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Abstract A general problem in human-robot interac-

tion is how to test the quality of single robot behavior,

in order to develop robust and human-acceptable skills.

The most typical approach are user tests with sub-

jective measures (questionnaires). We propose a new

experimental paradigm that combines subjective mea-

sures with an objective behavioral measure, namely view-

ing times of images viewed as self-paced slide show. We

applied this paradigm to human-aware robot naviga-

tion. With three experiments, we studied the influence

of two aspects of humans’ understanding of robot mo-

tion: velocity profiles and the robot’s orientation. A de-

creasing velocity profile impaired observers’ comprehen-

sion of observed motion, and robot orientations divert-

ing from the robot’s motion vector caused reduced per-

ceived autonomy ratings. We conclude that the viewing
time paradigm is a promising tool for studying human-

aware robot behavior and that the design of human-

aware robot navigation needs to consider both the ve-

locity and the orientation of robots.
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1 Motivation

Human-aware navigation is a basic prerequisite for mo-

bile robots operating in human living and working en-

vironments. The term implies that simply reaching a

goal location is not enough, the expectations of po-

tential users must also be considered. Kruse et al. [14]

identify three main goals for human-aware navigation:

comfort, naturalness and sociability. Comfort and so-

ciability play a role in direct interaction, whereas nat-

uralness is also needed in situations where a robot can

be observed by a person, even without direct contact.

In this paper, we study the naturalness of robot mo-

tion. We introduce a new experimental paradigm and

apply it to two aspects of robot motion, namely velocity

and orientation. We study isolated robot movement, i.e.

without direct interaction with a person. In such a con-

text, a common approach is the use of video material

[25] and to measure naturalness1 with questionnaires

[16,25], such as the Godspeed V questionnaire [2].

As an alternative to using questionnaires, Lu and

Smart [17] offered an interesting implicit measure of

naturalness: the efficiency of humans moving in the

same environment as the robot. The idea is that if the

robot moves naturally, the person will feel comfortable

and move normally, whereas unnatural robot movement

will make people be more cautious and slow down. But

this approach requires a fully implemented navigation

with perception on a real robot, the effort to organ-

ise participants, and the difficulty of guaranteeing their

safety. Additionally, the robot must work so robustly

that it shows exactly the same behavior for every par-

ticipant. Differences in lighting or small variations in

1 “Related adjectives are “predictable”, “understandable”,
“readable” or “legible”.” [14]
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timing can lead to very different user perceptions of

the same robot.

If more general properties underlying human under-

standing of robot motion could be identified, a gener-

alization to a wide range of robots and human-aware

robot navigation scenarios might be possible. Kim and

Pineau [11] tested their adaptive path planning algo-

rithm with objective metics such as “closest distance

to the pedestrian, avoidance distance to the pedestrian,

and average time to reach the goal.” But the first two

only apply for scenarios with human presence, whereas

the third is a standard measure for navigation, but

without human-awareness. Kirsch [12] evaluated the nat-

uralness of robot motion by considering the direction of

the robot relative to the movement direction, thus mea-

suring the portion of time the robot moves side- or back-

wards. But the only justification for this measurement is

the informal observation that people usually move in a

forward direction. It is possible that side- or backwards

movements are acceptable from a robot, even though

people would not move like this themselves.

The application of general properties of robot mo-

tion to human-aware navigation requires the system-

atic study of human perception and understanding of

motion properties instead of the definition of such mo-

tion properties based on intuition only. However, study-

ing human understanding of such properties using sub-

jective measures based on questionnaires alone is not

enough, because questionnaires are prone to biased re-

sponses. Thus, we introduce the viewing time paradigm

and its application to the study of human-aware be-

havior in the following section. This paper makes two

contributions:

1. the introduction of a new experimental paradigm for

measuring human understanding of human-aware

robot behavior.

2. the presentation of experimental results on observers’

understanding and rating of two features of robot

motion: velocity profiles and robot orientation rela-

tive to the movement direction.

The paper is organized as follows: Section 2 intro-

duces the viewing time paradigm that combines an ob-

jective measure of human understanding of robot be-

havior with subjective measures and provides a blueprint

for an experimental setup. Section 3 uses this setup to

study the effect of two properties of robot motion on

human understanding and assessment of robot motion:

Experiment 1 examines the effect of different velocity

profiles and Experiment 2 examines the role of robot

orientation relative to the movement direction. Exper-

iment 3 studies both properties together. We conclude

with a general discussion of the results, the limitations

of the current work and future extensions of it.

2 Viewing Time Paradigm for Human-aware

Robot Behavior

Objective measurements of human understanding of ro-

bot motion are necessary in order to fully evaluate both

human-aware robot behavior in general and the natu-

ralness of robot motion in particular. We propose a new

method of measuring the naturalness of robot motion

without requiring direct human-robot interaction. Our

approach is based on psychological research on human

event perception. This research studies the cognitive

processes involved when viewing goal-directed actions.

According to research on event perception, human

observers watching goal-directed actions comprehend

these actions based on the construction of event models

in working memory [26,27]. Event models are descrip-

tions of the perceived scene and allow for predictions

about upcoming events [26]. Thus, they guide percep-

tion. Whenever the deviation between observers’ pre-

dictions based on the event model and the present sen-

sory input exceeds an error detection threshold, event

models in working memory are updated based on the

current sensory information. Event model updating is

resource intensive and requires time. Thus, in analogy

to reading times used to measure event model updat-

ing during discourse comprehension [7,10,28], viewing

times serve as a measure of event model updating dur-

ing the comprehension of visual narratives and picture

stories [6,8,18,19]. Viewing times were applied to dy-

namic scenes by recent research [8,22]. That is, movies

were split into multiple images and participants viewed

those images as self-paced slide shows. This allows for

the measurement of viewing times per image. Images as-

sociated with event boundaries [8] or goal changes [22]

cause reliable increases in viewing times. Thus, viewing

times are a promising measure for investigating the dy-

namic process of event model updating during dynamic

scenes, including the process of observers’ comprehen-

sion of perceived actions.

We introduce the viewing time paradigm to the study

of human-aware robot behavior by applying it to the

study of the naturalness of robot motion. Natural mo-

tion is highly predictable based on observers’ prior knowl-

edge. Thus, the more natural robot motion is, the better

observers’ predictions derived from their event models

in working memory should fit their observations and

the less event model updating should occur. Deviations

from natural motion should require event model updat-

ing resulting in increased viewing times. This method-

ology does not require fully implemented exemplars and

direct interactions with humans but can be applied to

video material. This allows for the study of broad and
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general factors influencing the naturalness of robot mo-

tion.

The following provides a blueprint of an experimen-

tal setup using the viewing time paradigm.

Apparatus and stimuli The robot behavior to be mea-

sured must be recorded and prepared as a sequence of

images. One option is a video recording of a scene and

an extraction of equidistant frames, the other option

(which we used in this work) is a script that produces

the situations in a simulator and records screenshots

of those situations. The first option is best applied to

real-life recordings of human-aware robot behavior. The

second option is preferable in controlled experiments in-

terested in perfect positioning of robots, such as when

robot motion should exactly follow a pre-defined veloc-

ity profile (cf. Experiment 1).

No special equipment is required for the presenta-

tion of the images during the experiment. It is impor-

tant to ensure, however, that the used screen and input

device provide accurate timings in order to reduce the

variance in the recorded viewing times and to ensure

that viewing times are a valid measure of the time par-

ticipants used for processing the respective images.

Procedure Participants are instructed that they will see

several image sequences as self-paced slide show. They

can proceed through each slide show with a predefined

button, such as the space bar. Between respective im-

ages, a black screen of 200 ms is included. Because view-

ing times for the first image of a scene are usually in-

creased [6], it can be advisable to include a preview of

the scene. This is especially true if one is also inter-

ested in the viewing times during the first images of a

sequence. In our experiments, for example, we added a

semi-transparent layer showing a countdown from 3 to

1 on the first image and prepended this countdown as

additional images to the image sequence. Following all

frames of an image sequence, a last image showing the

word “End” is shown. Following each image sequence,

subjective ratings can be recorded. We used only one

subjective rating (perceived autonomy), but more elab-

orate questionnaires are possible. Before each trial, a

fixation cross is shown and participants are instructed

that they are only allowed to make breaks whenever a

fixation cross is shown.

Dependent measures Viewing time is defined as the time

between image onset and button press for each image

in the sequence. Thus, this paradigm provides viewing

times as a continuous measure of processing effort for

each individual image. Depending on the analysis of in-

terest, viewing times for individual images may be com-

pared across experimental conditions or viewing times

Fig. 1 Illustration showing a stimulus image with a robot
oriented in motion direction as used in our experiments. The
robot moves from the starting point to the ending point along
a straight path.

6 m head

above

below

10◦

1
.3

3
m

Fig. 2 Illustration of the three camera placements used in
our experiments. Note that participants viewed the scene
from the view of the virtual cameras, thus having a sideways
view on the robot.

can be aggregated across images before comparing them

across conditions. In addition to the viewing time mea-

sure, the paradigm can be used to collect subjective

ratings following each image sequence.

3 Experiments

We applied the viewing time paradigm to the study of

two features of robot motion: velocity changes (Exper-

iments 1 and 3) and robot orientation (Experiments 2

and 3). In addition to viewing times as objective mea-

sure of the naturalness of robot motion, we also mea-

sured perceived autonomy as a subjective measure. We

first explain the general method used in both experi-

ments.

Apparatus and Stimuli We presented image sequences

showing a robot performing the same goal-driven ac-

tion in each trial: moving from a starting position to

a marked goal position that was 5 m away within the

virtual simulation space (see Figure 1). The stimuli for

the image sequences were created with the 3D simula-

tor Morse [15] with a simulated PR2 robot. A script

positioned the robot at the locations shown in Figure 3
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and took screenshots. The images were presented with

a size of approximatly 24 x 10.5 degrees of visual an-

gle on the screen and participants had an unrestricted

viewing distance of 60 cm to the screen.

The perception of movement may depend on the

camera position it is presented from [3,5,13]. We always

used a direct sideways view (see Figure 1), following

cinematographic conventions [4,23] at a virtual camera

distance of 6 m, but varied the height of the camera (see

Figure 2):

– at the height of the robot’s head (1.33 m above the

ground). This perspective most closely resembles a

natural perspective.

– 10◦ rotated upwards, giving the spectator a view

from slightly above. This camera perspective is usu-

ally used to make a character look inferior or help-

less. It also simulates the view of a very tall person.

– 10◦ rotated downwards. This perspective magnifies

the character, making it look more potent or even

dangerous. This perspective also simulates the view

of a very small person, like a child.

We used the different camera positions to test whether

the view towards the robot influences our measurements.

It also serves as a variation in presenting the different

situations, making participants evaluate the same situ-

ation several times without tiring.

We cropped all pictures to cinemascope format of

21:9 (a standard used for cinema movies) so that the

robot’s head was at 2/3 the picture height measured

from the bottom, placing it at the “optical center” [9].

Additionally, we presented image sequences both in

a standard and horizontally mirrored version. This al-
lowed us to evaluate whether our measures are affected

by the robot either moving in a left-to-right or right-

to-left direction.

Procedure We followed the procedure described in Sec-

tion 2. Following each image sequence, participants rated

the robot’s autonomy on a scale from “pilot-operated” (1)

to “self-propelled” (7).

3.1 Experiment 1: Velocity Profiles

3.1.1 Method

Participants Thirty students (27 female, age M =

20.07 years, SD = 1.66 years) from the University of

Tübingen participated in this experiment in exchange

of course credit. We gained informed consent from the

participants.

position x(t)

5 m

frame
0 1 2 3 4 5 6 7 8 9

constant: x(t) = 0.5t

increasing: x(t) = 0.05t2

decreasing: x(t) = t− 0.05t2

sinusoidal: 0.5t− 0.4 cos(3π
T

t + π
2

)

Fig. 3 Positions of robot along time for all four velocity con-
ditions used in Experiment 1.

Stimuli and Design In this experiment, we varied the

velocity profiles of the robot while leaving robot orien-

tation constant (robot faced in the direction of motion

in all conditions). Importantly, robot navigation was

equally efficient in all conditions because the robot al-

ways needed 10 seconds to reach the target which was

5 m away wihtin the virtual simulation environment.

Figure 4 shows the four velocity profiles, Figure 3 shows

how each of the velocity profiles moves the robot along

the 5 m trajectory. The virtual time between each frame

is one second.

1. constant: The robot moves with a constant velocity

of 0.5m/s.

2. increasing: The velocity increases linearly from

0.0m/s to 1.0m/s with a constant acceleration of

0.1m/s2.

3. decreasing: The velocity decreases linearly from

1.0m/s to 0.0m/s with a constant acceleration of

-0.1m/s2.

4. sinusoidal: The velocity is determined by the for-

mula v(t) = 0.4 sin(1.5 2π
T t + π

2 ) with T being the

total travel time of 10 seconds

It is important to note that we constructed the ve-

locity profiles in Experiment 1 in a way that the robot

had the same mean velocity between frames 4 and 5.

Thus, the robot moved the same distance between frames

4 and 5 in all conditions. Any changes in viewing times

in frame 5 can thus be attributed to our manipulation

and cannot be the result of varying apparent motion

across conditions.
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velocity vx(t)

1 m/s

frame
0 1 2 3 4 5 6 7 8 9

constant: x(t) = 0.5

increasing: x(t) = 0.1t

decreasing: x(t) = 1 − 0.1t

sinusoidal: 0.4 sin(1.52π
T

t + π
2

)

Fig. 4 Velocity across time for all four velocity profiles used
in Experiment 1.

The design of this experiment was a 4 (velocity:

constant, increasing, decreasing, sinusoidal) x 3 (view-

ing angle: below, head, above) x 2 (motion direction:

left-to-right, right-to-left) within-subjects design with

four repetitions per conditions. The repetitions were

distributed across four blocks and trials were presented

in randomized order within each block. Thus, partici-

pants performed a total of 96 trials.

3.1.2 Results

For all ANOVA effects with violations of the sphericity

assumption as indicated by a significant Mauchly’s test,

we applied the Greenhouse-Geisser correction.

Viewing Times We treated all responses with viewing

times larger than 2 s as outliers and removed those re-

sponses from the data set. This resulted in the removal

of 203 responses (0.7 % of data) across all participants.

In a first step, we analyzed mean viewing times ag-

gregated across all frames using a repeated measures

ANOVA with the factors velocity, viewing angle, and

motion direction. This revealed a significant main effect

of velocity, F (3, 87) = 38.59, p < .001, η2p = .57 (see

Figure 5, top). Further evaluating this velocity effect

with paired t-tests (p-values holm-corrected for mul-

tiple comparisons) revealed that robots with decreas-

ing velocity were viewed longer than robots moving

according to the other three velocity profiles, all ps

< .001. Furthermore, sinusoidal velocity profiles were

viewed longer than constant velocity, p = .008. There

Fig. 5 Experiment 1: Viewing times per frame. Top: View-
ing times aggregated across all frames. Bottom: Viewing
times at frame 5. Robots moving with decreasing velocity
caused longer viewing times than the other three velocity
conditions. The sinusdoidal velocity profile caused slightly in-
creased viewing times only when aggregated across all frames.
Error bars indicate 95% within-subject confidence intervals
[1].

was no significant difference of viewing times between

sinusoidal velocity and increasing velocity, p = .112, as

well as between constant velocity and increasing veloc-

ity, p = .793. The other main effects and interactions

of the ANOVA were not significant, all F s ≤ 2.22, ps

≥ .089, η2ps ≤ .07.

In a second step, we analyzed viewing times of frame

5 only. Frame 5 was constructed such that travelled dis-

tance between frames 4 and 5 was constant across all

velocity conditions. Thus, any effects on viewing times

observed in frame 5 cannot be attributed to varying mo-

tion occuring between successive frames. We analyzed

viewing times using a repeated measures ANOVA with

the factors velocity, viewing angle, and motion direc-

tion. This replicated the main findings of our previous

analysis. We observed a significant main effect of ve-

locity, F (3, 87) = 8.49, p < .001, η2p = .23 (see Fig-

ure 5, bottom). Further evaluating this velocity effect

with paired t-tests (p-values holm-corrected for multi-

ple comparisons) revealed that robots with decreasing

velocity were viewed longer than robots moving accord-

ing to the other three velocity profiles, all ps ≤ .004.

The other three velocity conditions did not differ sig-

nificantly from one another, all ps = 1.000. The other
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Fig. 6 Experiment 1: Difference in viewing times between si-
nusoidal and constant velocity conditions across frames. Error
bars indicate 95% confidence intervals.

main effects and interactions of the ANOVA were not

significant, all F s ≤ 1.63, ps ≥ .143, η2ps ≤ .05.

Whereas sinusoidal velocity caused increased view-

ing times as compared with constant velocity in our first

analysis (viewing times aggregated across all frames),

this was not the case in our second analysis (viewing

times at frame 5). Because the sinusoidal velocity pro-

file consists of both, sections of increasing velocity and

sections of decreasing velocity, these contradictory find-

ings could be resolved if only the sections with decreas-

ing velocity caused increased viewing times. We ana-

lyzed the difference in viewing times between the sinu-

soidal velocity condition and constant velocity condi-

tion across all frames (see Figure 6). For each frame,

we conducted a t-test compairing the viewing times

difference score against zero. This revealed that view-

ing times in the sinusoidal condition were significantly

increased as compared with the constant condition in

frames 2, 3, 7, 8, and 9 only, all ps ≤ .009 In all other

frames, the difference in viewing times was not signifi-

cantly different from zero, all ps ≥ .153. That is, only

the sections with decreasing velocity of the sinusoidal

condition (cf. Figure 4) caused increased viewing times

as compared with the constant velocity condition but

not the sections with increasing velocity. This finding

mimics our overall finding that robots moving at a con-

stantly decreasing velocity but not robots moving at a

constantly increasing velocity caused increased viewing

times as compared with the constant velocity condition.

Because velocity was increasing in frame 5, no effects

of sinusoidal velocity occured. Further, sinusoidal veloc-

ity contains only some sections of decreasing velocity.

Therefore, there was a slight increase in viewing times

for the sinusoidal condition in our first analysis that

was smaller than in the decreasing velocity condition

that consits of decreasing velocity throughout.

Perceived Autonomy We analyzed the perceived auton-

omy rating using a repeated measures ANOVA with

Fig. 7 Experiment 1: Perceived autonomy ratings did not
differ significantly across velocity conditions. Error bars indi-
cate 95% within-subject confidence intervals [1].

the factors velocity, viewing angle, and motion direc-

tion. Participants’ rating of the perceived autonomy

of the robot did not differ significantly across condi-

tions. That is, there was no significant main effect of

velocity, F (2.19, 63.62) = 2.05, p = .133, η2p = .07 (see

Figure 7). Further, neither the main effects of viewing

angle, F (1.51, 43.75) = 0.47, p = .573, η2p = .02, nor

motion direction, F (1, 29) = 0.22, p = .643, η2p = .01,

nor any of the interactions reached significance, all F s

≤ 1.28, ps ≥ .286, η2ps ≤ .04.

3.1.3 Discussion

With Experiment 1, we studied whether velocity changes

influence observers’ understanding of robot motion. We

observed a reliable increase in viewing times caused by

decreasing velocity. Because increased viewing times in-

dicate situation model updating during the perception

of goal-directed actions [6,22], this finding indicates

that observers’ comprehension of robot motion was im-

paired by decreasing velocity. Whereas sinusoidal mo-

tion also caused a slight increase in viewing times, this

was only true for those frames of the sinusoidal mo-

tion pattern that showed decreasing velocity. Thus, we

conclude that decreasing velocity impairs the compre-

hension of robot motion.

In contrast to viewing times, the perceived auton-

omy ratings did not differ across conditions. That is,

even though participants had a harder time in compre-

hending robot motion with decreasing velocity, the per-

ceived autonomy of the robot was not affected. There-

fore, one can consider viewing times and perceived au-

tonomy as two measures that measure distinct aspects

of the naturalness of robot motion, namely viewers’

ability of comprehending and predicting robot motion

as well as viewers’ judgements of robots moving in a

natural and autonomous way.

Neither the viewing angle of the camera nor the di-

rection of robot motion had any effect in our exper-
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iment. Although the deviations in camera angle were

small, this provides first tentative evidence that de-

creasing robot motion might be a general factor im-

pairing observers’ comprehension of robot motion.

3.2 Experiment 2: Robot Orientation

3.2.1 Method

Participants Thirty new students (24 female, age M =

20.87 years, SD = 2.45 years) from the University of

Tübingen participated in this experiment in exchange

of course credit. We gained informed consent from the

participants.

Stimuli and Design In this experiment, we varied the

orientation of the robot while leaving robot motion con-

stant (the robot moved with a constant velocity profile

in all conditions). The robot moved along a linear tra-

jectory and faced one of the four cardinal directions:

forward, left, right, and backward (orientation relative

to the motion vector). In each orientation condition, the

robot started with the respective orientation and kept

the orientation throughout the whole trial and motion.

The condition with forward orientation is identical to

the condition with constant velocity in Experiment 1.

The design of this experiment was a 4 (orientation:

forward, left, right, backward) x 3 (viewing angle: be-

low, head, above) x 2 (motion direction: left-to-right,

right-to-left) within-subjects design with four repeti-

tions per conditions. The repetitions were distributed

across four blocks and trials were presented in random-

ized order within each block. Thus, participants per-

formed a total of 96 trials.

3.2.2 Results

For all ANOVA effects with violations of the sphericity

assumption as indicated by a significant Mauchly’s test,

we applied the Greenhouse-Geisser correction.

Viewing Times As in Experiment 1, we treated all re-

sponses with viewing times larger than 2 s as outliers

and removed those responses from the data set. This

resulted in the removal of 189 responses (0.7 % of data)

across all participants.

We performed two repeated measures ANOVAs with

the factors orientation, viewing angle, and motion di-

rection. The dependent measure of the first ANOVA

was viewing time aggregated across all frames (see Fig-

ure 8, top) and the dependent measure of the second

ANOVA was viewing time at frame 5 (see Figure 8, bot-

tom). Across both ANOVAs, we observed neither any

Fig. 8 Experiment 2: Viewing times per frame. Top: Viewing
times aggregated across all frames. Bottom: Viewing times at
frame 5. Robot orientation did not affect viewing times. Error
bars indicate 95% within-subject confidence intervals [1].

significant mean effect, all F s ≤ 2.21, ps ≥ .119, η2ps ≤
.07, nor any significant interaction, all F s ≤ 2.22, ps ≥
.058, η2ps ≤ .07.

Perceived Autonomy We analyzed the perceived auton-

omy ratings using a repeated measures ANOVA with

the factors orientation, viewing angle, and motion di-

rection. This revealed a significant main effect of ori-

entation, F (2.20, 63.70) = 16.44, p < .001, η2p = .36
(see Figure 9). Further evaluating this orientation effect

with paired t-tests (p-values holm-corrected for multi-

ple comparisons) revealed that participants rated the

perceived autonomy of robots facing in motion direc-

tion (forward condition) higher than robots facing the

other three orientations, all ps < .001. The perceived

autonomy ratings for the backward, left, and right ori-

entation conditions did not differ significantly from one

another, all ps ≥ .663. The other main effects and in-

teractions of the ANOVA were not significant, all F s ≤
2.02, ps ≥ .065, η2ps ≤ .07.

3.2.3 Discussion

With Experiment 2, we investigated the effect of robot

orientation on observers’ undestanding of robot motion.

In contrast to the direct manipulation of motion param-

eters in Experiment 1, our robot orientation manipula-

tion in Experiment 2 left motion parameters unaffected.
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Fig. 9 Experiment 2: Perceived autonomy rating across
robot orientation conditions. The perceived autonomy of
robots facing in motion direction was rated higher than for all
other orientation conditions. Ratings for the left, right, and
back orientation conditions did not differ significantly from
one another. Error bars indicate 95% within-subject confi-
dence intervals [1].

Instead, we manipulated the congruence between the

robot’s motion direction and its orientation.

Our viewing times analysis showed that the com-

prehension of robot motion was not affected by the ori-

entation of the robot relative to its motion direction.

It is important to note, however, that robot orientation

was fixed through each motion sequence in our stim-

uli, thus not creating any additional motion signal. Re-

search on visual attention showed that conflicting mo-

tion information of an object relative to its motion di-

rection impairs attention [20,24]. Therefore, future re-

search should investigate whether changes in robot ori-

entation creating a separate motion signal, such as the

indepedent rotation of the torso during robot motion,

might impair observers’ understanding of robot motion.

Robot orientation affected observers’ perceived au-

tonomy rating. Robots moving in the direction of their

heading were rated as being more autonomous than

robots being oriented either orthogonal to their move-

ment direction or facing backward. This result shows

that even if comprehension of the underlying motion

pattern is unaffected by the orientation manipulation,

the subjective assessment of the robot motion is not.

Because the aim of human-aware robot navigation is

not only the match between observers’ predicted motion

patterns and actual robot motion but also the correct

assessment of robot motion, such as being autonomous

in our case, robot orientation should also be considered

when designing human-aware robots.

As in Experiment 1, we neither found any influences

of the viewing angle of the camera nor of the motion

direction of the robot.

3.3 Experiment 3

The results of Experiments 1 and 2 suggest that veloc-

ity profiles and robot orientation have distinct effects

on human understanding and subjective assessment of

robot motion. Whereas velocity profiles affected view-

ing times but not perceived autonomy in Experiment 1,

robot orientation affected perceived autonomy but not

viewing times in Experiment 2. A potential argument

against this conclusion is that we did not manipulate ve-

locity and orientation together within one experiment,

thus preventing us from testing for interactions between

the two factors. Thus, it remains possible that velocity

effects might be different, for example, when the robot

is oriented backward instead of forward. Therefore, we

conducted Experiment 3, in which we manipulated both

velocity profiles (constant, increasing, decreasing) and

robot orientation (forward, backward) within one ex-

periment.

3.3.1 Method

Participants Twenty-two new students (16 female, age

M = 22.45 years, SD = 4.10 years) from the Univer-

sity of Tübingen participated in this experiment in ex-

change of course credit or monetary compensation. We

gained informed consent from the participants.

Stimuli and Design Stimuli and procedure were the

same as in Experiments 1 and 2 with the exception that

we manipulated both the velocity profile (constant, in-

creasing, decreasing) and robot orientation (forward,

backward) in this experiment. Participants performed

144 trials.

3.3.2 Results

For all ANOVA effects with violations of the sphericity

assumption as indicated by a significant Mauchly’s test,

we applied the Greenhouse-Geisser correction. Due to

a technical problem, we lost the perceived autonomy

rating of one participant in one trial. Therefore, we re-

moved this participant from the data set prior to the

analysis.

Viewing Times As in Experiments 1 and 2, we treated

all responses with viewing times larger than 2 s as out-

liers and removed those responses from the data set.

This resulted in the removal of 120 responses (0.4 % of

data) across all participants.

We performed two repeated measures ANOVAs with

the factors velocity and orientation. The dependent mea-

sure of the first ANOVA was viewing time aggregated
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Fig. 10 Experiment 3: Viewing times per frame. Top: View-
ing times aggregated across all frames. Bottom: Viewing times
at frame 5. Decreasing velocity caused increased viewing
times irrespective of robot orientation. Error bars indicate
95% within-subject confidence intervals [1].

across all frames (see Figure 10, top) and the dependent

measure of the second ANOVA was viewing time at

frame 5 (see Figure 10, bottom). These analyses repli-

cated the results from our Experiments 1 and 2. We

observed a significant main effect of velocity on view-

ing times in both ANOVAs, F (1.42, 28.32) = 48.46,

p < .001, η2p = .71 and F (1.42, 28.50) = 20.66, p <

.001, η2p = .51, respectively. Importantly, these effects

did not change with robot orientation as there was no

significant interaction between velocity and orientation

in both ANOVAs, both F s < 1. Furthermore, the main

effect of orientation on viewing times was not significant

in both ANOVAs, both F s < 1. Further evaluating the

significant velocity effect with paired t-tests (p-values

holm-corrected for multiple comparisons) revealed that

viewing times in the decreasing velocity condition were

longer than in the other two velocity conditions for both

analyses, all ps < .001. In contrast to Experiment 1,

viewing times for the increasing velocity condition were

slightly lower than for the constant velocity condition

when aggregating across all frames, p = .017. However,

this finding was qualified by the analysis of frame 5 in

which viewing times did not differ significantly between

the increasing velocity condition and constant velocity

condition, p = .099.

Perceived Autonomy We analyzed the perceived auton-

omy ratings using a repeated measures ANOVA with

Fig. 11 Experiment 3: Perceived autonomy ratings for
robots oriented forward were higher than for robots oriented
backward irrespective the velocity profile underlying robot
motion. Error bars indicate 95% within-subject confidence
intervals [1].

the factors velocity and orientation (see Figure 11).

This analysis replicated the results from our Experi-

ments 1 and 2. While there was a significant main ef-

fect of orientation, F (1, 20) = 9.68, p = .006, η2p =

.33, velocity did not significantly affect the perceived

autonomy ratings, F (2, 40) = 2.18, p = .127, η2p = .10.

Importantly, also the interaction of orientation and ve-

locity was not significant, F (2, 40) = 1.13, p = .335,

η2p = .05, indicating that the effect of orientation on

perceived autonomy ratings was not influenced by the

velocity profile underlying the respective robot motion.

Replicating our results of Experiment 2, autonomy rat-

ings were higher for robots oriented in the direction of

their motion than for robots oriented backward.

3.3.3 Discussion

In this experiment, we manipulated velocity profiles

and robot orientation within one experiment. This ex-

periment replicated the results of our Experiments 1

and 2. That is, decreasing velocity caused increased

viewing times but left perceived autonomy unaffected,

whereas forward robot orientation caused higher per-

ceived autonomy ratings but left viewing times unaf-

fected. Critically, there were no interactions between

velocity and orientation in all analyses. This provides

further evidence that velocity profiles and robot orien-

tation are two properties of robot motion with distinct

effects on human understanding and subjective assess-

ment of human-aware robot navigation.

4 General Discussion

The successful design of human-aware robots requires

that human observers can easily understand the robots’

behavior. Based on psychological research on goal-di-

rected actions, we introduced the viewing time paradigm
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to the study of human-aware robot behavior and ap-

plied this paradigm to human-aware robot navigation.

This involves the partitioning of movies into multiple

static images. Observers view those images as self-paced

slide show and viewing times for each image are mea-

sured. Violations of observers’ predictions about up-

coming events and thus difficulties in the comprehen-

sion of observed robot behavior cause increased view-

ing times of respective images. Furthermore, subjective

measures of perceived robot properties can be measured

following each slide show. We applied this method to

the study of two properties potentially influencing the

naturalness robot motion: velocity and robot orienta-

tion.

Decreasing velocity caused pronounced increases in

viewing times in Experiments 1 and 3. Thus, decreasing

velocity impaired the comprehension of robot motion.

Also sinusoidal velocity caused a slight increase in view-

ing times as compared with constant velocity. This is in

line with previous research showing that observers are

worse in tracking objects moving with sinusoidal ve-

locity than objects moving with constant velocity [21].

However, our analysis revealed that only those sections

of the sinusoidal velocity profile that contained decreas-

ing velocity but not increasing velocity impaired com-

prehension. Thus, we conclude that human understand-

ing of robot motion containing portions of decreasing

velocity is impaired.

Whereas robot orientation relative to the robot’s

motion vector did not influence viewing times in Ex-

periments 2 and 3, robot orientation affected observers’

rating of the perceived autonomy of the robot. Ob-

servers rated robots aligned with their motion direction

as being more autonomous than robots oriented orthog-

onal to their motion direction or facing backward. Thus,

whereas observers’ comprehension of robot motion was

not affected by robot orientation in our experiments,

subjective ratings were.

4.1 Implications for Human-Aware Robot Navigation

Based on our results, the design of human-aware robot

navigation should consider both velocity profiles and

orientation. Observers’ understanding and assessment

of robot motion is best when robots are facing into their

direction of motion and when their velocity profile con-

tains minimal portions of decreasing velocity. Robots

will always have to decrease their velocity to reach a

goal point, but navigation algorithms often produce

jerky motions. For example when robots pass a door,

they often alternately accelerate and decelerate to find

a way through.

To quantify the quality of a motion trajectory with

respect to the velocity profile, we suggest the following

evaluation function: with the starting time t0 and end

time t1 calculate

γ =

t1∑
t=t0

neg(acc(t)) · acc(t)

where acc(t) is the acceleration at time t, and the func-

tion neg(x) = 1 for x < 0 and neg(x) = 0 for x ≥ 0.

For the trajectories we used in our experiments, we get

γconstant = γincreasing = 0, γdecreasing = −0.9,

γsinusoidal = −0.635.

The function γ punishes trajectories with decreas-

ing velocities. But comparing the values with Figure 5

shows that the evaluation of the sinusoidal velocity pro-

file is closer to that of the decreasing profile, whereas

our data indicates that it should be closer to that of

the constant and increasing profiles. A simple quadratic

function can better model our observations:

η = −2γ2 − γ

For the trajectories of our experiments we get

ηconstant = ηincreasing = 0, ηdecreasing = −0.72,

ηsinusoidal = −0.165. Further studies will have to con-

firm or detail the form and parameters of this function,

as well as necessary scalings, possibly with respect to

the trajectory length.

For quantifying side- and backwards movement,

Kirsch [12] suggested to count the number of timesteps

in which the robot moved sidewards (|vy| > |vx|) or

backwards (vx < 0). This agrees with the observations

of Experiment 2, but it is not the only possible inter-

pretation. We do not know what exactly should be con-

sidered as a sidewards movement. The 90 degree angle

we used in Experiment 2 is rather extreme, possibly

smaller deviations from the movement direction could

have the same effect on perceived autonomy. Our exper-

iment suggests that the amount of deviation from the

movement direction is unimportant, but this should be

verified in further research.

4.2 Limitations and Future Work

Whereas the robot moved with the same velocity pro-

file throughout each trial in our experiments, real-world

robot navigation consists of varying velocities across

time. Therefore, future research should examine more

complex velocity profiles. In particular, this applies to

two aspects of velocity changes. First, the context might

affect the impact of decreasing velocity on human un-

derstanding of robot motion. For example, it might

be easier to comprehend decreasing velocity profiles
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if the robot reduced its velocity only once it almost

reached its goal. Second, changes in velocity by them-

selves might affect human understanding of observed

robot motion. For example, abrupt changes between in-

creasing and decreasing velocity (or vice versa) might

impair comprehension because perceptual prediction

based on one velocity profile do not match to robot

motion observed based on the new velocity profile thus

requiring event model updating [26].

We used a straight navigation path in our experi-

ments. This allowed for the systematic and controlled

study of how robot velocity profiles affect human under-

standing of robot motion. A side effect of using a single

straight navigation path is that the direction towards

the goal of the navigation task was identical to the mo-

tion direction of the robot. By dissociating the orienta-

tion of robot motion and the location of the navigation

goal (i.e., by introducing an obstacle into the environ-

ment), future research should investigate whether the

effect of robot orientation on perceived autonomy found

in our experiments is the result of the deviation between

robot orientation and motion vector as suggested by our

experiments. As an alternative, it could be possible that

robots that are looking into the direction of their nav-

igational goal and not robots that are looking into the

direction of motion are perceived as autonomous. How-

ever, when navigational goal and motion direction are

dissociated, robots orientated toward their navigation

goal will constantly change their orientation during mo-

tion, thus creating two motion signals (motion direction

and torso rotation). Such a conflicting motion signal by

itself might impair observers’ ability in tracking [20,24]

and thus understanding the robot motion. This must

be considered by future research trying to disentangle

this research question.

Robot motion in our experiments perfectly followed

the designed velocity profiles. That is, we placed the

robot at its respective locations instead of using a realis-

tic robot motion controller. This served as a good start-

ing point for establishing the viewing time paradigm to

research on robot motion. It is important to note, how-

ever, that the viewing time paradigm is not restricted

to such artificial motion patterns. Quite the opposite, it

has been applied to realistic and real-world movie con-

tent in psychological research [8]. Importantly, viewing

times are a sensitive measure that allows to determine

the temporal locations of event model updating [8,22].

That is, viewing times increase in those frames where

processing associated with the comprehension of the vi-

sual scene occurs. This was also the case in our Exper-

iment 1, in which we observed increased viewing times

in the sinusoidal velocity profile as compared with the

constant control condition only for frames that showed

decreasing velocity. Therefore, it seems promising to ap-

ply the viewing time paradigm also to instances of robot

navigation with a realistic robot motion controller in or-

der to differentiate between instances where observers

have an easy or a hard time in comprehending the ob-

served robot motion.

4.3 Conclusion

We introduced the viewing time paradigm to the study

of human-aware robot behavior. With three experiments,

we demonstrated its usefulness in investigating two in-

fluential factors on human understanding of robot mo-

tion, namely velocity and robot orientation. Based on

our results, we conclude that robot navigation should

avoid phases of decreasing velocity, such as during jerky

movements, and that the orientation of robots should

be aligned with their motion direction in order to maxi-

mize human understanding and their assessment of the

underlying robot motion.
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