
HAL Id: hal-01845238
https://hal.science/hal-01845238v2

Preprint submitted on 5 Sep 2019 (v2), last revised 22 Jan 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast transforms over finite fields of characteristic two
Nicholas Coxon

To cite this version:

Nicholas Coxon. Fast transforms over finite fields of characteristic two. 2019. �hal-01845238v2�

https://hal.science/hal-01845238v2
https://hal.archives-ouvertes.fr

FAST TRANSFORMS OVER FINITE FIELDS OF

CHARACTERISTIC TWO

NICHOLAS COXON

Abstract. We describe new fast algorithms for evaluation and interpolation

on the “novel” polynomial basis over finite fields of characteristic two intro-
duced by Lin, Chung and Han (FOCS 2014). Fast algorithms are also described

for converting between their basis and the monomial basis, as well as for con-

verting to and from the Newton basis associated with the evaluation points
of the evaluation and interpolation algorithms. Combining algorithms yields

a new truncated additive fast Fourier transform (FFT) and inverse truncated

additive FFT which improve upon some previous algorithms when the field
possesses an appropriate tower of subfields.

1. Introduction

Let F be a finite field of characteristic two, and β = (β0, . . . , βn−1) ∈ Fn have
entries that are linearly independent over F2. Enumerate the F2-linear subspace
of F generated by the entries of the vector by setting

ωi =

n−1∑
k=0

[i]kβk

for i ∈ {0, . . . , 2n− 1}, where [·]k : N→ {0, 1} for k ∈ N such that i =
∑

k∈N 2k[i]k
for i ∈ N. Define polynomials

Xi =

n−1∏
k=0

2k[i]k−1∏
j=0

x− ωj

ω2k − ωj
and Ni =

i−1∏
j=0

x− ωj

ωi − ωj

for i ∈ {0, . . . , 2n−1}. Then the definition of the functions [·]k implies that Xi has
degree equal to i, while it is clear that Ni also has degree equal to i. Letting F[x]`
denote the space of polynomials over F with degree strictly less than `, it follows that
{X0, . . . , X`−1} and {N0, . . . , N`−1} are bases of F[x]` over F for ` ∈ {1, . . . , 2n}.
The former basis was introduced by Lin, Chung and Han [21], and is referred to
hereafter as the Lin–Chung–Han basis, or simply the LCH basis, of F[x]` associated
with β. The polynomials N0, . . . , N2n−1 are scalar multiples of the Newton basis
polynomials associated with the points ω0, . . . , ω2n−1, with the scalars chosen such
that Ni(ωi) = 1. However, we simply refer to {N0, . . . , N`−1} as the Newton basis
of F[x]` associated with β. The space F[x]` also comes equipped with the monomial
basis {1, x, . . . , x`−1}.

In this paper, we describe new fast algorithms for evaluation and interpolation
on the Lin–Chung–Han basis, and for converting between the Lin–Chung–Han ba-
sis and each of the Newton and monomial bases. These algorithms may in turn be

This work was supported by Nokia in the framework of the common laboratory between Nokia

Bell Labs and INRIA.

1

2 NICHOLAS COXON

combined to obtain fast algorithms for evaluation and interpolation on the Newton
or monomial bases, and for converting between the Newton and monomial bases.
The resulting algorithm for evaluation on the monomial basis provides a new addi-
tive fast Fourier transform (FFT). The designation as “additive” reflects the fact
that FFTs have traditionally evaluated polynomials at each element of a cyclic
multiplicative group, whereas the evaluation points ω0, . . . , ω2n−1 of our FFT form
an additive group. To avoid confusion, we refer to algorithms that evaluate over
a multiplicative group as multiplicative FFTs hereafter. Additive FFTs have been
investigated as an alternative to multiplicative FFTs for use in multiplication algo-
rithms for binary polynomials [30, 5, 24, 7, 8, 18], and have also found applications
in coding theory and cryptography [4, 3, 9, 10, 1].

Additive FFTs first appeared in the 1980s with the of algorithm of Wang and
Zhu [31], which was subsequently rediscovered by Cantor [6]. For characteristic two
finite fields, the Wang–Zhu–Cantor algorithm requires β to be a so-called Cantor
basis: its entries must satisfy β0 = 1 and βk−1 = β2

k−βk for k ∈ {1, . . . , n−1}. The
algorithm then takes the coefficients on the monomial basis of a polynomial in F[x]2n

and evaluates it at each of the points ω0, . . . , ω2n−1 with O(2nnlog2 3) additions in F,
and O(2nn) multiplications in F. Gao and Mateer [14] subsequently improve upon
this complexity by describing an algorithm that performs O(2nn log n) additions
and O(2nn) multiplications. However, as for the Wang–Zhu–Cantor algorithm, this
complexity is only obtained in a limited setting, since a finite field of characteristic
two admits a Cantor basis of dimension n if and only if it contains F

22
dlog2 ne as a

subfield [14, Appendix A].
The additive FFT of von zur Gathen and Gerhard [30] removes the restriction

that β must be a Cantor basis, allowing the vector to be chosen subject only to the
requirement of linear independence of its entries. Their algorithm performsO(2nn2)
additions in F, and O(2nn2) multiplications in F. Gao and Mateer [14] subsequently
describe an algorithm that performs O(2nn2) additions and only O(2nn) multipli-
cations. Bernstein, Chou and Schwabe [4] in turn generalise the algorithm of Gao
and Mateer so that time is not wasted manipulating coefficients that are known
to be zero when the polynomial being evaluated by the transform belongs to F[x]`
for some ` < 2n. They also describe how to replace some multiplications in their
algorithm with less time consuming additions. Bernstein and Chou [3] contribute
several more improvements to the algorithm in the case that β is a Cantor basis.

The generalisation of Bernstein, Chou and Schwabe is obtained by reducing to
the case ` = 2n and disregarding parts of the algorithm that involve manipulating
coefficients that are known to be zero. This technique is often referred to as trunca-
tion (or pruning [23, 25]). This term is also applied when only part of a transform is
computed by performing only those steps of the algorithm that are relevant to the
computation of the desired outputs. Truncation is used in FFT-based polynomial
multiplication to ensure that running times vary relatively smoothly in the length
of the problem. To achieve such behaviour it is also necessary to invert truncated
transforms. However, simply examining the output of a truncated transform may
not allow its inversion. An elegant solution to this problem is provided by van
der Hoeven [27, 26] who took the crucial step of augmenting the output with in-
formation about known zero coefficients in the input, allowing him to provide a
multiplicative truncated Fourier transform together with its corresponding inverse
truncated Fourier transform (see also [15, 16, 17]). While truncated additive FFTs

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 3

have been investigated [30, 24, 5, 4, 3, 7, 8, 18], existing methods for their inversion
lack the effectiveness and elegance of the approach introduced by van der Hoeven.

Alongside the introduction of their basis, Lin, Chung and Han [21] describe
fast algorithms for evaluation and interpolation on the basis that yield lower com-
plexities than additive FFTs. Their evaluation algorithm takes the coefficients on
the LCH basis of a polynomial in F[x]2n and evaluates it at each of the points
ω0, . . . , ω2n−1 with O(2nn) additions in F, and O(2nn) multiplications in F. Their
interpolation algorithm inverts this transformation with the same complexity. Lin,
Chung and Han then demonstrate the usefulness of their “novel” basis by using the
algorithms to provide fast encoding and decoding algorithms for Reed–Solomon
codes. This application is further explored in the subsequent works of Lin, Al-
Naffouri and Han [19] and Lin, Al-Naffouri, Han and Chung [20], while Ben-Sasson
et al. [2] utilise the algorithms within their zero-knowledge proof system.

Lin, Al-Naffouri, Han and Chung [20] additionally consider the problem of con-
verting between the LCH basis and the monomial basis. They provide a pair of
algorithms that allow polynomials in F[x]2n to be converted between the two bases
with O(2nn2) additions in F, and O(2nn) multiplications in F. Moreover, they
provide a second pair of algorithms that allow the conversions to be performed
with O(2nn log n) additions and no multiplications in the case that β is a Cantor
basis. Their algorithms use ideas introduced by Gao and Mateer [14], and they note
that combining their algorithms with the evaluation algorithm of Lin, Chung and
Han [21] yields two additive FFTs, one for arbitrary β and one for Cantor bases,
that are “algebraically similar” to the two provided by Gao and Mateer. The ad-
ditive FFT for Cantor bases is applied, with impressive results, to the problem of
binary polynomial multiplication in a series of papers [7, 8, 18].

The techniques developed for additive FFTs have yet to be applied to evalua-
tion/interpolation and conversions problems involving the Newton basis associated
with their evaluation points. In the realm of multiplicative FFTs, one has the fast
algorithms of van der Hoeven and Schost [28], which convert between the monomial
basis and the Newton basis associated with the radix-2 truncated Fourier transform
points [27, 26]. Fast conversion between the two bases is a necessary requirement of
multivariate evaluation and interpolation algorithms [28, 12] and their application
to systematic encoding of Reed–Muller and multiplicity codes [12]. For applications
in coding theory, characteristic two finite fields are particularly interesting due to
their fast arithmetic. However, the algorithms of van der Hoeven and Schost are
not suited to such fields as they require the existence of roots of unity with order
equal to a power of two. It is likely that this problem may be partially overcome
by generalising their algorithm in a manner analogous to the generalisation of the
radix-2 truncated Fourier transform [27, 26] to mixed radices by Larrieu [17], so
that the algorithms only require the existence of roots of unity with smooth or-
ders. The multivariate evaluation and interpolation algorithms of van der Hoeven
and Schost [28] and the author [12] are readily modified to work with the (scaled)
Newton basis introduced at the beginning of the section. Thus, using techniques
developed for additive FFTs to provide fast algorithms for converting between the
Newton and monomial bases yields a complementary solution to the problem.

Our contribution. The evaluation/interpolation and conversion problems consid-
ered in this paper all involve the LCH basis. Consequently, we begin in Section 2

4 NICHOLAS COXON

by reviewing properties of the basis that are utilised in the development of our al-
gorithms, with proofs provided to give a consistent and self-contained presentation.

In Section 3, we describe algorithms for converting between the Newton and LCH
bases. The algorithms follow the divide-and-conquer paradigm that is characteristic
of FFTs, with the length ` conversion problems for polynomials in F[x]` ⊆ F[x]2n

each reduced to two shorter problems of lengths 2dlog2 `e−1 and ` − 2dlog2 `e−1.
The algorithms allow conversion in either direction to be performed with at most
(b`/2c−1)dlog2 `e+O(log2 `) additions in F, and at most b`/2cdlog2 `e−`+O(log2 `)
multiplications in F. Here, the big-O terms account for operations that may be per-
formed as precomputations. Moreover, each algorithm requires only O(log2 `) field
elements to be stored in auxiliary space, i.e., in the space used by the algorithm in
addition to the space required to store its inputs or outputs.

In Section 4, we generalise the algorithms of Lin, Chung and Han [21] to allow
fast evaluation and interpolation on the LCH basis for polynomials in F[x]` ⊆
F[x]2n . The generalisations are obtained by reducing to the case ` = 2n while taking
advantage of known zero coefficients of the polynomials when written on the basis, in
a manner analogous to van der Hoeven’s truncated FFT and inverse truncated FFT.
Given the coefficients on the LCH basis of a polynomial f ∈ F[x]` ⊆ F[x]2n and an
element of the field λ, the evaluation algorithm returns f(ω0 +λ), . . . , f(ω`−1 +λ).
The interpolation algorithm inverts this transformation, returning the coefficients
of a polynomial when given its evaluations at the ` points and λ. Both algorithms
perform at most

min
(

(`− 1)(dlog2 `e+ 2),
(
2dlog2 `e − 1

)
(dlog2 `e+ 1)

)
+O(log2 `)

additions in F, and at most

min

(
`− 1

2
(dlog2 `e+ 1), 2dlog2 `e−1dlog2 `e

)
+O(log2 `)

multiplications in F, where the big-O terms once again account for operations that
may be performed as precomputations. Moreover, each algorithm requires 2dlog2 `e−
` + O(log2 `) field elements to be stored in auxiliary space. As the required space
may be large when ` is slightly larger than a power of two, we describe variants of
the algorithms that require only O(log2 `) field elements to be stored in auxiliary
space, while performing at most 2dlog2 `e extra additions in F, and at most 2dlog2 `e−`
extra multiplications in F.

In the final section of the paper, Section 5, we describe algorithms for converting
between the LCH and monomial bases. The algorithms assume the existence of a
tower of subfields

F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F

such that dm−1 < n ≤ dm, and βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , n − 1} and

t ∈ {0, . . . ,m−1}. Then for polynomials in F[x]` ⊆ F[x]2n such that 2ds < ` ≤ 2ds+1

for some s ∈ {0, . . . ,m− 1}, the algorithms allow conversion in either direction to
be performed with at most

1

2

⌊
`

2

⌋(
dlog2 `e

(⌈
log2 `

ds

⌉
− 1

)
+

s−1∑
t=0

dt

⌈
log2 `

dt

⌉(
dt+1

dt
− 1

))
+O(log2 `)

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 5

additions in F, and at most (` − 1)(dlog2 `e + 1) + O(log2 `) multiplications in F.
Once again, big-O terms represent operations that may be moved to precompu-
tations, while the algorithms require only O(log `) field elements to be stored in
auxiliary space. Excluding the trivial case of F = F2, where the two bases coincide,
it is always possible to take m = 1 and dm = [F : F2]. The algorithms then perform

at most b`/2c
(dlog2 `e

2

)
+ O(log2 `) additions, matching the big-O complexities of

existing algorithms. However, the algorithms enjoy a reduction in the number of
additions and, to a lesser extent, the number of multiplications they perform if the
tower contains more than one subfield of degree less than log2 `. To take advantage
of this improvement, we describe a simple method of constructing a vector β that
satisfies the necessary criteria when given its desired dimension n and an appropri-
ate tower. We also show how to leverage freedom in the construction in order to
eliminate some multiplications from the algorithms in the case that the tower con-
tains some quadratic extensions. In the case that all extensions are quadratic, the
construction may be used to eliminate all multiplications from the algorithms. The
algorithms also perform at most b`/2c(dlog2(`/2)edlog2 log2 max(`, 2)e+dlog2 `e)/2
additions in this case, matching the big-O complexity obtained for Cantor bases by
existing algorithms.

2. Properties of the Lin–Chung–Han basis

It follows from the definition of the LCH basis associated with β that

X2k =

2k−1∏
i=0

x− ωi

ω2k − ωi
for k ∈ {0, . . . , n− 1}.

Thus, the roots of X2k form an F2-linear subspace of F, generated by β0, . . . , βk−1.
As most work on additive transforms pre-dates the introduction of the LCH basis,
it is typical in the literature to study the properties of the subspace (vanishing)
polynomials associated with these subspaces. We instead choose to study the prop-
erties of the basis polynomials X20 , . . . , X2n−1 , which are simply scalar multiples of
the subspace polynomials: the subspace polynomial of a subspace W ⊆ F is defined
to be

∏
ω∈W (x−ω). Consequently, the properties of the LCH basis presented in the

section are either found in [21, 19, 20], or are analogous to properties of subspace
polynomials found in [6, 30, 24].

An important property of subspace polynomials, which is inherited by the poly-
nomials X20 , . . . , X2n−1 , is that they are linearised. A polynomial in F[x] is Fq-
linearised (alternatively, a q-polynomial) if it can be written in the form∑

i∈N
fix

qi

with f0, f1, . . . ∈ F. The following lemma shows that the polynomialsX20 , . . . , X2n−1

are F2-linearised, and establishes several additional properties of the LCH basis that
are required for our algorithms.

Lemma 2.1. The following properties hold for k ∈ {0, . . . , n− 1}:
(1) X2k+j = X2kXj for j ∈ {0, . . . , 2k − 1},
(2) X2k(ω2ki+j) = i for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1},

6 NICHOLAS COXON

(3) X2k = x/β0 if k = 0, and

X2k =
X2k−1(x)2 −X2k−1(x)

X2k−1(βk)2 −X2k−1(βk)

otherwise,
(4) X2k is F2-linearised,
(5) X2k(x+ λ) = X2k(x) +X2k(λ) for λ ∈ F.

Proof. Let k ∈ {0, . . . , n− 1}. Then

[2ki]t =

{
0 if t < k,

[2ki+ j]t if t ≥ k,
and [j]t =

{
[2ki+ j]t if t < k,

0 if t ≥ k,

for i ∈ {0, 1}, j ∈ {0, . . . , 2k − 1} and t ∈ {0, . . . , n− 1}. Thus,

X2k+j =

n−1∏
t=0

2`[2k]t−1∏
s=0

x− ωs

ω2t − ωs

2`[j]t−1∏
s=0

x− ωs

ω2t − ωs

 = X2kXj

and

ω2ki+j =

n−1∑
t=0

[2ki+ j]tβt =

n−1∑
t=0

[2ki]tβt +

n−1∑
t=0

[j]tβt = ω2ki + ωj

for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1}. As {ω0, . . . , ω2k−1} forms a group under
addition, it follows that

X2k(ω2ki+j) =

2k−1∏
t=0

ω2ki + ωj − ωt

ω2k − ωt
=

2k−1∏
t=0

ω2ki − ωt

ω2k − ωt
= i

for i ∈ {0, 1} and j ∈ {0, . . . , 2k − 1}. Therefore, properties (1) and (2) hold.
If k = 0, then

X2k =
x− ω0

ω1 − ω0
=

x− 0

β0 − 0
=

x

β0
.

If k ∈ {1, . . . , n − 1}, then property (2) implies that X2k−1(ωi)
2 − X2k−1(ωi) = 0

and X2k(ωi) = 0 for i ∈ {0, . . . , 2k − 1}. As X2k and X2
2k−1 − X2k−1 both have

degree equal to 2k, it follows that X2k = (X2
2k−1 − X2k−1)/δ for some nonzero

element δ ∈ F. Observing that X2k(βk) = X2k(ω2k) = 1 then shows that δ =
X2k−1(βk)2 −X2k−1(βk), completing the proof of property (3).

Property (4) follows from property (3) since it shows that X1 is F2-linearised,
and the recursive formula implies that if X2k−1 is F2-linearised for some k ∈
{1, . . . , n − 1}, then so too is X2k . Property (5) follows from property (4) since F
has characteristic equal to two. �

Recall that β is a Cantor basis if β0 = 1 and βk−1 = β2
k − βk for k ∈ {1, . . . , n−

1}. The later requirement is contrary to the recursive formula of property (3)
of Lemma 2.1, from which follow several additional properties of the LCH basis
associated with a Cantor basis.

Corollary 2.2. The following properties hold if β is a Cantor basis:

(1) X2k(βi) = βi−k for k ∈ {0, . . . , n− 1} and i ∈ {k, . . . , n− 1},
(2) X2k =

∑k−i
j=0

(
k−i
j

)
X2j

2i for k ∈ {0, . . . , n− 1} and i ∈ {0, . . . , k},

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 7

(3) if d < n is a power of two, then

X2d(k+1) = X2d

2dk −X2dk

for k ∈ {0, . . . , dn/de − 2}.

Proof. Suppose that β is a Cantor basis. We prove properties (1) and (2) by
induction on k. If k = 0, then property (2) holds trivially, while property (1)
follows from property (3) of Lemma 2.1 since β0 = 1. Suppose now that the two
properties hold for some k ∈ {0, . . . , n− 2}. Then

X2k(βk+1)2 −X2k(βk+1) = β2
1 − β1 = β0 = 1.

Consequently, property (3) of Lemma 2.1 implies that X2k+1 = X2
2k −X2k . Com-

bining with the induction hypothesis, it follows that

X2k+1(βi) = X2k(βi)
2 −X2k(βi) = β2

i−k − βi−k = βi−k−1

for i ∈ {k + 1, . . . , n− 1}, and

X2k+1 = X2i +

k+1−i∑
j=1

((
k − i
j

)
+

(
k − i
j − 1

))
X2j

2i =

k+1−i∑
j=0

(
k + 1− i

j

)
X2j

2i ,

for i ∈ {0, . . . , k + 1}. Hence, properties (1) and (2) follow by induction.
Lucas’ lemma [22, p. 230] (see also [13]) implies that(

i

j

)
≡
∏
k∈N

(
[i]k
[j]k

)
(mod 2) for i, j ∈ N.

Thus, if d < n is a power of two, then property (2) and Lucas’ lemma imply that

X2d(k+1) =

d∑
j=0

(
d

j

)
X2j

2dk = X2d

2dk −X2dk

for k ∈ {0, . . . , dn/de − 2}. Therefore, property (3) holds. �

3. Conversion between the Newton and LCH bases

We base our algorithms for converting between the Newton and LCH bases on
the following lemma.

Lemma 3.1. Let ` ∈ {2, . . . , 2n} and k = dlog2 `e − 1. Then

(3.1)

`−1∑
i=0

fiNi(x+ λ) =

`−1∑
i=0

hiXi(x)

for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F if and only if

(3.2)

2k−1∑
i=0

fiNi(x+ λ) =

2k−1∑
i=0

hiXi(x) +X2k(λ)

`−2k−1∑
i=0

h2k+iXi(x)

and

(3.3)

`−2k−1∑
i=0

f2k+iNi(x+ λ+ βk) =

`−2k−1∑
i=0

h2k+iXi(x).

8 NICHOLAS COXON

Proof. Let k ∈ {0, . . . , n−1} and i ∈ {0, . . . , 2k−1}. Then it follows from the defini-
tion of the Newton basis polynomials that N2k+i(ωj) = 0 for j ∈ {0, . . . , 2k + i−1},
andN2k+i(ω2k+i) = 1. By combining the definition with property (2) of Lemma 2.1,
we also have X2k(ωj)Ni(ωj +βk) = 0 for j ∈ {0, . . . , 2k−1}, X2k(ω2k+j)Ni(ω2k+j +
βk) = Ni(ωj) = 0 for j ∈ {0, . . . , i−1}, andX2k(ω2k+i)Ni(ω2k+i+βk) = Ni(ωi) = 1.
It follows thatN2k+i(x) andX2k(x)Ni(x+βk) are equal, since they agree on 2k+i+1
distinct values and each have degree equal to 2k + i.

Suppose now that ` ∈ {2, . . . , 2n} and k = dlog2 `e − 1. Then k ∈ {0, . . . , n− 1}
and `− 2k ≤ 2k+1 − 2k = 2k. Thus, for i ∈ {0, . . . , `− 2k − 1} and λ ∈ F, we have
just shown that

N2k+i(x+ λ) = X2k(x+ λ)Ni(x+ λ+ βk),

while properties (1) and (5) of Lemma 2.1 imply that

X2k+i = X2k(x+ λ+ λ)Xi(x) = X2k(x+ λ)Xi(x) +X2k(λ)Xi(x).

It follows that for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F, the polynomials on either side
of equation (3.2), which each have degree less than max(`− 2k, 2k) = 2k, are equal
to the remainder upon division by X2k(x+λ) of the polynomial on their respective
side of equation (3.1). Similarly, the polynomials on either side of equation (3.3)
are equal to the quotient upon division by X2k(x + λ) of the polynomial on their
respective side of equation (3.1). Uniqueness of the quotient and remainder there-
fore implies that (3.1) holds for f0, . . . , f`−1, λ, h0, . . . , h`−1 ∈ F if and only if (3.2)
and (3.3) hold. �

Lemma 3.1 suggests recursive algorithms for converting polynomials in F[x]` ⊆
F[x]2n between the LCH basis and the basis of shifted Newton polynomials {Ni(x+
λ) | i ∈ {0, . . . , 2n− 1}} for a given shift parameter λ ∈ F. Given the coefficients fi
on the left-hand side of (3.1), recursive calls can be made on the polynomials (3.2)
and (3.3) to compute their coefficients on the LCH basis. These coefficients can
in turn be used to compute the coefficients hi on the right-hand side of (3.1) by
performing `− 2k additions, and `− 2k multiplications by X2k(λ). For the inverse
conversion, where we start with the coefficients hi on the right-hand side of (3.1),
performing the same additions and multiplications yields the coefficients of the
polynomials (3.2) and (3.3) on the LCH basis. Then recursive calls can be made to
obtain their coefficients on the shifted Newton bases {Ni(x+λ) | i ∈ {0, . . . , 2n−1}}
and {Ni(x+ λ+ βk) | i ∈ {0, . . . , 2n− 1}}, respectively, and thus the coefficients fi
on the left-hand side of (3.1). For conversions in both directions, the initial shift
parameter λ is augmented by the addition of βk for the recursive call made on
the polynomial (3.3), which necessitates the inclusion of the shift parameter in the
conversion problem.

To efficiently compute the elements X2k(λ) by which we multiply during the
algorithms, we take advantage of the property (5) of Lemma 2.1 and the observation
that the initial shift parameter is only augmented for the recursive calls by the
addition of entries of β. To this end, we assume that X2i(βj) for 0 ≤ i < j < dlog2 `e
have been precomputed. The pseudocode for the conversion from a shifted Newton
basis to the LCH basis is presented in Algorithm 1, while the pseudocode for the
inverse conversion is presented in Algorithm 2. Each algorithm operates on a vector
(ai)0≤i<` of field elements that initially contains the coefficients of a polynomial on

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 9

the input basis, and has it entries overwritten by the algorithm with the coefficients
of the polynomial on the output basis.

Algorithm 1 NewtonToLCH(`, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<`)

Input: an integer ` ∈ {1, . . . , 2n}; the vector (X2i(λ))0≤i<dlog2 `e for some λ ∈ F;
and the vector (ai)0≤i<` such that ai = fi ∈ F for i ∈ {0, . . . , `− 1}.

Output: ai = hi ∈ F for i ∈ {0, . . . , `− 1} such that (3.1) holds.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′ ← `− 2k, k′ ← dlog2 `

′e
3: NewtonToLCH(2k, (X2i(λ))0≤i<k, (ai)0≤i<2k)
4: NewtonToLCH(`′, (X2i(λ) +X2i(βk))0≤i<k′ , (a2k+i)0≤i<`′)
5: for i = 0, . . . , `′ − 1 do
6: ai ← ai +X2k(λ)a2k+i

Algorithm 2 LCHToNewton(`, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<`)

Input: an integer ` ∈ {1, . . . , 2n}; the vector (X2i(λ))0≤i<dlog2 `e for some λ ∈ F;
and the vector (ai)0≤i<` such that ai = hi ∈ F for i ∈ {0, . . . , `− 1}.

Output: ai = fi ∈ F for i ∈ {0, . . . , `− 1} such that (3.1) holds.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′ ← `− 2k, k′ ← dlog2 `

′e
3: for i = 0, . . . , `′ − 1 do
4: ai ← ai +X2k(λ)a2k+i

5: LCHToNewton(2k, (X2i(λ))0≤i<k, (ai)0≤i<2k)
6: LCHToNewton(`′, (X2i(λ) +X2i(βk))0≤i<k′ , (a2k+i)0≤i<`′)

Theorem 3.2. Algorithms 1 and 2 are correct.

Proof. We prove correctness for Algorithm 1 by induction on `. The proof of
correctness for Algorithm 2 uses similar arguments, and is omitted here. Alter-
natively, one may note that the transformation performed on the vector (ai)0≤i<`

by the for-loop in Algorithm 1 is an involution. Algorithm 2 reverses the order of
these transformations, thus performing the inverse transformation to Algorithm 1
overall.

Algorithm 1 is correct for all inputs with ` = 1, since X0 = N0 = 1. Therefore,
suppose that for some ` ∈ {2, . . . , 2n}, the algorithm produces the correct output for
all inputs with smaller values of `. Moreover, suppose that the algorithm is given
` as an input, together with (X2i(λ))0≤i<dlog2 `e for some λ ∈ F, and the vector

(ai)0≤i<` with ai = fi ∈ F for i ∈ {0, . . . , ` − 1}. Let k = dlog2 `e − 1, `′ = ` − 2k

and k′ = dlog2 `
′e, as computed in Line 2 of the algorithm, and h0, . . . , h`−1 ∈ F

be the unique elements that satisfy (3.1). Then Lemma 3.1 implies that (3.2)
and (3.3) both hold. Therefore, as 2k < `, (3.2) and the induction hypothesis imply
that Line 3 sets ai = hi + h2k+iX2k(λ) for i ∈ {0, . . . , `′ − 1}, and ai = hi for i ∈
{`′, . . . , 2k−1}. Property (5) of Lemma 2.1 implies that (X2i(λ)+X2i(βk))0≤i<k′ =
(X2i(λ + βk))0≤i<k′ . Consequently, as `′ < `, (3.3) and the induction hypothesis
imply that Line 4 sets ai = hi for i ∈ {2k, . . . , `− 1}. It follows that Lines 5 and 6
set ai = (hi + h2k+iX2k(λ)) + h2k+iX2k(λ) = hi for i ∈ {0, . . . , `′ − 1}. Thus, the
algorithm terminates with ai = hi for i ∈ {0, . . . , `− 1}, as required. �

10 NICHOLAS COXON

When implementing Algorithms 1 and 2, subvectors of the input vector (ai)0≤i<`

may be represented by a pointer to their first entry, rather than by replicating them
in memory. Moreover, if (X2i(λ))0≤i<dlog2 `e and (X2i(λ) + X2i(βk))0≤i<k′ are
always cleared from memory when the algorithm returns, then storing the vectors
and those of any subsequent recursive call requires only O(log2 `) fields elements
to be stored in auxiliary space at all times. It follows that Algorithms 1 and 2 can
be implemented so that only O(log2 `) field elements are stored in auxiliary space
when they are used to convert polynomials in F[x]` between the Newton and LCH
bases.

The recurrence relation of property (3) of Lemma 2.1 allows X2i(βj) for 0 ≤ i <
j < dlog2 `e to be computed with O(log2 `) additions and multiplications in F. Sub-
sequently, the recurrence relation may again be used to compute (X2i(λ))0≤i<dlog2 `e
for a desired λ ∈ F with a further O(log `) additions and multiplications, where the
implied constant is smaller if the previously computed denominators of the recur-
rence relation have been stored. In the case that λ = 0, the vector simply contains
all zeros. It follows that when Algorithms 1 and 2 are used to convert polynomials
in F[x]` between the Newton and LCH bases, all precomputations for algorithms
can be performed with O(log2 `) operations in F. The number of operations then
performed by the algorithms themselves is bounded by the following theorem.

Theorem 3.3. Algorithms 1 and 2 perform at most (b`/2c − 1)dlog2 `e + ` − 1
additions in F, and at most b`/2cdlog2 `e multiplications in F.

Proof. We prove the bounds for Algorithm 1 only, since it is clear that the two
algorithms perform the same number of operations when given identical values
of `. If ` = 1, then Algorithm 1 performs no additions or multiplications, matching
the bounds of the theorem. Proceeding by induction, suppose that the algorithm is
called with ` ∈ {2, . . . , 2n}, and that the two bounds hold for all smaller values of
`. Let k = dlog2 `e − 1, `′ = `− 2k and k′ = dlog2 `

′e, as computed in Line 2 of the
algorithm. Then, as 2k < `, the induction hypothesis implies that Line 3 performs
at most (2k−1 − 1)k + 2k − 1 additions and at most 2k−1k multiplications. The
computation of the vector (X2i(λ) +X2i(βk))0≤i<k′ in Line 4 requires k′ additions,
where k′ ≤ k since `′ = ` − 2k ≤ 2k+1 − 2k = 2k. Thus, as `′ < `, the induction
hypothesis implies that Line 4 performs at most b`′/2ck′+`′−1 ≤ (b`/2c−2k−1)k+
`−2k−1 additions and at most b`′/2ck′ ≤ (b`/2c−2k−1)k multiplications. Lines 5
and 6 perform `′ = `−d2k+1/2e ≤ `−d`/2e = b`/2c additions and multiplications.
Summing these bounds, it follows that the algorithms performs at most (b`/2c −
1)(k+ 1) + `− 1 = (b`/2c− 1)dlog2 `e+ `− 1 additions, and at most b`/2c(k+ 1) =
b`/2cdlog2 `e multiplications. �

As noted above, the input (X2i(λ))0≤i<dlog2 `e of Algorithm 1 contains only ze-
ros if λ = 0. In this case, the vector (X2i(λ))0≤i<k that is passed to the recur-
sive call in Line 3 of the algorithm also contains only zeros, while its counterpart
(X2i(λ)+X2i(βk))0≤i<k′ in Line 4 contains only precomputed elements. Moreover,
Lines 5 and 6 of the algorithm leave the vector (ai)0≤i<` unchanged. The algorithm
is readily modified to avoid performing unnecessary operations in this case, e.g.,
by the inclusion of an additional parameter that indicates whether λ = 0, saving

at least ` − 1 +
(blog2 `c

2

)
additions and at least ` − 1 multiplications overall. Sim-

ilar modifications to Algorithm 2 yield the same savings, leading to the following
corollary of Theorem 3.3.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 11

Corollary 3.4. For polynomials in F[x]` ⊆ F[x]2n , conversion between the Newton
and LCH bases can be performed with (b`/2c−1)dlog2 `e+O(log2 `) additions in F,
and b`/2cdlog2 `e − `+O(log2 `) multiplications in F.

Remark 3.5. If β is a Cantor basis, then property (5) of Lemma 2.1 and property (1)
of Corollary 2.2 imply that X2k(ωi) = ωbi/2kc for k ∈ {0, . . . , n − 1} and i ∈
{0, . . . , 2n−1}. It follows in this case that if the elements of the field are represented
with respect to an extension of β to a basis of F/F2, and Algorithm 1 or 2 is initially
called with λ = ωi for some i ∈ {0, . . . , 2n − 1}, as is the case when λ is zero, then
only simple index arithmetic (e.g., bit shifts) is required to compute X2k(λ). The
same will hold for all recursive calls made by the algorithm, since the initial shift
parameter is only augmented by the addition of entries from β for these calls. Thus,
it is only necessary to provide the algorithm with λ rather than the whole vector
(X2i(λ))0≤i<dlog2 `e in this case, simplifying the algorithm. Similar modifications
may be made to the algorithms of the next section.

4. Evaluation and interpolation on the LCH basis

Lin, Chung and Han [21] propose quasi-linear time algorithms for evaluation
and interpolation with respect to the LCH basis for polynomials in F[x]2n . In this
section, we generalise their algorithms to take advantage of known zero coefficients
of polynomials in F[x]` for ` < 2n when written on the basis, leading to algorithms
with lower complexities. The generalisations are based on the following lemma, for
which the case ` = 2k+1 is due to Lin, Chung and Han.

Lemma 4.1. Let ` ∈ {1, . . . , 2n}, k ∈ {0, . . . , n−1} such that k ≥ dlog2 `e−1, and

(4.1) f =

`−1∑
i=0

hiXi

for h0, . . . , h`−1 ∈ F. Then, for t ∈ {0, 1}, the polynomial

(4.2) ft =

min(`,2k)−1∑
i=0

hiXi + (t+X2k(λ))

max(`−2k,0)−1∑
i=0

h2k+iXi

satisfies ft(ωs + λ+ tβk) = f(ω2kt+s + λ) for s ∈ {0, . . . , 2k − 1}.

Proof. Let ` ∈ {1, . . . , 2n}, k ∈ {0, . . . , n − 1} such that k ≥ dlog2 `e − 1. Then
it follows from the definition of the ωi that Xi(ω2kt+s + λ) = Xi(ωs + λ + tβk)
for i ∈ {0, . . . ,min(`, 2k) − 1}, t ∈ {0, 1} and s ∈ {0, . . . , 2k − 1}. The choice of k
implies that `−2k ≤ 2k. Thus, properties (1), (2) and (5) of Lemma 2.1 imply that

X2k+i(ω2kt+s + λ) = X2k(ω2kt+s + λ)Xi(ω2kt+s + λ)

= (X2k(ω2kt+s) +X2k(λ))Xi(ωs + λ+ tβk)

= (t+X2k(λ))Xi(ωs + λ+ tβk)

for i ∈ {0, . . . ,max(` − 2k, 0) − 1}, t ∈ {0, 1} and s ∈ {0, . . . , 2k − 1}. Therefore,
the lemma holds if f = Xi for some i ∈ {0, . . . , ` − 1}, and, thus, for all f of the
form (4.1) by linearity. �

We use Lemma 4.1 to provide fast evaluation and interpolation algorithms with
respect to the LCH basis for polynomials in F[x]` ⊆ F[x]2n and evaluations points
ω0+λ, . . . , ω`−1+λ for some λ ∈ F. At a first glance, the lemma suggests reductions

12 NICHOLAS COXON

for ` > 1 to shorter instances of the problems corresponding to the polynomials f0
and f1 defined by (4.2) with k = dlog `e − 1. However, difficulties arise when ` is
not a power of two, since f0 and f1 may each have degree equal to 2k − 1, while
only ` < 2k+1 evaluations of f are either given or are required to be computed. We
address these difficulties by generalising the problems, following the approach used
in the development of truncated fast Fourier transforms.

4.1. Evaluation on the LCH basis. Given the coefficients of a polynomial f ∈
F[x]` ⊆ F[x]2n on the LCH basis, Lemma 4.1 suggests a recursive algorithm for
evaluating the polynomial at c ∈ {1, . . . , 2n} evaluation points of the form ω0 +
λ, . . . , ωc−1 + λ for some λ ∈ F. Letting k = dlog2 max(`, c)e − 1 and taking f0 and
f1 to be the two polynomials defined by (4.2), the lemma allows the problem to
be reduced to recursively evaluating f0 at the points ω0 + λ, . . . , ωmin(c,2k)−1 + λ

and, if c > 2k, evaluating f1 at the points ω0 + (λ + βk), . . . , ωc−2k−1 + (λ + βk).
The coefficients of f0 on the LCH basis can be computed with max(` − 2k, 0)
additions and multiplications by X2k(λ). Then, if needed, the coefficients of f1 can
be computed with a further max(`− 2k, 0) additions. In particular, if c > 2dlog2 `e,
then no field operations are required to compute the coefficients of f0 and f1 as
they are both equal to f .

The pseudocode for the evaluation algorithm is presented in Algorithm 3. We
use the techniques introduced in Section 3 to compute the values X2k(λ) required
by the algorithm. Consequently, we once again assume that X2i(βj) for 0 ≤ i < j <
dlog2 `e have been precomputed for the input value of `. The algorithm operates on
a vector (ai)0≤i<max(`,2dlog2 ce) of field elements that initially contains the coefficients

of some polynomial f ∈ F[x]` on the LCH basis, and overwrites its first c entries
with f(ω0 +λ), . . . , f(ωc−1 +λ) for a given λ ∈ F. The entries of the vector that are
unspecified by the input requirements of algorithm can be thought of as initially
containing zeros. However, this is not assumed by the algorithm. While only
max(`, c) entries are needed to store the inputs and outputs of the algorithm, a
longer vector is used for certain parameters so that there is space to simultaneously
store the coefficients of the polynomials f0 and f1. In Section 4.3, we show how to
avoid using additional space when c ≤ `, but at the cost of a higher complexity.

Theorem 4.2. Algorithm 3 is correct.

Proof. We prove the theorem by induction on dlog2 max(`, c)e. If dlog2 max(`, c)e =
0, then ` = c = 1 and the algorithm produces the correct output since the poly-
nomial f defined in (4.1) is the constant polynomial h0X0 = h0. Therefore, for
some k ∈ {0, . . . , n − 1}, suppose that the algorithm produces the correct output
for all inputs with dlog2 max(`, c)e ≤ k. Moreover, suppose that the algorithm is
called with inputs `, c ∈ {1, . . . , 2n} such that dlog2 max(`, c)e = k + 1, the vec-
tor (X2i(λ))0≤i<dlog2 `e for some λ ∈ F, and the vector (ai)0≤i<max(`,2dlog2 ce) such

that ai = hi ∈ F for i ∈ {0, . . . , ` − 1}. Let f ∈ F[x]` be the polynomial defined
in (4.1), and ft be the polynomial defined in (4.2) for t ∈ {0, 1}. Let `′ = min(`, 2k),
`′′ = `− `′, c0 = min(c, 2k) and c1 = c− c0, as computed in Line 2 of the algorithm.
Then f0, f1 ∈ F[x]`′ , 2k + `′′ = max(`, 2k) ≤ max(`,max(`, c)) = max(`, c), and if
c1 > 0, then 2k + `′ ≤ 2k+1 = 2dlog2 ce. The inequalities imply that the entries of
(ai)0≤i<max(`,2dlog2 ce) accessed by Lines 3 to 9 of the algorithm all have indices less

than max(`, 2dlog2 ce). We also note that the subvector (ai)0≤i<2k in Line 11 has

the correct length since 2k ≥ max(`′, 2dlog2 c0e) ≥ max(`′, c0) = 2k.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 13

Algorithm 3 LCHEval(`, c, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<max(`,2dlog2 ce))

Input: integers `, c ∈ {1, . . . , 2n}; the vector (X2i(λ))0≤i<dlog2 `e for some λ ∈ F;
and the vector (ai)0≤i<max(`,2dlog2 ce) such that ai = hi ∈ F for i ∈ {0, . . . , `−1}.

Output: ai = f(ωi + λ) for i ∈ {0, . . . , c− 1}, where f is the polynomial in (4.1).
1: if ` = 1 and c = 1 then return
2: k ←dlog2 max(`, c)e−1, `′ ← min(`, 2k), `′′ ← `−`′, c0 ← min(c, 2k), c1 ← c−c0
3: for i = 0, . . . , `′′ − 1 do
4: ai ← ai +X2k(λ)a2k+i

5: if c1 > 0 then
6: for i = 0, . . . , `′′ − 1 do
7: a2k+i ← ai + a2k+i

8: for i = `′′, . . . , `′ − 1 do
9: a2k+i ← ai

10: LCHEval(`′, c1, (X2i(λ) +X2i(βk))0≤i<dlog2 `′e, (a2k+i)0≤i<max(`′,2dlog2 c1e))

11: LCHEval(`′, c0, (X2i(λ))0≤i<dlog2 `′e, (ai)0≤i<2k)

Lines 3 and 4 of the algorithm set ai = hi+X2k(λ)h2k+i for i ∈ {0, . . . , `′′−1}. As
`′′ = max(`− 2k, 0), the subvector (ai)0≤i<`′ subsequently contains the coefficients
of f0 on the LCH basis. If c1 > 0, then Lines 6 to 9 set a2k+i = h2k+i + (hi +
X2k(λ)h2k+i) = hi + (1 + X2k(λ))h2k+i for i ∈ {0, . . . , `′′ − 1}, and a2k+i = hi for
i ∈ {`′′, . . . , `′ − 1}. Thus, the subvector (a2k+i)0≤i<`′ subsequently contains the
coefficients of f1 on the LCH basis. We have f0, f1 ∈ F[x]`′ , dlog2 max(`′, c0)e = k
and dlog2 max(`′, c1)e ≤ dlog2 max(2k, 2k+1 − 2k)e = k. Therefore, the induction
hypothesis and Lemma 4.1 imply that Line 11 sets ai = f0(ωi+λ) = f(ωi+λ) for i ∈
{0, . . . , c0−1}, and if c1 > 0, then Line 10 sets a2k+i = f1(ωi+λ+βk) = f(ω2k+i+λ)
for i ∈ {0, . . . , c1 − 1}. Hence, the algorithm terminates with ai = f(ωi + λ) for
i ∈ {0, . . . , c0 − 1} ∪ {2k, . . . , 2k + c1 − 1} = {0, . . . , c− 1}, as required. �

As noted in Section 3, the precomputation of X2i(βj) for 0 ≤ i < j < dlog2 `e
can be performed with O(log2 `) field operations. Moreover, Algorithm 3 can be
implemented so that only max(2dlog2 ce − max(`, c), 0) + O(log2 `) field elements
are stored in auxiliary space. The number of field operations performed by the
algorithm itself is bounded by the following theorem.

Theorem 4.3. Algorithm 3 performs at most

min
(
(c− 1)(dlog2 min(`, c)e+ 1) + `− 1,

(
2k+1 − 1

)
(dlog2 `e+ 1)

)
additions in F, where k = dlog2 max(`, c)e − 1, and at most

min

(
c− 1

2
dlog2 min(`, c/2)e+ `− 1, 2kdlog2 `e

)
multiplications in F.

Proof. We prove the theorem by induction on dlog2 max(`, c)e. If dlog2 max(`, c)e =
0, then ` = c = 1 and Algorithm 3 performs no additions or multiplications, match-
ing the bounds of the theorem. Therefore, for some k ∈ {0, . . . , n − 1}, suppose
that the bounds stated in the theorem hold for all inputs with dlog2 max(`, c)e ≤ k.
Moreover, suppose that the algorithm is called with inputs `, c ∈ {1, . . . , 2n} such
that dlog2 max(`, c)e = k + 1. Let `′ = min(`, 2k), `′′ = `− `′, c0 = min(c, 2k) and

14 NICHOLAS COXON

c1 = c− c0, as computed in Line 2 of the algorithm. Then, as shown in the proof of
Theorem 4.2, dlog2 max(`′, ci)e ≤ k for i ∈ {0, 1}, allowing the induction hypoth-
esis to be used to bound the number of additions and multiplications performed
by Lines 10 and 11. We begin by proving the bounds (2k+1 − 1)(dlog2 `e + 1)
and 2kdlog2 `e on the number of additions and multiplications performed by the
algorithm.

Lines 3 to 9 of Algorithm 3 perform at most 2`′′ additions, and at most `′′

multiplications. The induction hypothesis implies that Line 11 performs at most
(2k−1)(dlog `′e+1) additions, and at most 2k−1dlog2 `

′e multiplications. Similarly,
Line 10 performs at most (2k − 1)(dlog `′e + 1) + dlog2 `

′e additions, and at most
2k−1dlog2 `

′e multiplications. Summing these bounds, it follows that Algorithm 3
performs at most (2k+1−1)(dlog2 `

′e+1)+2`′′−1 additions, and at most 2kdlog2 `
′e+

`′′ multiplications. If ` ≤ 2k, then `′ = ` and `′′ = 0. If ` > 2k, then dlog2 `
′e = k =

dlog2 `e−1 and `′′ = `−2k ≤ 2k. In either case, we find that Algorithm 3 performs
at most (2k+1 − 1)(dlog2 `e+ 1) additions, and at most 2kdlog2 `e multiplications.

To prove the remaining bounds of the theorem, we consider the cases c1 = 0 and
c1 > 0 separately. Therefore, suppose for now that c1 = 0. Then c ≤ 2k < ` ≤ 2k+1,
`′ = 2k, c0 = c, dlog2 min(`′, c0)e = dlog2 min(`, c)e and dlog2 min(`′, c0/2)e =
dlog2 min(`, c/2)e. Thus, Lines 3 and 4 perform `′′ = ` − 2k additions and multi-
plications, while the induction hypothesis implies that Line 11 performs at most
(c−1)(dlog2 min(`, c)e+1)+2k−1 additions, and at most (c−1)dlog2 min(`, c/2)e+
1)/2 + 2k − 1 multiplications. Summing these bounds then shows that Algo-
rithm 3 performs at most (c − 1)(dlog2 min(`, c)e + 1) + ` − 1 additions, and at
most (c− 1)dlog2 min(`, c/2)e/2 + `− 1 multiplications.

Suppose now that c1 > 0. Then Lines 3 to 9 of the algorithm perform 2`′′

additions and `′′ multiplications. As dlog2 min(`′, c1/2)e ≤ dlog2 min(`′, c1)e ≤
dlog2 `

′e, the induction hypothesis implies that Line 10 performs at most

(c1 − 1)(dlog2 `
′e+ 1) + `′ − 1 + dlog2 `

′e

additions, and at most (c1 − 1)dlog2 `
′e/2 + `′ − 1 multiplications. Similarly, as

`′ ≤ 2k and c0 = 2k, the induction hypothesis implies that Line 11 performs at
most (c0 − 1)(dlog2 `

′e + 1) additions, and at most c0dlog2 `
′e/2 multiplications.

Summing these bounds, it follows that the algorithm performs at most

(c− 1)(dlog2 `
′e+ 1) + `− 1 + `′′ − 1

additions, and at most (c − 1)dlog2 `
′e/2 + ` − 1 multiplications. If ` ≤ 2k, then

`′′ = 0 and dlog2 `
′e = dlog2 min(`, c)e = dlog2 min(`, c/2)e. If ` > 2k, then `′′ =

`−2k ≤ 2k ≤ c−1 and dlog2 `
′e = dlog2 min(`, c)e−1 ≤ dlog2 min(`, c/2)e. In either

case, we find that Algorithm 3 performs at most (c− 1)(dlog2 min(`, c)e+ 1) + `− 1
additions, and at most (c− 1)dlog2 min(`, c/2)e/2 + `− 1 multiplications. �

Theorem 4.3 does not account for the cost of Lines 8 and 9 of Algorithm 3. A
straightforward induction argument shows that the lines copy a total of c − r +
(dr/2dlog2 `e−1e − 1)(2dlog2 `e − `) field elements over the duration of the algorithm,
where r is the least positive residue of c modulo 2dlog2 `e. Like the algorithms of
Section 3, Algorithm 3 is readily modified so that it avoids performing unnecessary

operations when λ = 0. Doing so saves at least `− 1 +
(blog2 min(`,c)c

2

)
additions and

at least `− 1 multiplications overall.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 15

4.2. Interpolation on the LCH basis. Lemma 4.1 suggests a recursive algorithm
for computing the coefficients on the LCH basis of a polynomial f ∈ F[x]` ⊆ F[x]2n

when given the ` evaluations f(ω0 + λ), . . . , f(ω`−1 + λ) for some λ ∈ F. Letting
k = dlog2 `e − 1 and defining f0, f1 ∈ F[x]2k by (4.2), the lemma implies that
f(ωi + λ) = f0(ωi + λ) for i ∈ {0, . . . , 2k − 1}, allowing the coefficients of f0
on the LCH basis to be recursively computed. The lemma further implies that
f(ω2k+i + λ) = f1(ωi + λ + βk) for i ∈ {0, . . . , ` − 2k − 1}. It follows that if `
is a power of two, and thus ` − 2k = 2k, then the coefficients of f1 may also be
recursively computed, after-which it is straightforward to compute the coefficients
of f .

If ` is not a power of two, then we lack the evaluations needed to recursively
compute the coefficients of f1. However, having already computed those of f0, we
know the coefficients of X2k−`, . . . , X`−1 in f1, as they are common to both poly-
nomials. By augmenting the `−2k evaluations with this additional information, we
then possess sufficient information to compute the remaining coefficients of f1. To
incorporate this information into the algorithm, we follow the approach introduced
by van der Hoeven [27] for his inverse truncated FFT by generalising the algorithm
to include an additional parameter c ∈ {1, . . . , `}, and requiring as inputs the c
evaluations f(ω0 + λ), . . . , f(ωc−1 + λ) for some λ ∈ F, and the ` − c coefficients
of Xc, . . . , X`−1 in f . The algorithm is then required to compute the c unknown
coefficients of X0, . . . , Xc−1 in f , and should be initially called with c = `.

Pseudocode for the generalised interpolation algorithm is presented in Algo-
rithm 4. Once again the algorithm assumes that X2i(βj) for 0 ≤ i < j < dlog2 `e
have been precomputed for the input value of `.

Remark 4.4. As noted above, Algorithm 4 should initially be called with c = `.
However, the ability to initially take c < ` makes the algorithm suitable for use
in the fast Hermite interpolation algorithm proposed by the author in [11]. For
this application, one is given the higher order coefficients of a polynomial on the
monomial basis, rather than on the LCH basis. However, Algorithm 9 of Section 5
can be used to compute the coefficients required by Algorithm 4. Similarly, the
evaluation algorithm of the preceding section can be combined with Algorithm 9
for use in the fast Hermite evaluation algorithm proposed in [11].

Theorem 4.5. Algorithm 4 is correct.

Proof. We prove the theorem by induction on `. If ` = 1, then c = 1 and Algo-
rithm 4 produces the correct output since f = h0X0 = h0 is a constant polyno-
mial. Therefore, for some ` ∈ {2, . . . , 2n}, suppose that the algorithm produces
the correct output for all inputs with smaller values of `. Let f ∈ F[x]` and
h0, . . . , h`−1 ∈ F such that (4.1) holds. Suppose that the algorithm is called with `
as an input, together with c ∈ {1, . . . , `}, (X2i(λ))0≤i<dlog2 `e for some λ ∈ F,
ai = f(ωi + λ) for i ∈ {0, . . . , c − 1}, and ai = hi for i ∈ {c, . . . , ` − 1}. Let
k = dlog2 `e−1, `′′ = `−2k, c0 = min(c, 2k) and c1 = c− c0, as computed in Line 2
of the algorithm. Then {0, . . . , c0 − 1} ∪ {2k, . . . , 2k + c1 − 1} = {0, . . . , c− 1} and
{c0, . . . , 2k − 1} ∪ {2k + c1, . . . , 2

k + `′′ − 1} = {c, . . . , `− 1}. Finally, let f0 and f1
be the polynomials defined in (4.2). Then f0, f1 ∈ F[x]2k and Lemma 4.1 implies

16 NICHOLAS COXON

Algorithm 4 LCHInterp(`, c, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<2dlog2 `e)

Input: integers `, c ∈ {1, . . . , 2n} such that c ≤ `; the vector (X2i(λ))0≤i<dlog2 `e
for some λ ∈ F; and the vector (ai)0≤i<2dlog2 `e such that for some f ∈ F[x]`,
ai = f(ωi + λ) for i ∈ {0, . . . , c − 1}, and ai = hi for i ∈ {c, . . . , ` − 1}, where
h0, . . . , h`−1 ∈ F are the unique elements that satisfy (4.1).

Output: ai = hi for i ∈ {0, . . . , c− 1}.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′′ ← `− 2k, c0 ← min(c, 2k), c1 ← c− c0
3: for i = c0, . . . , `

′′ − 1 do
4: ai ← ai +X2k(λ)a2k+i

5: LCHInterp(2k, c0, (X2i(λ))0≤i<k, (ai)0≤i<2k)
6: if c1 = 0 then
7: for i = 0, . . . ,min(`′′, c0)− 1 do
8: ai ← ai +X2k(λ)a2k+i

9: return
10: for i = c1, . . . , `

′′ − 1 do
11: b← X2k(λ)a2k+i

12: a2k+i ← ai + a2k+i

13: ai ← ai + b
14: for i = `′′, . . . , 2k − 1 do
15: a2k+i ← ai
16: LCHInterp(2k, c1, (X2i(λ) +X2i(βk))0≤i<k, (a2k+i)0≤i<2k)
17: for i = 0, . . . , c1 − 1 do
18: a2k+i ← ai + a2k+i

19: ai ← ai +X2k(λ)a2k+i

that at the beginning of the algorithm, the following hold for i ∈ {0, . . . , 2k − 1}:

ai =

{
f0(ωi + λ) if i < c0,

hi otherwise,
a2k+i =

f1(ωi + λ+ βk) if i < c1,

h2k+i if c1 ≤ i < `′′,

∗ otherwise,

where an asterisks denotes an entry that is unspecified by the algorithm. It follows
that Lines 3 and 4 of the algorithm set ai = hi+X2k(λ)h2k+i for i ∈ {c0, . . . , `′′−1}.
As 2k < `, the induction hypothesis and the definition of f0 imply that for i ∈
{0, . . . , c0 − 1}, Line 5 sets

ai =

{
hi +X2k(λ)h2k+i if i < min(`′′, c0),

hi if `′′ ≤ i < c0.

The entries a2k , . . . , a`−1 are so far unchanged by the algorithm. Thus, if c1 = 0,
then Lines 7 and 8 set ai = hi for i ∈ {0, . . . ,min(`′′, c0) − 1}, and the algorithm
terminates with ai = hi for i ∈ {0, . . . , c0 − 1} = {0, . . . , c− 1}, as required.

Suppose now that c1 > 0. Then c1 = c− 2k ≤ `− 2k = `′′ ≤ 2k = c0. Therefore,
after Lines 10 to 15 have been performed, the following hold for i ∈ {0, . . . , 2k−1}:

ai =

{
hi +X2k(λ)h2k+i if i < c1,

hi otherwise,
a2k+i =

f1(ωi + λ+ βk) if i < c1,

hi + (1 +X2k(λ))h2k+i if c1 ≤ i < `′′,

hi otherwise.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 17

As 2k < `, the induction hypothesis and the definition of f1 imply that Line 16
sets a2k+i = hi + (1 + X2k(λ))h2k+i for i ∈ {0, . . . , c1 − 1}. Thus, Lines 17 to 19
then set a2k+i = (hi + X2k(λ)h2k+i) + (hi + (1 + X2k(λ))h2k+i) = h2k+i and
ai = (hi + X2k(λ)h2k+i) + X2k(λ)h2k+i = hi for i ∈ {0, . . . , c1 − 1}. After-which,
the algorithm terminates with ai = hi for i ∈ {0, . . . , 2k + c1 − 1} = {0, . . . , c− 1},
as required. �

Algorithm 4 can be implemented so that only 2dlog2 `e − ` + O(log2 `) field el-
ements are stored in auxiliary space. All precomputations for the algorithm can
be performed with O(log2 `) field operations, while the number of field operations
performed by the algorithm itself is bounded by the following theorem.

Theorem 4.6. Algorithm 4 performs at most

min
(

(c− 1)(dlog2 ce+ 1) + `− 1,
(

2dlog2 `e − 1
)

(dlog2 `e+ 1)
)

additions in F, and at most

min

(
c− 1

2
(dlog2 ce − 1) + `− 1, 2dlog2 `e−1dlog2 `e

)
multiplications in F.

Proof. Suppose that Algorithms 3 and 4 are called with identical inputs `, c ∈
{1, . . . , 2n} such that c ≤ `. Then the values k, `′′, c0 and c1 computed in Line 2 of
both algorithms are identical, while the value `′ computed in Line 2 of Algorithm 3
is equal to 2k. Thus, if c1 = 0, then the recursive calls of Line 5 of Algorithm 4 and
Line 11 of Algorithm 3 are made with identical inputs ` and c, while the remaining
lines of either algorithm perform `′′ additions and `′′ multiplications. If c1 > 0,
then the recursive calls of Line 5 of Algorithm 4 and Line 11 of Algorithm 3 are
once again made with identical inputs ` and c, the recursive calls of Line 16 of
Algorithm 4 and Line 10 of Algorithm 3 are similarly made with identical inputs
` and c, and the remaining lines of either algorithm perform 2`′′ additions and
`′′ multiplications. As both algorithms perform no additions or multiplications if
` = 1 and c = 1, it follows by induction on ` that Algorithms 3 and 4 perform
the same number of additions and the same number of multiplications when given
identical inputs `, c ∈ {1, . . . , 2n} such that c ≤ `. Thus, the theorem follows from
Theorem 4.3. �

Lines 14 and 15 of Algorithm 4 copy 2k−`′′ = 2dlog2 `e−` field elements if c1 > 0.
Thus, no elements are copied during recursive calls made by the algorithm, since
they always have ` equal to a power of two. It follows that the algorithm copies
(dc/2dlog2 `e−1e − 1)(2dlog2 `e − `) field elements in total. Modifying Algorithm 4
so that it avoids performing unnecessary operations when λ = 0 saves at least

`− 1 +
(blog2 cc

2

)
additions and at least `− 1 multiplications overall.

4.3. Space-efficient algorithms. For values of ` that are slightly larger than a
power of two, the vector (ai)0≤i<2dlog2 `e on which Algorithm 4 operates has length
that is almost double the length ` of the interpolation problem it is solving. This
additional space is filled by Lines 14 and 15 of the algorithm with copies of the
2dlog2 `e − ` coefficients of f0 on the LCH basis that are common to f1. The copies
are then passed to the recursive call of Line 16. Duplicating the coefficients is
necessary since the output requirements of the algorithm do not guarantee that

18 NICHOLAS COXON

the original coefficients will be preserved if they are passed to the recursive call,
in which case they cannot be used to compute the final output of the algorithm.
Thus, modifying the algorithm so that it preserves all coefficients it is given as
inputs allows it to be further modified to operate on a vector of length `. By
making these modifications, we obtain Algorithm 5.

Algorithm 5 is once again presented under the assumption that X2i(βj) for
0 ≤ i < j < dlog2 `e have been precomputed for the input value of `. In Line 9 of
the algorithm, (ai)2k≤i<` ‖(ai)`′′≤i<2k denotes the concatenation of the subvectors
(ai)2k≤i<` and (ai)`′′≤i<2k . The resulting vector is the cyclic right shift by `′′

positions of the subvector (ai)`′′≤i<`. Thus, Line 9 of the algorithm can realised
with only O(1) additional field elements stored in auxiliary space by using an in-
place algorithm to permute the entries of this subvector before passing it to the
recursive call, then subsequently inverting the permutation. These permutations
are only required if ` is not a power of two, and, in particular, are not required by
any recursive calls made by the algorithm.

Algorithm 5 LowSpaceLCHInterp(`, c, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<`)

Input: integers `, c ∈ {1, . . . , 2n} such that c ≤ `; the vector (X2i(λ))0≤i<dlog2 `e for
some λ ∈ F; and the vector (ai)0≤i<` such that for some f ∈ F[x]`, ai = f(ωi+λ)
for i ∈ {0, . . . , c− 1}, and ai = hi for i ∈ {c, . . . , `− 1}, where h0, . . . , h`−1 ∈ F
are the unique elements that satisfy (4.1).

Output: ai = hi for i ∈ {0, . . . , `− 1}.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′′ ← `− 2k, c0 ← min(c, 2k), c1 ← c− c0
3: for i = c0, . . . , `

′′ − 1 do
4: ai ← ai +X2k(λ)a2k+i

5: LowSpaceLCHInterp(2k, c0, (X2i(λ))0≤i<k, (ai)0≤i<2k)
6: if c1 > 0 then
7: for i = c1, . . . , `

′′ − 1 do
8: a2k+i ← ai + a2k+i

9: LowSpaceLCHInterp(2k, c1, (X2i(λ)+X2i(βk))0≤i<k, (ai)2k≤i<` ‖(ai)`′′≤i<2k)
10: for i = 0, . . . , `′′ − 1 do
11: a2k+i ← ai + a2k+i

12: for i = 0, . . . , `′′ − 1 do
13: ai ← ai +X2k(λ)a2k+i

Theorem 4.7. Algorithm 5 is correct.

Proof. If ` = 1, then c = 1 and Algorithm 4 produces the correct output since
f = h0 is a constant polynomial. Proceeding by induction, assume for some
` ∈ {2, . . . , 2n} that the algorithm produces the correct output for all inputs with
smaller values of `. Let f ∈ F[x]` and h0, . . . , h`−1 ∈ F such that (4.1) holds. Sup-
pose that the algorithm is called with ` as an input, together with c ∈ {1, . . . , `},
(X2i(λ))0≤i<dlog2 `e for some λ ∈ F, ai = f(ωi + λ) for i ∈ {0, . . . , c − 1}, and
ai = hi for i ∈ {c, . . . , ` − 1}. Define integers k, `′′, c0 and c1 as in Line 2 of the
algorithm, and let f0, f1 be the polynomials defined in (4.2). Then f0, f1 ∈ F[x]2k
and Lemma 4.1 implies that at the beginning of the algorithm, the following hold

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 19

for i ∈ {0, . . . , 2k − 1} and j ∈ {0, . . . , `′′ − 1}:

ai =

{
f0(ωi + λ) if i < c0,

hi otherwise,
a2k+j =

{
f1(ωj + λ+ βk) if j < c1,

h2k+j otherwise.

It follows that Lines 3 and 4 of the algorithm set ai = hi + X2k(λ)h2k+i for i ∈
{c0, . . . , `′′ − 1}. The induction hypothesis and the definition of f0 imply that
Line 5 sets ai = hi + X2k(λ)h2k+i for i ∈ {0, . . . ,min(`′′, c0) − 1}, and ai = hi
for i ∈ {`′′, . . . , c0 − 1}, without modifying ai for i ∈ {c0, . . . , 2k − 1}. Thus, after
Line 5, the following holds for i ∈ {0, . . . , 2k − 1}:

ai =

{
hi +X2k(λ)h2k+i if i < `′′,

hi otherwise.

Therefore, if c1 = 0, then Lines 6 to 11 have no effect, while Lines 12 and 13 set
ai = (hi +X2k(λ)h2k+i) +X2k(λ)h2k+i = hi for i ∈ {0, . . . , `′′ − 1}. It follows that
the algorithm terminates with ai = hi for i ∈ {0, . . . , `−1} in this case, as required.

Suppose now that c1 > 0. Then c1 ≤ `′′ ≤ 2k. Therefore, after Lines 7 and 8
have been performed, the following holds for i ∈ {0, . . . , `′′ − 1}:

a2k+i =

{
f1(ωi + λ+ βk) if i < c1,

hi + (1 +X2k(λ))h2k+i otherwise.

The induction hypothesis and the definition of f1 imply that Line 9 sets a2k+i = hi+
(1 +X2k(λ))h2k+i for i ∈ {0, . . . , c1−1}, without modifying ai for i ∈ {`′′, . . . , 2k−
1}∪{2k+c1, . . . , 2

k+`′′−1}. Thus, Lines 10 and 11 set a2k+i = (hi+X2k(λ)h2k+i)+
(hi +(1+X2k(λ))h2k+i) = h2k+i for i ∈ {0, . . . , `′′−1}, after-which Lines 12 and 13
set ai = (hi +X2k(λ)h2k+i) +X2k(λ)h2k+i = hi for i ∈ {0, . . . , `′′ − 1}. Hence, the
algorithm once again terminates with ai = hi for i ∈ {0, . . . , `− 1} in this case. �

Rather than prove an analogue of Theorem 4.6 for Algorithm 5, we instead bound
the difference in the number of field operations performed by Algorithms 4 and 5
when given identical inputs.

Theorem 4.8. When compared to Algorithm 4 for identical inputs, Algorithm 5
performs at most 2dlog2 `e− c(dlog2 `e−dlog2 ce+ bc/2dlog2 `ec) more additions in F,
and at most 2dlog2 `e − c(dlog2 `e − dlog2 ce+ 1) more multiplications in F.

Proof. It is clear that the bounds hold if ` = 1, since c must equal one and both
algorithms will terminate immediately without performing any field operations.
Proceeding by induction, let ` ∈ {2, . . . , 2n} and suppose that the bounds stated in
the theorem hold for all smaller values of `. Moreover, suppose that Algorithms 4
and 5 are called with identical inputs that include ` and c ∈ {1, . . . , `}. Let k =
dlog2 `e − 1, `′′ = `− 2k, c0 = min(c, 2k) and c1 = c− c0, as computed in Line 2 of
both algorithms.

Suppose for now that c1 = 0. Then c0 = c ≤ 2k. Thus, the induction hypothesis
implies that Line 5 of Algorithm 5 performs at most

2k−c
(
k − dlog2 ce+

⌊ c
2k

⌋)
≤ 2dlog2 `e−c

(
dlog2 `e − dlog2 ce+

⌊ c

2dlog2 `e

⌋)
−
(
2k − c

)
more additions, and at most 2dlog2 `e − c(dlog2 `e − dlog2 ce + 1) − (2k − c) more
multiplications, than Line 5 of Algorithm 4. The remaining lines of Algorithm 5
perform max(`′′ − c0, 0) ≤ max(2k+1 − 2k − c, 0) = 2k − c more additions and

20 NICHOLAS COXON

multiplications than the remaining lines of Algorithm 4. Consequently, the bounds
stated in the theorem hold if c1 = 0.

Suppose now that c1 > 0. Then 2k < c ≤ ` ≤ 2k+1 = 2dlog2 `e, c0 = 2k

and c1 = c − 2k ≤ 2k. Thus, the induction hypothesis implies that Line 5 of
Algorithm 5 performs the same number of operations in F as Line 5 of Algorithm 4.
Moreover, we have k−dlog2 c1e ≥ 0 = dlog2 `e−dlog2 ce and bc1/2kc = bc/2dlog2 `ec.
Therefore, the induction hypothesis implies that Line 9 of Algorithm 5 performs at
most

2dlog2 `e − c
(
dlog2 `e − dlog2 ce+

⌊ c

2dlog2 `e

⌋)
+ 2k

(⌊ c

2dlog2 `e

⌋
− 1
)

more additions, and at most 2dlog2 `e−c(dlog2 `e−dlog2 ce+1) more multiplications,
than Line 16 of Algorithm 4. The remaining lines of Algorithm 5 perform `′′ −
c1 = ` − c more additions than those of Algorithm 4, and the same number of
multiplications. Therefore, the bounds stated in the theorem hold if c1 > 0, since
2k(bc/2dlog2 `ec− 1) + `− c is equal to zero if c = 2dlog2 `e, and equal to `− c− 2k ≤
2k+1 − (2k + 1)− 2k < 0 otherwise. �

Each for-loop in Algorithm 5 performs a transformation on the vector (ai)0≤i<`

that is an involution. Thus, performing these transformations in reverse order in-
verts the overall transformation performed by the algorithm, yielding an evaluation
algorithm with the same complexity and space requirements as Algorithm 5. Pseu-
docode for this evaluation algorithm is presented in Algorithm 6. From the proof
of Theorem 4.6, we know that Algorithms 3 and 4 perform the same number of
additions and multiplications when given identical inputs `, c ∈ {1, . . . , 2n} such
that c ≤ `. Consequently, the bounds of Theorem 4.8 also hold when comparing
Algorithm 6 to Algorithm 3 for identical inputs.

Algorithm 6 LowSpaceLCHEval(`, c, (X2i(λ))0≤i<dlog2 `e, (ai)0≤i<`)

Input: integers `, c ∈ {1, . . . , 2n} such that c ≤ `; the vector (X2i(λ))0≤i<dlog2 `e
for some λ ∈ F; and the vector (ai)0≤i<` such that for some f ∈ F[x]`, ai = hi
for i ∈ {0, . . . , ` − 1}, where h0, . . . , h`−1 ∈ F are the unique elements that
satisfy (4.1).

Output: ai = f(ωi + λ) for i ∈ {0, . . . , c− 1}; and ai = hi for i ∈ {c, . . . , `− 1}.
1: if ` = 1 then return
2: k ← dlog2 `e − 1, `′′ ← `− 2k, c0 ← min(c, 2k), c1 ← c− c0
3: for i = 0, . . . , `′′ − 1 do
4: ai ← ai +X2k(λ)a2k+i

5: if c1 > 0 then
6: for i = 0, . . . , `′′ − 1 do
7: a2k+i ← ai + a2k+i

8: LowSpaceLCHEval(2k, c1, (X2i(λ) +X2i(βk))0≤i<k, (ai)2k≤i<` ‖(ai)`′′≤i<2k)
9: for i = c1, . . . , `

′′ − 1 do
10: a2k+i ← ai + a2k+i

11: LowSpaceLCHEval(2k, c0, (X2i(λ))0≤i<k, (ai)0≤i<2k)
12: for i = c0, . . . , `

′′ − 1 do
13: ai ← ai +X2k(λ)a2k+i

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 21

5. Conversion between the LCH and monomial bases

We consider the problem of converting between the LCH and monomial bases
under the assumption that there exists a tower of subfields

(5.1) F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F
such that dm−1 < n ≤ dm, and βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , n − 1} and
t ∈ {0, . . . ,m−1}. We can assume that F is not equal to F2, since otherwise β = (1)
and its associated LCH basis coincides with the monomial basis. Then the existence
of such a tower is established by taking m = 1 and dm = [F : F2], so we have not
imposed any restrictions on the vector β. However, our algorithms enjoy a reduction
in their complexities when m is greater than one. To the tower we associate a
family of bases of F[x]2n that includes the LCH basis and the twisted monomial
basis {1, x/β0, . . . , (x/β0)2

n−1}. We then show how to efficiently convert between
its members, allowing for rapid conversion between the LCH and twisted monomial
bases by traversing the family. Conversion between the LCH and monomial bases,
in either direction, then requires only linearly many additional multiplications to
be performed. We begin by introducing the family of bases and some supporting
notation.

For t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , dn/dte−1}, define et,k = ddt(k + 1)/dt+1e
so that dt+1et,k is the least multiple of dt+1 that is greater than or equal to dt(k+1).
For t ∈ {0, . . . ,m− 1}, k ∈ {0, . . . , dn/dte − 1} and i ∈ {0, . . . , 2n − 1}, define

Y
(t,k)
i =

(
k∏

s=0

Xis
2dts

)dn/dt+1e−1∏
s′=et,k

X
i′
s′

2dt+1s′

,
where

is =

dt−1∑
r=0

2r[i]dts+r, ik =

dt+1et,k−dtk−1∑
r=0

2r[i]dtk+r and i′s′ =

dt+1−1∑
r=0

2r[i]dt+1s′+r

for s ∈ {0, . . . , k − 1} and s′ ∈ {et,k, . . . , dn/dt+1e − 1}. Then each polynomial

Y
(t,k)
i has degree equal to i. It follows that {Y (t,k)

0 , . . . , Y
(t,k)
`−1 } is a basis of F[x]`

for ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , dn/dte − 1}. In Section 5.1,
we show that the LCH basis is obtained by taking t = 0 and k = dn/d0e − 1, while
the twisted monomial basis corresponds to t = m− 1 and k = 0.

For t ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , dn/dte − 2}, define

δt,k = X2dtk
(
βdt(k+1)

)2dt −X2dtk
(
βdt(k+1)

)
.

Then δ0,0, . . . , δ0,n−2 are the denominators that appear in the recurrence relation
from property (3) of Lemma 2.1. In Section 5.1, we show that our assumption on
the quotients βi/βdtbi/dtc leads to higher order recurrence relations between the
polynomials X20 , . . . , X2n−1 of the LCH basis for which the δt,k once again appear
as denominators. For t ∈ {0, . . . ,m−1}, k ∈ {0, . . . , dn/dte−1} and ` ∈ {1, . . . , 2n},
define

It,k,` =
{

0, . . . ,min
(⌈
`/2dtk

⌉
, 2dt+1et,k−dtk

)
− 1
}
,

and
Jt,k,` =

{
j ∈ {0, . . . , `− 1} | [j]dtk = · · · = [j]dt+1et,k−1 = 0

}
.

For t ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , dn/dte− 1}, the sets {2dtki+ j | i ∈ It,k,`−j}
for j ∈ Jt,k,` then form a partition of {0, . . . , `− 1}.

22 NICHOLAS COXON

Having introduced the family of bases and the requisite notation, we are now
ready to state the main technical lemma upon which we base our algorithms for
converting between the LCH and monomial bases.

Lemma 5.1. Let ` ∈ {1, . . . , 2n} and f ∈ F[x]`. Then, for t ∈ {0, . . . ,m− 1} and

k ∈ {0, . . . , dn/dte − 1}, there exist unique elements f
(t,k)
0 , . . . , f

(t,k)
`−1 ∈ F such that

(5.2) f =

`−1∑
i=0

f
(t,k)
i Y

(t,k)
i .

Moreover, the following properties hold for t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , dn/dte−
1}:

(1) if t = m− 1 and k = 0, then f =
∑`−1

i=0 f
(t,k)
i (x/β0)i,

(2) if k < dn/dte − 1 and dt+1/dt divides k + 1, then f
(t,k)
i = f

(t,k+1)
i for

i ∈ {0, . . . , `− 1},
(3) if k < dn/dte − 1 and dt+1/dt does not divide k + 1, then

|It,k,`−j |−1∑
i=0

f
(t,k)

2dtki+j
xi =

|It,k,`−j |−1∑
i=0

f
(t,k+1)

2dtki+j
xi−2

dtbi/2dtc
(
x2

dt − x
δt,k

)bi/2dtc
for j ∈ Jt,k,`, where

δt,k = TrF
2
dt+1

/F
2dt

(
βdt(k+1)

βdtk

)
if dt+1/dt = 2,

(4) if t > 0 and k ≥ d(log2 `)/dte−1, then f
(t,k)
i = f

(t−1,0)
i for i ∈ {0, . . . , `−1},

(5) if t = 0 and k ≥ d(log2 `)/dte − 1, then f =
∑`−1

i=0 f
(t,k)
i Xi.

Lemma 5.1 is proved in Section 5.1. Properties (1) and (5) of the lemma iden-
tify the twisted monomial and LCH bases amongst the family of bases of F[x]`,
while properties (2), (3) and (4) provide a means of traversing its members. Of the
later three properties, only property (3) requires computation, which can be per-
formed efficiently by applying the generalised Taylor expansion algorithm of Gao
and Mateer [14, Section II] or its inverse algorithm, depending on the direction of
conversion. These algorithms are recalled in Section 5.2.

The number of times property (3) must be applied is invariant under the choice
of tower: if ` ∈ {2, . . . , 2dm}, then

(5.3)

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

1 =

m−1∑
t=0

(⌈
log2 `

dt

⌉
−
⌈

log2 `

dt+1

⌉)
= dlog2 `e − 1.

However, by using the algorithms of Gao and Mateer, the number of additions
and multiplications required by a Taylor expansion step decreases as dt grows.
Thus, our algorithms benefit by the presence of subfields of degree less than log2 `.
No multiplications are performed during a Taylor expansion step if δt,k = 1,
which in the case that F2dt+1/F2dt is a quadratic extension occurs if and only if
TrF

2
dt+1

/F
2dt

(βd(k+1)/βdk) = 1. Multiplications are also saved if β0 = 1, since the

twisted monomial basis coincides with the monomial basis. We cannot guarantee
that any of these desirable properties are satisfied by an arbitrary choice of β.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 23

Furthermore, some of the properties are precluded when the field does not con-
tain subfields of appropriate degree. However, the following proposition shows that
when we have freedom to choose β, and subfields of appropriate degree do exist,
then a standard basis construction can be used to obtain a vector with the desired
properties.

Proposition 5.2. Suppose there exists a tower of subfields

F2 = F2d0 ⊂ F2d1 ⊂ · · · ⊂ F2dm ⊆ F.

Let {αt,0, . . . , αt,dt+1/dt−1} be a basis of F2dt+1 /F2dt for t ∈ {0, . . . ,m− 1}, and

βi =

m−1∏
t=0

αt,it such that

m−1∑
t=0

itdt = i

for i ∈ {0, . . . , dm − 1}. Then the following properties hold:

(1) β0, . . . , βdm−1 are linearly independent over F2,
(2) βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , dm − 1} and t ∈ {0, . . . ,m− 1},
(3) if α0,0 = · · · = αm−1,0 = 1, then β0 = 1,
(4) if dt+1/dt = 2 for some t ∈ {0, . . . ,m − 1}, then βdt(k+1)/βdtk = αt,1/αt,0

for even k ∈ {0, . . . , dm/dt − 2}.

Proof. Let i ∈ {0, . . . , dm−1} and write i =
∑m−1

t=0 itdt with it ∈ {0, . . . , dt+1/dt−1}
for t ∈ {0, . . . ,m− 1}. Then

βi
βdtbi/dtc

=
α0,i1 · · ·αt−1,it−1

αt,it · · ·αm−1,im−1

α0,0 · · ·αt−1,0αt,it · · ·αm−1,im−1

=
α0,i0 · · ·αt−1,it−1

α0,0 · · ·αt−1,0
∈ F2dt

for t ∈ {0, . . . ,m− 1}. Thus, property (2) holds. Similarly, we have

βdti+j

β0
=
αt,i

αt,0

βj
β0

and
βj
β0

=
βj

βdtbj/dtc
∈ F2dt

for i ∈ {0, . . . , dt+1/dt − 1}, j ∈ {0, . . . , dt − 1} and t ∈ {0, . . . ,m − 1}. As
{αt,0/αt,0, . . . , αt,dt+1/dt−1/αt,0} is a basis of F2dt+1/F2dt for t ∈ {0, . . . ,m− 1}, it
follows that if {β0/β0, . . . , βdt−1/β0} is a basis of F2dt/F2 for some t ∈ {0, . . . ,m−
1}, then {β0/β0, . . . , βdt+1−1/β0} is a basis of F2dt+1 /F2. Therefore, {β0/β0, . . . , βdm−1/β0}
is a basis of F2dm /F2, since d0 = 1. Hence, property (1) holds.

By definition, β0 is the product of α0,0, . . . , αm−1,0, from which property (3)
follows immediately. Property (4) holds since if dt+1/dt = 2 for some t ∈ {0, . . . ,m−
1}, then

βdt(k+1)

βdtk
=
βdt+1(k/2)+dt

βdt+1(k/2)
=
αt,1

αt,0

for even k ∈ {0, . . . , dm/dt − 2}. �

If the tower in Proposition 5.2 contains a quadratic extension F2dt+1 /F2dt , then
taking αt,0 = 1 and αt,1 ∈ F2dt+1 such that TrF

2
dt+1

/F
2dt

(αt,1) = 1 yields a basis

{αt,0, αt,1} of the extension with the property that αt,1/αt,0 has trace equal to
one. Indeed, linear independence of the two elements over F2dt follows from the
observation that TrF

2
dt+1

/F
2dt

(1) = 0.

24 NICHOLAS COXON

5.1. Proof of Lemma 5.1. We begin by proving properties (1), (2), (4) and (5)
of Lemma 5.1.

Lemma 5.3. The following properties hold for t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , dn/dte−
1}:

(1) if t = m− 1 and k = 0, then Y
(t,k)
i = (x/β0)i for i ∈ {0, . . . , 2n − 1},

(2) if k < dn/dte − 1 and dt+1/dt divides k + 1, then Y
(t,k)
i = Y

(t,k+1)
i for

i ∈ {0, . . . , 2n − 1},
(3) if t > 0, then Y

(t,k)
i = Y

(t−1,0)
i for i ∈ {0, . . . , 2min(dt(k+1),n) − 1},

(4) if t = 0, then Y
(t,k)
i = Xi for i ∈ {0, . . . , 2k+1 − 1}.

Proof. We have dn/dme − 1 = 0, em−1,0 = 1 and

dmem−1,0−dm−1×0−1∑
r=0

2r[i]dm−1×0+r =

dm−1∑
r=0

2r[i]r = i

for i ∈ {0, . . . , 2n− 1}. Thus, Y
(m−1,0)
i = Xi

1 for i ∈ {0, . . . , 2n− 1}. As X1 = x/β0
by property (3) of Lemma 2.1, it follows that property (1) holds.

Let t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that dt+1/dt divides
k+1. Then et,k = dt(k+1)/dt+1 and et,k+1 = et,k+1. Thus, for i ∈ {0, . . . , 2n−1},

dt+1et,k−dtk−1∑
r=0

2r[i]dtk+r =

dt−1∑
r=0

2r[i]dtk+r

and
dt+1−1∑
r=0

2r[i]dt+1et,k+r =

dt+1et,k+1−dt(k+1)−1∑
r=0

2r[i]dt(k+1)+r.

It follows that property (2) holds.
Suppose that t ∈ {1, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 1}. Then dt+1et,k ≥

dt(k + 1) and et−1,0 = 1. For i ∈ {0, . . . , 2dt(k+1) − 1}, it follows that

dt−1∑
r=0

2r[i]dts+r = 0 and

dt+1−1∑
r=0

2r[i]dt+1s′+r = 0

for s ∈ {k + 1, . . . , dn/dte − 1} and s′ ∈ {et,k, . . . , dn/dte − 1}. Consequently, if

i ∈ {0, . . . , 2min(dt(k+1),n) − 1} and

is =

dt−1∑
r=0

2r[i]dts+r for s ∈ {0, . . . , dn/dte − 1},

then

i0 =

dt−1∑
r=0

2r[i]dt×0+r =

dtet−1,0−dt−1×0−1∑
r=0

2r[i]dt−1×0+r

and

Y
(t,k)
i =

k∏
s=0

Xis
2dts

=

(
0∏

s=0

Xis
2dt−1s

)dn/dte−1∏
s′=et−1,0

X
is′

2dts
′

 = Y
(t−1,0)
i .

Therefore, property (3) holds.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 25

As d0 = 1, we have d1e0,k = d1d(k + 1)/d1e ≥ k + 1 for k ∈ {0, . . . , dn/d1e − 1}.
Thus, property (1) of Lemma 2.1 implies that

Y
(0,k)
i =

(
k∏

s=0

X
[i]s
2s

)dn/d1e−1∏
s′=e0,k

X0
2d1s′

 =

k∏
s=0

X2s[i]s = Xi

for k ∈ {0, . . . , dn/d1e−1} and i ∈ {0, . . . , 2k+1−1}. Hence, property (4) holds. �

Recall that a polynomial in F[x] is Fq-linearised if it can be written in the form∑
i∈N fix

qi with f0, f1, . . . ∈ F. The following lemma generalises properties (3)
and (5) of Lemma 2.1, and shows that our assumption on the quotients βi/βdtbi/dtc
leads to higher order and, importantly, sparse recurrence relations between the
polynomials X20 , . . . , X2n−1 of the LCH basis.

Lemma 5.4. Let F2d ⊆ F such that βi/βdbi/dc ∈ F2d for i ∈ {0, . . . , n− 1}. Then
the following properties hold for k ∈ {0, . . . , dn/de − 1}:

(1) if k < dn/de − 1, then

X2d(k+1) =
X2dk(x)2

d −X2dk(x)

X2dk
(
βd(k+1)

)2d −X2dk
(
βd(k+1)

) ,
(2) X2dk is F2d-linearised.

Moreover, if F22d ⊆ F and βi/β2dbi/(2d)c ∈ F22d for i ∈ {0, . . . , n− 1}, then

(5.4) X2dk
(
βd(k+1)

)2d −X2dk
(
βd(k+1)

)
= TrF

22d
/F

2d

(
βd(k+1)

βdk

)
for even k ∈ {0, . . . , dn/de − 2}.

Proof. Let F2d ⊆ F such that βi/βdbi/dc ∈ F2d for i ∈ {0, . . . , n − 1}. We show
that if X2dk is F2d -linearised for some k ∈ {0, . . . , dn/de − 2}, then property (1)
holds and X2d(k+1) is F2d -linearised. As property (3) of Lemma 2.1 implies that
X20 = x/β0 is F2d -linearised, properties (1) and (2) of the lemma then follow by
induction on k.

Suppose that X2dk is F2d -linearised for some k ∈ {0, . . . , dn/de − 2}. Then

ω2dki

βdk
=

d−1∑
j=0

[i]j
βdk+j

βdk
=

d−1∑
j=0

[i]j
βdk+j

βdb(dk+j)/dc
∈ F2d for i ∈ {0, . . . , 2d − 1}.

Thus, property (5) of Lemma 2.1 and the assumption that X2dk is F2d -linearised
imply that

X2dk
(
ω2dki+j

)
= X2dk(βdk)

ω2dki

βdk
+X2dk(ωj) =

ω2dki

βdk
∈ F2d

for i ∈ {0, . . . , 2d−1} and j ∈ {0, . . . , 2dk−1}. It follows that ωi is a common root of

the degree 2d(k+1) polynomials X2d(k+1) and X2d

2dk−X2dk for i ∈ {0, . . . , 2d(k+1)−1}.
Hence, they are equal up to a nonzero scalar multiple. As X2d(k+1)(βd(k+1)) = 1,
it follows that property (1) holds. Property (1) then implies that X2d(k+1) is F2d -
linearised, since X2dk is F2d -linearised by assumption.

Suppose now that F22d ⊆ F and βi/β2dbi/(2d)c ∈ F22d for i ∈ {0, . . . , n − 1}.
Then for even k ∈ {0, . . . , dn/de − 2}, property (1) of the lemma implies that

26 NICHOLAS COXON

X2dk = X22d(k/2) is F22d -linearised, while

βd(k+1)

βdk
=
βd(k+1)

β2d(k/2)
=

βd(k+1)

β2dbd(k+1)/(2d)c
∈ F22d .

Hence, for even k ∈ {0, . . . , dn/de − 2}, we have

X2dk
(
βd(k+1)

)
= X2dk(βdk)

βd(k+1)

βdk
=
βd(k+1)

βdk
,

from which (5.4) follows. �

If t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , dn/dte−2} such that dt+1/dt does not divide

k + 1, then et,k+1 = et,k. It follows in this case that each quotient Y
(t,k+1)
i /Y

(t,k)
i

is of the form Xa
2dt(k+1)/X

b
2dtk

for some a, b ∈ N. Using Lemma 5.4 to express these
quotients as a functions of X2dtk leads to property (3) of Lemma 5.1.

Lemma 5.5. If t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that dt+1/dt
does not divide k + 1, then

Y
(t,k)

2dtki+j
= Xi

2dtkY
(t,k)
j

and

Y
(t,k+1)

2dtki+j
=

(
X2dt

2dtk
−X2dtk

δt,k

)bi/dtc

X
i−2dtbi/dtc
2dtk

Y
(t,k)
j

for i ∈ It,k,2n and j ∈ Jt,k,2n .

Proof. Suppose that t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2} such that
dt+1/dt does not divide k + 1. Then, for i ∈ It,k,2n and j ∈ Jt,k,2n , we have

dt−1∑
r=0

2r[2dtki+ j]dts+r =

dt−1∑
r=0

2r[j]dts+r

for s ∈ {0, . . . , k − 1},

dt+1et,k−dtk−1∑
r=0

2r[2dtki+ j]dtk+r =

dt+1et,k−dtk−1∑
r=0

2r[i]r = i+

dt+1et,k−dtk−1∑
r=0

2r[j]dtk+r

and
dt+1−1∑
r=0

2r[2dtki+ j]dt+1s′+r =

dt+1−1∑
r=0

2r[j]dt+1s′+r

for s′ ∈ {et,k, . . . , dn/dte − 1}. Consequently, Y
(t,k)

2dtki+j
= Xi

2dtk
Y

(t,k)
j for i ∈ It,k,2n

and j ∈ Jt,k,2n .
As dt+1/dt does not divide k + 1, et,k+1 = et,k and dt+1et,k+1 = dt+1et,k >

dt(k + 1). Thus, for i ∈ It,k,2n and j ∈ Jt,k,2n , we have

dt−1∑
r=0

2r[2dtki+ j]dtk+r =

dt−1∑
r=0

2r[i]r =

(
i− 2dt

⌊
i

2dt

⌋)
+

dt−1∑
r=0

2r[j]dtk+r

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 27

and
dt+1et,k+1−dt(k+1)−1∑

r=0

2r[2dtki+ j]dt(k+1)+r =

dt+1et,k−dt(k+1)−1∑
r=0

2r[i]dt+r

=

⌊
i

2dt

⌋
+

dt+1et,k−dt(k+1)−1∑
r=0

2r[j]dt(k+1)+r.

It follows that

Y
(t,k+1)

2dtki+j
= X

bi/2dtc
2dt(k+1)X

i−2dtbi/2dtc
2dtk

Y
(t,k)
j

for i ∈ It,k,2n and j ∈ Jt,k,2n . The proof is completed by making the substitution

X2dt(k+1) = (X2dt

2dtk
− X2dtk)/δt,k, which holds by Lemma 5.4 and the assumption

that βi/βdtbi/dtc ∈ F2dt for i ∈ {0, . . . , n− 1}. �

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let ` ∈ {1, . . . , 2n} and f ∈ F[x]`. Then, for t ∈ {0, . . . ,m−1}
and k ∈ {0, . . . , dn/dte−1}, existence and uniqueness of the elements f

(t,k)
0 , . . . , f

(t,k)
`−1

follows from the observation that Y
(t,k)
i has degree equal to i for i ∈ {0, . . . , `− 1}.

Properties (1), (2), (4) and (5) then follow immediately from Lemma 5.3. To
prove property (3), suppose that t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , dn/dte − 2}
such that dt+1/dt does not divide k + 1. Then k is even if dt+1/dt = 2, in
which case Lemma 5.4 implies that δt,k = TrF

2
dt+1

/F
2dt

(βdt(k+1)/βdtk). The sets

{2dtki+ j | i ∈ It,k,`−j} = {2dtki+ j | i ∈ {0, . . . , |It,k,`−j | − 1}} for j ∈ Jt,k,` form
a partition of {0, . . . , `− 1}. Thus, there exist elements f ′0, . . . , f

′
`−1 ∈ F such that

|It,k,`−j |−1∑
i=0

f
(t,k)

2dtki+j
xi =

|It,k,`−j |−1∑
i=0

f ′2dtki+jx
i−2dtbi/2dtc

(
x2

dt − x
δt,k

)bi/2dtc
for j ∈ Jt,k,`. After substituting X2dtk for x, then multiplying each equation

by Y
(t,k)
j , Lemma 5.5 implies that

|It,k,`−j |−1∑
i=0

f
(t,k)

2dtki+j
Y

(t,k)

2dtki+j
=

|It,k,`−j |−1∑
i=0

f ′2dtki+jY
(t,k+1)

2dtki+j

for j ∈ Jt,k,`. By summing these equations, it follows that

f =
∑

j∈Jt,k,`

∑
i∈It,k,`−j

f
(t,k)

2dtki+j
Y

(t,k)

2dtki+j
=

`−1∑
i=0

f ′iY
(t,k+1)
i .

Thus, the uniqueness of f
(t,k+1)
0 , . . . , f

(t,k+1)
`−1 implies that f ′i = f

(t,k+1)
i for i ∈

{0, . . . , `− 1}. Hence, property (3) follows by the choice of f ′0, . . . , f
′
`−1. �

5.2. Generalised Taylor expansion in characteristic two. The generalised
Taylor expansion of a polynomial f ∈ F[x] at a nonconstant polynomial p ∈ F[x],
also known as its p-adic expansion, is the series expansion

f = f0 + f1p+ f2p
2 + · · ·

such that fi ∈ F[x]deg p for i ∈ N. Gao and Mateer [14, Section II] provide a
fast algorithm for computing the coefficients of the Taylor expansion when p =
xt − x for some t ≥ 2, which is utilised as part of their additive FFT algorithms.

28 NICHOLAS COXON

Their algorithm may be viewed as a specialisation of the recursive algorithm of
von zur Gathen [29] that is supplemented by the easy division of polynomials in

F[x]2k+1t by (xt−x)2
k

= x2
kt−x2k . We present a nonrecursive version of Gao and

Mateer’s algorithm modelled on the basis conversion algorithms of van der Hoeven
and Schost [28, Section 2.2], and specialised to t equal to a power of two. We also
present the inverse algorithm, which recovers a polynomial from the coefficients
of its Taylor expansion. Finally, we derive a bound on the complexity of both
algorithms that is tighter than the one provided by Gao and Mateer.

Let f ∈ F[x]` and p ∈ F[x] be a nonconstant polynomial. Then, for k ∈ N, there
exist unique polynomials fk,0, fk,1, . . . ∈ F[x]2kdeg p such that

f =
∑
i∈N

fk,ip
2ki.

In particular, f0,0, f0,1, . . . are the coefficients of the Taylor expansion of f at p,
fk,i = 0 for i ≥ d`/(2kdeg p)e, and fk,0 = f for k ≥ dlog2 d`/deg pee. Grouping
terms with indices 2i and 2i+ 1 shows that

f =
∑
i∈N

(
fk,2i + p2

k

fk,2i+1

)
p2

k+1i for k ∈ N.

Thus, fk+1,i = fk,2i + p2
k

fk,2i+1 for k, i ∈ N. If p = x2
d − x for some d ≥ 1, then

fk+1,i = fk,2i + x2
k

fk,2i+1 + x2
d+k

fk,2i+1 for k, i ∈ N.
In this case, given the coefficients of fk,2i and fk,2i+1 on the monomial basis, it
follows that the coefficients of fk+1,i on the monomial basis can be computed with
1 + deg fk,2i+1 ≤ 2d+k additions. This computation is also readily inverted by
performing the same number of additions. Consequently, given the Taylor coeffi-
cients f0,0, f0,1, . . . with respect to the monomial basis, we can efficiently compute
f = fdlog2 d`/2dee,0 with respect to the monomial basis by means of the recursive

formula, and vice versa. Using this observation, we obtain Algorithms 7 and 8.

Algorithm 7 TaylorExpansion(d, `, (ai)0≤i<`)

Input: Integers d ≥ 1 and ` ≥ 1; and the vector (ai)0≤i<` such that ai = fi ∈ F
for i ∈ {0, . . . , `− 1}.

Output: ai = hi ∈ F for i ∈ {0, . . . , `− 1} such that

(5.5)

`−1∑
i=0

hix
i−2dbi/2dc

(
x2

d

− x
)bi/2dc

=

`−1∑
i=0

fix
i.

1: for k = dlog2 d`/2dee − 1, . . . , 0 do
2: `1 ← b`/(2d+k+1)c, `2 ← `− 2d+k+1`1
3: for i = 0, . . . , `1 − 1 do
4: for j = 2d+k − 1, . . . , 0 do
5: a2d+k(2i)+2k+j ← a2d+k(2i)+2k+j + a2d+k(2i+1)+j

6: for j = `2 − 2d+k − 1, . . . , 0 do
7: a2d+k(2`1)+2k+j ← a2d+k(2`1)+2k+j + a2d+k(2`1+1)+j

Lemma 5.6. Algorithms 7 and 8 perform at most b`/2cdlog2 d`/2dee additions
in F.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 29

Algorithm 8 InverseTaylorExpansion(d, `, (ai)0≤i<`)

Input: Integers d ≥ 1 and ` ≥ 1; and the vector (ai)0≤i<` such that ai = hi ∈ F
for i ∈ {0, . . . , `− 1}.

Output: ai = fi for i ∈ {0, . . . , `− 1} such that (5.5) holds.
1: for k = 0, . . . , dlog2 d`/2dee − 1 do
2: `1 ← b`/(2d+k+1)c, `2 ← `− 2d+k+1`1
3: for i = 0, . . . , `1 − 1 do
4: for j = 0, . . . , 2d+k − 1 do
5: a2d+k(2i)+2k+j ← a2d+k(2i)+2k+j + a2d+k(2i+1)+j

6: for j = 0, . . . , `2 − 2d+k − 1 do
7: a2d+k(2`1)+2k+j ← a2d+k(2`1)+2k+j + a2d+k(2`1+1)+j

Proof. For each k ∈ {0, . . . , dlog2 d`/2dee−1}, Lines 2–7 of either algorithm perform

2d+k`1 + max(`2 − 2d+k, 0) ≤ 2d+k`1 + (`2 − d`2/2e) = 2d+k`1 + b`2/2c = b`/2c
additions in F. �

5.3. Conversion algorithms and complexity. By combining Lemma 5.1 with
the Taylor expansion algorithms of Section 5.2, we obtain Algorithms 9 and 10
for converting between the LCH and monomial bases. Algorithm 9 is presented
under the assumption that δt,k has been precomputed for t ∈ {0, . . . ,m − 1}
and k ∈ {0, . . . , d(log2 `)/dte − 2} such that dt+1/dt does not divide k + 1, while
Algorithm 10 assumes that the inverses of these elements and 1/β0 have been
precomputed. As a result, (5.3) implies that each algorithm is required to store
O(log `) precomputed elements. For each t ∈ {0, . . . ,m − 1}, the elements δt,k for

k ∈ {0, . . . , d(log2 `)/dte − 2} can be computed with O((log2 `)/dt) field operations
by using property (1) of Lemma 5.4 and exponentiation by repeated squaring. As
dt ≥ 2t for t ∈ {0, . . . ,m−1}, it follows that all precomputations for the algorithms
can be performed with O(log2 `) field operations. Each algorithm operates on a vec-
tor (ai)0≤i<` that initially contains the coefficients of a polynomial on the input
basis, and which has it entries overwritten by the coefficients of the polynomial on
the output basis. The subvectors of these vectors that are passed to Algorithms 7
and 8 can be represented in practice by a pointer to their first entry and a stride
parameter. In doing so, only O(log `) field elements are required to be stored in
auxiliary space by either algorithm.

Theorem 5.7. Algorithms 9 and 10 are correct.

Proof. Correctness is only proved for Algorithm 9, since the proof for Algorithm 10
follows along similar lines. Suppose that Algorithm 9 is called on ` ∈ {1, . . . , 2n}
and (ai)0≤i<`, with ai = fi ∈ F for i ∈ {0, . . . , ` − 1}. Then it is clear that the
algorithm produces the correct output if ` = 1, since X0 = 1 and the algorithm
does not modify the entries of (ai)0≤i<` in this case. Therefore, assume that ` > 1.

Let f =
∑`−1

i=0 fix
i, and f

(t,k)
0 , . . . , f

(t,k)
`−1 ∈ F satisfy (5.2) for t ∈ {0, . . . ,m−1} and

k ∈ {0, . . . , dn/dte − 1}, which exist and are unique by Lemma 5.1.
Lines 1 to 4 of the algorithm multiply ai by βi

0 for i ∈ {1, . . . , ` − 1} if β0 6= 1.
If ` ≤ 2, then the remaining lines of the algorithm have no effect on the vector
(ai)0≤i<`, since d(log2 `)/dte < 2 for t ∈ {0, . . . ,m−1}. As X0 = 1 and X0 = x/β0,
it follows that the algorithm produces the correct output if ` ≤ 2. Therefore, assume

30 NICHOLAS COXON

Algorithm 9 MonomialToLCH(`, (ai)0≤i<`)

Input: an integer ` ∈ {1, . . . , 2n}; and the vector (ai)0≤i<` such that ai = fi ∈ F
for i ∈ {0, . . . , `− 1}.

Output: ai = hi ∈ F for i ∈ {0, . . . , `− 1} such that
∑`−1

i=0 hiXi =
∑`−1

i=0 fix
i.

1: if β0 6= 1 and ` > 1 then
2: c← β0, a1 ← ca1
3: for i = 2, . . . , `− 1 do
4: c← β0c, ai ← cai
5: for t = m− 1,m− 2, . . . , 0 do
6: for k = 0, . . . , d(log2 `)/dte − 2 do
7: if dt+1/dt - k + 1 then
8: for j ∈ Jt,k,` do
9: TaylorExpansion(dt, |It,k,`−j |, (a2dtki+j)0≤i<|It,k,`−j |)

10: if δt,k 6= 1 then
11: q ← d|It,k,`|/2dte − 1, r ← |It,k,`| − 2dtq, c← δt,k
12: for i1 = 1, . . . , q − 1 do
13: for i0 = 0, . . . , 2dt − 1 do
14: for j ∈ Jt,k,`−2dtk(2dt i1+i0) do
15: a2dtk(2dt i1+i0)+j ← ca2dtk(2dt i1+i0)+j

16: c← δt,kc
17: for i0 = 0, . . . , r − 1 do
18: for j ∈ Jt,k,`−2dtk(2dtq+i0) do
19: a2dtk(2dtq+i0)+j ← ca2dtk(2dtq+i0)+j

that ` > 2. Then 2ds < ` ≤ 2ds+1 for some s ∈ {0, . . . ,m − 1}, and properties (1)

and (4) of Lemma 5.1 imply that ai = f
(m−1,0)
i = · · · = f

(s,0)
i for i ∈ {0, . . . , `− 1}

after Lines 1 to 4 of the algorithm have been performed.
Suppose that during the algorithm, Line 7 is reached and the entries of (ai)0≤i<`

satisfy ai = f
(t,k)
i for i ∈ {0, . . . , ` − 1}, where t ∈ {0, . . . ,m − 1} and k ∈

{0, . . . , d(log2 `)/dte − 2} are the current values of the loop counter variables in
Lines 5 and 6. If dt+1/dt divides k + 1, then Lines 7 to 19 have no effect on the

vector, while property (2) of Lemma 5.1 implies that its entries satisfy ai = f
(t,k+1)
i

for i ∈ {0, . . . , `− 1}. If dt+1/dt does not divide k+ 1, then after Lines 7 to 9 have
been performed, the entries of (ai)0≤i<` satisfy

|It,k,`−j |−1∑
i=0

f
(t,k)

2dtki+j
xi =

|It,k,`−j |−1∑
i=0

a2dtki+jx
i−2dtbi/2dtc

(
x2

dt − x
)bi/2dtc

for j ∈ Jt,k,`. If δt,k 6= 1, then Lines 10 to 19 subsequently multiply a2dtki+j by

δ
bi/2dtc
t,k for i ∈ It,k,` and j ∈ Jt,k,`−2dtki such that i ≥ 2dt , after-which property (3)

of Lemma 5.1 implies that ai = f
(t,k+1)
i for i ∈ {0, . . . , `−1}. Therefore, regardless

of whether dt+1/dt divides k + 1, if the entries of (ai)0≤i<` satisfy ai = f
(t,k)
i for

i ∈ {0, . . . , `−1} upon reaching Line 7, then ai = f
(t,k+1)
i for i ∈ {0, . . . , `−1} after

Lines 7 to 19 have been performed. In particular, if t 6= 0 and k = d(log2 `)/dte−2,

then property (4) of Lemma 5.1 implies that ai = f
(t−1,0)
i for i ∈ {0, . . . , `−1} after

Lines 7 to 19 have been performed. As ai = f
(t,k)
i for i ∈ {0, . . . , ` − 1} the first

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 31

Algorithm 10 LCHToMonomial(`, (ai)0≤i<`)

Input: an integer ` ∈ {1, . . . , 2n}; and the vector (ai)0≤i<` such that ai = hi ∈ F
for i ∈ {0, . . . , `− 1}.

Output: ai = fi ∈ F for i ∈ {0, . . . , `− 1} such that
∑`−1

i=0 fix
i =

∑`−1
i=0 hiXi.

1: for t = 0, . . . ,m− 1 do
2: for k = d(log2 `)/dte − 2, . . . , 0 do
3: if dt+1/dt - k + 1 then
4: if δt,k 6= 1 then
5: q ← d|It,k,`|/2dte − 1, r ← |It,k,`| − 2dtq, c← (1/δt,k)
6: for i1 = 1, . . . , q − 1 do
7: for i0 = 0, . . . , 2dt − 1 do
8: for j ∈ Jt,k,`−2dtk(2dt i1+i0) do
9: a2dtk(2dt i1+i0)+j ← ca2dtk(2dt i1+i0)+j

10: c← (1/δt,k)c
11: for i0 = 0, . . . , r − 1 do
12: for j ∈ Jt,k,`−2dtk(2dtq+i0) do
13: a2dtk(2dtq+i0)+j ← ca2dtk(2dtq+i0)+j

14: for j ∈ Jt,k,` do
15: InverseTaylorExpansion(dt, |It,k,`−j |, (a2dtki+j)0≤i<|It,k,`−j |)
16: if β0 6= 1 and ` > 1 then
17: c← (1/β0), a1 ← ca1
18: for i = 2, . . . , `− 1 do
19: c← (1/β0)c, ai ← cai

time the algorithm reaches Line 7, which happens for t = s and k = 0, it follows

that the algorithm terminates with ai = f
(0,d(log2 `)/d0e−1)
i for i ∈ {0, . . . , ` − 1}.

Property (5) of Lemma 5.1 implies that this is the correct output. �

Remark 5.8. By substituting property (3) of Corollary 2.2 for Lemma 5.4 in the
proof of Lemma 5.1, it is possible to show that Algorithms 9 and 10 produce the
correct output when β is a Cantor basis if one takes m = dlog2 ne and dt = 2t for
t ∈ {0, . . . ,m}. The substitution is necessary as the requirements on the quotients
βi/βdtbi/dtc may not be met in this case. For example, if β is a Cantor basis
with n ≥ 4, then β3 ∈ F24 \ F22 [14, Lemma 3] and, thus, β3/β2b3/2c = β3/β2 =
1/(β3 + 1) /∈ F22 . For the special case of ` = 2n, the algorithms of Lin, Al-Naffouri,
Han and Chung [20] are recovered, but written as iterative algorithms rather than
recursive algorithms.

The following theorem bounds the number of additions and multiplications per-
formed by Algorithms 9 and 10.

Theorem 5.9. Suppose that 2ds < ` ≤ 2ds+1 for some s ∈ {0, . . . ,m − 1}. Then
Algorithms 9 and 10 perform at most

1

2

⌊
`

2

⌋(
dlog2 `e

(⌈
log2 `

ds

⌉
− 1

)
+

s−1∑
t=0

dt

⌈
log2 `

dt

⌉(
dt+1

dt
− 1

))
additions in F, and at most (`− 1)(dlog2 `e+ 1)− 1 multiplications in F.

32 NICHOLAS COXON

Theorem 5.9 is proved in Section 5.4. Recall that for an arbitrarily chosen β, the
algorithms of Lin et al. [20] allow polynomials in F[x]2n to be converted between
the LCH and monomial bases with O(2nn2) additions and O(2nn) multiplications.
The corresponding parameters for Algorithms 9 and 10 are m = 1 and ` = 2n, for
which the algorithms perform the same patterns of Taylor expansions and inverse
Taylor expansions as their counterparts in [20]. This resemblance between the two
families of algorithms results in our algorithms yielding the same big-O complexity
bounds for this case, as shown by the following corollary.

Corollary 5.10. If m = 1, then Algorithms 9 and 10 perform at most b`/2c
(dlog2 `e

2

)
additions in F, and at most (`− 1)(dlog2 `e+ 1) multiplications in F.

Proof. Algorithms 9 and 10 perform no multiplications if ` = 1, at most one mul-
tiplication if ` = 2, and no additions for ` ≤ 2. Thus, the bounds hold for ` ≤ 2.
If m = 1 and ` > 2, then Theorem 5.9 can be applied with s = 0, which yields the
stated bounds. �

The algorithms of Lin et al. for Cantor bases perform only O(2nn log n) addi-
tions and no multiplications. As noted in Remark 5.8, our algorithms reduce to
their algorithms when applied to this case. The following corollary of Theorem 5.9
confirms that we obtain the same big-O complexities.

Corollary 5.11. Suppose that dt = 2t for t ∈ {0, . . . ,m}. Then Algorithms 9
and 10 perform at most b`/2c(dlog2(`/2)edlog2 log2 max(`, 2)e + dlog2 `e)/2 addi-
tions in F. Moreover, if β0 = 1 and

TrF
2
dt+1

/F
2dt

(
βdt(k+1)

βdtk

)
= 1

for t ∈ {0, . . . ,m− 1} and even k ∈ {0, . . . , d(log2 `)/dte − 2}, then the algorithms
perform no multiplications in F.

Proof. Suppose that dt = 2t for t ∈ {0, . . . ,m}. Then the bound on the number
of additions performed by the algorithms holds trivially if ` ≤ 2. If ` > 2, then
Theorem 5.9 can be applied with s = dlog2 log2 `e−1, from which the stated bound
is obtained by observing that

s−1∑
t=0

dt

⌈
log2 `

dt

⌉
≤ s(dlog2 `e − 1) + 2s − 1 ≤ dlog2(`/2)edlog2 log2 `e

and d(log2 `)/dse = 2. If β0 = 1, then Lines 1 to 4 of Algorithm 9 and Lines 16
to 19 of Algorithm 10 perform no multiplications. Similarly, if the trace condition
of the corollary is met, then Lines 5 to 19 of Algorithm 9 and Lines 1 to 15 of
Algorithm 10 perform no multiplications, since property (3) of Lemma 5.1 implies
that δt,k = 1 for t ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} such that
dt+1/dt = 2 does not divide k + 1. �

Remark 5.12. If dt+1/dt = 2 for some t ∈ {0, . . . ,m − 1}, then property (3) of
Lemma 5.1 implies that δt,k ∈ F2dt for even k ∈ {0, . . . , dn/de − 2}. Consequently,
if some of these elements cannot be forced to equal one, then it may still be pos-
sible to reduce the cost of the corresponding multiplications in Lines 5 to 19 of
Algorithm 9 (similarly, Lines 1 to 15 of Algorithm 10) by choosing a representa-
tion of the elements of the field that lowers the cost of multiplying by elements

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 33

of the subfield F2dt . Such optimisations have previously been shown to be benefi-
cial in practice, particularly for multiplications by elements of small subfields, by
Bernstein and Chou [3] and Chen et al. [7].

For m = 1, Algorithms 9 and 10 are based on the same ideas as the algorithms of
Lin et al. [20], which in turn are based on ideas from the additive FFT of Gao and
Mateer [14]. Thus, comparing our own algorithms against this case provides some
indication of the benefits granted by the techniques of this section. The bound on
the number of additions performed by Algorithms 9 and 10 provided by Theorem 5.9
is attained for ` = 2dm . Thus, for sufficiently large `, say for ` > 2dm−1 , the theorem
suggests that the relative number of additions performed by the algorithms, when
given as a fraction of the number of additions performed for the trivial choice of
tower F

2d
′
0
⊂ F

2d
′
1

with d′0 = 1 and d′1 = dm, is approximately

(5.6)
1

dm − 1

m−1∑
t=0

(
dt+1

dt
− 1

)
.

The following example shows that this estimate is reasonably accurate, and provides
a concrete example of the reduction in additive complexity afforded by utilising ad-
ditional subfields when they are available. The example similarly demonstrates the
reduction in multiplicative complexity afforded by the use of additional subfields,
which is not exhibited by the somewhat crude bound of Theorem 5.9.

Example 5.13. Suppose that F212 ⊆ F. Then there are eight tuples of positive
integers (d0, . . . , dm) such that dm = 12 and (5.1) holds. For each such tuple, Fig-
ure 1 displays the relative number of additions performed by Algorithms 9 and 10,
given as a fraction of the number performed for the tuple (1, 12), as the poly-
nomial length (`) ranges over {3, . . . , 4096}. The estimate (5.6) of the relative
number of additions performed for large ` is equal to 6/11 ≈ 0.55 for (d0, . . . , dm) ∈
{(1, 6, 12), (1, 2, 12)}, 5/11 ≈ 0.45 for (d0, . . . , dm) ∈ {(1, 4, 12), (1, 3, 12)}, and
4/11 ≈ 0.36 for (d0, . . . , dm) ∈ {(1, 3, 6, 12), (1, 2, 6, 12), (1, 2, 4, 12)}.

Figure 2 displays the relative number of multiplications performed by Algo-
rithms 9 and 10, once again given as a fraction of the number performed for (1, 12).
To highlight the effect of the choice of tower, it is assumed that β0 = 1 in all
cases, since the number of multiplications by powers of β0 or 1/β0 performed by
Lines 1 to 4 of Algorithm 9 and Lines 16 to 19 of Algorithm 10 is independent of
the tower. Tuples without daggers assume that δt,k is never equal to one. Tuples
with daggers assume that δt,k is equal to one if and only if dt+1/dt = 2, in order to
demonstrate the benefit of choosing β so that TrF

2
dt+1

/F
2dt

(βdt(k+1)/βdtk) = 1 for

t ∈ {0, . . . ,m− 1} such that dt+1/dt = 2, and even k ∈ {0, . . . , d(log2 `)/dte − 2}.

5.4. Proof of Theorem 5.9. We split the proof of Theorem 5.9 into five lemmas,
with the first four lemmas dedicated to bounding the number of additions performed
by Algorithms 9 and 10.

Lemma 5.14. If 2ds < ` ≤ 2ds+1 for some s ∈ {0, . . . ,m − 1}, then Algorithms 9
and 10 perform at most

s∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉

34 NICHOLAS COXON

0

0.2

0.4

0.6

0.8

1

4 16 64 256 1024 4096

F
ra
ct
io
n
o
f
ad

d
it
io
n
s
p
er
fo
rm

ed

Polynomial length

(1, 12)
(1, 6, 12)
(1, 4, 12)
(1, 3, 12)
(1, 2, 12)
(1, 3, 6, 12)
(1, 2, 6, 12)
(1, 2, 4, 12)

Figure 1. Relative number of additions for Example 5.13.

0

0.2

0.4

0.6

0.8

1

4 16 64 256 1024 4096

F
ra
ct
io
n
of

m
u
lt
ip
li
ca
ti
o
n
s
p
er
fo
rm

ed

Polynomial length

(1, 12)
(1, 6, 12)
(1, 4, 12)
(1, 3, 12)
(1, 2, 12)
(1, 3, 6, 12)
(1, 2, 6, 12)
(1, 2, 4, 12)
(1, 6, 12)†

(1, 2, 12)†

(1, 3, 6, 12)†

(1, 2, 6, 12)†

(1, 2, 4, 12)†

Figure 2. Relative number of multiplications for Example 5.13.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 35

additions in F.

Proof. Lemma 5.6 implies that Algorithms 9 and 10 perform at most

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉

additions in F. If there exists s ∈ {0, . . . ,m − 1} such that 2ds < ` ≤ 2ds+1 ,
then the bound is equal to that of the lemma since d(log2 `)/dte < 2 for t ∈
{s+ 1, . . . ,m− 1}. �

We now bound the inner-most sums of the bound from Lemma 5.14, before
working our way out to obtain the bound of Theorem 5.9.

Lemma 5.15. If ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , d(log2 `)/dte−
2}, then∑

j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉
≤ 2dt+1et,k−1q(dt+1et,k − dt(k + 1)) +

⌊r
2

⌋⌈
log2

⌈ r

2dt(k+1)

⌉⌉
,

where q = d`/2dt+1et,ke − 1 and r = `− 2dt+1et,kq.

Proof. Suppose that ` ∈ {1, . . . , 2n}, t ∈ {0, . . . ,m−1} and k ∈ {0, . . . , d(log2 `)/dte−
2}. Let q = d`/2dt+1et,ke− 1 and r = `− 2dt+1et,kq. Then, as r ≥ 1, j ∈ Jt,k,` if and
only if j = 2dt+1et,kj1 + j0 for some j1 ∈ {0, . . . , q} and j0 ∈ {0, . . . ,min(2dtk, ` −
2dt+1et,kj1)− 1}. Moreover, if j ∈ Jt,k,` is written in this form, then

|It,k,`−j | =

{
2dt+1et,k−dtk if j1 < q,

|It,k,r−j0 | if j1 = q.

Thus, the bound of the lemma holds if and only if

(5.7)

min(2dtk,r)−1∑
j=0

⌊
|It,k,r−j |

2

⌋⌈
log2

⌈
|It,k,r−j |

2dt

⌉⌉
≤
⌊r

2

⌋⌈
log2

⌈ r

2dt(k+1)

⌉⌉
.

To prove this inequality, we may assume that r ≥ 2dtk, since otherwise both sides of
the inequality are zero. Let u = br/2dtkc and v = r− 2dtku. Then, as r ≤ 2dt+1et,k ,

|It,k,r−j | = u+

⌈
v − j
2dtk

⌉
=

{
u+ 1 if j < v,

u if j ≥ v,

for j ∈ {0, . . . , 2dtk − 1}. Consequently, the left-hand side of (5.7) is equal to

v

⌊
u+ 1

2

⌋⌈
log2

⌈
u+ 1

2dt

⌉⌉
+
(
2dtk − v

)⌊u
2

⌋⌈
log2

⌈ u
2dt

⌉⌉
.

We have u = r/2dtk if v = 0, and u + 1 = dr/2dtke if v 6= 0. Thus, du/2dte =
dr/2dt(k+1)e if v = 0, and d(u+ 1)/2dte = dr/2dt(k+1)e if v 6= 0. It follows that the
left-hand side of (5.7) is less than or equal to⌊

v(u+ 1) + (2dtk − v)u

2

⌋⌈
log2

⌈ r

2dt(k+1)

⌉⌉
=
⌊r

2

⌋⌈
log2

⌈ r

2dt(k+1)

⌉⌉
.

Therefore, (5.7) holds, which completes the proof of the lemma. �

36 NICHOLAS COXON

Combining the following two lemmas with Lemma 5.14 completes the proof of
the addition bound of Theorem 5.9.

Lemma 5.16. For ` ∈ {1, . . . , 2n} and t ∈ {0, . . . ,m− 1} such that 2dt+1 < `,

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉
≤
⌊
`

2

⌋
dt
2

⌈
log2 `

dt

⌉(
dt+1

dt
− 1

)
.

Proof. Suppose that ` ∈ {1, . . . , 2n} and t ∈ {0, . . . ,m − 1} such that 2dt+1 < `.
Then, for k ∈ {0, . . . , d(log2 `)/dte − 2}, the integers q = d`/2dt+1et,ke − 1 and
r = ` − 2dt+1et,kq satisfy r ≤ 2dt+1et,k and 2dt+1et,k−1q + br/2c = b`/2c. Thus,
Lemma 5.15 implies that

(5.8)
∑

j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉
≤
⌊
`

2

⌋
(dt+1et,k − dt(k + 1))

for k ∈ {0, . . . , d(log2 `)/dte− 2}. If k ∈ {0, . . . , d(log2 `)/dte− 2} such that dt+1/dt
does not divide k + 1, then k = k1(dt+1/dt) + k0 for nonnegative integers k1 <
(dt/dt+1)d(log2 `)/dte and k0 < dt+1/dt − 1. Moreover, when k is written in this
form, we have

dt+1et,k − dt(k + 1) = dt+1

⌈
dt(k0 + 1)

dt+1

⌉
− dt(k0 + 1) = dt+1 − dt(k0 + 1).

As (dt/dt+1)d(log2 `)/dte > (dt/dt+1)ddt+1/dte = 1, it follows by substituting
into (5.8) and summing the resulting inequalities that

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

∑
j∈Jt,k,`

⌊
|It,k,`−j |

2

⌋⌈
log2

⌈
|It,k,`−j |

2dt

⌉⌉

≤
⌊
`

2

⌋
dt
dt+1

⌈
log2 `

dt

⌉ dt+1/dt−2∑
k0=0

dt+1 − dt(k0 + 1)

=

⌊
`

2

⌋
dt
2

⌈
log2 `

dt

⌉(
dt+1

dt
− 1

)
,

which completes the proof of the lemma. �

Lemma 5.17. For ` ∈ {1, . . . , 2n} and s ∈ {0, . . . ,m−1} such that 2ds < ` ≤ 2ds+1 ,

d(log2 `)/dse−2∑
k=0

ds+1/ds-k+1

∑
j∈Js,k,`

⌊
|Is,k,`−j |

2

⌋⌈
log2

⌈
|Is,k,`−j |

2ds

⌉⌉
≤
⌊
`

2

⌋
dlog2 `e

2

(⌈
log2 `

ds

⌉
− 1

)
.

Proof. Suppose that ` ∈ {1, . . . , 2n} and s ∈ {0, . . . ,m− 1} satisfy 2ds < ` ≤ 2ds+1 .
Then, for k ∈ {0, . . . , d(log2 `)/dse − 2}, we have q = d`/2ds+1es,ke − 1 = 0 and
r = `− 2ds+1es,kq = ` > 2ds(k+1). Thus, Lemma 5.15 implies that∑

j∈Js,k,`

⌊
|Is,k,`−j |

2

⌋⌈
log2

⌈
|Is,k,`−j |

2ds

⌉⌉
≤
⌊
`

2

⌋⌈
log2

⌈
`

2ds(k+1)

⌉⌉

=

⌊
`

2

⌋
(dlog2 `e − dt(k + 1))

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 37

for k ∈ {0, . . . , d(log2 `)/dse − 2}. Moreover, ds+1/ds does not divide k + 1 for
k ∈ {0, . . . , d(log2 `)/dse − 2}, since d(log2 `)/dse − 1 < ds+1/ds. It follows that

d(log2 `)/dse−2∑
k=0

ds+1/ds-k+1

∑
j∈Js,k,`

⌊
|Is,k,`−j |

2

⌋⌈
log2

⌈
|Is,k,`−j |

2ds

⌉⌉

≤
⌊
`

2

⌋(⌈
log2 `

ds

⌉
− 1

)(
dlog2 `e −

ds
2

⌈
log2 `

ds

⌉)
≤
⌊
`

2

⌋(⌈
log2 `

ds

⌉
− 1

)
dlog2 `e

2
,

which completes the proof of the lemma. �

We now complete the proof of Theorem 5.9 by bounding the number of multi-
plications performed by Algorithms 9 and 10.

Lemma 5.18. If ` > 1, then Algorithms 9 and 10 perform at most (`−1)(dlog2 `e+
1)− 1 multiplications in F.

Proof. Suppose that ` > 1. Then Lines 1 to 4 of Algorithm 9 perform at most
2(`− 1)− 1 multiplications, while Lines 5 to 19 perform at most

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

⌈ |It,k,`|
2dt

⌉
− 2 +

|It,k,`|−1∑
i=2dt

∣∣Jt,k,`−2dtki∣∣

multiplications. The same bounds hold respectively for Lines 16 to 19 and Lines 1
to 15 of Algorithm 10. If t ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , d(log2 `)/dte − 2} such
that dt+1/dt does not divide k+1, then ` > 2dt(k+1) and dt+1et,k−dtk > dt. For such
t and k, it follows that |It,k,`| > 2dt and

∣∣Jt,k,`−2dtki∣∣ ≥ 2dtk for i ∈ {0, . . . , 2dt −1},
since `− 2dtki ≥ 2dtk for i ≤ 2dt − 1. Thus,

|It,k,`|−1∑
i=2dt

∣∣Jt,k,`−2dtki∣∣ =
∑

i∈It,k,`

∣∣Jt,k,`−2dtki∣∣− 2dt−1∑
i=0

∣∣Jt,k,`−2dtki∣∣ ≤ `− 2dt(k+1)

and ⌈
|It,k,`|

2dt

⌉
− 1 ≤

⌈
d`/2dtke

2dt

⌉
− 1 ≤ `

2dt(k+1)

for t ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , d(log2 `)/dte− 2} such that dt+1/dt does not
divide k+1. By combining these inequalities with (5.3), it follows that Algorithms 9
and 10 perform at most

(`− 1)(dlog2 `e+ 1)− 1 +

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

(
`

2dt(k+1)
− 2dt(k+1)

)

multiplications. Finally, we have

m−1∑
t=0

d(log2 `)/dte−2∑
k=0

dt+1/dt-k+1

(
`

2dt(k+1)
− 2dt(k+1)

)
=

(
`

2dlog2 `e − 1

) dlog2 `e−1∑
k=1

2k ≤ 0,

38 NICHOLAS COXON

since the sets {dt(k + 1) | k ∈ {0, . . . , d(log2 `)/dte − 2}, dt+1/dt - k + 1} for t ∈
{0, . . . ,m− 1} are pairwise disjoint and their union is {1, . . . , dlog2 `e − 1}. �

References

1. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan

Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars
Virza, Computational integrity with a public random string from quasi-linear PCPs, Ad-

vances in cryptology—EUROCRYPT 2017. Part III, Lecture Notes in Comput. Sci., vol.

10212, Springer, Cham, 2017, pp. 551–579.
2. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev, Scalable, transparent, and

post-quantum secure computational integrity, Cryptology ePrint Archive, Report 2018/046,

2018, https://eprint.iacr.org/2018/046.
3. Daniel J. Bernstein and Tung Chou, Faster binary-field multiplication and faster binary-field

MACs, Selected areas in cryptography—SAC 2014, Lecture Notes in Comput. Sci., vol. 8781,
Springer, Cham, 2014, pp. 92–111.

4. Daniel J. Bernstein, Tung Chou, and Peter Schwabe, McBits: Fast constant-time code-based

cryptography, Cryptographic Hardware and Embedded Systems—CHES 2013, Lecture Notes
in Comput. Sci., vol. 8086, Springer, Berlin, 2013, pp. 250–272.

5. Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann, Faster mul-

tiplication in GF(2)[x], Algorithmic number theory—ANTS 2008, Lecture Notes in Comput.
Sci., vol. 5011, Springer, Berlin, 2008, pp. 153–166.

6. David G. Cantor, On arithmetical algorithms over finite fields, J. Combin. Theory Ser. A 50

(1989), no. 2, 285–300.
7. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang, Faster

multiplication for long binary polynomials, 2017, arXiv:1708.09746 [cs.SC].

8. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang, Multi-
plying boolean polynomials with Frobenius partitions in additive fast Fourier transform, 2018,

arXiv:1803.11301 [cs.SC].
9. Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang, and Chen-Mou Cheng, Im-

plementing 128-bit secure MPKC signatures, Cryptology ePrint Archive, Report 2017/636,

2017, https://eprint.iacr.org/2017/636.
10. Tung Chou, McBits revisited, Cryptographic Hardware and Embedded Systems—CHES 2017,

Lecture Notes in Comput. Sci., vol. 10529, Springer, Cham, 2017, pp. 213–231.

11. Nicholas Coxon, Fast Hermite interpolation and evaluation over finite fields of characteristic
two, J. Symbolic Comput., to appear.

12. Nicholas Coxon, Fast systematic encoding of multiplicity codes, J. Symbolic Comput. 94

(2019), 234–254.
13. N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.

14. Shuhong Gao and Todd Mateer, Additive fast Fourier transforms over finite fields, IEEE

Trans. Inform. Theory 56 (2010), no. 12, 6265–6272.
15. David Harvey, A cache-friendly truncated FFT, Theoret. Comput. Sci. 410 (2009), no. 27-29,

2649–2658.
16. David Harvey and Daniel S. Roche, An in-place truncated Fourier transform and applications

to polynomial multiplication, ISSAC 2010—Proceedings of the 2010 International Symposium

on Symbolic and Algebraic Computation, ACM, New York, 2010, pp. 325–329.
17. Robin Larrieu, The truncated Fourier transform for mixed radices, ISSAC’17—Proceedings

of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, ACM,
New York, 2017, pp. 261–268.

18. Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang, Frobe-
nius additive fast fourier transform, Proceedings of the 2018 ACM International Symposium

on Symbolic and Algebraic Computation (New York, NY, USA), ISSAC ’18, ACM, 2018,
pp. 263–270.

19. Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han, FFT algorithm for binary

extension finite fields and its application to Reed-Solomon codes, IEEE Trans. Inform. Theory
62 (2016), no. 10, 5343–5358.

FAST TRANSFORMS OVER FINITE FIELDS OF CHARACTERISTIC TWO 39

20. Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung, Novel poly-

nomial basis with fast Fourier transform and its application to Reed–Solomon erasure codes,

IEEE Trans. Inform. Theory 62 (2016), no. 11, 6284–6299.
21. Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han, Novel polynomial basis and its

application to Reed-Solomon erasure codes, 55th Annual IEEE Symposium on Foundations

of Computer Science—FOCS 2014, IEEE Computer Soc., Los Alamitos, CA, 2014, pp. 316–
325.

22. Edouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques. [Continued],

Amer. J. Math. 1 (1878), no. 3, 197–240.
23. J. Markel, FFT pruning, IEEE Transactions on Audio and Electroacoustics 19 (1971), no. 4,

305–311.

24. Todd Mateer, Fast Fourier Transform algorithms with applications, ProQuest LLC, Ann
Arbor, MI, 2008, Ph.D. thesis–Clemson University.

25. H. V. Sorensen and C. S. Burrus, Efficient computation of the DFT with only a subset of
input or output points, IEEE Transactions on Signal Processing 41 (1993), no. 3, 1184–1200.

26. J. van der Hoeven, Notes on the Truncated Fourier Transform, Tech. Report 2005-5, Univer-

sité Paris-Sud, Orsay, France, 2005.
27. Joris van der Hoeven, The truncated Fourier transform and applications, ISSAC 2004—

Proceedings of the 2004 international symposium on Symbolic and algebraic computation,

ACM, New York, 2004, pp. 290–296.

28. Joris van der Hoeven and Éric Schost, Multi-point evaluation in higher dimensions, Appl.

Algebra Engrg. Comm. Comput. 24 (2013), no. 1, 37–52.
29. Joachim von zur Gathen, Functional decomposition of polynomials: the tame case, J. Symbolic

Comput. 9 (1990), no. 3, 281–299.

30. Joachim von zur Gathen and Jürgen Gerhard, Arithmetic and factorization of polynomial
over F2 (extended abstract), ISSAC ’96—Proceedings of the 1996 International Symposium

on Symbolic and Algebraic Computation, ACM, New York, 1996, pp. 1–9.

31. Y. Wang and X. Zhu, A fast algorithm for the Fourier transform over finite fields and its
VLSI implementation, IEEE Journal on Selected Areas in Communications 6 (1988), no. 3,

572–577.

INRIA Saclay–Île-de-France & Laboratoire d’Informatique, École polytechnique,
91128 Palaiseau Cedex, France

