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Abstract: Wireless Local Area Networks (WLANs) are a potential contributor in the future heterogeneous networks (Het-Nets) of 5G Mobile
communication systems to ensure extended spectrum usage and higher data rates with better Quality of Service (QoS).
Significant network capacity gain can be achieved not only through aggressive reuse of spectrum across the multiple tiers in the network, but
also through harnessing an additional spectrum in un-licensed bands by integrating WiFi in the network [1].
Different criteria should be investigated in order to allow both the WiFi APs and the end user to operate on the best suitable channel, where the
basic one of those criteria is the “load” of the operating channels. 
We propose in this paper a novel and accurate algorithm for the estimation of WiFi 802.11n physical channels load through the observation of
the non-overlapped channels and estimating as a result the load of the entire physical channels.
Once the channels load is estimated using the proposed algorithm, the channel assignment based on the minimal load value is facilitated, thus
providing faster response of an AP channel selection and faster end user connection for better Quality of Experience (QoE).
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I. INTRODUCTION

With the increasing demand for wireless data communication,
the main key role focuses on effective bandwidth availability
given  that  the  spectrum  is  limited.  This  issue  stimulates
researchers and engineers to use the spectrum more efficiently. 

One of the challenges faced in WiFi systems, is the channel
assignment for the end user within a minimum response time
and optimal spectrum usage from the suitable access point. 

Many research studies were proposed to define the channel
selection  criteria  in  wireless  networks  based  on  different
criteria such as resource allocation by taking into consideration
the cooperative transmission strategy [3]; the power control of
overlapping  and  non-overlapping  channels  [4];  multivariable
algorithm  using  the  probability  of  channel  availability,  the
estimated  channel  time  availability,  the  signal  to  noise  plus
interference  ratio,  and  the  bandwidth  for  dynamic  channel
selection  treated  in  a  computational  technique  [5];  the
interference  of  clients  individually  [6];  the  relationship  of
interference  among  clients  [7];  the  measurements  on  the
Medium  Access  Control  (MAC)  layer  [8];  or  based  on  the
parameters  of  scanning  performance  leading  to  a  minimum
latency [9]. 

The load criterion was mentioned in [10],  [11],  and [12]
with different approaches. In [10] there is a significant variation
in channel loads reported by the same station at different times,
which  may  have  significant  effect  on  the  selection  of  the
channel with the minimum load. 

In  [11],  a  distributed  least  congested  channel  selection
algorithm is proposed. It is based on the minimum interfering
stations,  as  well  as  associated  stations,  by  exchanging  with
neighbor APs, the beacon frame of the IEEE 802.11 standard
with some additional field of channel load information.

In [12], the load criteria was measured by monitoring only a
limited number of channels at each measurement time instead
of  monitoring  all  channels.  It  is  based  on  the  standard
mechanism  Clear  Channel  Assessment  (CCA)  which  can

measure the fraction of time in which the channel is busy or
idle.  The  proposed  algorithm  utilizes  the  Gaussian  Process
Regression (GPR) technique, used to estimate the instantaneous
load  of  each  channel  by  utilizing  the  previous  load
measurements.  In  this  method,  they  monitor  only  a  limited
number  of  channels  at  each  measurement  time  instead  of
monitoring all channels, and then determine the channel with
the minimum traffic load without measuring all channels in the
frequency band of interest.

 In our paper, we propose a new algorithm that estimates
the load of the WiFi 802.11n physical layer channels by taking
the overlapping characteristic of the physical channels.

Our algorithm is applied on the physical layer of WLAN
networks, before establishing any connection between the WiFi
AP and the user station.

By  applying  our  algorithm  on  a  minimum  of  3  non-
overlapped channels, we can deduce the load of the remaining
physical channels, and thus we can select the channel with the
minimum load, and reduce the measurement time of channel
load estimation. 

Note that by the channel “load”, we mean the percentage of
the channel usage in time (or busy time) with respect to the
total  channel  measurement  time  (total  busy  and  idle  time).
Having the load of each channel, facilitates the decision of the
user  for  the  channel  selection  based  on  the  minimal  load
measurement. In this paper, we are simulating WiFi 802.11n in
2.4 GHz radio band with 20 MHz channel width, constituted
basically of 14 overlapped channels spaced with 5MHz. 

The  channels  overlapping  is  a  characteristic  used  and
analyzed in this paper as it will be explained in later sections.
Under the same concept, the study presented in this paper could
be extended to 5 GHz band with 20 MHz channel width (or
with wider channel width e.g. 40 MHz in channel bonding),
constituted  basically  of  42  overlapped channels  spaced  with
5MHz, with only 24 non-overlapping channels used in practical
scenarios. 



This  paper  is  organized  as  follows.  Section  II  describes
802.11n physical layer and channel assignment techniques. Our
proposed  algorithm  along  with  the  needed  formulation  is
presented in Section III. In Section IV, the simulation results
are  shown.  Potential  use  cases  of  the  described  method are
given in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

WLAN WiFi is based on IEEE 802.11 standards designed for
indoor Wireless Local Area Networks for bandwidths of up to
100 MHz, at frequencies of 2 and 5 GHz [9].
The challenge lies when we have more nodes than the available
orthogonal channels; therefore, additional numbers of available
channels  and  optimization  of  the  scanning  duration  for
channels  assignment  are needed due to  the existing network
load.
In 2.4 GHz band, with 20 MHz channel bandwidth, 802.11n is
basically constituted of 14 channels spaced with 5 MHz, where
the adjacent channels overlap. In Europe, the first 11 channels
remain available, and only three channels are non-overlapping
in frequency at the same time [4] (e.g. channels
1, 5 and 9) as presented in figure 1.

Fig. 1. 802.11n physical overlapped channels

In 5 GHz band, with 20 MHz channel bandwidth, there are 42
channels spaced with 5 MHz with 24 non-overlapping channels
used.  Similarly,  with  40  MHz  channel  bandwidth  (channel
bonding) there are only 12 non-overlapping channels used.
Basically,  the  remaining  overlapped  channels  are  not
considered  usable,  and  typically  are  not  selectable  on  most
hardware in order not to end up with co-channel interference.
So  practically,  to  avoid  this  interference  and  maximize  the
throughput, only non-overlapped channels are used. However,
in  densely  populated  networks,  and  with  the  constraints  of
increasing  spectrum  demand  for  future  WiFi  and  mobile
communication  technologies  such  as  5G,  the  number  of
available  non-overlapped  channels  may not  be  enough,  thus
devices might have to share different channels (overlapped and
non-overlapped) or to check for a new spectrum if it becomes
available.
For these considerations, we are proposing an algorithm that
calculates the load of the entire overlapped channels.
By observing only the distinct 3 non-overlapped channels (e.g.
channels 1, 5 and 9), we can calculate the load of those distinct
3  channels  and  determine  simultaneously  the  load  of  the
remaining overlapped channels of the WiFi physical layer.

Currently, in the channel selection principle of WiFi systems,
two  scanning  modes  could  be  used  to  assure  a  systematic
channel  assignment  as  mentioned  before:  passive and active
scanning.
In the case of passive scanning, the client has to wait to receive
a Beacon Frame from the Access Point (AP) [2]. A Beacon is
transmitted from an AP and contains information about the AP
along with a timing reference. The device then searches for a

network just by listening for beacons until it finds a suitable
network to join. This procedure is similar for the 11 channels.
With  Active  Scanning  the  device  tries  to  locate  an  AP by
transmitting  Probe  Request  Frames,  and  waits  for  Probe
Response from the AP [2].  The probe request  frame can be
either  a  directed  or  a  broadcast  probe  request.  The  probe
response frame from the AP is  similar  to  the beacon frame.
Based on the response from the AP, the client makes a decision
about connecting to the AP.
While active scanning is a faster way to establish the contact, it
consumes  more  battery  power.  In  addition,  the  delay  of  the
probe response from the AP is variable and depends on the load
of the AP. If the WiFi terminal waits for the Probe Response for
a significant period of time, it  will  affect  the average of the
total scan duration. However, if it waits for a short duration, the
probability of finding the suitable AP is somehow decreased.
802.11n standard has defined two timers to assure the optimal
control: MinChannelTime and MaxChannelTime.
If  the  Probe  Response  is  not  received  between  those  two
timers,  the  terminal  assumes  the  channel  is  empty,  thus  no
available AP exists.
In  addition  to  the  channel  selection,  the  basic  principle  of
channel access in 802.11 networks for carrier transmission is
based on Carrier  Sense Multiple Access/Collision Avoidance
(CSMA/CA)  MAC  protocol,  which  acts  as  a  measure  to
prevent collisions before they happen.
In CSMA/CA, as soon as a node receives a packet that is to be
sent, it checks to make sure that the channel is clear (no other
node is transmitting at the time) [13]. 

By applying our algorithm to estimate the minimum load of all
the overlapped channels, allows to reduce the time of Access
Point and channel discovery, and thus to optimize the values of
different  timers  in  WiFi  networks  (MinChannelTime,
MaxChannelTime, backoff factor, etc.)

III. ALGORITHM PRINCIPLE 

As previously explained, in order to estimate the load of WiFi
physical channels, we analyze in this paper the physical layer
of  802.11n which  is  constituted  of  12  overlapped  channels,
where only 3 distinct channels are non-overlapping at the same
time.
The  adopted  modulation  technique  in  802.11n  is  the
Orthogonal Frequency Division Multiplexing (OFDM) which
is not only a frequency multiplexing technique that mandates
orthogonality  among sub-channel  signals,  but  also  a  special
case of multi-carrier modulation. Consequently, OFDM can be
regarded  as  either  a  multiplexing  technique or  a  modulation
scheme.
In  an  OFDM  scheme,  a  large  number  of  orthogonal,
overlapping,  narrow  band  sub  channels  or  subcarriers,
transmitted  in  parallel,  divide  the  available  transmission
bandwidth  into  several  orthogonal  subcarriers,  and  each
subcarrier is modulated with the modulation technique in the
same bandwidth.
The separation of subcarriers is theoretically minimal so that
there is a very compact spectral utilization [14].
As we mentioned earlier in this paper, our proposed algorithm
is  able  to  estimate  the  load  of  the  12  WiFi  channels  by
performing 3 observations only, and this on the non-overlapped
channels, i.e. channels 1, 5, and 9. 



Noting that by observing channel 1, our algorithm is able to
estimate  the  load  of  channel  1  as  well  as  the  load  of  the
adjacent overlapped channels in this case channels 2, 3 and 4;
similarly the observation of channel 5 will lead to estimate the
load of channels 5, 6, 7 and 8 and the observation of channel 9
will lead to estimate the load of channels 9, 10, 11 and 12.

For  the simplification of  calculations,  and in  order  to  avoid
duplications,  we  are  representing  here  the  observation  of
channel 1 only. The observation of the other channels can be
easily generalized by adopting the same concept.

Let  us  define  Γ1(f)  as  the  baseband  spectrum  of  the  signal
observed in channel 1 and S(f) the theoretical baseband Power
Spectrum (PS) of the WiFi signal, which emits in a continuous
way. According to CSMA/CA principle, Access Points (APs)
are not transmitting their data continuously. Let  αi  denote the
channel load. It is defined as the percentage of the channel i
usage  in  time (or  busy time) in  respect  to  the total  channel
measurement time as described previously.
The observed baseband spectrum of channel 1 with respect to
all signals transmitted in the overlapped channels i is expressed
as: 

(λ i
2 ( f ) .α i ) .S ( f ) ,

Where  λi(f)  is  the  signal  attenuation  due  to  the  propagation
model of Channel i.
To simplify the presentation of the algorithm, we assume in the
following  section  that  the  attenuation  λi(f)  =  1;   i;   f,∀ ∀
however  the  robustness  of  the  proposed  algorithm  in  the
presence of a multipath fading channel is shown at the end of
the simulation results section.
The observed baseband spectrum Γ1(f) can be easily expressed
in terms of the theoretical  spectrum S(f),  which is given by
[15]:

S (f )=
σc

2

M T S
∑
k=0

N−1

(sinc [ ( f−k Δf ) MT S ] )
2
(1)

Where sinc(α) = sin(πα) / (πα) ,  M is the symbol length,  σc

Variance of the data symbols C(k;l) (complex value) modulated
on the kth subcarrier  of  the  lth symbol,  k  discrete  frequency
index, N number of subcarriers, and Δf the frequency spacing
between subcarriers.
The theoretical  Power  Spectrum Density  (PSD) is  shown in
figure 2. To assure the OFDM orthogonal relationship between
subcarriers,  Δf is  set  as  W/N =  1/M,  where  W is  the  total
bandwidth  of  the  signal,  and  Ts is  the  sampling  interval
employed in the OFDM transmitter.

Fig. 2. Normalized theoratical Power Spectral Density of the
802.11n physical channel

To estimate Γi(f) the baseband spectrum of the signal observed
in channel i, we use Welch periodogram method
[16]. Mathematically, it is defined as the Fourier transform of
the autocorrelation sequence of the time series.  This method
outlines the application of the Fast Fourier Transform algorithm
to  the  estimation  of  the  power  spectra,  which  involves
sectioning the record, taking modified periodograms of these
sections, and averaging these modified periodograms [16] [17].

Let us now derive the expression of the power spectrum (PS)
Γ1(f).  Channels  1,  2,  3  and 4 contribute to  this  PS.  We are
therefore able to estimate the channels load α1, α2, α3, and α4

from this observation. The contribution of channels 2, 3, and 4
in the PS of channel 1 is illustrated in figure 3. The observation
of channel 1 can reflect the total load of channel 1 in addition
to a part of the load of its related overlapped channels 2, 3 and
4, according to the overlapped partitions.

Fig. 3. Channel 1 Observation Model

For  a  bandwidth  B  of  the  channel,  the  total  overlapping
bandwidth between two consecutive channels is 3B/4. Based
on this sectioning, we divide the theoretical PSD S(f) into 4



partitions S1, S2, S3, and S4 as per the below and presented in
figure 4:

S1(f) = S(f) for f  [-B/2;- B/4] and 0 elsewhereϵ
S2(f) = S(f) for f  [-B/4; 0] and 0 elsewhereϵ
S3(f) = S(f) for f  [0;B/4] and 0 elsewhereϵ
S4(f) = S(f) for f  [B/4;B/2] and 0 elsewhereϵ

Fig. 4. Signal Sectioning – Theoretical PSD

The complete theoretical PSD is the vector:

S=[S1 (f ) , S2 ( f ) , S3 (f ) , S4 (f ) ]
of size (1x4).

Now let Γ1(f), which is the PS of the observed signal in channel
1, be divided similarly into 4 sections ɣ1, ɣ2, ɣ3, ɣ4 as shown in
figure 3 and calculated below:

ɣ1 (f) = Γ1(f) for f  [-B/2;-B/4] and 0 elsewhereϵ

ɣ2 (f) = Γ1(f) for f  [-B/4;0] and 0 elsewhereϵ

ɣ3 (f) = Γ1(f) for f  [0;B/4] and 0 elsewhereϵ

ɣ4 (f) = Γ1(f) for f  [B/4;B/2] and 0 elsewhere.ϵ

The complete PS is the vector Γ1 = [ɣ1 (f); ɣ2 (f); ɣ3 (f); ɣ4 (f)] 
of size (4x1). Based on figure 3, we need to calculate ɣ1, ɣ2, ɣ3,
and ɣ4 in terms of S(f) and αi (the load of channel i).

We can observe that, since channels 1, 2, 3 and 4 shifted to the
baseband are duplicated from both sides while saving the same
overlapping proportions, ɣ1 is constituted of 2 times the load of
channel 1 corresponding to section 1 (S1), 1 time the load of
channel 2 corresponding to section 2 (S2), 1 time the load of
channel 3 corresponding to section 3 (S3), and 1 time the load
of channel 4 corresponding to section 4 (S4). Therefore, we can
have the below equation:

γ 1 ( f )=2.α 1.S1 ( f )+α 2.S2 (f ) +α3 .S3 ( f )+α 4.S4 ( f )(2)

By applying the same concept for ɣ1, ɣ2, ɣ3, and ɣ4, we can
write the below equations:

γ 2 ( f )=2.α 1 .S2 ( f )+α 2 . (S1 ( f )+S3 ( f ) )+α3 .S4 ( f )

γ 3 ( f )=2.α 1.S3 ( f )+α2. (S2 (f )+S4 (f ))+α3 .S1 (f )

γ 4 (f )=2.α1 .S4 (f )+α2. S3 (f )+α 3.S2 (f )+α 4 .S1 ( f )

From the above equations, we can write the Power Spectrum of
the observed signal in channel 1 as:

Γ1 (f )=[
S 0 0 0
0 S 0 0
0 0 S 0
0 0 0 S

] .[
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0

].[α1

α2

α3

α 4
](3)

Now let  be equal to:

B1=[
S 0 0 0
0 S 0 0
0 0 S 0
0 0 0 S

]. [
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0

] ,(4 )

then

Γ1 (f )−B1 .α=0(5)

Where α = [α1, α2, α3, α4] denotes the load of channels 1, 2, 3
and 4.
Our aim is now to estimate α. Since the channel load has a non-
negative value, non-negativity constraint should be applied on



the  load  estimations  instead  of  simple  non-square  matrix
inversion. In this paper, the non-negative Least Mean Square
(LMS) calculation has been applied. It is derived based on a
stochastic  gradient  descent  approach  [18]  combined  with  a
fixed-point iteration strategy that ensures convergence toward a
solution to estimate vector α from channel 1.
We denote by 

[α̂ 1
1 , α̂ 2

1, α̂3
1 , α̂ 4

1 ]

the estimate of the load of channels 1, 2, 3 and 4 obtained from
the observation of channel 1.
It is given by:

[
α̂ 1

1

α̂ 2
1

α̂ 3
1

α̂ 4
1 ]=Argmin

α
(‖Γ1 (f )−B1.α‖)(6)

We  proceed  similarly  for  the  remaining  2  non  overlapped
channels 5 and 9 in order to recover the load of the 12 channels

as per the below equations, noting by   as the estimated
baseband spectrum of the signal of channel j:

Γ̂5 (f )=B5.[
α̂ 2

5

α̂ 3
5

α̂ 4
5

α̂ 5
5

α̂ 6
5

α̂ 7
5

α̂ 8
5

](7)

And

Γ̂9 (f )=B9 . [
α̂6

9

α̂7
9

α̂8
9

α̂9
9

α̂ 10
9

α̂11
9

α̂ 12
9

](8)

The  real  constant  valued  matrices  of  channels  5  and  9
observation are represented below:

B5=S .[
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0

](9)

B9=S .[
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0

](10)

IV. SIMULATION RESULTS

A. Load Estimation in Error Free Channel

A simulation using Matlab has been developed to generate the
physical signal of 802.11n based on the Orthogonal Frequency



Division Multiplexing (OFDM) technique, according to WiFi
802.11n specific parameters shown in Table 1.

The  length  of  the  input  signal  used  in  our  simulation  is
equivalent to the duration of 200 OFDM symbols in time (or
200 times the symbol duration (ts) = 3.2 µs), where the channel
load is expressed by non-zero symbols value equivalent to the
time occupation of  the  signal  (or  busy time),  and  with  null
symbols value when the channel is empty (or idle time).
The  channels  load  predefined  on  the  twelve  channels  is
expressed  as  the  percentage  of  the  channel  occupation  time
between 0% and 100% (or  0  and  1)  assumed as  following:
20%, 50%, 0%, 40%, 90%, 0%, 60%, 70%, 80%, 40%, 0%,
90%.

As explained previously,  since the physical channels overlap
with only 3 distinct channels, an observation of those 3 distinct
channels entails to measure the load of the 12 channels.
Therefore, we start first by observing channels 1, 5, and 9.
By applying the method presented in the previous section, the
load of channels 1, 2, 3, and 4 is estimated from the observation
of channel 1, the load of channels 5, 6, 7 and 8 is estimated
from the observation of channel 5, and the load of channels 9,
10, 11 and 12 is estimated from the observation of channel 9.

Fig. 5. Estimated Load versus the real load with 3 channels
observation

As shown in figure 5, the estimated load is nearly the same
comparing to the predefined load.

To check the effect of several additional channels observations,
we have applied our algorithm on channels 1, 5, 6, 9, and 12
(optionally 5 channels observation in this case).  The load of
channels 1, 2, 3, and 4 is estimated from the observation of
channel  1,  the  load  of  channel  5  is  estimated  from  the
observation of channel 5, the load of channels 6, 7 and 8 is
estimated  from  the  observation  of  channel  6,  the  load  of
channel 9 is estimated from the observation of channel 9 and
the  load  of  channels  10,  11  and  12  is  estimated  from  the
observation of channel 12. 
A comparison between the 3 channels observation and the 5
channels observation is done, and the results in terms of the
value  of  the  Mean  Squared  Error  (MSE),  averaged  through
several repetitive random simulations, are shown in figure 6. 
As  we  can  see,  the  MSE  decreases  with  5  channels
observations; thus we can conclude that with additional number
of  channels  observation,  the  algorithm  accuracy  level  is
increasing.

Fig. 6. Averaged Mean Squared Error  of the estimated load
versus the real load values in error free channel

B. Load Estimation in presence of a White Gaussian Noise

We  assume  now  that  the  channel  is  affected  by  a  White
Gaussian  Noise.  In  order  to  analyze  the  noise  effect  on the
accuracy  of  our  algorithm,  same  observations  are  used  to
reflect  the estimated load versus  the real  one.  The averaged
MSE value is represented in respect to Signal to Noise Ratio
(SNR) in figure 7.
We can notice that the precision of the algorithm is affected by
a high noise level; however an acceptable error margin can still
exist with a SNR around 3 dB.

Table 1. Used 802.11n parameters
Parameter Value
Bandwidth 20 MHz

The frequency spacing
between subcarriers

312.5Khz

Sampling interval
employed in the OFDM

transmitter Ts

0.05 µs

Symbol length 3.2  µs
Number of subcarriers 64

FFT Window 64
Modulation 16 QAM

Total number of samples
per OFDM symbol

1024

Number of samples zero-
padded after 16 QAM

2048

Number of symbols 200



Fig. 7. Averaged Mean Squared Error of the estimated load 
versus Signal to Noise ratio values.

C. Load Estimation with higher Symbol Length

We have analyzed the effect of signal length (i.e. the number of
OFDM symbols) at the input in an error free channel.
Different realizations have been performed in order to reflect
the averaged MSE with increased number of symbols duration
100 ts, 200 ts,  300 ts, 400 ts and 1000 ts as can be shown in
figure 8.
As we can notice, the averaged MSE value decreases with the
highest number of OFDM symbols, since the precision of the
estimated load increases for a higher message length where the
observations results are more accurate.

Fig.  8. Averaged Mean Squared Error  of  the estimated load
versus Signal Length in Error free channel

D. Improvement of Load Estimation by Averaged Method

Since  the  estimated  load  is  based  on  a  single  channel
observation, we have analyzed the effect of estimating the load
of a channel throughout two channels observation at the same
time, by averaging the calculation of the load according to the
related  partitions  in  each  observation,  as  already  shown  in
figure 3 for the observation of channel 1.
In  this  case,  the  load  of  channel  1  is  estimated  from  the
observation of channel 1, the load of channels 2, 3 and 4 is
estimated from the observations of channel 1 and 5 as per the
following equations:

α 1
1
=α 1

1

α 2
1,5

=( 3
4

.α
2

1

)+(1
4

.α
2

5

)

α 3
1,5

=(1
2

.α
3

1

)+( 1
2

.α
3

5

)
α 4

1,5
=( 1

4
.α

4

1

)+( 3
4

.α
4

5

)
Similarly,  the  load  of  channel  5  is  estimated  from  the
observation of channel 5, the load of channels 6, 7, and 8 is
estimated from the observations of channel 5 and 9, and finally
the load of channels 9, 10, 11, and 12 is estimated from the
observation of channel 9.
By  comparing  the  precision  of  this  averaged  calculations
method in respect  to the direct  calculations method,  we can
note  that  the  averaged  MSE  of  the  12  channels  through
multiple realizations is decreased as can be shown in figures 9
and  10  compared  to  the  SNR  and  number  of  symbols
respectively.

Fig. 9. Averaged Mean Squared Error of the estimated load in
two calculation methods with 3 channels observation in respect
to the SNR (dB)

Fig. 10. Averaged Mean Squared Error of the estimated load in
two  calculation  methods  with  3  channels  observation  in
respect to the number of symbols

E. Load Estimation in presence of a Multipath Fading

Following the assumption that the attenuation is not affecting
our calculations (λi(f) = 1; i; f), non-perfect conditions are∀ ∀
assumed  in  this  subsection  in  the  presence  of  a  multipath
fading channels.
Our  simulated  OFDM  signal  has  been  filtered  through  a
normalized  multipath  fading channel  to  reflect  the  effective
Power Spectral Density and thus calculate the channels load as
previously explained in this paper.



We  can  observe  in  figure  11  that  our  algorithm  is  still
constantly accurate despite certain attenuation factors.

Fig. 11. Averaged Mean Squared Error of the estimated load
versus the real load values in presence of a multipath fading
channel

Finally, from the analysis performed in the above sub-sections,
we can conclude that in a high level of noise, the number of
channels observation and message length could be increased
(more than 3 channels observation and 500 ts respectively) in
order  to maintain the same accuracy level  of  the algorithm,
and  the  averaged  calculation  method  through  two
simultaneous  channels  observation  is  also  recommended  in
order to minimize the Mean Squared Error value and increase
the precision level of the estimated load.

V. FINDINGS AND POTENTIAL USE CASES 

As previously described in section II, when the user is trying
to  connect  to  a  suitable  Access  Point  (AP),  interrogation
requests  are  performed  in  order  to  detect  the  available  AP.
Different values of the timers could be set to assure an optimal
waiting time for the response of the access point before the
connection.
Following the application of our algorithm, and where the user
terminal is waiting between two timers values to connect to
the  suitable  AP,  the  measurement  of  the  load  by  the  user
terminal could facilitate the selection and thus optimize both
the values of  the timers,  and the battery consumption when
compared  to  long  timers  duration  with  no  response  in
congested networks.
In addition, the main characteristic of our algorithm, is by a
minimum channels observations of 3 non-overlapped channels
only, either by the user station or by the WiFi AP, the load of
all  the  remaining  overlapped  channels  could  be  estimated
automatically,  minimizing  by  that  the  channel  load
measurement and channel selection time.

Finally,  in  practical  use,  overlapped  channels  are  not
considered usable and typically are not selectable in order to
avoid co-channel interference; however, in densely populated
networks,  and  with  the  future  increasing  spectrum demand,
overlapped  channels  might  be  needed  to  resolve  network
congestions where further  algorithms and procedures should
be analysed to minimize the anticipated interference.

VI. CONCLUSION 

In this paper we have proposed an algorithm that estimates the
load  of  the  physical  channels  of  WiFi  802.11n in  2.5  GHz
spectrum. Based on only 3 observations of non-overlapping
channels, the proposed algorithm is able to estimate the load of
the 12 channels of the WiFi 802.11n. 

The accuracy of the algorithm has been measured by the Mean
Squared Error of multiple realizations,  in error  free channel
and in white Gaussian noisy channel. 
We evaluated our work and can conclude a high accuracy level
and flexibility in estimating the load of the physical channels,
thus facilitating the channel assignment based on the minimal
load, providing better Quality of Experience (QoE) for the end
user and minimized load measurement and channel selection
time.
Future work in the short term will focus on how to integrate
WiFi  systems and  access  techniques based  on channel  load
with the LTE advanced systems toward the 5G heterogeneous
networks.
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