multiplications.

4.3. Truncated interpolation on the LCH basis

When Algorithm 3 is called with c ≤ `, the input and output requirements on the vector
(ai)0≤i<max(`,c) = (ai)0≤i<` define an invertible linear transformation from F` onto F`. Inverting
this transformation corresponds to solving an interpolation problem that involves taking a com-
bination of a polynomial’s evaluations and higher-degree coefficients on the LCH basis, and
recovering its remaining coefficients. In this section, we deduce from Algorithm 3 an algorithm
for solving the interpolation problem.

When Algorithm 3 is called with c ≤ `, the variables defined in Lines 2 and 10 of the algo-
rithm satisfy k = dlog2 `e − 1, `′ = 2k, `′′ = ` − 2k, c0 = min(c, 2k) ≤ `′, c1 = max(c − 2k, 0) ≤
`′′ ≤ `′, t′ = 2k and t′′ = `′′. Consequently, Lines 11 and 14 recursively call the algorithm with
parameters c and ` that once again satisfy c ≤ `. Thus, the same is true of the parameters for
all subsequent recursive calls. Moreover, as `′′ ≥ c1 = min(`′, c1), the for-loop of Lines 8 and 9
has no effect on the vector (ai)0≤i<` for the initial call to the algorithm, and, thus, all recursive
calls. As `′′ ≤ 2k and F has characteristic equal to two, each remaining for-loop in the algo-
rithm performs a transformation on the vector (ai)0≤i<` that is an involution. Thus, performing
these transformations in reverse order inverts the overall transformation performed by the al-
gorithm, yielding an interpolation algorithm with identical complexity and space requirements.
Pseudocode for this interpolation algorithm is presented in Algorithm 4, where it is once again
assumed that X2i (β j) for 0 ≤ i < j < dlog2 `e have been precomputed for the input value of `.

Algorithm 4 LCHInterp(`, c, (X2i (λ))0≤i<dlog2 `e, (ai)0≤i<`)
Input: integers `, c ∈ {1, . . . , 2n} such that c ≤ `; the vector (X2i (λ))0≤i<dlog2 `e for some λ ∈ F; and

the vector (ai)0≤i<` such that for elements h0, . . . , h`−1 ∈ F, ai = f (ωi+λ) for i ∈ {0, . . . , c−1},
where f =

∑`−1
i=0 hiXi, and, if c < `, ai = hi for i ∈ {c, . . . , ` − 1}

Output: ai = hi for i ∈ {0, . . . , ` − 1}.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′′ ← ` − 2k, c0 ← min(c, 2k), c1 ← c − c0
3: for i = c0, . . . , `

′′ − 1 do
4: ai ← ai + X2k (λ)a2k+i

5: LCHInterp(2k, c0, (X2i (λ))0≤i<k, (ai)0≤i<2k )
6: if c1 > 0 then
7: for i = c1, . . . , `

′′ − 1 do
8: a2k+i ← ai + a2k+i

9: LCHInterp(2k, c1, (X2i (λ) + X2i (βk))0≤i<k, (ai)2k≤i<` ‖(ai)`′′≤i<2k )
10: for i = 0, . . . , `′′ − 1 do
11: a2k+i ← ai + a2k+i

12: for i = 0, . . . , `′′ − 1 do
13: ai ← ai + X2k (λ)a2k+i
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Similar to Line 11 of Algorithm 3, Line 9 of Algorithm 4 can be realised by first cyclically
shifting the subvector (ai)`′′≤i<` left by 2k − `′′ positions, then passing it to the recursive call, and
finally cyclically shifting it right by 2k−`′′ positions. As 2k−`′′ = 2dlog2 `e−`, the cyclic shifts are
only required if ` is not a power of two, and, consequently, are not required by any recursive calls
made by the algorithm. Using techniques already discussed for Algorithm 3, Algorithm 4 can
be implemented so that only O(log2 `) field elements are required to be stored in auxiliary space.
Similarly, all precomputations can be performed with O(log2 `) field operations. Algorithms 3
and 4 perform the same number of additions and multiplications in F when given identical inputs
` and c. Therefore, by substituting the inequality c ≤ ` into the bounds of Theorem 4.3, we
deduce the following bounds on the number of field operations performed by Algorithm 4.

Corollary 4.5. Algorithm 4 performs at most (c − 1)(dlog2 ce + 1) + 2(` − 1) additions in F, and
at most (c − 1)(dlog2 ce − 1)/2 + 2(` − 1) multiplications in F.

Remark 4.6. The ability to initially take c < ` in Algorithm 4 makes the algorithm suitable for
use in the fast Hermite interpolation algorithm proposed by the author in (Coxon, 2020). For this
application, one is given the higher order coefficients of a polynomial on the monomial basis,
rather than on the LCH basis. However, Algorithm 8 of Section 5 can be used to compute the
coefficients required by Algorithm 4. Similarly, Algorithm 3 can be combined with Algorithm 8
for use in the fast Hermite evaluation algorithm proposed in (Coxon, 2020).

5. Conversion between the monomial and LCH bases

We consider the problem of converting between the monomial and LCH bases under the
assumption that there exists a tower of subfields

F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F (5.1)

such that dm−1 < n ≤ dm, and βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , n − 1} and t ∈ {0, . . . ,m − 1}.
We can assume that F is not equal to F2, since otherwise β = (1) and its associated LCH basis
coincides with the monomial basis. Then the existence of such a tower is established by taking
m = 1 and dm = [F : F2], so we have not imposed any restrictions on the vector β. However,
our algorithms enjoy a reduction in their complexities when m is greater than one. To the tower
we associate a family of bases of F[x]2n that includes the LCH basis and the twisted monomial
basis {1, x/β0, . . . , (x/β0)2n−1}. We then show how to efficiently convert between its members,
allowing for rapid conversion between the LCH and twisted monomial bases by traversing the
family. Conversion between the LCH and monomial bases, in either direction, then requires only
linearly many additional multiplications to be performed. We begin by introducing the family of
bases and some supporting notation.

For t ∈ {0, . . . ,m}, let qt denote the order of the subfield F2dt . For t ∈ {0, . . . ,m − 1} and
k ∈ {0, . . . , dn/dte − 1}, define et,k = ddt(k + 1)/dt+1e so that dt+1et,k is the least multiple of dt+1
that is greater than or equal to dt(k + 1). For t ∈ {0, . . . ,m − 1}, k ∈ {0, . . . , dn/dte − 1} and
i ∈ {0, . . . , 2n − 1}, define

Y (t,k)
i =

 k∏
s=0

Xis
qs

t


dn/dt+1e−1∏

s′=et,k

X
i′s′
qs′

t+1

 ,
where

is =

dt−1∑
r=0

2r[i]dt s+r, ik =

dt+1et,k−dtk−1∑
r=0

2r[i]dtk+r and i′s′ =

dt+1−1∑
r=0

2r[i]dt+1 s′+r
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for s ∈ {0, . . . , k − 1} and s′ ∈ {et,k, . . . , dn/dt+1e − 1}. Then each polynomial Y (t,k)
i has degree

equal to i. It follows that {Y (t,k)
0 , . . . ,Y (t,k)

`−1 } is a basis of F[x]` for ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m− 1}
and k ∈ {0, . . . , dn/dte − 1}. In Section 5.1, we show that the LCH basis is obtained by taking
t = 0 and k = dn/d0e − 1, while the twisted monomial basis corresponds to t = m − 1 and k = 0.

For t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2}, define δt,k = Xqk
t
(βdt(k+1))qt − Xqk

t
(βdt(k+1)).

Then δ0,0, . . . , δ0,n−2 are the denominators that appear in the recurrence relation from property (3)
of Lemma 2.1. In Section 5.1, we show that our assumption on the quotients βi/βdtbi/dtc leads
to higher order recurrence relations between the polynomials X20 , . . . , X2n−1 of the LCH basis in
which the δt,k once again appear as denominators. For t ∈ {0, . . . ,m − 1}, k ∈ {0, . . . , dn/dte − 1}
and ` ∈ {1, . . . , 2n}, define

It,k,` =
{
0, . . . ,min

(⌈
`/qk

t

⌉
, qet,k

t+1/q
k
t

)
− 1

}
,

and
Jt,k,` =

{
j ∈ {0, . . . , ` − 1} | [ j]dtk = · · · = [ j]dt+1et,k−1 = 0

}
.

For t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 1}, the sets {iqk
t + j | i ∈ It,k,`− j} for j ∈ Jt,k,` then

form a partition of {0, . . . , ` − 1}.
Having introduced the family of bases and the requisite notation, we are now ready to state

the main technical lemma upon which we base our algorithms for converting between the LCH
and monomial bases.

Lemma 5.1. Let f ∈ F[x]` for some ` ∈ {1, . . . , 2n}. Then, for t ∈ {0, . . . ,m − 1} and k ∈
{0, . . . , dn/dte − 1}, there exist unique elements f (t,k)

0 , . . . , f (t,k)
`−1 ∈ F such that

f =

`−1∑
i=0

f (t,k)
i Y (t,k)

i . (5.2)

Moreover, the following properties hold for t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 1}:

1. if t = m − 1 and k = 0, then f =
∑`−1

i=0 f (t,k)
i (x/β0)i,

2. if k < dn/dte − 1 and dt+1/dt divides k + 1, then f (t,k)
i = f (t,k+1)

i for i ∈ {0, . . . , ` − 1},
3. if k < dn/dte − 1 and dt+1/dt does not divide k + 1, then

|It,k,`− j |−1∑
i=0

f (t,k)
iqk

t + j
xi =

|It,k,`− j |−1∑
i=0

f (t,k+1)
iqk

t + j
xi−qtbi/qtc

(
xqt − x
δt,k

)bi/qtc

for j ∈ Jt,k,`, where δt,k = TrFqt+1 /Fqt
(βdt(k+1)/βdtk) if dt+1/dt = 2,

4. if t > 0 and k ≥ d(log2 `)/dte − 1, then f (t,k)
i = f (t−1,0)

i for i ∈ {0, . . . , ` − 1},
5. if t = 0 and k ≥ d(log2 `)/dte − 1, then f =

∑`−1
i=0 f (t,k)

i Xi.

Lemma 5.1 is proved in Section 5.1. Properties (1) and (5) of the lemma identify the twisted
monomial and LCH bases amongst the family of bases of F[x]`, while properties (2), (3) and (4)
provide a means of traversing its members. Of the later three properties, only property (3) re-
quires computation, which can be performed efficiently by applying the generalised Taylor ex-
pansion algorithm of Gao and Mateer (2010, Section II) or its inverse algorithm, depending on
the direction of conversion. These algorithms are recalled in Section 5.3.
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The number of times property (3) must be applied is invariant under the choice of tower:

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

1 =

m−1∑
t=0

(⌈
log2 `

dt

⌉
−

⌈
log2 `

dt+1

⌉)
=

⌈
log2 `

⌉
− 1 for ` ∈ {2, . . . , qm}. (5.3)

However, by using the algorithms of Gao and Mateer, the number of additions and multiplica-
tions required by a Taylor expansion step decreases as dt grows. Thus, each subfield of degree
less than log2 ` in the tower (5.1) effects the performance of our algorithms by reducing the num-
ber of additions and multiplications they perform. No multiplications are performed during a
Taylor expansion step if δt,k = 1, which in the case that Fqt+1/Fqt is a quadratic extension oc-
curs if and only if TrFqt+1 /Fqt

(βd(k+1)/βdk) = 1. Multiplications are also saved if β0 = 1, since
the twisted monomial basis coincides with the monomial basis. We cannot guarantee that any
of these desirable properties are satisfied by an arbitrary choice of β. Furthermore, some of the
properties are precluded when the field does not contain subfields of appropriate degree. How-
ever, the following proposition shows that when we have freedom to choose β, and subfields of
appropriate degree do exist, then a standard basis construction can be used to obtain a vector with
the desired properties.

Proposition 5.2. Suppose there exists a tower of subfields F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F.
Let {αt,0, . . . , αt,dt+1/dt−1} be a basis of F2dt+1 /F2dt for t ∈ {0, . . . ,m − 1}, and

βi =

m−1∏
t=0

αt,it such that
m−1∑
t=0

itdt = i

for i ∈ {0, . . . , dm − 1}. Then the following properties hold:

1. β0, . . . , βdm−1 are linearly independent over F2,
2. βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , dm − 1} and t ∈ {0, . . . ,m − 1},
3. if α0,0 = · · · = αm−1,0 = 1, then β0 = 1,
4. if dt+1/dt = 2 for some t ∈ {0, . . . ,m − 1}, then βdt(k+1)/βdtk = αt,1/αt,0 for even k ∈
{0, . . . , dm/dt − 2}.

Proof. Let i ∈ {0, . . . , dm − 1} and write i =
∑m−1

t=0 itdt with it ∈ {0, . . . , dt+1/dt − 1} for t ∈
{0, . . . ,m − 1}. Then

βi

βdtbi/dtc

=
α0,i1 · · ·αt−1,it−1αt,it · · ·αm−1,im−1

α0,0 · · ·αt−1,0αt,it · · ·αm−1,im−1

=
α0,i0 · · ·αt−1,it−1

α0,0 · · ·αt−1,0
∈ F2dt

for t ∈ {0, . . . ,m − 1}. Thus, property (2) holds. Similarly, we have βdt i+ j/β0 = (αt,i/αt,0)(β j/β0)
and β j/β0 = β j/βdtb j/dtc ∈ F2dt for i ∈ {0, . . . , dt+1/dt −1}, j ∈ {0, . . . , dt −1} and t ∈ {0, . . . ,m−1}.
As {αt,0/αt,0, . . . , αt,dt+1/dt−1/αt,0} is a basis of F2dt+1 /F2dt for t ∈ {0, . . . ,m − 1}, it follows that if
{β0/β0, . . . , βdt−1/β0} is a basis of F2dt /F2 for some t ∈ {0, . . . ,m− 1}, then {β0/β0, . . . , βdt+1−1/β0}

is a basis of F2dt+1 /F2. For t = 0, it is clear that {β0/β0, . . . , βdt−1/β0} = {1} is a basis of F2dt /F2 =

F2/F2. Therefore, {β0/β0, . . . , βdm−1/β0} is a basis of F2dm /F2, and property (1) holds.
By definition, β0 is the product of α0,0, . . . , αm−1,0, from which property (3) follows imme-

diately. Property (4) holds since if dt+1/dt = 2 for some t ∈ {0, . . . ,m − 1}, then βdt(k+1)/βdtk =

βdt+1(k/2)+dt/βdt+1(k/2) = αt,1/αt,0 for even k ∈ {0, . . . , dm/dt − 2}.
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If the tower in Proposition 5.2 contains a quadratic extension F2dt+1 /F2dt , then taking αt,0 = 1
and αt,1 ∈ F2dt+1 such that TrF

2dt+1 /F2dt
(αt,1) = 1 yields a basis {αt,0, αt,1} of the extension with the

property that αt,1/αt,0 has trace equal to one. Indeed, linear independence of the two elements
over F2dt follows from the observation that TrF

2dt+1 /F2dt
(1) = 0.

5.1. Proof of Lemma 5.1
We begin by establishing properties (1), (2), (4) and (5) of Lemma 5.1.

Lemma 5.3. The following properties hold for t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 1}:

1. if t = m − 1 and k = 0, then Y (t,k)
i = (x/β0)i for i ∈ {0, . . . , 2n − 1},

2. if k < dn/dte − 1 and dt+1/dt divides k + 1, then Y (t,k)
i = Y (t,k+1)

i for i ∈ {0, . . . , 2n − 1},
3. if t > 0, then Y (t,k)

i = Y (t−1,0)
i for i ∈ {0, . . . ,min(qk+1

t , 2n) − 1},
4. if t = 0, then Y (t,k)

i = Xi for i ∈ {0, . . . , 2k+1 − 1}.

Proof. We have dn/dme − 1 = 0, em−1,0 = 1 and

dmem−1,0−dm−1×0−1∑
r=0

2r[i]dm−1×0+r =

dm−1∑
r=0

2r[i]r = i for i ∈ {0, . . . , 2n − 1}.

Thus, Y (m−1,0)
i = Xi

1 for i ∈ {0, . . . , 2n−1}. As X1 = x/β0 by property (3) of Lemma 2.1, it follows
that property (1) holds.

Let t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that dt+1/dt divides k + 1. Then
et,k = dt(k + 1)/dt+1 and et,k+1 = et,k + 1. Thus, for i ∈ {0, . . . , 2n − 1},

dt+1et,k−dtk−1∑
r=0

2r[i]dtk+r =

dt−1∑
r=0

2r[i]dtk+r and
dt+1−1∑

r=0

2r[i]dt+1et,k+r =

dt+1et,k+1−dt(k+1)−1∑
r=0

2r[i]dt(k+1)+r.

It follows that property (2) holds.
Suppose that t ∈ {1, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 1}. Then dt+1et,k ≥ dt(k + 1) and

et−1,0 = 1. For i ∈ {0, . . . , qk+1
t − 1}, it follows that

dt−1∑
r=0

2r[i]dt s+r = 0 for s ∈ {k + 1, . . . , dn/dte − 1}

and
dt+1−1∑

r=0

2r[i]dt+1 s′+r = 0 for s′ ∈ {et,k, . . . , dn/dte − 1}.

Thus, if i ∈ {0, . . . ,min(qk+1
t , 2n) − 1} and is =

∑dt−1
r=0 2r[i]dt s+r for s ∈ {0, . . . , dn/dte − 1}, then

i0 =

dt−1∑
r=0

2r[i]dt×0+r =

dtet−1,0−dt−1×0−1∑
r=0

2r[i]dt−1×0+r

and

Y (t,k)
i =

k∏
s=0

Xis
qs

t
=

 0∏
s=0

Xis
qs

t−1


dn/dte−1∏

s′=et−1,0

Xis′

qs′
t

 = Y (t−1,0)
i .

20



Therefore, property (3) holds.
As d0 = 1, we have d1e0,k = d1d(k + 1)/d1e ≥ k + 1 for k ∈ {0, . . . , dn/d1e − 1}. Consequently,

property (1) of Lemma 2.1 implies that

Y (0,k)
i =

 k∏
s=0

X[i]s
2s


dn/d1e−1∏

s′=e0,k

X0
qs′

1

 =

k∏
s=0

X2s[i]s = Xi

for k ∈ {0, . . . , dn/d1e − 1} and i ∈ {0, . . . , 2k+1 − 1}. Hence, property (4) holds.

Recall that a polynomial in F[x] is Fq-linearised if it can be written in the form
∑k

i=0 fixqi

with f0, . . . , fk ∈ F. The following lemma generalises properties (3) and (5) of Lemma 2.1, and
shows that our assumption on the quotients βi/βdtbi/dtc leads to higher order and, importantly,
sparse recurrence relations between the polynomials X20 , . . . , X2n−1 of the LCH basis.

Lemma 5.4. Let F2d ⊆ F such that βi/βdbi/dc ∈ F2d for i ∈ {0, . . . , n − 1}. Then X2dk is F2d -
linearised k ∈ {0, . . . , dn/de − 1}, and

X2d(k+1) =
X2dk (x)2d

− X2dk (x)

X2dk
(
βd(k+1)

)2d
− X2dk

(
βd(k+1)

) (5.4)

for k ∈ {0, . . . , dn/de−2}. Moreover, if F22d ⊆ F and βi/β2dbi/(2d)c ∈ F22d for i ∈ {0, . . . , n−1}, then

X2dk
(
βd(k+1)

)2d
− X2dk

(
βd(k+1)

)
= TrF22d /F2d

(
βd(k+1)/βdk

)
(5.5)

for even k ∈ {0, . . . , dn/de − 2}.

Proof. Let F2d ⊆ F such that βi/βdbi/dc ∈ F2d for i ∈ {0, . . . , n − 1}. We show that if X2dk is
F2d -linearised for some k ∈ {0, . . . , dn/de − 2}, then (5.4) holds and X2d(k+1) is F2d -linearised. As
property (3) of Lemma 2.1 implies that X2d·0 = x/β0 is F2d -linearised, the first assertion of the
lemma then follows by induction on k.

Suppose that X2dk is F2d -linearised for some k ∈ {0, . . . , dn/de − 2}. Then

ω2dk i

βdk
=

d−1∑
j=0

[i] j
βdk+ j

βdk
=

d−1∑
j=0

[i] j
βdk+ j

βdb(dk+ j)/dc
∈ F2d for i ∈ {0, . . . , 2d − 1}.

Thus, property (5) of Lemma 2.1 and the assumption that X2dk is F2d -linearised imply that

X2dk

(
ω2dk i+ j

)
= X2dk

(
βdk

ω2dk i

βdk

)
+ X2dk (ω j) = X2dk (βdk)

ω2dk i

βdk
+ X2dk (ω j) =

ω2dk i

βdk
∈ F2d

for i ∈ {0, . . . , 2d − 1} and j ∈ {0, . . . , 2dk − 1}. It follows that ωi is a common root of the
degree 2d(k+1) polynomials X2d(k+1) and X2d

2dk −X2dk for i ∈ {0, . . . , 2d(k+1)−1}. Hence, they are equal
up to a nonzero scalar multiple. As X2d(k+1) (βd(k+1)) = 1, it follows that (5.4) holds. Equation (5.4)
then implies that X2d(k+1) is F2d -linearised, since X2dk is F2d -linearised by assumption.

Suppose now that F22d ⊆ F and βi/β2dbi/(2d)c ∈ F22d for i ∈ {0, . . . , n − 1}. Then, for even
k ∈ {0, . . . , dn/de − 2}, X2dk = X22d(k/2) is F22d -linearised and

βd(k+1)

βdk
=
βd(k+1)

β2d(k/2)
=

βd(k+1)

β2dbd(k+1)/(2d)c
∈ F22d .
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Hence,

X2dk
(
βd(k+1)

)
= X2dk

(
βdk

βd(k+1)

βdk

)
= X2dk (βdk)

βd(k+1)

βdk
=
βd(k+1)

βdk

for even k ∈ {0, . . . , dn/de − 2}, from which (5.5) follows.

If t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that dt+1/dt does not divide k + 1,
then et,k+1 = et,k. It follows in this case that each quotient Y (t,k+1)

i /Y (t,k)
i is of the form Xa

qk+1
t
/Xb

qk
t

for some a, b ∈ N. Using Lemma 5.4 to express these quotients as a functions of Xqk
t

leads to
property (3) of Lemma 5.1.

Lemma 5.5. If t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that dt+1/dt does not divide
k + 1, then

Y (t,k)
iqk

t + j
= Xi

qk
t
Y (t,k)

j and Y (t,k+1)
iqk

t + j
=

Xqt

qk
t
− Xqk

t

δt,k


bi/dtc

Xi−qtbi/dtc

qk
t

Y (t,k)
j

for i ∈ It,k,2n and j ∈ Jt,k,2n .

Proof. Suppose that t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , dn/dte−2} such that dt+1/dt does not divide
k + 1. Then, for i ∈ It,k,2n and j ∈ Jt,k,2n , we have

dt−1∑
r=0

2r[iqk
t + j]dt s+r =

dt−1∑
r=0

2r[ j]dt s+r for s ∈ {0, . . . , k − 1},

dt+1et,k−dtk−1∑
r=0

2r[iqk
t + j]dtk+r =

dt+1et,k−dtk−1∑
r=0

2r[i]r = i +

dt+1et,k−dtk−1∑
r=0

2r[ j]dtk+r

and
dt+1−1∑

r=0

2r[iqk
t + j]dt+1 s′+r =

dt+1−1∑
r=0

2r[ j]dt+1 s′+r for s′ ∈ {et,k, . . . , dn/dte − 1}.

Consequently, Y (t,k)
iqk

t + j
= Xi

qk
t
Y (t,k)

j for i ∈ It,k,2n and j ∈ Jt,k,2n .
As dt+1/dt does not divide k + 1, et,k+1 = et,k and dt+1et,k+1 = dt+1et,k > dt(k + 1). Thus, for

i ∈ It,k,2n and j ∈ Jt,k,2n , we have

dt−1∑
r=0

2r[iqk
t + j]dtk+r =

dt−1∑
r=0

2r[i]r =

(
i − qt

⌊
i
qt

⌋)
+

dt−1∑
r=0

2r[ j]dtk+r

and

dt+1et,k+1−dt(k+1)−1∑
r=0

2r[iqk
t + j]dt(k+1)+r =

dt+1et,k−dt(k+1)−1∑
r=0

2r[i]dt+r =

⌊
i
qt

⌋
+

dt+1et,k−dt(k+1)−1∑
r=0

2r[ j]dt(k+1)+r.

It follows that
Y (t,k+1)

iqk
t + j

= Xbi/qtc

qk+1
t

Xi−qtbi/qtc

qk
t

Y (t,k)
j for i ∈ It,k,2n and j ∈ Jt,k,2n .

The proof is completed by making the substitution Xqk+1
t

= (Xqt

qk
t
− Xqk

t
)/δt,k, which holds by

Lemma 5.4 and the assumption that βi/βdtbi/dtc ∈ Fqt for i ∈ {0, . . . , n − 1}.
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We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let ` ∈ {1, . . . , 2n} and f ∈ F[x]`. Then, for t ∈ {0, . . . ,m − 1} and k ∈
{0, . . . , dn/dte − 1}, existence and uniqueness of the elements f (t,k)

0 , . . . , f (t,k)
`−1 follows from the

observation that Y (t,k)
i has degree equal to i for i ∈ {0, . . . , ` − 1}. Properties (1), (2), (4) and (5)

then follow immediately from Lemma 5.3. To prove property (3), suppose that t ∈ {0, . . . ,m− 1}
and k ∈ {0, . . . , dn/dte−2} such that dt+1/dt does not divide k +1. Then k is even if dt+1/dt = 2, in
which case Lemma 5.4 implies that δt,k = TrFqt+1 /Fqt

(βdt(k+1)/βdtk). The sets {iqk
t + j | i ∈ It,k,`− j} =

{iqk
t + j | i ∈ {0, . . . , |It,k,`− j| − 1}} for j ∈ Jt,k,` form a partition of {0, . . . , ` − 1}. Thus, there exist

elements f ′0 , . . . , f ′`−1 ∈ F such that

|It,k,`− j |−1∑
i=0

f (t,k)
iqk

t + j
xi =

|It,k,`− j |−1∑
i=0

f ′iqk
t + jx

i−qtbi/qtc

(
xqt − x
δt,k

)bi/qtc

for j ∈ Jt,k,`.

After substituting Xqk
t

for x, then multiplying each equation by Y (t,k)
j , Lemma 5.5 implies that

|It,k,`− j |−1∑
i=0

f (t,k)
iqk

t + j
Y (t,k)

iqk
t + j

=

|It,k,`− j |−1∑
i=0

f ′iqk
t + jY

(t,k+1)
iqk

t + j
for j ∈ Jt,k,`.

By summing these equations, it follows that

f =
∑

j∈Jt,k,`

∑
i∈It,k,`− j

f (t,k)
iqk

t + j
Y (t,k)

iqk
t + j

=

`−1∑
i=0

f ′i Y (t,k+1)
i .

Thus, the uniqueness of f (t,k+1)
0 , . . . , f (t,k+1)

`−1 implies that f ′i = f (t,k+1)
i for i ∈ {0, . . . , ` − 1}. Hence,

property (3) follows by the choice of f ′0 , . . . , f ′`−1.

5.2. Precomputations
The algorithm we propose for converting from the monomial basis to the LCH basis assumes

that δt,k has been precomputed for t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} such that
dt+1/dt does not divide k + 1. The algorithm for conversion in the opposite direction assumes
that the inverses of these elements and β0 have been precomputed. Thus, (5.3) implies that each
algorithm requires O(log `) field elements to be precomputed and stored. The precomputations
for both algorithms can be performed by applying Algorithm 5 for each d ∈ {d0, . . . , dm−1}. The
algorithm performs O((log2 `)/d) operations in F if repeated squaring is used for exponentiation.
As dt ≥ 2t for t ∈ {0, . . . ,m−1}, it follows that all precomputations for the conversion algorithms
can be performed with O(log2 `) operations in F.

As X20 = x/β0, Lines 1 to 3 of Algorithm 5 set x j = X2d·0 (βd( j+1)) for j ∈ {0, . . . , d(log2 `)/de−
2}. Using induction and Lemma 5.4, it can then been shown that during iteration i of the outer
for-loop of Lines 4 to 7, Line 5 sets xi = X2di (βd(i+1))2d

− X2di (βd(i+1)), and Lines 6 and 7 set
x j = X2d(i+1) (βd( j+1)) for j ∈ {i+1, . . . , d(log2 `)/de−2}. Correctness of the algorithm then follows.
Remark 5.6. Algorithm 5 is readily modified to perform the precomputations required by the
algorithms of Sections 3 and 4 by setting d = 1, taking k = dlog2 `e − 1 in Line 1, and storing
the intermediate values of x0, . . . , xk computed in Lines 3 and 7. The entries of (X2i (λ))0≤i<dlog2 `e

for some λ ∈ F can be computed alongside the algorithm with O(log `) operations in F as the
sequence X20 (λ) = λy and X2i (λ) = (X2i−1 (λ)2−X2i−1 (λ))yi−1 for i ∈ {1, . . . , dlog2 `e−1}. Thus, it is
worthwhile to store y and y0, . . . , ydlog2 `e−2 if the vector has to be computed for several different λ.
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Algorithm 5 Precomputations(d, `)
Input: d ∈ N such that F2d ⊆ F and βi/βdbi/dc ∈ F2d for i ∈ {0, . . . , n − 1}, and ` ∈ {1, . . . , 2n}.
Output: X2di (βd(i+1))2d

− X2di (βd(i+1)) and its inverse for i ∈ {0, . . . , d(log2 `)/de − 2}, and 1/β0.
1: k ← d(log2 `)/de − 2, y← 1/β0
2: for j = 0, . . . , k do
3: x j ← βd( j+1)y

4: for i = 0, . . . , k do
5: xi ← x2d

i − xi, yi ← 1/xi

6: for j = i + 1, . . . , k do
7: x j ← (x2d

j − x j)yi

8: return xi and yi for i ∈ {0, . . . , k}, and y

5.3. The generalised Taylor expansion algorithm of Gao and Mateer
The generalised Taylor expansion of a polynomial f ∈ F[x] at a nonconstant polynomial

p ∈ F[x] is the series expansion f = f0+ f1 p+ f2 p2+· · · such that fi ∈ F[x]deg p for i ∈ N. Gao and
Mateer (2010, Section II) propose a quasi-linear time algorithm for computing the coefficients
of the Taylor expansion when p = xt − x for some t ≥ 2. We present a nonrecursive version
of their algorithm for t equal to a power of two, along with a matching algorithm for recovering
polynomials from the coefficients of their Taylor expansion. Finally, we derive a bound on the
complexity of both algorithms which is tighter than the one provided by Gao and Mateer.

Let d, ` ∈ N be nonzero and f ∈ F[x]`. For k ∈ N, let fk,0, fk,1, . . . ∈ F[x]2d+k be the
coefficients of the Taylor expansion of f at (x2d

− x)2k
. Then fk,i = 0 if i ≥ d`/2d+ke, and fk,0 = f

if k ≥ dlog2 d`/2
dee. Moreover,

f =
∑
i∈N

(
fk,2i +

(
x2d
− x

)2k

fk,2i+1

) (
x2d
− x

)2k+1i
for k ∈ N.

Thus, fk+1,i = fk,2i + x2k
fk,2i+1 + x2d+k

fk,2i+1 for k, i ∈ N. Given the coefficients of fk,2i and fk,2i+1
on the monomial basis, it follows that the coefficients of fk+1,i on the monomial basis can be
computed with 2d+k additions. This computation is also readily inverted by performing the same
number of additions. Consequently, given the Taylor coefficients f0,0, f0,1, . . . , f0,d`/2de−1 with
respect to the monomial basis, we can efficiently compute f = fdlog2 d`/2

dee,0 with respect to the
monomial basis by means of the recursive formula, and vice versa. Using this observation, we
obtain Algorithms 6 and 7.

Lemma 5.7. Algorithms 6 and 7 perform at most b`/2cdlog2 d`/2
dee additions in F.

Proof. For each k ∈ {0, . . . , dlog2 d`/2
dee − 1}, Lines 2–7 of either algorithm perform

2d+k`1 + max
(
`2 − 2d+k, 0

)
≤ 2d+k`1 + (`2 − d`2/2e) = 2d+k`1 + b`2/2c = b`/2c

additions in F.

5.4. Conversion algorithms
By combining Lemma 5.1 with the Taylor expansion algorithms of Section 5.3, we obtain

Algorithms 8 and 9 for converting between the monomial and LCH bases. Each algorithm op-
erates on a vector (ai)0≤i<` which initially contains the coefficients of a polynomial on the input
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Algorithm 6 TaylorExpansion(d, `, (ai)0≤i<`)
Input: positive integers d and `; and the vector (ai)0≤i<` such that ai = fi ∈ F for i ∈ {0, . . . , `−1}.
Output: ai = hi ∈ F for i ∈ {0, . . . , ` − 1} such that

∑`−1
i=0 hixi−2dbi/2dc(x2d

− x)bi/2
dc =

∑`−1
i=0 fixi.

1: for k = dlog2 d`/2
dee − 1, . . . , 0 do

2: `1 ← b`/(2d+k+1)c, `2 ← ` − 2d+k+1`1
3: for i = 0, . . . , `1 − 1 do
4: for j = 2d+k − 1, . . . , 0 do
5: a2d+k(2i)+2k+ j ← a2d+k(2i)+2k+ j + a2d+k(2i+1)+ j

6: for j = `2 − 2d+k − 1, . . . , 0 do
7: a2d+k(2`1)+2k+ j ← a2d+k(2`1)+2k+ j + a2d+k(2`1+1)+ j

Algorithm 7 InverseTaylorExpansion(d, `, (ai)0≤i<`)
Input: positive integers d and `; and the vector (ai)0≤i<` such that ai = hi ∈ F for i ∈ {0, . . . , `−1}.
Output: ai = fi for i ∈ {0, . . . , ` − 1} such that

∑`−1
i=0 fixi =

∑`−1
i=0 hixi−2dbi/2dc(x2d

− x)bi/2
dc.

1: for k = 0, . . . , dlog2 d`/2
dee − 1 do

2: `1 ← b`/(2d+k+1)c, `2 ← ` − 2d+k+1`1
3: for i = 0, . . . , `1 − 1 do
4: for j = 0, . . . , 2d+k − 1 do
5: a2d+k(2i)+2k+ j ← a2d+k(2i)+2k+ j + a2d+k(2i+1)+ j

6: for j = 0, . . . , `2 − 2d+k − 1 do
7: a2d+k(2`1)+2k+ j ← a2d+k(2`1)+2k+ j + a2d+k(2`1+1)+ j

basis, and has it entries overwritten by the coefficients of the polynomial on the output basis. The
subvectors of these vectors that are passed to Algorithms 6 and 7 can be represented in practice
by offset and stride parameters. In doing so, only O(log `) field elements are required to be stored
in auxiliary space by either algorithm, which includes the storage of the precomputed elements
discussed in Section 5.2.

Theorem 5.8. Algorithms 8 and 9 are correct.

Proof. Correctness is only proved for Algorithm 8, since the proof for Algorithm 9 follows along
similar lines. Suppose that Algorithm 8 is called on ` ∈ {1, . . . , 2n} and (ai)0≤i<`, with ai = fi ∈ F
for i ∈ {0, . . . , ` − 1}. Then it is clear that the algorithm produces the correct output if ` = 1,
since X0 = 1 and the algorithm does not modify the entries of (ai)0≤i<` in this case. Therefore,
assume that ` > 1. Let f =

∑`−1
i=0 fixi, and f (t,k)

0 , . . . , f (t,k)
`−1 ∈ F satisfy (5.2) for t ∈ {0, . . . ,m − 1}

and k ∈ {0, . . . , dn/dte − 1}, which exist and are unique by Lemma 5.1.
Lines 1 to 4 of the algorithm multiply ai by βi

0 for i ∈ {1, . . . , ` − 1} if β0 , 1. If ` ≤ 2, then
the remaining lines of the algorithm have no effect on the vector (ai)0≤i<`, since d(log2 `)/dte < 2
for t ∈ {0, . . . ,m−1}. As X0 = 1 and X0 = x/β0, it follows that the algorithm produces the correct
output if ` ≤ 2. Therefore, assume that ` > 2. Then qs < ` ≤ qs+1 for some s ∈ {0, . . . ,m−1}, and
properties (1) and (4) of Lemma 5.1 imply that ai = f (m−1,0)

i = · · · = f (s,0)
i for i ∈ {0, . . . , ` − 1}

after Lines 1 to 4 of the algorithm have been performed.
Suppose that during the algorithm, Line 7 is reached and the entries of (ai)0≤i<` satisfy ai =

f (t,k)
i for i ∈ {0, . . . , ` − 1}, where t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} are the

current values of the loop counter variables in Lines 5 and 6. If dt+1/dt divides k +1, then Lines 7
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Algorithm 8 MonomialToLCH(`, (ai)0≤i<`)
Input: ` ∈ {1, . . . , 2n}; and the vector (ai)0≤i<` such that ai = fi ∈ F for i ∈ {0, . . . , ` − 1}.
Output: ai = hi ∈ F for i ∈ {0, . . . , ` − 1} such that

∑`−1
i=0 hiXi =

∑`−1
i=0 fixi.

1: if β0 , 1 and ` > 1 then
2: c← β0, a1 ← ca1
3: for i = 2, . . . , ` − 1 do
4: c← β0c, ai ← cai

5: for t = m − 1,m − 2, . . . , 0 do
6: for k = 0, . . . , d(log2 `)/dte − 2 do
7: if dt+1/dt - k + 1 then
8: for j ∈ Jt,k,` do
9: TaylorExpansion(dt, |It,k,`− j|, (aiqk

t + j)0≤i<|It,k,`− j |)

10: if δt,k , 1 then
11: u′ ← d|It,k,` |/qte − 1, v′ ← |It,k,` | − u′qt, c← δt,k

12: for u = 1, . . . , u′ − 1 do
13: for v = 0, . . . , qt − 1 do
14: for j ∈ Jt,k,`−(uqt+v)qk

t
do

15: a(uqt+v)qk
t + j ← ca(uqt+v)qk

t + j

16: c← δt,kc
17: for v = 0, . . . , v′ − 1 do
18: for j ∈ Jt,k,`−(u′qt+v)qk

t
do

19: a(u′qt+v)qk
t + j ← ca(u′qt+v)qk

t + j

to 19 have no effect on the vector, while property (2) of Lemma 5.1 implies that its entries satisfy
ai = f (t,k+1)

i for i ∈ {0, . . . , ` − 1}. If dt+1/dt does not divide k + 1, then after Lines 7 to 9 have
been performed, the entries of (ai)0≤i<` satisfy

|It,k,`− j |−1∑
i=0

f (t,k)
iqk

t + j
xi =

|It,k,`− j |−1∑
i=0

aiqk
t + jx

i−qtbi/qtc (xqt − x)bi/qtc for j ∈ Jt,k,`.

If δt,k , 1, then Lines 10 to 19 subsequently multiply aiqk
t + j by δ

bi/qtc

t,k for i ∈ It,k,` and j ∈
Jt,k,`−iqk

t
such that i ≥ qt, after-which property (3) of Lemma 5.1 implies that ai = f (t,k+1)

i for
i ∈ {0, . . . , ` − 1}. Therefore, regardless of whether dt+1/dt divides k + 1, if the entries of (ai)0≤i<`

satisfy ai = f (t,k)
i for i ∈ {0, . . . , `−1} upon reaching Line 7, then ai = f (t,k+1)

i for i ∈ {0, . . . , `−1}
after Lines 7 to 19 have been performed. In particular, if t , 0 and k = d(log2 `)/dte − 2,
then property (4) of Lemma 5.1 implies that ai = f (t−1,0)

i for i ∈ {0, . . . , ` − 1} after Lines 7
to 19 have been performed. As ai = f (t,k)

i for i ∈ {0, . . . , ` − 1} the first time the algorithm
reaches Line 7, which happens for t = s and k = 0, it follows that the algorithm terminates with
ai = f (0,d(log2 `)/d0e−1)

i for i ∈ {0, . . . , ` − 1}. Property (5) of Lemma 5.1 implies that this is the
correct output.

Remark 5.9. Generalising arguments of Gao and Mateer (2010, Appendix A) shows that if β is a
Cantor basis and d < n is a power of two, then X2d(k+1) = X2d

2dk − X2dk for k ∈ {0, . . . , dn/de − 2}. By
using this property in place of Lemma 5.4 in the proof of Lemma 5.1, it is possible to show that
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Algorithm 9 LCHToMonomial(`, (ai)0≤i<`)
Input: ` ∈ {1, . . . , 2n}; and the vector (ai)0≤i<` such that ai = hi ∈ F for i ∈ {0, . . . , ` − 1}.
Output: ai = fi ∈ F for i ∈ {0, . . . , ` − 1} such that

∑`−1
i=0 fixi =

∑`−1
i=0 hiXi.

1: for t = 0, . . . ,m − 1 do
2: for k = d(log2 `)/dte − 2, . . . , 0 do
3: if dt+1/dt - k + 1 then
4: if δt,k , 1 then
5: u′ ← d|It,k,` |/qte − 1, v′ ← |It,k,` | − u′qt, c← (1/δt,k)
6: for u = 1, . . . , u′ − 1 do
7: for v = 0, . . . , qt − 1 do
8: for j ∈ Jt,k,`−(uqt+v)qk

t
do

9: a(uqt+v)qk
t + j ← ca(uqt+v)qk

t + j

10: c← (1/δt,k)c
11: for v = 0, . . . , v′ − 1 do
12: for j ∈ Jt,k,`−(u′qt+v)qk

t
do

13: a(u′qt+v)qk
t + j ← ca(u′qt+v)qk

t + j

14: for j ∈ Jt,k,` do
15: InverseTaylorExpansion(dt, |It,k,`− j|, (aiqk

t + j)0≤i<|It,k,`− j |)

16: if β0 , 1 and ` > 1 then
17: c← (1/β0), a1 ← ca1
18: for i = 2, . . . , ` − 1 do
19: c← (1/β0)c, ai ← cai

Algorithms 8 and 9 produce the correct output when β is a Cantor basis if one takes m = dlog2 ne
and dt = 2t for t ∈ {0, . . . ,m}. The substitution is necessary as the requirements on the quotients
βi/βdtbi/dtc may not be met in this case. For example, if β is a Cantor basis with n ≥ 4, then
β3 ∈ F24 \F22 (Gao and Mateer, 2010, Lemma 3) and, thus, β3/β2b3/2c = β3/β2 = 1/(β3 +1) < F22 .
For the special case of ` = 2n, the algorithms of Lin et al. (2016b) are recovered, but expressed
as nonrecursive algorithms.

5.5. Complexity

The following theorem bounds the number of operations performed by Algorithms 8 and 9.

Theorem 5.10. If qs < ` ≤ qs+1 for some s ∈ {0, . . . ,m − 1}, then Algorithms 8 and 9 perform at
most

1
2

⌊
`

2

⌋ ⌈log2 `
⌉ (⌈ log2 `

ds

⌉
− 1

)
+

s−1∑
t=0

dt

⌈
log2 `

dt

⌉ (
dt+1

dt
− 1

)
additions in F, and at most (` − 1)(dlog2 `e + 1) − 1 multiplications in F.

Theorem 5.10 is proved in Section 5.6. Recall that for a generic choice of β, the algorithms of
Lin et al. (2016b) allow polynomials in F[x]2n to be converted between the LCH and monomial
bases with O(2nn2) additions and O(2nn) multiplications. For comparison, the corresponding
parameters for Algorithms 8 and 9 are m = 1 and ` = 2n. For these parameters, the algorithms
roughly reduce to their counterparts in (Lin et al., 2016b), with both sets of algorithms performing
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identical patterns of Taylor expansions and inverse Taylor expansions. These similarities result
in Algorithms 8 and 9 achieving the same asymptotic complexity for the generic case as the
algorithms of Lin et al., as confirmed by the following corollary of Theorem 5.10.

Corollary 5.11. If m = 1, then Algorithms 8 and 9 perform at most b`/2c
(
dlog2 `e

2

)
additions in F,

and at most (` − 1)(dlog2 `e + 1) multiplications in F.

Proof. Algorithms 8 and 9 perform no multiplications if ` = 1, at most one multiplication if
` = 2, and no additions for ` ≤ 2. Thus, the bounds hold for ` ≤ 2. If m = 1 and ` > 2, then
Theorem 5.10 can be applied with s = 0, which yields the stated bounds.

Theorem 5.10 supports our earlier claim, made directly after Lemma 5.1, that each subfield
of degree less than log2 ` in the tower (5.1) contributes to the performance of our algorithms
by reducing the number of additions and multiplications they perform. The following corollary
demonstrates the cumulative effect of these contributions by showing that for each c ≥ 2, Al-
gorithms 8 and 9 perform O(`(log `)(log log `)) additions for towers such that dt+1/dt ≤ c for
t ∈ {0, . . . ,m − 1}, matching the bound obtained by Lin et al. (2016b) for Cantor bases.

Corollary 5.12. Let b, c ∈ N such that 2 ≤ b ≤ dt+1/dt ≤ c for t ∈ {0, . . . ,m − 1}. Then
Algorithms 8 and 9 perform at most

c − 1
2

⌊
`

2

⌋ (⌈
log2(`/2)

⌉ (⌈
logb log2 max(`, 2)

⌉
+

1
b − 1

)
+ 1 −

1
b − 1

)
additions in F.

Proof. Let b, c ∈ N such that 2 ≤ b ≤ dt+1/dt ≤ c for t ∈ {0, . . . ,m − 1}. Then the bound holds
trivially if ` ≤ 2, since neither algorithm will perform any additions. If ` > 2, then qs < ` ≤ qs+1
for some s ∈ {0, . . . ,m − 1}. Thus, s ≤ dlogb log2 max(`, 2)e − 1, d(log2 `)/dse ≤ c and

s−1∑
t=0

dt

⌈
log2 `

dt

⌉
≤ s

(⌈
log2 `

⌉
− 1

)
+

s−1∑
t=0

dt ≤ s
⌈
log2(`/2)

⌉
+

ds − 1
b − 1

≤ s
⌈
log2(`/2)

⌉
+
dlog2(`/2)e − 1

b − 1
.

Substituting these inequalities into the bound of Theorem 5.10 then completes the proof.

Similar to the algorithms of Lin et al. for Cantor bases, and with equally strong require-
ments on the field F, the following proposition shows that multiplications are eliminated from
Algorithms 8 and 9 by a special family of β.

Proposition 5.13. If β0 = 1, dt+1/dt = 2 and TrFqt+1 /Fqt
(βdt(k+1)/βdtk) = 1 for t ∈ {0, . . . ,m − 1}

and even k ∈ {0, . . . , d(log2 `)/dte − 2}, then Algorithms 8 and 9 perform no multiplications in F.

Proof. If β0 = 1, then Lines 1 to 4 of Algorithm 8 and Lines 16 to 19 of Algorithm 9 perform
no multiplications. If dt+1/dt = 2 and TrFqt+1 /Fqt

(βdt(k+1)/βdtk) = 1 for t ∈ {0, . . . ,m − 1} and
even k ∈ {0, . . . , d(log2 `)/dte − 2}, then Lines 5 to 19 of Algorithm 8 and Lines 1 to 15 of
Algorithm 9 perform no multiplications, since property (3) of Lemma 5.1 implies that δt,k = 1
for t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , d(log2 `)/dte−2} such that dt+1/dt does not divide k + 1.

Remark 5.14. If dt+1/dt = 2 for some t ∈ {0, . . . ,m − 1}, then property (3) of Lemma 5.1 implies
that δt,k ∈ Fqt for even k ∈ {0, . . . , dn/de − 2}. Consequently, if some of these elements cannot
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be forced to equal one, then it may still be possible to reduce the cost of the corresponding
multiplications in Lines 5 to 19 of Algorithm 8 (similarly, Lines 1 to 15 of Algorithm 9) by
choosing a representation of the elements of the field that lowers the cost of multiplying by
elements of the subfield Fqt . Such optimisations have previously been shown to be beneficial in
practice, particularly for multiplications by elements of small subfields, by Bernstein and Chou
(2014) and Chen et al. (2017a).

We end the section with an example of the potential benefits offered by Algorithms 8 and 9
in a fixed field. As noted earlier in the section, the algorithms roughly reduce to those of Lin
et al. (2016b) when m = 1. Thus, comparing Algorithms 8 and 9 against themselves for this case
provides some indication of the benefits afforded by the techniques of this section. The example
also demonstrates the reduction in multiplicative complexity afforded by the use of additional
subfields, which is not exhibited by the bound of Theorem 5.10

Example 5.15. Under the assumption that F212 ⊆ F, Figure 1 displays the relative number of
additions performed by Algorithms 8 and 9 for each choice of the tower (5.1) such that dm = 12
and m ≥ 2, given as a fraction of the number performed for the trivial choice of tower F2 ⊂

F212 , as the polynomial length ` ranges over {512, . . . , 4096}. As can be seen in the figure, the
fraction of additions performed for each tower converges to (

∑m−1
t=0 (dt+1/dt − 1))/(dm − 1) as `

approaches 4096, since the bound of Theorem 5.10 is attained for ` = qm.
Figure 1 also contains two plots which display the relative number of multiplications per-

formed by Algorithms 8 and 9 for each tower, once again given as a fraction of the number
performed for the trivial choice of tower F2 ⊂ F212 . To emphasise the influence of the choice
of tower, it is assumed that β0 = 1 in all cases, since the number of multiplications performed
by Lines 1 to 4 of Algorithm 8 and Lines 16 to 19 of Algorithm 9 is independent of the tower.
In the first of the two plots, it is assumed that δt,k is never equal to one. In the second plot, it
is assumed that δt,k is equal to one if and only if dt+1/dt = 2 and k is even, in order to demon-
strate the benefit of choosing β so that TrFqt+1 /Fqt

(βdt(k+1)/βdtk) = 1 for t ∈ {0, . . . ,m − 1} and
k ∈ {0, . . . , d(log2 `)/dte − 2} such that dt+1/dt = 2 and k is even.

5.6. Proof of Theorem 5.10

We split the proof of Theorem 5.10 into five lemmas, with the first four lemmas dedicated to
bounding the number of additions performed by Algorithms 8 and 9.

Lemma 5.16. If qs < ` ≤ qs+1 for some s ∈ {0, . . . ,m − 1}, then Algorithms 8 and 9 perform at
most

s∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`− j|

2

⌋⌈
log2

⌈
|It,k,`− j|

qt

⌉⌉

additions in F.

Proof. Additions are only performed by Line 9 of Algorithm 8 and Line 15 of Algorithm 9, with
Lemma 5.7 implying that each line performs at most b|It,k,`− j|/2cdlog2 d|It,k,`− j|/qtee additions.
Thus, the number of additions performed by either algorithm is in-turn bounded by the sum of
these bounds for t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} such that dt+1/dt - k + 1. If
there exists s ∈ {0, . . . ,m− 1} such that qs < ` ≤ qs+1, then the resulting bound is equal to that of
the lemma, since it follows that d(log2 `)/dte ≤ dds+1/dte < 2 for t ∈ {s + 1, . . . ,m − 1}.
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Figure 1: Relative number of operations performed by Algorithms 8 and 9 for Example 5.15.

We now bound the inner-most sums of the bound from Lemma 5.16, before working our way
out to obtain the bound of Theorem 5.10.

Lemma 5.17. If ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2}, then∑
j∈Jt,k,`

⌊
|It,k,`− j|

2

⌋⌈
log2

⌈
|It,k,`− j|

qt

⌉⌉
≤

1
2

qet,k

t+1z
(
dt+1et,k − dt(k + 1)

)
+

⌊ r
2

⌋⌈
log2

⌈
r

qk+1
t

⌉⌉
,

where z = d`/qet,k

t+1e − 1 and r = ` − zqet,k

t+1.

Proof. Suppose that ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2}. Let
z = d`/qet,k

t+1e − 1 and r = ` − zqet,k

t+1. Then, as r ≥ 1, j ∈ Jt,k,` if and only if j = j1qet,k

t+1 + j0 for some
j1 ∈ {0, . . . , z} and j0 ∈ {0, . . . ,min(qk

t , ` − j1qet,k

t+1) − 1}. Moreover, if j ∈ Jt,k,` is written in this
form, then |It,k,`− j| = qet,k

t+1/q
k
t if j1 < z, and |It,k,`− j| = |It,k,r− j0 | if j1 = z. Thus, the bound of the

lemma holds if and only if

min(qk
t ,r)−1∑

j=0

⌊
|It,k,r− j|

2

⌋⌈
log2

⌈
|It,k,r− j|

qt

⌉⌉
≤

⌊ r
2

⌋⌈
log2

⌈
r

qk+1
t

⌉⌉
. (5.6)

To prove this inequality, we may assume that r ≥ qk
t , since otherwise both sides of the inequality

are zero. Let u = br/qk
t c and v = r − uqk

t . Then, as r ≤ qet,k

t+1, |It,k,r− j| = u + d(v − j)/qk
t e for
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j ∈ {0, . . . , qk
t − 1}. Consequently, the left-hand side of (5.6) is equal to

v
⌊
u + 1

2

⌋⌈
log2

⌈
u + 1

qt

⌉⌉
+

(
qk

t − v
) ⌊u

2

⌋⌈
log2

⌈
u
qt

⌉⌉
.

We have u = r/qk
t if v = 0, and u + 1 = dr/qk

t e if v , 0. Thus, du/qte = dr/qk+1
t e if v = 0, and

d(u + 1)/qte = dr/qk+1
t e if v , 0. It follows that the left-hand side of (5.6) is less than or equal to⌊

v(u + 1) + (qk
t − v)u

2

⌋⌈
log2

⌈
r

qk+1
t

⌉⌉
=

⌊ r
2

⌋⌈
log2

⌈
r

qk+1
t

⌉⌉
.

Therefore, (5.6) holds, which completes the proof of the lemma.

Combining the following two lemmas with Lemma 5.16 completes the proof of the addition
bound of Theorem 5.10.

Lemma 5.18. If ` ∈ {1, . . . , 2n} and t ∈ {0, . . . ,m − 1} such that qt+1 < `, then

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`− j|

2

⌋⌈
log2

⌈
|It,k,`− j|

qt

⌉⌉
≤

⌊
`

2

⌋
dt

2

⌈
log2 `

dt

⌉ (
dt+1

dt
− 1

)
.

Proof. Suppose that ` ∈ {1, . . . , 2n} and t ∈ {0, . . . ,m − 1} such that qt+1 < `. Then, for k ∈
{0, . . . , d(log2 `)/dte − 2}, the integers z = d`/qet,k

t+1e − 1 and r = ` − zqet,k

t+1 satisfy r ≤ qet,k

t+1 and
zqet,k

t+1/2 + br/2c = b`/2c. Thus, Lemma 5.17 implies that∑
j∈Jt,k,`

⌊
|It,k,`− j|

2

⌋⌈
log2

⌈
|It,k,`− j|

qt

⌉⌉
≤

⌊
`

2

⌋ (
dt+1et,k − dt(k + 1)

)
(5.7)

for k ∈ {0, . . . , d(log2 `)/dte − 2}. If k ∈ {0, . . . , d(log2 `)/dte − 2} such that dt+1/dt does not
divide k + 1, then k = k1(dt+1/dt) + k0 for nonnegative integers k1 < (dt/dt+1)d(log2 `)/dte and
k0 < dt+1/dt − 1. Moreover, when k is written in this form, we have

dt+1et,k − dt(k + 1) = dt+1

⌈
dt(k0 + 1)

dt+1

⌉
− dt(k0 + 1) = dt+1 − dt(k0 + 1).

As (dt/dt+1)d(log2 `)/dte > (dt/dt+1)ddt+1/dte = 1, it follows by substituting into (5.7) and sum-
ming the resulting inequalities that

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`− j|

2

⌋⌈
log2

⌈
|It,k,`− j|

qt

⌉⌉
≤

⌊
`

2

⌋
dt

dt+1

⌈
log2 `

dt

⌉ dt+1/dt−2∑
k0=0

dt+1 − dt(k0 + 1)

=

⌊
`

2

⌋
dt

2

⌈
log2 `

dt

⌉ (
dt+1

dt
− 1

)
,

which completes the proof of the lemma.

Lemma 5.19. If ` ∈ {1, . . . , 2n} and s ∈ {0, . . . ,m − 1} such that qs < ` ≤ qs+1, then

d(log2 `)/dse−2∑
k=0

ds+1/ds-k+1

∑
j∈Js,k,`

⌊
|Is,k,`− j|

2

⌋⌈
log2

⌈
|Is,k,`− j|

qs

⌉⌉
≤

⌊
`

2

⌋
dlog2 `e

2

(⌈
log2 `

ds

⌉
− 1

)
.
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Proof. Suppose that ` ∈ {1, . . . , 2n} and s ∈ {0, . . . ,m − 1} satisfy qs < ` ≤ qs+1. Then, for
k ∈ {0, . . . , d(log2 `)/dse − 2}, we have z = d`/qes,k

s+1e − 1 = 0 and r = ` − zqes,k

s+1 = ` > qk+1
s . Thus,

Lemma 5.17 implies that∑
j∈Js,k,`

⌊
|Is,k,`− j|

2

⌋⌈
log2

⌈
|Is,k,`− j|

qs

⌉⌉
≤

⌊
`

2

⌋⌈
log2

⌈
`

qk+1
s

⌉⌉
=

⌊
`

2

⌋ (⌈
log2 `

⌉
− dt(k + 1)

)
for k ∈ {0, . . . , d(log2 `)/dse−2}. Moreover, ds+1/ds - k +1 for k ∈ {0, . . . , d(log2 `)/dse−2}, since
d(log2 `)/dse − 1 < ds+1/ds. It follows that

d(log2 `)/dse−2∑
k=0

ds+1/ds-k+1

∑
j∈Js,k,`

⌊
|Is,k,`− j|

2

⌋⌈
log2

⌈
|Is,k,`− j|

qs

⌉⌉
≤

⌊
`

2

⌋ (⌈
log2 `

ds

⌉
− 1

) (⌈
log2 `

⌉
−

ds

2

⌈
log2 `

ds

⌉)

≤

⌊
`

2

⌋ (⌈
log2 `

ds

⌉
− 1

)
dlog2 `e

2
,

which completes the proof of the lemma.

We now complete the proof of Theorem 5.10 by bounding the number of multiplications
performed by Algorithms 8 and 9.

Lemma 5.20. If ` > 1, then Algorithms 8 and 9 perform at most (` − 1)(dlog2 `e + 1) − 1
multiplications in F.

Proof. Suppose that ` > 1. Then Lines 1 to 4 of Algorithm 8 perform at most 2(` − 1) − 1
multiplications, while Lines 5 to 19 perform at most

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

⌈ |It,k,` |

qt

⌉
− 2 +

|It,k,` |−1∑
i=qt

∣∣∣Jt,k,`−iqk
t

∣∣∣
multiplications. The same bounds hold respectively for Lines 16 to 19 and Lines 1 to 15 of
Algorithm 9. If t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} such that dt+1/dt does not
divide k + 1, then ` > qk+1

t and dt+1et,k − dtk > dt. For such t and k, it follows that |It,k,` | > qt and
|Jt,k,`−iqk

t
| ≥ qk

t for i ∈ {0, . . . , qt − 1}, since ` − iqk
t ≥ qk

t for i ≤ qt − 1. Thus,

|It,k,` |−1∑
i=qt

∣∣∣Jt,k,`−iqk
t

∣∣∣ =
∑

i∈It,k,`

∣∣∣Jt,k,`−iqk
t

∣∣∣ − qt−1∑
i=0

∣∣∣Jt,k,`−iqk
t

∣∣∣ ≤ ` − qk+1
t

and d|It,k,` |/qte−1 ≤ dd`/qk
t e/qte−1 ≤ `/qk+1

t for t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , d(log2 `)/dte−2}
such that dt+1/dt does not divide k + 1. By combining these inequalities with (5.3), it follows that
Algorithms 8 and 9 perform at most

(` − 1)
(⌈

log2 `
⌉

+ 1
)
− 1 +

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

(
`

qk+1
t
− qk+1

t

)

multiplications. Here, the double summation is equal to (`/2dlog2 `e − 1)
∑dlog2 `e−1

k=1 2k ≤ 0, since
the sets {dt(k + 1) | k ∈ {0, . . . , d(log2 `)/dte−2}, dt+1/dt - k + 1} for t ∈ {0, . . . ,m−1} are pairwise
disjoint and their union is {1, . . . , dlog2 `e − 1}.
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Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P., 2008. Faster multiplication in GF(2)[x], in: Algorithmic number
theory—ANTS 2008. Springer, Berlin. volume 5011 of Lecture Notes in Comput. Sci., pp. 153–166.

Cantor, D.G., 1989. On arithmetical algorithms over finite fields. J. Combin. Theory Ser. A 50, 285–300.
Chen, M., Cheng, C., Kuo, P., Li, W., Yang, B., 2017a. Faster multiplication for long binary polynomials.

arXiv:1708.09746 [cs.SC].
Chen, M., Cheng, C., Kuo, P., Li, W., Yang, B., 2018. Multiplying boolean polynomials with Frobenius partitions in

additive fast Fourier transform. arXiv:1803.11301 [cs.SC].
Chen, M.S., Li, W.D., Peng, B.Y., Yang, B.Y., Cheng, C.M., 2018. Implementing 128-bit secure MPKC signatures.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E101.A, 553–569.
Chou, T., 2017. McBits revisited, in: Cryptographic Hardware and Embedded Systems—CHES 2017, Springer, Cham.

pp. 213–231.
Coxon, N., 2019. Fast systematic encoding of multiplicity codes. J. Symbolic Comput. 94, 234–254.
Coxon, N., 2020. Fast Hermite interpolation and evaluation over finite fields of characteristic two. J. Symbolic Comput.

98, 270–283.
Furia, C.A., 2014. Rotation of sequences: Algorithms and proofs. arXiv:1406.5453 [cs.LO].
Gao, S., Mateer, T., 2010. Additive fast Fourier transforms over finite fields. IEEE Trans. Inform. Theory 56, 6265–6272.
von zur Gathen, J., Gerhard, J., 1996. Arithmetic and factorization of polynomial over F2 (extended abstract), in: ISSAC

’96—Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ACM, New York.
pp. 1–9.

Gerhard, J., 2000. Modular algorithms for polynomial basis conversion and greatest factorial factorization, in: Proceed-
ings of the Seventh Rhine Workshop on Computer Algebra, pp. 125–141.

Gries, D., Mills, H., 1981. Swapping sections. Technical Report TR 81-452. Cornell University. https://hdl.

handle.net/1813/6292.
Harvey, D., 2009. A cache-friendly truncated FFT. Theoret. Comput. Sci. 410, 2649–2658.
Harvey, D., Roche, D.S., 2010. An in-place truncated Fourier transform and applications to polynomial multiplication,

in: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM,
New York, pp. 325–329.

van der Hoeven, J., 2004. The truncated Fourier transform and applications, in: ISSAC 2004—Proceedings of the 2004
international symposium on Symbolic and algebraic computation. ACM, New York, pp. 290–296.

van der Hoeven, J., 2005. Notes on the Truncated Fourier Transform. Technical Report 2005-5. Université Paris-Sud,
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