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Abstract

Categorising is arguably one of the first steps in cognition, because it
enables high-level cognitive processing. For a similar reason, categorising
is a first step—a preprocessing step—in artificial intelligence, specifically
in decision-making, reasoning, and natural language processing. In this
paper we categorise the motion of entities. Such categorisations, also
known as qualitative representations, represent the preprocessing step for
navigation problems with dynamical obstacles. As a central result, we
present a general method to generate categorisations of motion based on
categorisations of space. We assess its general validity by generating two
categorisations of motion from two different spatial categorisations. We
show examples of how the categorisations of motion describe and control
trajectories. And we establish its soundness in cognitive and mathematical
principles.

1 Introduction

Any sensor, either robotic or human, is inundated by data with no direct mean-
ing in itself, but its numerical value. This requires simplification—reducing the
amount and the degree of detail of the data—, and conceptualisation—endowing
data with a more straightforward meaning. A meaningful categorisation pro-
vides both in one stroke.

This paper introduces a method for creating intuitive categorisations of mo-
tion. Its generality is the best asset: it can use any spatial categorisation to
create new categorisations of motion. Moreover, our method is applicable in any
spatial dimension; and it categorises motions even when one or both entities are
motionless.

The method’s effectiveness is validated by applying it, exemplary, to two
very different spatial categorisations: one of them dealing with overlapping,
RCC [23], and the other with orientation, OPRA1 [19]. Thus, we obtain a novel
categorisation of motion dealing with regions. In what follows, we show the
meaningfulness of the generated categorisations: firstly, we practically show the
application of the categorisations to describe trajectories qualitatively, and to
control navigation; secondly, we advance cognitive and mathematical arguments.
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We find categorisations of motion form a promising field, despite being few,
they have already proved successful in several areas. They enhance the anal-
ysis of movements, such as pattern analysis of sport players’ trajectories [7],
dancers’ bodily movements [4, 3], or animals’ trajectories [18]. They simplify
the implementation of navigation routines, notably in human-robot interaction
[14, 17, 1], not only because they provide meaningful categories, but also by
enabling decision-making [8].

The difficulty of categorising motion is illustrated in Figure 1. Which at-
tributes should we use—and how—in order to categorise the 4 motion scenarios
A, B, C, D, in this figure? For example, the pair of scenarios (A, B) and (C, D)
are almost identical, differing only in the speed of k. Consequently, each pair
may build a category. However, if velocities are not modified, in scenarios A
and C k would cross before l without colliding, while in scenario B the vehicles
collide, and in D k crosses behind l. Are there then three categories (A, C), (B),
and (D) more meaningful than the two previous, (A, B) and (C, D)?

The variety of possible motion categorisations originates in the variety of
spatial categorisations; as we see in the example—we can differently categorise
A and D, because of the spatial categories ‘before’ and ‘behind’; we can cate-
gorise B alone, because of the spatial category ‘overlap’, i.e., collision. For that
reason, we use spatial categorisations as the basis of our method to generate
categorisations of motion from spatial categorisations; a method we presented
in a preliminary version [22].

2 Preliminaries on Motion Categorisation

In this section we clarify some aspects of the terminology used: the terms ‘cat-
egorisation’ and ‘motion’. We also present the two spatial categorisations that
we use as examples to create motion categorisations: RCC and OPRA1.

2.1 Categorisation, Qualitative Representation, and Re-
lated Terms

We used the term ‘categorisation’ in the introduction of this paper, because it
is more readily understood than other similar terms. The use of these terms de-
pends on the field of study, for example, ‘categorisation’ is mostly used in cogni-
tive science, ‘conceptualisation’ in language, ‘classification’ in machine learning,
and ‘qualitative representation’ in artificial intelligence.

A great variety of spatial categorisations has been presented in the litera-
ture as ‘qualitative spatial representations’, from which we generate our mo-
tion categorisations. Consequently, in the rest of the paper we mostly use the
term ‘qualitative representation’ (equivalent to ‘categorisation’) and the term
‘qualitative relation’ (equivalent to ‘category’). As a categorisation partitions
a continuum into categories, so a qualitative representation partitions it into
qualitative relations.

Qualitative representations are categorisations with extended mathematical
properties, which allow, for example, reasoning [6]. As much as our motion
categorisations are obtained from qualitative spatial representations, they are
also qualitative representations of motion, and could, eventually, be endowed
with reasoning properties. However, this is beyond the scope of this paper.
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Figure 1: A challenge for motion categorisation: 4 scenarios (A,B,C,D) with
two moving vehicles k and l, with velocity vectors vk and vl. Each pair (A,B)
and (C,D) has identical positions, velocity angles, and fulfils ‖vk‖ > ‖vl‖—each
pair differs only in the speed of k.
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Figure 2: A motion scenario—two entities k and l, described by their instanta-
neous positions, xk and xl, and velocities, vk and vl.

2.2 What we Categorise: Motion Scenarios

We categorise instantaneous motion scenarios of two entities, k and l (Fig. 2),
i.e., a motion scenario that is determined by two real positions and two real
velocities, thus, four vector values (xk,vk; xl,vl) in a certain instant t = t0.

The entities need not be punctual, but they are rigid regions and their only
degrees of freedom are translation (no angular velocity allowed). Additional
values are only needed if required by the spatial representation. For example,
as we apply RCC to two-dimensional discs, we need their radii; in OPRA1 we
need the orientations, usually provided by the velocity vector.

We call K the set of all possible motion scenarios. By definition, to cate-
gorise a scenario (xk,vk; xl,vl) means to map it into a certain motion category,
i.e., relation, qi, which belongs to the finite set of motion categories, i.e., rela-
tions, Q = {q1, q2, . . . , qn}. Consequently, a motion categorisation is simply a
mapping, fq, that assigns a certain motion category to every motion scenario,
i.e.,

fq : K −→ Q
(xk,vk; xl,vl) 7−→ qi

(1)

As illustration, in Section 5, we detail two qualitative representations of
motion, i.e., categorisations, obtained by our generating method. The examples
require the knowledge of two spatial representations, OPRA1 and RCC, that
are presented in the following section.

2.3 Used Spatial Categorisations

Here we present two qualitative spatial representations, i.e. spatial categorisa-
tions, RCC and OPRA1, that we use in the examples of our method (Sect. 5).

2.3.1 RCC: A Topological Spatial Categorisation

RCC [23] relates two finite regions in a topological space according to their con-
nectedness. We apply RCC concretely to the two-dimensional euclidian space,
where RCC can be seen as categorising the overlapping of regions (See Fig. 3).
It, thus, yields 8 possible relations: DC, regions do not overlap; EC, regions
are tangent non-overlapping; PO, regions overlap in the interior but none is
contained in the other; TPP, region x is contained in y and is tangent to the
border; TPPI, region y is contained in x and is tangent to the border; EQ, both
regions overlap completely; NTPP, x is contained in y and does not overlap the
border of y; NTPPI, y is contained in x and does not overlap the border of x.
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In order to ease the calculations, in our examples (Sects. 5.1, 6.1.2 and 6.1.3)
we take two discs with different radii as moving entities, where the radius of
entity x is larger than that of entity y, so that in our examples the relations
TPPI, TNPPI, and EQ, are not mentioned.
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Figure 3: The RCC qualitative relations depend on how two entities overlap.
This figure depicts the 8 RCC relations: DC, EC, PO, TPP, NTPP, EQ, TPPI,
and NTPPI as a conceptual neighbourhood graph [11, 9]: the arrows connect
relations that are conceptual neighbours—we switch between conceptual neigh-
bours only by a continuous translation (no dilations allowed) and without going
through any other relation.

2.3.2 OPRA1: A Directional Spatial Categorisation

OPRA1 [19] relates two oriented entities according to the relative orientation
between them, considering also if the entities are at the same point or not. A
single oriented entity partitions the space into four regions (Fig. 4) that are
numbered as following: ‘0’ is the half line beginning at the entity and extending
forwards in the orientation sense, ‘1’ is the half plane at the left of the entity,
‘2’ is the half line beginning at the entity and extending backwards opposite to
the orientation sense, ‘3’ is the half plane at the right of the entity.

0

1 3

2
k

Figure 4: The regions that an oriented particle defines under OPRA1: ‘0’ the
frontal half line, ‘1’ left half plane, ‘2’ the back half line, ‘3’ the right half plane.

Now, the relation between two entities (Fig. 5) is expressed as the region
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Figure 5: Examples of OPRA1 spatial relations, ∠ba , between two entities k

and l that are at different points. The syntax is ∠k with respect to l
l with respect to k
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Figure 6: Examples of OPRA1 spatial relations, ∠a , between two entities k and
l that are at the same point. The syntax is ∠region of k to which l points

that each entity occupies with respect to the other entity by using the symbol
∠ with the following syntax:

∠k with respect to l
l with respect to k

For example, in Figure 5a, the second entity l is on region 3 of the first entity
k, and k is on region 0 of l; accordingly, the relation between both entities is
expressed as ∠0

3 .
There is, though, the singular case in OPRA1, when the entities are at the

same point (see Figure 6). In that case, we obtain new categories defined as

∠region of k to which l points

3 Related Work

In this section we present concepts, used in the paper, dealing with qualitative
relations: conceptual neighbourhood diagrams and dominance theory. We also
provide an overview of previous work in qualitative relations of motion.
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3.1 Conceptual Neighbourhood Diagram

The ‘Conceptual neighbourhood diagram’, introduced by Freksa [11], is one of
the most elementary concepts concerning qualitative representations. A simple
example is provided in Figure 3, the conceptual neighbourhood diagram con-
nects the RCC relations that can be directly obtained by a continuous trans-
formation, in this case a translation of the discs. We can obtain the conceptual
neighbourhood diagram from any qualitative representation, particularly from
the representations of motion (Fig. 13).

In this paper, the conceptual neighbourhood diagram is a ubiquitous con-
cept. Firstly, the conceptual neighbourhood diagram is implicit, though not
mentioned, in our foundational concept the ‘story’ (Sect. 4.1)—A story can be
seen as a path, restricted to uniform motions, in the graph of the conceptual
neighbourhood diagram of a spatial representation. Secondly, the conceptual
neighbourhood diagram of the qualitative relations of motion, is the basic tool
for implementation of decision-making and control algorithms—Qualitatively
steering a moving entity consists on displacing between relations in the concep-
tual neighbourhood diagram (Sect. 6.1.3).

3.2 Dominance Theory

The dominance theory, introduced by Galton [12] is also foundational in qual-
itative motion: it studies the properties of the intervals involving relations in
spatial representations. For example, some relations—called ‘states of motion’—
can only occur in open time intervals, e.g., (ta, tb), others called ‘states of po-
sition’—can only occur in closed time intervals, e.g., [ta, tb] or even an isolated
instant ta.

As shown in Section 4.1.1, we use the distinction provided by the dominance
theory to distinguish rigid stories, i.e., both entities have the same velocity, from
singleton stories, i.e., the entities have different velocity.

3.3 Qualitative Representations of Motion

An overview of representations of motion is found in a survey by Dylla et al. [10]:
in a total of 40 representations surveyed, they classify three as representations of
motion: QRPC [13], RfDL-3-12 [15], and, the most used, QTC [26]. QTC refers
to a varied family of representations characterised by suffix [7], e.g., QTCC1.
Each particular QTC representation is formed by a n-tuple of three symbols
{−, 0,+}, which are determined by certain kinematic features, e.g., moving
towards or from, moving rightwards or leftwards, moving faster or slower.

The survey of spatial representations of Chen et al. [5] also mentions three
motion representations: Dipole Calculus [20], DIA [24], and QTC. A particular
representation of motion, given by Wu et al., is the only one, to our knowledge,
that deals explicitly with regions—it is equivalent to a Cartesian product of the
spatial representation RCC and the distance variation between regions.

Representations of orientation and relative direction, such as OPRA [19] or
Dipole Calculus [20], are used to represent moving entities by equating orienta-
tion with velocity [8]; nevertheless, they are not primarily intended for such a
task.
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All the aforementioned representations can be used to categorise motion sce-
narios, excepting RfDL-3-12, which categorises a straight segment of trajectory—
describing polygonal trajectories qualitatively we find [21]. Most of the cate-
gorisations (QTC, OPRA, QRPC, DIA) are ill-defined when at least one of the
velocity vectors is zero.

4 Generating Categorisations of Motion

In this section we present the core method of the paper: how to generate cate-
gorisations of motion for motion scenarios using a given spatial categorisation.
We illustrate these explanations with two examples (Sections 5.1 and 5.2)—it
is useful to parallel read this section along with the examples.

Based on the preliminaries, we have the following data as a starting point
for our motion categorisation:

i) a ‘motion scenario’ of two entities, k and l, which is described by two
instantaneous, in t = t0, position-velocity pairs of vectors—one pair for
each entity:

(xk,vk; xl,vl)

ii) a ‘spatial categorisation’ R, which provides a mapping fρ from the spatial
data of both entities—positions, orientations—into a spatial relation, Ri.
Notice that, as all spatial data is also contained in the data of the motion
scenario, fρ can be seen as mapping a motion scenario (xk,vk; xl,vl) into
the corresponding spatial relation.

fρ : K −→ R
(xk,vk; xl,vl) 7−→ Ri

(2)

4.1 Stories: a Step into Motion Categorisation

The motion categorisation of a scenario (xk,vk; xl,vl), at t = t0, originates by
assuming uniform motion, i.e., unchanged velocities, of the entities both into the
past and into the future. In that way we obtain a finite list of spatial relations
between the entities: the past spatial relations which could have occurred (t <
t0), the current relation (t = t0), and the future spatial relations which would
follow (t > t0), under the assumption of uniform motion.

We call ‘story’ this full temporal (past, present, future) sequence of relations,
(Ri1 , Ri2 , . . . , Rim), that originates from a certain motion scenario by assuming
uniform motion [22]. Notice that, even for entities not moving in uniform mo-
tion, we always enforce the assumption of uniform motion, when we generate a
story.

We regard the assumption of uniform motion, by no means, as a limitation
or a simplification, but rather a sound way to define in qualitative spaces a
concept equivalent to the instantaneous velocity vector in quantitative spaces
(See Section 6.2.3)

Thus, stories are obtained by a mapping, fσ,—every motion scenario gener-
ates a unique story, Si, under the assumption of uniform motion.
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fσ : K −→ Σ
(xk,vk; xl,vl) 7−→ Si = (Ri1 , Ri2 , . . . , Rim)

(3)

We determine all possible stories, Si, that scenarios may yield for the given
spatial categorisation R; this is always a finite set [22, Math. Appendix] that
we call ‘stories set’, and represent as Σ = {S1, S2, . . . , Sn}.

4.1.1 Rigid and Singleton Stories

A ‘rigid story’ is the story of two entities that move with the same velocity, i.e.,
vk = vl. A ‘singleton story’ is a story consisting of a single spatial relation,
where the velocities of the entities are different, i.e., vk 6= vl

Both ‘rigid’ and ‘singleton’ stories have only one element, for example, the
rigid story S01 = (DC) and the singleton story S11 = (DC), have the same
one element (DC) (Fig. 7). They should be categorised as one single story.
However, the dominance theory (Sect. 3.2) classifies the rigid story S01 = (DC)
differently as the singleton story S11 = (DC). On this account, we are entitled
to distinguish both stories.

Indeed, this distinction manifests in navigation control (Sect. 6.1.3). A rigid
story can only occur in a closed time interval—also in an isolated instant—
whereas a singleton story must always occur in an open interval and, thus,
cannot occur at an isolated instant.

k

l
vk

vl k vk

lvl

Figure 7: Two motion scenarios that seemingly have the same story (DC), but
are different classified according to the dominance theory. The first scenario can
occur only in closed time intervals, both velocity vectors are equal, i.e., vk = vl;
such scenario belongs, therefore, to the rigid story S01, its category is S01(DC).
The second scenario can only occur in opened time intervals, velocity vectors
are different, i.e., vk 6= vl; and it, therefore, belongs to a singleton story S11,
its category is S11(DC).

4.2 Story-Based Method for Generating Categorisations
of Motion

We describe the method to create a categorisation of motion, i.e., a qualitative
representation of motion, from any given spatial representation—we illustrate
the method with examples in Section 5.

The method is as follows:

1. We have a spatial categorisation R, which relates each motion scenario
with its spatial relation through the mapping fρ (Eq. (2))
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2. We determine all possible stories, Si, that motion scenarios (xk,vk; xl,vl)
may yield for the given spatial categorisation, i.e., the ‘stories set’ Σ =
{S1, S2, . . . , Sn}

3. We obtain the mapping fσ that maps every motion scenario into a story
Si (Eq. (3)).

4. We can straightforwardly create a motion categorisation, fq as presented
in Equation (1), if we combine both aforementioned mappings, fσ and fρ,
through the Cartesian product, i.e., fq := fσ × fρ (Eq. (4)). Accordingly,
a motion scenario (xk,vk; xl,vl) is mapped into a story Si and into a
qualitative spatial relation Rj . Thus, the motion category of the scenario
is defined as Si(Rj), i.e., the story Si, at the spatial relation Rj .

fq := fσ × fρ : K −→ Σ×R
(xk,vk; xl,vl) 7−→ Si(Rj)

(4)

5 Examples of Story-Based Representations of
Motion

We use the story-based method defined above to generate novel qualitative rep-
resentations of motion, i.e., motion categorisations, ‘Motion-RCC’ and ‘Motion-OPRA1’,
based on qualitative spatial representations, RCC and OPRA1.

5.1 Motion-RCC

We illustrate the method above (Sect. 4) using the spatial categorisation RCC.

1. We have a spatial representation R = RCC, which provides a mapping fρ
that relates each motion scenario with a spatial relation Rj .

2. We obtain the stories set Σ = Σ0 ∪ Σ1; where Σ0 = {(DC), (EC), (PO),
(TPP), (NTPP), (TPPI), (NTPPI), (EQ)} are the rigid stories and Σ1 ={(DC),
(DC, EC, DC), (DC, EC, PO, EC, DC), (DC, EC, PO, TPP, PO, EC,
DC), (DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC), (DC, EC, PO,
TPPI, PO, EC, DC), (DC, EC, PO, TPPI, NTPPI, TPPI, PO, EC, DC),
(DC, EC, PO, EQ, PO, EC, DC)} are the non-rigid stories (Fig. 8a). We
rename the rigid stories into S0i, Σ0 = {S01, S02, S03, S04, S05, S06, S07,
S08}, and the non-rigid stories into S1i, Σ1 = {S11, S12, S13, S14, S15, S16,
S17, S18}, according to Fig. 8a.

3. We obtain the mapping fσ, which assigns to every motion scenario (xk,vk;
xl,vl) the corresponding story Si.

4. The representation of motion is then generated by assigning to each motion
scenario the pair Si and Rj , which we write in the form Si(Rj); they are
obtained respectively by the mappings fσ and fρ

We call this representation ‘Motion-RCC’.
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Motion-RCC = {
S01(DC), S02(EC), S03(PO), S04(TPP), S05(NTPP),

S06(TPPI), S07(NTPPI), S08(EQ),

S11(DC), S12(DC−), S12(EC), S12(DC+),

S13(DC−), S13(EC−), S13(PO), S13(EC+), S13(DC+),

S14(DC−), S14(EC−), S14(PO−), S14(TPP),

S14(PO+), S14(EC+), S14(DC+),

S15(DC−), S15(EC−), S15(PO−), S15(TPP−), S15(NTPP),

S15(TPP+), S15(PO+), S15(EC+), S15(DC+)

S16(DC−), S16(EC−), S16(PO−), S16(TPPI),

S16(PO+), S16(EC+), S16(DC+),

S17(DC−), S17(EC−), S17(PO−), S17(TPPI−), S17(NTPPI),

S17(TPPI+), S17(PO+), S17(EC+), S17(DC+),

S18(DC−), S18(EC−), S18(PO−), S18(EQ),

S18(PO+), S18(EC+), S18(DC+)}

(5)

For example, the relation S12(EC) indicates that the entities are moving in
the story S12 at the moment of tangency, i.e., EC. If the spatial relation
appears multiple times in the story, such as EC in S3, we distinguish
between each appearance, for example, chronologically, S13(EC−) is the
first EC, and S13(EC+), the last EC.

5.2 Motion-OPRA1

We illustrate the method above in Section 4 using the spatial categorisation
OPRA1.

1. We have a spatial representation R = OPRA1, which provides a mapping
fρ that relates each motion scenario with a spatial relation Rj .

2. We obtain the stories set Σ as the union of different meaningful subsets (
Table 1):

Σ = ΣC ∪ ΣB ∪ ΣT ∪ ΣP ∪ ΣE ∪ ΣR (6)

3. We obtain the mapping fσ, which assigns to every motion scenario (xk,vk;
xl,vl) the corresponding story Si.

4. The representation of motion is then generated by assigning to each motion
scenario the pair Si and Rj , which we write in the form Si(Rj); they are
obtained respectively by the mappings fσ and fρ

We call this representation ‘Motion-OPRA1’. We obtain its qualitative
relations by combining each story Si (Table 1) with its spatial relations
Rj = ∠ba (Eq. (7)). Consequently, it has a total of 100 relations of motion.
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k is a smaller disc than entity l, and vk 6= vl: Σ1 = {S11, S12, S13, S14, S15}. Two
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Note: The figure represents an equivalent simplification that considers l being motion-
less and k moving with the difference of velocities vkl = vk − vl. The stories depend
on the direction of vkl.

k

l

k

l

k

l

(b) Example of story S11 = (DC)
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(c) Example of story S13 = (DC,EC,PO,EC,DC)

Figure 8: Stories in RCC
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Non-Parallel velocities vk ∦ vl
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Parallel velocities vk ‖ vl
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0 SE-2 ∠0

2 SE2

∠1
3 SE-1 ∠3

1 SE1

∠0 SE0

ΣR



motionless entities, ‖v‖ = 0, equiv. to OPRA1

∠0
0 SR00 ∠0

1 SR10 ∠0
2 SR20 ∠0

3 SR30

∠1
0 SR01 ∠1

1 SR11 ∠1
2 SR21 ∠1

3 SR31

∠2
0 SR02 ∠2

1 SR12 ∠2
2 SR22 ∠2

3 SR32

∠3
0 SR03 ∠3

1 SR13 ∠3
2 SR23 ∠3

3 SR33

∠0 SR0 ∠1 SR1 ∠2 SR2 ∠3 SR3

Table 1: Stories set Σ of OPRA1, divided into meaningful subsets of stories:
ΣC , ΣB , ΣT , ΣP , ΣE , ΣR
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Motion-OPRA1 = {SC1-1(∠3
1 ), SC1-1(∠0

1 ), SC1-1(∠1
1 ), SC1-1(∠1

2 ), SC1-1(∠1
3 ),

SC10(∠3
1 ), SC10(∠3 ), SC10(∠1

3 ), . . . , SR2(∠2 ), SR3(∠3 )}
(7)

In Figure 9 we show examples of stories, SP21 and SC2-1, and correspond-
ing qualitative relations of motion, for example, SP21(∠3

3 ) and SC2-1(∠1
1 ).

Story SP21

0

1
3

2

k

0

1
3

2 l 0

1
3

2 l
0

1
3

2

k

0

1
3

2 l

0

1
3

2

k

SP21(∠3
3 ) SP21(∠3

3 ) SP21(∠3
3 )

Story SC2-1

01

32

 l

0

1
3

2

k

01

32

l

0

1
3

2

k

01

32
 l

0

1
3

2

k

01

32
l

0

1
3

2

k

01

32

l

0

1
3

2

k

SC2-1(∠1
3 ) SC2-1(∠0

3 ) SC2-1(∠3
3 ) SC2-1(∠3

2 ) SC2-1(∠3
1 )

Figure 9: Representation of two stories in Motion-OPRA1, SP21 and SC2-1,
displaying each one’s spatial relations (See Table 1). Grouping story and spatial
relation, i.e., Si(Rj) we obtain the relation of motion, e.g., SC2-1(∠1

1 ) at the
third scenario in the story SC2-1.

5.3 Discussion

In this section we display the features of the generated motion representations,
i.e., story-based representations of motion, by applying them to the introductory
example (Fig. 1). We also discuss some apparent limitations—simplifications
originating from the underlying spatial representations— and how to overcome
them.

5.3.1 Categorisation with Motion-RCC and Motion-OPRA1

Using Motion-RCC the scenarios of Figure 1, A, B, C, D, have the following
qualitative relations, i.e., categories: A, C, D form one category with the relation
S11(DC), and B forms one category with the relation S13(DC−). This can be
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interpreted as A, C, D being scenarios that would not evolve into collision, while
in B k and l would collide provided no action is taken.

Using Motion-OPRA1 the scenarios of Figure 1 have the following qualitative
relations: A, B, C form one category with the relation SC1-1(∠3

1 ), and D forms
one category with the relation SC11(∠3

1 ). This indicates that, if the entities
were punctual, in scenarios A, B, C, k crosses before l; and in D, k crosses
behind l.

5.3.2 Disregarded Attributes

We see that each of the generated motion representations disregards some spa-
tial attributes, because the underlying spatial representations, striving after
simplicity, intentionally disregard them—Spatial representations focus on the
few attributes that are deemed relevant and dispense with the rest.

Motion-OPRA1 disregards distance, as OPRA1 does. A, B, C belong to the
category defined by the relation SC1-1(∠3

1 ), but we cannot assert the distance
at which they currently the entities are, nor the minimal distance at which
they will cross. Indeed, in scenario B the vehicles collide because of their size,
and in scenarios A, C they don’t, but OPRA1 cannot distinguish it. This
is a consequence of the spatial relation OPRA1; it considers directions, and
disregards distances.

Motion-RCC disregards right–left relative motion, front–back, parallelism,
and crossing, as RCC does. For example, we categorise A, C, D scenarios as
S11(DC)—entities that are passing by— but we cannot assert which entity will
cross before or after the other.

5.3.3 Extending Motion Representations: Combining Attributes

In order to solve the problem with disregarded attributes, we can create an
extended motion representation by combining motion representations through
Cartesian product. For instance, as Motion-RCC does not consider right–left,
front–back, crossing, or parallelism, we can add the representation Motion-OPRA1,
which provides categorisation of such attributes. Thus, we obtain a new motion
representation ‘Motion-RCC×Motion-OPRA1’.

In this new representation we combine the attributes of its original represen-
tations: we have information about the degree of collision, through Motion-RCC;
and information about right–left, crossing, parallelism, and precedence, through
Motion-OPRA1.

In the introductory example (Fig. 1) the Cartesian product would yield
the following relations: scenario A is (S11(DC), SC1-1(∠3

1 )), B is (S13(DC−),
SC1-1(∠3

1 )), C is (S11(DC), SC1-1(∠3
1 )), and D is (S11(DC), SC11(∠3

1 )). The
derived categories are (A, C), (B), and (D).

5.3.4 Variety of Categorisations

Motion-RCC and Motion-OPRA1 define 3 possible categorisations:

1. (A, C, D) and (B), which correspond to scenarios with or without collision
risk. We categorised with Motion-RCC.

2. (A, B, C) and (D), which correspond to scenarios where k arrives first to
the intersection point, or l arrives first. We categorised with Motion-OPRA1.
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3. (A,C), (B), and (D). This corresponds to scenarios with collision risk, (D),
and those without collision risk, A, B, C, being subdivided according to
the entity that crosses before the other: in (A,C) k crosses first, and in
(B) l does. We categorised with Motion-RCC×Motion-OPRA1.

Further categorisations can be obtained, creating new representations of
motion by means of spatial representations and by combining them through
Cartesian product.

6 Validation of Story-Based Representations of
Motion

The first part of this section shows the utility of the story-based qualitative rep-
resentations of motion: first, to qualitatively describe any kind of trajectories;
second, to plan and control the navigation of entities. We present practical rea-
sons that motivate the use of story-based representations of motion in navigation
and motion processing.

The second part presents a bundle of desirable cognitive and mathematic
properties that these representations fulfil. On the one hand we show how the
story-based representations contain meaningful motion concepts of our daily
life. On the other hand we show how they are embedded in the body of science:
how they relate to cognition and to the concept of derivative.

6.1 Description and Control

6.1.1 Classification of Motionless Entities

The story-based representations of motion classify motions when entities—
one or both entities—are motionless. As examples, see Figure 10, and also
Figure 12 where the trajectory of entity k with respect to l is described by
Motion-OPRA1,though l is motionless.

Accordingly, these representations are not only valid for dynamic environ-
ments, but also valid for static ones. For example, if a robot navigates in a
dynamic environment, and suddenly all objects are motionless, there is no need
to switch representation—the story-based representation allows for further mo-
tion description and control of the robot.

k
l

vk

vl

k
l

vl

vk=0

Figure 10: Two motion scenarios, both having the same category, i.e.,
S14(DC−), in the motion representation Motion-RCC. The fact that in the
second scenario the entity k is motionless is not a hindrace for a scenario cate-
gorisation.
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6.1.2 Qualitative Description of General Motions

A property of the story-based representations of motion—and of any categorisa-
tion of instantaneous scenarios—is the ability to qualitatively describe any kind
of two-entities trajectories [27, 28]. This is mainly used in recognition of trajec-
tories (i.e., motion patterns)—a trajectory that is encoded through qualitative
relations can be more easily categorised as a certain type of motion, e.g., an
‘avoidance manoeuvre’, and therefore facilitates the development of interactive
navigation routines [7, 14].

We exemplify, by means of Motion-RCC, how the story-based representa-
tions effectively describe the trajectories of two entities. The trajectory de-
scription consists of a finite sequence of qualitative relations of the generated
representation. As we see in Figure 11, the motion of k with respect to l is
described as {S15(DC−), S14(DC−), S13(DC−), S12(DC−), S11(DC)}, while the
motion of m with respect to l is described as {S15(DC−), S15(EC−), S15(PO−),
S15(TPP−), S15(NTPP), S15(TPP+), S15(PO+), S15(EC+), S15(DC+), S14(DC+),
S13(DC+), S12(DC+), S11(DC)}.

One can argue that the trajectories in Figure 11 might be simply described
through the list of spatial relations, that is, k’s trajectory is {DC}, while m’s
is {DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC}. However, in Figure 12,
we give a counterexample of how the generated relations of motion resolve se-
rious ambiguities that spatial relations cannot. The RCC description of both
trajectories is the spatial relation {DC}, but the Motion-RCC description is the
relations of motion {S15(DC−), S14(DC−), S13(DC−), S12(DC−), S11(DC)} for
k’s trajectory, and {S11(DC)} for m’s trajectory.

k

k

m

m

l

Figure 11: Two possible pairs of motion description are presented in this figure:
the motion of (k, l); or the motion of (m, l)

6.1.3 Using Conceptual Neighbourhoods for Decision-Making and
Control

Beyond the qualitative description of trajectories, the story-based representa-
tions of motion can be used for decision-making and control of trajectories, as
any representation of motion can [8, 1]. First of all, we want to distinguish
‘decision-making’ from ‘reasoning’. In the field of qualitative relations ‘reason-
ing’ consists on determining the possible categories of a group of more than
two entities under certain constraints [25], while in this paper ‘decision-making’
refers to finding the actions to steer an entity, whose motion with respect to
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lk

k

S14(DC_) S12(
DC_)

m

S15(DC_) S13(DC_)

S11(
DC
)

m
S11(DC)

}

Figure 12: Two possible pairs of motion description are presented in this figure:
the motion of (k, l), i.e., k-trajectory; and the motion of (m, l), i.e., m-trajectory.
Both trajectories have a single qualitative spatial relation, namely, DC, but
have different descriptions according to the qualitative relations of motion
in Motion-RCC (Eq. (5)): k’s trajectory is {S15(DC−), S14(DC−), S13(DC−),
S12(DC−), S11(DC)}, while m’s trajectory is {S11(DC)} .

other entities is described qualitatively. Thus, qualitative reasoning can em-
power decision-making, but decision-making is not restricted to qualitative rea-
soning.

We obtain two important tools for decision-making and control by building
the conceptual neighbourhood diagram of our story-based representation, e.g.,
for Motion-RCC (Fig. 13):

1. We can predict how the current motion scenario evolves, if velocities re-
main the same—these are the ‘→’ arrows in Figure 13.

2. We can find the control decisions to reach a certain motion scenario, by
finding the path in the graph between the start and final scenario. As there
are, usually, many paths connecting two scenarios, we can set conditions
on the chosen path, for instance, the absence of collisions.

As an example, consider the initial motion of entity k with respect to en-
tity l in Figure 12. It has the qualitative relation S15(DC−) (start relation in
Figure 13). Now, by means of a conceptual neighbourhood diagram, we find
the necessary dynamic actions to transition into the safe motion state, i.e.,
S11(DC)—the resultant trajectory should be equivalent to the k-trajectory in
Figure 12.

6.2 Cognitive and Mathematical Properties

6.2.1 Formation of New Concepts

As we see in our generated representations of motion, Motion-RCC and Motion-OPRA1,
the stories are at the base of our categorisation—any qualitative relation, e.g.,
S15(PO+), is directly linked to the story to which it belongs, in this case S15.
We, now, realise that stories relate to basic concepts of motion, for example,
collision, parallelism, crossing precedence, by-passing, . . . The fact that stories

18



S15(DC−)

start relation

S15(EC−) S15(PO−) S15(TPP−) . . .

S14(DC−) S14(EC−) S14(PO−) S14(TPP ) . . .

S13(DC−) S13(EC−) S13(PO−) S13(EC+) . . .

S12(DC−) S12(EC) S12(DC+)

S11(DC)

goal relation

no collision

tangency

partial collision

total collision

Figure 13: Part of the conceptual neighbourhood diagram for RCC-Motion. As
an example, S15(DC−) (green ellipse) is the start situation and S11(DC) (green
rectangle) is the desired safe situation. The only way through the diagram
that reaches the desired safe state without colliding is marked with a green
arrow. It corresponds to the trajectory of k in Figure 12: S15(DC−), S14(DC−),
S13(DC−), S12(DC−), S11(DC). The diagram also provides the type of control
action needed, either a change in the value of the vector vk−vl, i.e., ⇒, or not,
i.e., →. Further meaningful information present in the diagram is the expected
evolution of the scenario: if velocities remain constant the motion relations
evolve according to the ‘→’.

relate to these concepts is remarkable in the measure that those concepts were
not present in the original spatial relations.

For example, the stories of Motion-RCC correspond to diverse degrees of col-
lision: S11 corresponds to tangential collisions; S12 and S13 to partial collisions;
S14 and S15 to total collisions.

In Motion-OPRA1 the number of concepts increases. We see that each subset
of stories Σ� corresponds to a simple motion concept.

• ΣC correspond to stories of both entities moving and crossing

• ΣB correspond to stories where one entity is still and the other crossing.

• ΣT corresponds to superposed trajectories.

• ΣP corresponds to parallel trajectories (not superposed)

• ΣE corresponds to trajectories of two entities moving in alignment and
maintaining distance from one another.
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• ΣR are still stories: both entities are still.

Within each subset Σ� we find a further variety of concepts, for instance, the
crossing stories ΣC are subcategorised according to which entity crosses first,
i.e., reaches the crossing point first: in SC∗-1 k crosses first, and in SC∗1 l crosses
first.

6.2.2 Cognitive Adequacy

Besides the formation of concepts in the story-based representations, here, we
present further cognitive arguments that support the story-based representa-
tions.

Relation to Optical Invariants An important step in cognition is to ex-
tract information from the sensory input. If we consider the visual stimuli of a
moving human, it is known that we use optical invariants [29], i.e., an “optical
variable whose values remains invariant whenever the actor is in a state that if
maintained, will bring about a successful outcome”. For example, if the relative
angle between a human’s direction and the direction of a moving entity remains
constant, the human will—if nothing changes—collide with the moving entity.

Optical variables provide, therefore, information about the current future[16],
that is, what will eventually happen if one’s current state (deceleration, running
speed) remains constant.

In a similar sense we claim that story-based relations provide this ‘current
future’ information about a meaningful outcome in the future, as optical vari-
ables do. Indeed, each relation of motion of a story-based representation is
linked to the corresponding story, and the story is per definition the ‘current fu-
ture’ equivalent for qualitative relations. For example, consider these three mo-
tion scenarios described by three different Motion-OPRA1 relations: SC1-1(∠3

1 ),
SC10(∠3

1 ), SP12(∠3
1 ). All three motion relations describe two entities whose

spatial OPRA1 relation is ∠3
1 , but the story part of the motion relation, i.e.,

SC1-1, SC10, and SP12, shows clearly that the evolution in each case is different—
in the first relation k crosses before l, in the second k and l cross and collide, in
the third k and l move in parallel. Therefore, we see that each of the motion re-
lations is providing information about what is about to happen if the velocities
remain the same, i.e., they provide information about the current future.

Motion Encoding and Anticipatory Behaviour From a cognitive view-
point, we can see the representations of motion as a way to encode sensory
information of two entities instantaneously moving. In that sense, we would
expect these encodings to validate the principle of anticipatory behaviour and
the need to represent interaction goals; in the words of Butz and Kutter: “[...]
the brain does not represent space for its own sake, but rather the internal rep-
resentations develop to be able to convert sensory information in such a way
that motor behaviour can be executed effectively.” ([2, p. 236])

Certainly, as argued in Section 6.2.2, the story-based representations encode
a motion scenario with information about the current future, which facilitate
such anticipatory behaviour. As shown in Section 6.1.3, the conceptual neigh-
bourhood diagram makes possible the reaching of the goal motion scenario.
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6.2.3 Qualitative Generalisation of the Derivative:
A Qualitative Velocity

We can draw an analogy between story-based relations of motion in qualitative
spaces, and the tangent line in quantitative spaces; between a story, qualita-
tively, and the trajectory derivative, i.e., the velocity, quantitatively.

The tangent line of the trajectory γ(t) of an entity k is defined by the

current position γ(t0) and the derivative dγ
dt (t)

∣∣∣
t=t0

, i.e., the velocity vk at t0.

Thus, the tangent line provides information about the past, present and future
position of the entity k providing that it has moved and will keep moving in
uniform motion (See Figure 14). In the same way a story-based relation, e.g.,
S13(DC−), provides information about the past, e.g., (DC), present, e.g., (DC),
and future qualitative spatial relations, e.g., (DC,EC,PO,EC,DC) of the entity
k with respect to entity l, providing that it has moved and will keep moving in
uniform motion.

Consequently, as the tangent line is analogous to a story-based relation of
motion, i.e., Si(Rj), if we take further this analogy, the current spatial relation,
Rj can be related to the current point, and the story, Si, to the velocity vector.

This analogy is limited, because the tangent line, given the time instant,
provides the expected position of the entity, while the story does not allow time
calculations.

lk
k

S13(DC_)

k
k

k

vk

ECPO
DC

EC
DC

γ(t)

Figure 14: This is an instant of k moving on the trajectory γ(t). The velocity
vector vk provides the instantaneous slope of the tangent line, i.e., the ex-
pected positions, if the entity maintains the same velocity. The motion relation
S13(DC−) provides the same information qualitatively, i.e., the expected quali-
tative relations (EC, PO, EC, DC), if the entity maintains the same velocity.

7 Future Work

In this section, we have a look at two topics to be developed in future work.
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7.1 Three-Dimensional Categorisations of Motion

As we mentioned in the Introduction, the method is applicable in any spatial
dimensions, particularly, in three dimensions, where little research is done—we
only know of a three dimensional categorisation, a QTC variant [18].

To obtain a three-dimensional categorisation of motion, we need a three-
dimensional spatial categorisation. For example, RCC can be trivially extended
to three-dimensional regions; the RCC qualitative relations (Fig. 3)— DC, EC,
PO, TPP, NTPP, EQ, TPPI, NTPPI—are the same in three dimensions [31].
Consequently, the stories are the same, and, therefore, the qualitative relations
are the same than in two dimensions (Eq. (5)), but with a three-dimensional
meaning.

Motion-RCC-3d = {
S01(DC), S02(EC), S03(PO), S04(TPP), S05(NTPP),

S06(TPPI), S07(NTPPI), S08(EQ),

S11(DC), S12(DC−), S12(EC), S12(DC+),

S13(DC−), S13(EC−), S13(PO), S13(EC+), S13(DC+),

S14(DC−), S14(EC−), S14(PO−), S14(TPP),

S14(PO+), S14(EC+), S14(DC+),

S15(DC−), S15(EC−), S15(PO−), S15(TPP−), S15(NTPP),

S15(TPP+), S15(PO+), S15(EC+), S15(DC+)

S16(DC−), S16(EC−), S16(PO−), S16(TPPI),

S16(PO+), S16(EC+), S16(DC+),

S17(DC−), S17(EC−), S17(PO−), S17(TPPI−), S17(NTPPI),

S17(TPPI+), S17(PO+), S17(EC+), S17(DC+),

S18(DC−), S18(EC−), S18(PO−), S18(EQ),

S18(PO+), S18(EC+), S18(DC+)}

(8)

Thus, S13(DC−) corresponds to the scenario where two spheres are discon-
nected, but they move towards one another, so that their uniform trajectory
goes through a partial overlapping (PO).

7.2 Motion Categorisation for Multiple Entities

‘Multiple entities’ refers to scenarios with more than two entities. Until now,
we only considered two entities for the sake of simplicity, because qualitative
relations are usually binary defined. Nevertheless, in this section we give a
glimpse of the possibilities of story-based categorisations of three moving entities
by means of an example (Fig. 15). In this example, we show how two scenarios,
having the same OPRA1 spatial relations, are categorised according to the story-
based method (Sect. 4).

8 Conclusion

We have presented a method to generate qualitative representations of motion,
i.e., motion categorisations, out of any spatial representation. The method is
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(b) A motion scenario (∠1
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0 ) with some following relations of its story,

(∠2
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0 ). We call this story SU , where the entity k goes

behind l and m.

Figure 15: Two stories, SM (Fig. 15a) and SU (Fig. 15b), each with three
moving entities, k, l, and m. The spatial relation for each scenario is given by
a 3-tuple containing its three binary OPRA1 qualitative relations.
Both stories have initial motion scenarios with the same spatial relation, i.e.,
(∠1

3 , ∠
1
1 , ∠

2
0 ), though the stories are different. Therefore, the scenarios are

differently categorised: the first motion scenario of Figure 15a is categorised as
SM (∠1

3 ∠1
1 ∠2

0 ), and the first motion scenario of Figure 15b is categorised as
SU (∠1

3 ∠1
1 ∠2

0 )

story-based, and the created representations of motion inherit the properties of
the used spatial representation, e.g., dimensions, or type of entities considered.
The method has shown its potential to generate qualitative representations of
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motions—we have used it with two spatial representations RCC and OPRA1.
The generated representations are, at a practical level, effective both to de-

scribe trajectories qualitatively and to implement decision-making and control
in navigation, even when entities are motionless. Moreover, they manifest a va-
riety of cognitive and conceptual properties that endorse its use: (i) the motion
relations, i.e., the motion categories, are related to common navigation concepts,
(ii) they follow principles similar to the cognitive encoding of motion stimuli,
(iii) they can be seen as a qualitative generalisation to the tangent lines, i.e.,
the velocity, of a trajectory on real spaces.

Central points in future work will be experimentally checking the cognitive
adequacy of story-based representations of motion in humans, automatising the
generation of stories and their mappings (at the moment they are obtained
manually), applying the method to create three-dimensional categorisations of
motion, and categorising motions with more than two entities. Additional points
for future work, are the reasoning capabilities with the story-based representa-
tions of motion, and how they are related to the reasoning capabilities in the
generating spatial relations.
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