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(Dated: July 19, 2018)

The aim of this paper is to study the reconnection of vortices in a quantum fluid with a roton
minimum, such as superfluid 4He. These reconnection events are thought to be at the origin of the
emission of thermal excitations and the generation of Kelvin waves. The dynamics of a model of
superfluids described by the Gross-Pitaevskii (GP) equations is investigated numerically. The origi-
nality of the present approach is the introduction of a non-local two-body interaction potential which
yields the roton minimum in the dispersion relation, as evidenced by neutron scattering experiments
in 4He. We begin with the calibration of the model, namely choosing a peculiar functional form
of the interaction potential, under the constraint of being as close as possible to the experimental
dispersion curve and, in the same time, preventing spurious local crystallization events that appear
naturally in presence of a low-energy roton minimum. We then follow and track the phenomenon
of reconnection starting with an initially perpendicular set of two vortices, each of them being in-
dependently a fundamental solution of the dynamics. A precise and quantitative study of various
quantities characterizing the evolution of this phenomenon is proposed, that includes the evolution
of statistics of several dynamical quantities of interest such as density and probability current, the
vortex length, and the description in the appropriate Frenet-Serret frame of reference of a observed
soliton that propagates along the cores of the vortices. The properties of this soliton are systemati-
cally compared to the predictions of the Local Induction Approximation (LIA), showing similarities
and differences. The introduction of the roton minimum in the model, at a characteristic length scale
of the atomic size, does not change the macroscopic properties of the reconnection event but the
microscopic structure of the vortices differs. Structures are generated at the roton scale and helical
soliton waves are evidenced along the vortices. However, contrary to what is expected in classical
viscous or inviscid incompressible flows, the numerical simulations do not evidence the generation
of structures at smaller or larger scales than the typical atomic size.

PACS numbers: 47.37.+q; 03.75.Kk; 67.25.dk

I. INTRODUCTION

Turbulence in quantum fluids is the study of the mo-
tions induced by a tangle of quantum vortices, which are
created under a large-scale stirring force, or in the pres-
ence of a counter-flow generated by a hot source (see for
instance the reviews [1–5]). In practice, it can be investi-
gated in a variety of physical systems, e.g. in cold atoms
Bose-Einstein condensates [6, 7], superfluid 3He [8, 9],
or superfluid 4He [10, 11]. In this paper, we focus on
the case of superfluid 4He, which is obtained when liq-
uid 4He is cooled at temperatures below Tλ ≈ 2.17K
(at saturated vapor pressure). At finite temperature, the
fluid is made up of a mixture of two components, one be-
ing classical and viscous, governed by the incompressible
Navier-Stokes equation, and the other one being invis-
cid, compressible and potential with localized and quan-
tized singularities (i.e. quantum vortices) hosting the ro-
tational motions. These two components interact in a
subtle way through the friction of these vortices onto
the viscous component, a phenomenon that allows the
decay of fluctuations of the quantum component without
thus the action of viscosity. Macroscopically, i.e. at scales
larger than the dissipative scale of the classical compo-
nent, statistics of velocity fluctuations in this mixture
look very similar to the ones observed in classical three-
dimensional turbulence, as depicted in the phenomenol-

ogy of Kolmogorov [12]. This includes the fine scale
structure of turbulence, such as the power-law decrease
of the velocity spectrum and higher-order (i.e. intermit-
tent) properties [10, 13, 14], scale-energy transfers (i.e.
the skewness phenomenon) [15], and also the global be-
havior at large scales [16]. Even if some differences have
been highlighted between quantum and classical turbu-
lence [17, 18] at the level of an isolated quantum vortex, it
is thus tempting to consider that at a finite temperature
below Tλ, the two components are locked at each oth-
ers, implying that quantum vortices self-organize, form-
ing structures (i.e. bundles) such that the overall locally
averaged vorticity field of the superfluid component re-
sembles to the one observed in classical turbulence [1–
5]. At smaller scales, typically below the mean inter-
vortex distance, it is nonetheless expected a decoupling
phenomenon between the two components [19], super-
fluid velocity fluctuations being governed by other phe-
nomena such as Kelvin waves propagation along vortex
cores [20, 21].

Such scales are difficult to access experimentally, thus
from a modeling point of view, it is tempting to study
the collective effects of a population of localized singu-
larities hosting a distributional repartition of vorticity,
in particular in interaction with an exterior (classical)
velocity field. A popular method to study the interac-
tion between these vortices with a normal component is
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given by the Local Induction Approximation (LIA), as
initiated in Refs. [22, 23], that takes only into account at
the level of a single vortex the induced velocity field of a
local portion of the vortex. Such an approach has been
generalized to take into account non local effects induced
by the whole vortex [24, 25], in order to study the dynam-
ics of an ensemble of vortices and the implication of non
local effects. In this context, a phenomenon of tremen-
dous importance is vortex reconnection, that allows for
dissipation and a possible change in the macroscopic dis-
tribution of these vortices, that has to be put by hand at
this stage.
An alternative approach devoted to the dynamics of

vortices and their interaction, that might be of some in-
terest in the improvements of the aforementioned dis-
crete approaches, neglecting the coupling with a normal
component and assuming vanishing temperature T = 0,
is given by the description and evolution of the order
parameter of the superfluid in terms of fields, as it is
proposed by a partial differential equation known as the
Gross-Pitaevskii (GP) equation [26]. Contrary to the
approach based on the LIA, the GP equation includes
in a intrinsically fashion vortex reconnection, without
thus asking for further modeling steps. This approach
has been studied in a extended fashion in the litera-
ture [27, 28]. In this approach, that allows to study some
global behavior of an assembly of vortices at scales of
the order of the inter-vortex distance, their very internal
structure is neglected and the two body interaction usu-
ally adopted is of localized (i.e. distributional) type. The
purpose of this article is the numerical study of a non-
local version of the GP equations that allows to reproduce
a realistic internal structure of these vortices and observe
and quantify its implication on vortex reconnection, and
on possible soliton propagation along their cores. This
can be done while introducing in the interaction poten-
tial a physical length scale a representing the typical size
of a 4He atom.

II. A NON LOCAL MODEL OF SUPERFLUIDS

INCLUDING THE ROTON MINIMUM, AND ITS

CALIBRATION

At zero temperature T = 0, to the lowest approxima-
tion we can consider the superfluid under study to be de-
scribed by a scalar wave function ψ, i.e. an order param-
eter, which is space and time dependent. Henceforth, we
consider dimensionless coordinates r ∈ R

3 and t ∈ R by
respectively the roton wavelength a = 3.26 Å [26, 29] and
a quantum typical time t0 = 2ma2/~ = 1.34× 10−11 s,
where m = 6.65× 10−27 kg corresponds to the 4He atom
mass. Considering that the number of atoms is high in
the condensate, we can assume that the dynamics of ψ is
given by the GP equation, that reads in its most general
and dimensionless version

i
∂ψ

∂t
= −∆ψ + (V ∗ |ψ|2)ψ − µψ, (1)

FIG. 1. (a): Dispersion relations of 4He and its model as
given by the non-local GP equation (Eq. 1): experimental
results from neutron scattering experiments (black line, see
Ref. [29]), its fit as proposed in Ref. [30] (red dashed-dotted
line), our current model (Eq. 3) with a raised roton mini-
mum so as to avoid crystallization as explained in the text
(blue dashed line). (b): Corresponding interaction potentials
V (r)/V0 entering in Eq. 1, with V0 = 21.96 eV for the model
of Ref. [30] V0 = 0.15 eV for our present model (Eq. 3), used
to obtain the theoretical dispersion curves of (a). We display
in the inset the radial density profile of the stationary solution
corresponding to the local GP equation (Eq. 10) with a black
dotted line, and the corresponding profile in the non-local case
(Eq. 1) with a blue dashed line. (c) and (d) Surface plots of
the distribution of density, i.e. |ψ|2, of the stationary vortex
solution for the potential proposed in Ref. [30], and obtained
as the solution of the relaxation problem given in Eq. 4, which
leads to crystallization for this model. (d): Same representa-
tion of the density distribution as in (c) but with our a raised
roton gap (Eq. 3) so as to avoid crystallization.

where V (x) is a smooth two-body interaction potential,
assumed to be spherically symmetrical (a function of the
norm x = |x| only), ∗ stands for the convolution prod-
uct, i.e. (V ∗ |ψ|2)(x, t) =

∫
V (x − y)|ψ|2(y, t) d3y, and

µ =
∫
V (x) d3x the chemical potential ensuring |ψ|2 = 1

as a homogeneous solution. As it is shown in Refs. [30–
32], the finite extension of the interaction potential is
crucial in obtaining a dispersion relation that reproduces
the roton minimum, as it is observed in neutron scatter-
ing measurements performed in superfluid 4He [29, 33].
This allows us to calibrate the superfluid model that is
proposed in Eq. 1 while computing the dispersion rela-
tion, readily obtained as

ω2(k) = |k|4 + 2|k|2V̂ (k), (2)
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where V̂ (k) =
∫
eik.xV (x)d3x is the Fourier trans-

form of the interaction potential, which depends only on
k = |k| if V is taken isotropic. To get the dispersion
relation (Eq. 2), we use standard techniques consisting
in linearizing Eq. 1 while looking for solution of the form
ψ = 1 + ϕ, for small ϕ, Fourier transforming the linear
dynamics of ϕ and its conjugate, then looking for con-
straints on ω and |k| to avoid a single trivial solution

(see [30–32]). Choosing a particular form for V̂ (k) al-
lows then to compare the so-obtained dispersion relation
against experimental measurements.
In subsequent numerical simulations that we will

present in the next sections, we choose the following func-
tional isotropic form for the interaction potential

V̂ (k) =

(
c2s
2

− v21 |k|
2 + v42 |k|

4

)
exp

(
−
|k|

2

2k20

)
, (3)

where cs corresponds to the sound velocity, i.e. the limit
at small wave-vector of ω2(k)/|k|, and (v1, v2, k0) three
free parameters than could be obtained for example using
a least-square fit procedure given a experimental disper-
sion relation. We will not do that, and use instead, within
our choice of units, cs = 16, v1 = 2.2635, v2 = 0.4408 and
k0 = 5.5970. We now motivate our choice and compare
against experimental data.
We represent in Fig. 1 (a) the dispersion relation of liq-

uid 4He at saturated vapor pressure provided in Ref. [29]
using a dashed line, and that exhibits indeed a roton min-

imum around |k| ≈ 2 Å
−1

. We superimpose there using
a blue dashed line the dispersion relation that we will use
in subsequent numerical simulations using Eq. 2 with an
interaction potential (Fourier transformed) given in Eq. 3
with the formerly defined free parameters (v1, v2, k0) and
the given sound velocity cs. We observe quantitative dif-
ferences between the experimental and our theoretical
dispersion relations. First, when expressed in physical
units, we have chosen a sound velocity of the order of
354m/s, which is higher than the observed value 238m/s.
This explains why experimental and theoretical curves
deviate at vanishing |k|. Furthermore, we see that the
theoretical curve reproduces the correct value of the ro-

ton wavevector |k| ≈ 2 Å
−1

, but not the value of the of
the minimum of angular frequency ω (nor consistently the
value of the maxon, i.e. the local maximum of frequency
occurring just before). This choice is dictated by further
numerical investigations in which we forbid any crystal-
lization phenomena, a natural tendency of this type of
model (Eq. 1) to evolve toward a periodical modulations
of density ρ = |ψ|2, as it has been exploited to describe a
possible supersolid-state of matter [34, 35]. At this stage,
let us state that the present approach, based on a scalar
wave function with a two-body non-local interaction as
considered in Eq. 1 is unable to describe the dynamics of
4He in a superfluid phase with a more realistic dispersion
relation.
Indeed, let us show that such a choice for the inter-

action potential (Eq. 3) allows axisymmetric stationary

solutions, i.e. vortex-lines with quantized circulation, as
it has been widely studied for the local GP equation [26].

III. A DETOUR THROUGH THE NUMERICAL

ESTIMATION OF AXISYMMETRIC

STATIONARY SOLUTIONS

A major success of scalar wave functional approaches,
and its related dynamics given by the GP equation [26],
lies in the existence of a stationary solution (i.e. time
independent) which is axisymmetric (say independent of
the z coordinate and on the polar angle ϕ in the xy-
plane) and exhibiting a 2π defect for the phase. More

precisely, a solution of the form ψ(r, ϕ, z) =
√
ρ(r)eiϕ,

where we have introduced the polar decomposition of
the wave function in terms of amplitude and phase, and
the cylindrical coordinates (r, ϕ, z) in which x = r cos(ϕ)
and y = r sin(ϕ). To numerically estimate the shape
of the density distribution ρ(r) as a function of the po-
lar distance r, and more generally to test the existence
of such a axisymmetric solution, we numerically solve
the two-dimensional relaxation problem (corresponding
to the propagation of Eq. 1 in imaginary time with the
z-independence as a constraint)

∂ψ

∂t
=

(
∂2

∂x2
+

∂2

∂y2

)
ψ − (Ṽ ∗ |ψ|2)ψ + µψ, (4)

with initial condition ψ(x, y, 0) = eiϕ(x,y), ϕ(x, y) =
arctan(y/x) (the inverse tangent being suitably defined),

and Ṽ (x, y) =
∫
V (x, y, z) dz. We solve this initial value

problem using periodic boundary conditions in order to
efficiently compute linear operations in the Fourier space,
and nonlinear ones in the physical space. Doing so, in
order to prevent from phase discontinuities, we use four
copies of this initial condition with appropriate phase dis-
tribution, and evenly spaced, as it is explained and per-
formed in Ref. [27]. In units of the length scale a, we use
as a mesh size dx = 1/16, and depending on the number
of collocation points N in each direction, we consider do-
mains of physical sizeNdx. Using thus N = 512 (vortices
are sufficiently far apart to neglect their interaction), we
simulate a domain of physical size 32 a ≈ 100Å. Time
propagation is performed using a fourth-order Runge-
Kutta explicit method with dt = (dx)

2
/64, correspond-

ing to 8.2× 10−16 s in physical units. To prevent from
spurious generation of unphysical small scales, we use as
a dealiasing method the 2/3-rule, each time we perform
a multiplication in the physical space. In our case, since
the nonlinearity is of order three, we apply this rule three
times at each time step, which is enough to prevent the
generation of unphysical small scales.
Starting from our initial condition, we observe the con-

vergence of Eq. 4 toward a time-independent solution
that we can consider as a stationary solution of the non-
local GP equation (Eq. 1) itself, and we represent it in
Fig. 1 (d). We see that indeed the solution respects
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FIG. 2. (a) Radial distributions of the velocity field v and
probability current j of the axisymmetric stationary solutions
of the local (Eq. 10) and non-local (Eq. 1) GP equations. (b)
Radial distributions of the associated pseudo-vorticity fields
(Eq. 8), and their comparison with a schematic fit provided
in Eq. 9.

the symmetry with respect to the axis of the vortex,
where the density tends to zero, as expected for such
a quantum singularity. We furthermore see the existence
of additional density oscillation around the vortex core,
which are themselves expected once a roton minimum
is included in the picture. This is a well-known phe-
nomenon [30, 32, 36–39], for which density oscillation
are prescribed by the characteristic shape and size of the
roton minimum. We represent in the inset of Fig. 1 (b) a
comparison of the density profile away from the location
of the singularity obtained in axisymmetric stationary
solutions of the local (given in Eq. 10, curve is in black)
and non-local GP equations (our present numerical es-
timation) where we see more clearly that the presence
of the roton minimum leads to periodical modulation of
density, governed by the roton characteristics, and can
be seen as precursors of the crystallization phenomenon.

IV. FURTHER COMMENTS ON THE MODEL

OF THE INTERACTION POTENTIAL

We represent (red continuous line) in Fig. 1 (a) the
model of the non-local interaction potential V chosen in
Ref. [30], which also include an additional quintic term
in the overall dynamics. It does reproduce with great ac-
curacy the experimental dispersion relation of Ref. [29].
Nonetheless, when looking for a possible axisymmetric
stationary solution, in the spirit of the relaxation prob-
lem posed in Eq. 4, we end up eventually with a time-
independent solution displayed in Fig. 1 (c). We see that
in this case, the invariance around the axis of the singu-
larity is broken by the appearance of additional periodic
modulation of density that form a hexagonal structure.
This crystallization phenomenon was already observed
in early numerical simulations of the non-local GP equa-
tion [40], where it is associated to a phenomenon of mass
concentration associated to negative values of the inter-
action potential. Remark also that we could have used

also another set of parameters (cs, v1, v2, k0) in order to
be much closer to the experimental dispersion curve, and
without including an additional quintic term. Similarly
as in the model of proposed in Ref. [30], the correspond-
ing stationary vortex solution would also exhibit such a
crystallization phenomenon (data not shown).
In the light of more recent studies [34, 35] concerning

the natural evolution toward the state of supersolidity
when a roton minimum is included in the picture, we are
left with concluding that a GP type of evolution, where
enters a simple non-local two-body interaction (with a
possible additional quintic term), is unable to describe in
a proper manner superfluid 4He if we follow with great
accuracy the experimental dispersion curve of Ref. [29].
Note nonetheless that calibrating our model, which in-
volves a nonlinearity in the evolution (Eq. 1), using the
dispersion relation, that is a prediction obtained through
a linearization procedure, is difficult to control. It would
be of great interest to develop a new type of dynamics
that would include both a correct description of the ex-
perimental dispersion relation, and the existence of sta-
tionary axisymmetric solutions representing in a proper
way quantum vortices. We leave this aspect for future in-
vestigations, and perform subsequent three dimensional
numerical simulations with the aforementioned model for
the interaction potential (Eq. 2), that prevents the forma-
tion of these hexagonal periodic modulation of density.
Let us now investigate the very radial distribution of

various kinematic quantities entering in the hydrodynam-
ical interpretation of the non-local GP equation (Eq. 1),
as it is given by the Madelung transformation [26]. In
this approach, we associate the gradient of the phase of
ψ to a velocity field v and |ψ|2 to a local density field ρ.
Key kinematic quantities are thus density ρ = |ψ|2 and
probability current j = −i(ψ∗

∇ψ−ψ∇ψ∗) = ρv that are
governed by conservation equations that read [26, 28, 30]

∂ρ

∂t
+∇.j = 0, (5)

that can be interpreted as a continuity equation, and
considering a component ji of the vector j, we have

∂ji
∂t

+ ∂jΠij = 0, (6)

where Πij is the momentum tensor,

Πij = ∂iψ∂jψ
∗ − ψ∂2ijψ

∗ + c.c. +
1

2
ρ(V ∗ ρ)δij , (7)

where c.c. stands for the complex conjugate, and δij the
Kronecker symbol. Similarly, we could derive the time
evolution of the velocity field v, which corresponds to
a compressible, irrotational and barotropic fluid with an
additional quantum pressure term, of density correspond-
ing to |ψ|2 (see for instance Refs. [30, 40]). It is well
known that the velocity field diverges in the vicinity of a
defect of the phase, so we will in the next sections work
with the current vector j, that is eventually, as we are
going to see, a bounded vector.
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We display in Fig. 2 (a) the radial profile of velocity
v and probability current j of the axisymmetric station-
ary solution represented in Fig. 1 (d). Let us recall that,
using cylindrical coordinates centered on the vortex, the
velocity field v = 1/r eθ and the current j = ρ(r)/r eθ
are known. Remark that |v| = 1/r, as we mentioned,
diverges in the vicinity of the vortex line, whereas j is
a bounded vector since ρ(r) tends to 0 as r2 [26] in the
vicinity of the origin (so that j vanishes itself at the ori-
gin). This is what is indeed obtained and displayed in
Fig. 2 (a). We furthermore superimpose the radial distri-
bution of j that is obtained from the local, i.e. standard,
version of the GP equation, that we define precisely later
(see Eq. 10). Once again, we see that the current follows
a non monotonic radial behavior. Compared to what is
obtained in the non-local GP equation (Eq. 1), we can see
that the maximum of current is obtained at a similar dis-
tance from the axis of symmetry in both models, but its
value is higher in the non-local version of the dynamics.
Of great interest also from a dynamical point of view

is the radial distribution of the pseudo-vorticity

w = ∇ ∧ j, (8)

which quantifies the rotational motions of this compress-
ible fluid. In the following, we note w = |w| the ampli-
tude of pseudo-vorticity. For a single vortex line along
the z axis, w is aligned with ez, and its amplitude only
depends on the radial distance r to the axis, and we have
w(r) = (1/r)dρ(r)/dr. Recall that vorticity itself, i.e. the
curl of the velocity field v, is of distributional nature, and
vanishes everywhere except at the very position of the
singularity where it diverges. Instead, as we can see in
Fig. 2 (b), w as defined in Eq. 8, is a bounded quantity.
.
In the local case (red symbols), we can even see that

the radial distribution of pseudo-vorticity, as far as the
axisymmetric solution is concerned, follows a monotonic
decrease away from its axis of symmetry. As we see in
the following, in particular to interpreted some quantities
entering in a statistical description of the flow, it is inter-
esting to design a model for this radial behavior. For this
purpose, we propose the following decreasing function

w(r) =
w0[

1 +
(

r
r0

)2]α , (9)

where w0 is the value of pseudo-vorticity on the axis of
symmetry, and (r0, α) two free parameters describing the
shape of pseudo-vorticity radial distribution. Starting
with the radial distribution of w obtained from the lo-
cal GP equation (and presented later in Eq. 10), the fit
(Eq. 9) reproduces in a fairly good way the observed de-
crease using r0 = 0.47 (in units of a) and α = 2.5. In
a non-local context setting, as given by Eq. 1, such a fit
reproduces accurately the decrease with r0 = 0.54 and
same α, but obviously fails at reproducing the non mono-
tonic behaviors associated to the additional oscillations

associated to the roton minimum. As we will see, even
if some aspects are not reproduced by such a schematic
fit (Eq. 9), it will be very useful to interpret subsequent
statistical quantities that we will observe in the next sec-
tions.

V. NUMERICAL INVESTIGATION OF

VORTEX RECONNECTION INITIALLY

PERPENDICULAR

Let us now investigate the dynamics of vortex recon-
nection in the presence of a roton minimum, and thus
with a non-local interaction potential (Eq. 1), as it was
studied in a local GP equation in Ref. [27]. To do so,
we prepare an axisymmetric stationary solution as it is
described in the former paragraph, and represented in
Fig. 1 (d), properly extended to three dimensions and
take as an initial condition the product of two such wave
functions, one being in the center of the domain and the
other one being shifted from the center by one atomic
distance a and rotated such that we get initially two per-
pendicular vortices, in a very similar way as in Ref. [27].
One of the purpose of the present article, is to study and
quantify the differences in the evolution of this set of two
perpendicular vortices with and without the roton mini-
mum. Thus, in addition to three-dimensional numerical
simulations of the non-local GP equation (Eq. 1), as we
have already discussed in particular in Fig. 2, we perform
such a simulation with the standard (local) form of the
GP equation. In our system of units, we thus consider
also the following dynamics

i
∂ψ

∂t
= −∆ψ + g

(
|ψ|2 − 1

)
ψ, (10)

where g = 21.345. We have chosen this particular value
for g to ensure that the typical vortex core extension
(i.e the healing length) is of the same order of what is
obtained in the non-local model. In a similar fashion
as it is done while considering the relaxation problem of
Eq. 4, we solve Eqs. 1 and 10 in a periodic fashion using a
pseudo-spectral method, with same dx, dt and dealiasing
rule, over N3 = 5123 collocation points. Results of both
simulations are displayed in Fig. 3, using the visualization
software Vapor [41]. Once again, only one eighth of the
computational domain is displayed, but we keep in mind
that copies remain to warrant a continuous distribution
of the phase of the wave function.
We have displayed the evolution of this set of two ini-

tially perpendicular vortices at four different time: (i)
the initial time t = 0, (ii) at the time of reconnection
t = trec, (iii) after the reconnection at t = 2trec and
(iv) some time after the reconnection at t = 10trec. The
time of reconnection, trec is 0.79 in the local formulation,
and 0.98 in the non-local one, resp. 1.06× 10−11 s and
1.31× 10−11 s in physical units. Respective dispersion
curves being different, in particular sound velocities, it
is not inconsistent to observe two different reconnection
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FIG. 3. 3D visualization of the superfluid density during reconnection, in the local (top) and non-local (bottom) models. A
density threshold is applied for clarity, so that the bulk fluid density ρ ∼ 1 is transparent. Four snapshots are represented along
time, from left to right respectively: the initial condition t = 0, the reconnection time t = trec, twice the reconnection time
t = 2trec, and the end time of the simulation t = tend ≈ 6t0. It should be noted that because of the different dynamics of the
two models, trec takes slightly different values in the local and non-local case (see text).

time trec. However, it is very surprising at this stage that
overall the phenomenon of reconnection, from a spatial
point of view, looks very similar in the local and non-
local formulation. Indeed, the spatial distributions of
density |ψ|2 at the final stage tend that we consider in
both cases share striking similarities. We can conclude
that the internal (i.e. microscopic) structure of the vor-
tices, strongly influenced by the presence of the roton
minimum, has nonetheless little influence on the overall
global evolution at larger scales than a. This is far from
being obvious since we are solving a nonlinear problem
that could have been highly sensitive to the internal den-
sity structure of these singularities. From a local point of
view, paying attention to the precise values of the densi-
ties across time and space, we can see that the non-local
GP allows locally high values (of the order of ρ ∼ 1.5),
which we recall do not seem to have implications on the
global dynamics.

To quantify more precisely the generation of strong
fluctuations of the superfluid density ρ = |ψ|2, we com-
pute the probability density function (PDF) of the field
of densities obtained in the simulation domain for both
the local and non-local cases, at the four times considered
in Fig. 3, and we display our results in Figs. 4 (a) and
(b). We observe that along the phenomenon of reconnec-
tion, densities higher that the uniform one are forbidden
in the local case (Eq. 10). On the contrary, in the non-
local approach, in which local densities higher than one
are initially present due to the roton minimum, the dy-
namics may develop local mass concentration exceeding

three times the value of the uniform density.
In order to interpret subsequent PDFs that we are go-

ing to estimate, let us first focus on the simple axisym-
metric stationary solution (i.e. the vortex line) that we
presented in Fig. 1 (d). Consider then any physical quan-
tity of interest F , and its respective PDF PF , i.e. the
histogram of the values g(x, y, z) taken by the quantity
F in the domain V (of volume |V|). The PDF can be
written as the following empirical average

PF (f) =
1

|V|

∫

V

δ (f − g(x, y, z))dxdydz, (11)

where δ denotes the Dirac function. For a single vortex,
in a cylindrical volume V of radius R and of finite height,
the PDF of v can be computed in a exact fashion, insert-
ing g(r, θ, z) = 1/r in the empirical interpretation of the
PDF (Eq. 11) and performing a proper change of vari-
able, we get P|v|(|v|) = 2R−2|v|−3 for |v| ≥ R−1 (and 0

for |v| < R−1), showing that the tail is governed by the
divergence of velocity in the vicinity of the vortex, as it
was noticed in Ref. [17]. Note that similar power-law be-
havior ∼ |v|−3 have been observed in simulations of the
local GP equation (Eq. 10) as detailed in Ref. [18]. This
power-law behavior of the tail of the PDF of the norm of
velocity is also observed for the case of two perpendicular
vortices, as we consider to initiate our numerical simula-
tions. We have checked in our simulation that this is also
the case for the initial condition we are using, for both
the local and non-local case, all long the reconnection
process (data not shown).
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FIG. 4. Plots of the probability density functions (PDF) of
various hydrodynamical quantities, in the local (left) and non-
local (right) models. (a,b): PDF of the superfluid densities
|ψ|2. High density events ρ > 1 are well represented in the
non-local case (b), whereas they are absent in the local model
(a). (c,d): PDF of the probability current norm j = |j| (see
text for a precise definition). A j−3 behavior is observed on
the right tails of both models and comes from the midrange
decay of j. A j1.76 scaling is observable on both left tails.
(e,f): PDF of the pseudo-vorticity norm w = |w| (Eq. 8). The
observed power-law behaviors Pw ∼ w−1.4 are super-imposed
in both the local and non-local cases.

To this regard, as we have already seen, the proba-
bility current field j remains bounded in the presence
of a vortex line, and thus appears to be a good candi-
date in order to quantify whether high values of density,
as they are observed in particular in the non-local case
(Fig. 4 (b)), are associated to high values of the current
j. We display in Figs. 4 (c) and (d) the histograms of
the values taken by the norm of the current vector j in
the computational domain. We see in both local and
non-local cases, that the PDF of |j| exhibits similar ten-
dencies, such as (i) a linear trend for |j| ≪ 1, and (ii) a
|j|−3 power-law behavior in a domain of finite extension,
reminiscent of the expected power law of the velocity field

PDF, as explained formerly. The power law behavior at
small |j| should be a consequence of the interaction of
vortices and their images, and the finiteness of the ex-
tension of the computational domain (and the respective
periodical boundary condition). Even if higher values of
the current field |j| are indeed observed in the non-local
case (Fig. 4 (d)), they do not exceed values already ob-
served in the initial condition at t = 0. We are lead to
the conclusion that the existence of a roton minimum has
little influence on the overall shape of the PDFs of |j|.
Developing on these ideas, we perform a similar estima-

tion of the histogram of the pseudo-vorticity w (Eq. 8),
in order to quantify possible creation of small scales, as
it happens in the presence of a direct cascade mecha-
nism, which is at the heart of the phenomenology of
Kolmogorov regarding three-dimensional classical (i.e.
governed by the viscous Navier-Stokes equation) turbu-
lence [12]. Indeed, recall that in classical turbulence, ve-
locity PDF is close to a Gaussian function, whereas PDF
of gradients, and in particular vorticity, is found highly
non Gaussian. For a vortex line along the z-axis, we know
well that pseudo-vorticity is expected to be a bounded
vector, taking significant values only for r of the order
and smaller than a. Using thus the schematic distribu-
tion provided in Eq. 9, it is easy to get, from Eq. 11, that

we expect P|w|(|w|) ∝ |w|−1−α−1

. This assumption on
the radial profile of pseudo-vorticity allows to reproduce
the present observed histograms of the values taken by
|w| in our simulation domain at any time of the recon-
nection process, as it is displayed in Figs. 4 (e) and (f).
According to this model, using α ≈ 2.5 for both the lo-
cal and non-local cases, we find that indeed we expect a
power law decrease of the PDF with an exponent ≈ 1.4,
as it is presently observed. This being said, even if there
are some differences implied by the existence of the roton
minimum, we are led to the conclusion that there is no
creation of small scales, i.e. no creation of high value of
pseudo-vorticity, even in the presence of a model taking
into account a realistic picture of the core of vortices. We
will come back to this point in the conclusion.

VI. TRACKING VORTICES

Let us now explore some other aspects of the vortex
reconnection process, as those related to the evolution of
vortices as individual objects. Such kind of studies rely
on the tracking of vortex cores, i.e. regions of space where
density vanishes. This can be done using algorithms that
seek zeros in planes, in order to extract lines in three-
dimensional space with the help of the pseudo-vorticity,
as it is proposed in recent literature [42]. In this section,
we revisit what has been done in this context for the
local GP equation [43, 44], and in experiments [45], and
compare with what is obtained in the non-local case. In
few words, this numerical tracking algorithm provides the
position vector X(s, t) at each time t and parameterized
by the length s measured along the filament made of
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FIG. 5. (a): Total length of the set of two vortices (see text),
in the local (red) and non-local (blue) models. (b): Distance
δ between the two vortices, in the local (red) and non-local
(blue). Inset: squared distance δ2 between the two vortices
for both models and their respective linear fit (dashed and
dotted-dashed lines). The slopes of the linear fits before and
after reconnection are given in the text.

the points that do not hold a density. From there, we
can define the Frenet-Serret frame of reference, given by
the orthonormal set of vectors (T ,N ,B), where T =
∂X/∂s is the tangential vector, N = (∂T /∂s)/|∂T/∂s|
the normal vector, and B = T ∧N the binormal vector.
In a equivalent way, we could have introduced in the
definition of this frame the curvature κ(s, t) = |∂T /∂s|
and torsion τ(s, t) = −N ·∂B/∂s, where · stands for the
scalar product (see Ref. [46] for instance).

In subsequent developments, we will analyze the vor-
tex reconnection phenomenon in the Frenet-Serret frame,
and compare with the well-known schematic model given
by the local induction approximation (LIA). LIA has
been studied for a long time in various aspects of fluid
dynamics, and can be derived in a systematic way from
the Navier-Stokes equation [47] assuming that the vor-
tex core size is small compared to some characteristic
curvature. From a dynamical point of view, this ap-
proximation implies that the time variation of the po-
sition X(s, t) for some time independent parameteriza-
tion s has only a contribution along the binormal vector,
namely Ẋ = ∂X(s, t)/∂t = Gκ(s, t)B(s, t), where G is a
constant that diverges in a logarithmic fashion with the
vortex core size, and κ(s, t) the local curvature. The LIA
predicts in a consistent way that indeed the length of
such a vortex is conserved, and that solitary waves (i.e.
solitons) can propagate at a constant speed [46]. Let us
then compare these predictions against the dynamics of
the reconnection process that we observe in our numeri-
cal estimations of the local and non-local GP equations.

We display in Fig. 5 (a) the length of the system made
up of the two vortices, as they are displayed in Fig. 3.
We furthermore include in the estimation of their lengths
their copies in the whole simulation domain. Remark
that the aforementioned tracking algorithm provides in
a straightforward manner their lengths. We see that in
both local and non-local cases, before reconnection, vor-

tices undergo stretching, that make their length increases
of a small amount (of order 5%) before decreasing. It fol-
lows then, after reconnection, a monotonic increase for
the local case, and a more complex evolution for the
non-local case. As we claimed, LIA predicts that the
length is a constant a motion. Indeed, defining the length
of a vortex as ℓ(t) =

∫
|∂X(s, t)/∂s|ds, we get from a

general point of view (for any parameterization s) that

dℓ(t)/dt =
∫
∂Ẋ/∂s · T ds, showing that a non vanishing

component of the induced velocity Ẋ along the normal
vector N may contribute to a variation of the length ℓ,
which is not the case in the LIA (only a component along
the binormal is considered). Such arguments on vortex
length have been rigorously studied in [48]. As we can
see in Fig. 5 (a), the length of vortices depends on time,
a feature that is not allowed in the LIA, although only
5% of the length undergo changes.

To carry on the description of the dynamical features
of reconnection, we compute the distance separating vor-
tices before and after reconnection, which is defined at
each time as the minimum distance between two points
on the two vortex lines. Such a numerical study has been
performed in a systematic fashion for the local GP equa-
tion for various initial conditions [44], and it was found
that this distance behaves as |t − trec|

1/2, both before
and after reconnection. The square-root behavior can
be understood using a linear approach, justified close to
the vortex core (where density vanishes) [49], or from
a dimensional point of view (see for instance Ref. [50]).
The proportionality constant to this square-root law was
found to depend on initial conditions, whether, as an ex-
ample, vortices are taken perpendicular of anti-parallel.
We represent in Fig. 5 (b) the time evolution of this dis-
tance δ before and after reconnection in our present nu-
merical simulations (see also a representation of δ2 in the
inset). For both the local and non-local cases, we repro-
duce the square-root behavior close to the reconnection
time trec, but with slightly different proportionality con-
stants. This numerical estimation shows that the roton
minimum has here some influence, in particular we see
that approaching and separation distances have different
time evolution. The numerical values we observe for the
proportionality constant in the local case (resp. nonlocal)
are significantly different from the values observed in ref.
[44]. We find 0.23 (before reconnection) and 0.38 (after
reconnection) as far the local case is considered. Con-
cerning the nonlocal case, we find 0.33 (before trec) and
0.81 (after trec). We recall that it was found in Ref. [44],
for the local case, the corresponding values 0.55 and 0.63.
Remark that, in this study, the two orthogonal vortices
are initially separated by an atomic distance a, whereas
this initial distance was chosen to be six healing lengths
(which is of the same order of a), thus a factor of order
6 for the chosen initial separations. This could explain
once again the strong dependence of this multiplicative
constant on initial conditions, and the differences in be-
tween the present numerical study and the one proposed
in Ref. [44].
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FIG. 6. (a,b): space-time maps of the local curvature of a
vortex line κ(s, t), in the local and non-local models respec-
tively. The position of the principal curvature maximum is
tracked along time. (c,d): curvature profiles of the tracked
maximum at five regularly spaced times during its propaga-
tion. Each profile is scaled back onto the initial condition at
reconnection. Snapshot times are t1 = trec, t2 = trec + 0.09,
t3 = trec+0.17, t4 = trec+0.26 and t5 = trec+0.34. We observe
the growth of secondary curvature maxima in the non-local
case (d). (e,f): time evolution of the A, B, c scaling param-
eters, which represent the width, height and velocity of the
curvature soliton respectively (see Eq. 12). (g,h): projections
of the velocity vector of the local maximum of curvature onto
the Frenet-Serret orthonormal basis T , N , B.

VII. CHARACTERIZATION OF A

PROPAGATING SOLITON

Visualization of the overall reconnection phenomenon,
as it is displayed in Fig. 3 suggests the creation of a lo-
calized phenomenon along the vortices. To exhibit in
a quantitative fashion this phenomenon, we display in
Figs. 6 (a) and (b) maps of local curvature, i.e. the numer-
ical estimation, thanks to the vortex tracking algorithm,

of spatiotemporal maps of κ(s, t) as a function of the arc-
length s and time t. We indeed observe in both the local
and non-local cases the propagation of a soliton of cur-
vature, as it is predicted by the LIA, and conveniently
formalized in Ref. [46]. Remark first that indeed, the
soliton, and in particular the local maximum of curvature
(i.e. bright colors), seems to propagate in a approxima-
tive fashion at a constant speed i.e. c = ds/dt, for both
the local and non-local cases, although in the non-local
case, secondary maxima appear during the propagation.
To quantify more accurately the soliton velocity and

its shape in the vicinity of the curvature maximum, we
display in Figs. 6 (c) and (d) a tentative rescaling of the
observed curvature at various instants as

γ(t)κ

(
s− c(t)t

σ(t)
, t

)
, (12)

where c(t) is the velocity of the maximum of curvature,
σ(t) a typical length quantifying the increase in the width
of the soliton, and γ(t) that allows to include a possi-
ble time-variation in the amplitude. We indeed observe
that this rescaling procedure makes the curvature profile
similar to what is observed initially. Under the LIA, it
is shown in Ref. [46] that such a soliton is expected to
behave as a solitary wave that propagates at a constant
velocity (given by the initial torsion) and does not change
neither its shape, nor its amplitude, i.e. σ(t) = γ(t) = 1,
the actual time independent shape being given by a hy-
perbolic secant function. In our present numerical sim-
ulation, we see that in a good approximation, except at
early times (t < 0.1), the velocity of the soliton, c(t), is
nearly constant, of order c ≈ 1 in the local case, and of
order c ≈ 2 in the non-local one, as it is suggested in the
LIA approach. In comparison, the celerity of sound in the
superfluid is cs = 16 in these units: the observed soliton
propagates in a much slower way than acoustic waves.
On the contrary, the soliton undergoes both dispersion,
i.e. its width increases as tracked by the increase of the
rescaling coefficient σ(t), and its amplitude decreases,
with accordingly a decrease in the coefficient γ(t). A
more precise analysis shows indeed that γ(t) ∼ 1/t, a
decrease that is not predicted by LIA.
In order to interpret these observed behaviors, we dis-

play in Figs. 6 (g) and (h) the projections of the vortex
velocity vector ∂X/∂t in the Frenet-Serret frame of refer-
ence (T ,N ,B) as a function of time. We indeed observe
that the projection along the binormal vector is constant
during the soliton propagation, as it is assumed in the
LIA. Let us precise here that if indeed the projection of
∂X/∂t on B appears to be time independent, we can in-
fer from the tracking of the soliton itself (Figs. 6 (c) and
(d)) that the actual value of this projection cannot be
given by only the curvature since curvature itself is found
dependent on time. Interestingly, at early stage following
reconnection, once again for t < 0.1, we see a non vanish-
ing contribution along the normal vector N . As shown
in Ref. [48], this part of the dynamics is involved in a self-
stretching phenomenon that would modify the length of
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vortices, as it is indeed observed in Fig. 5 (a). As time
evolves, this projection gets smaller and smaller. Finally,
we see that in the local case, the projection along the
tangential vector T is always negligible in front the pro-
jections along the other direction of the frame, whereas it
cannot be neglected in the non-local case. This might be
explained while studying the interaction with additional
local maxima that appear during the soliton propagation
for the non-local case.

VIII. CONCLUSION AND FINAL REMARKS

We have studied numerically the reconnection phe-
nomenon of two initially orthogonal quantum vortices in
a model of superfluids which includes the roton minimum
in the dispersion relation. As it was proposed in the lit-
erature [30, 31, 40], such a model describes the dynamics
of a scalar wave function that is governed by the Gross-
Pitaevskii equation [26] where is considered a non-local
two-body interaction of characteristic extension the 4He
atomic size a. We start by calibrating the model to be as
close as possible to the experimental dispersion relation
of 4He provided in Ref. [29], with the additional will to
prevent from the generation of precursors of crystalliza-
tion, as it was evidenced in Ref. [40], although of great
importance in the context of supersolidity [34, 35]. Once
obtained such a model, we estimate its stationary vor-
tex solution, that is a time independent solution with an
axis symmetry, around which the phase turns of an an-
gle equals to 2π. Then, in a similar way as in Ref. [27],
we prepare a initial condition made up of two of these
vortices in a orthogonal situation. We indeed observe a
reconnection, and track and study the time evolution of
the density, current and pseudo-vorticity fields, we pro-
vide both a statistical analysis of the fields and a local
estimation of the geometry of these vortices, including a
precise characterization of a observed soliton that shares
some features predicted by the LIA.

This numerical investigation shows that taking into ac-
count a more realistic structure of vortices, as depicted
in Ref. [32], has little influence on the global picture of
reconnection given by the local version of the GP equa-
tion and presented in Ref. [27], although the creation and
propagation of a soliton of curvature along the vortex
cores appear more complex when the non-local interac-
tion is plugged in the dynamics.
The statistical analysis of the kinematic quantities

involved in the dynamics, in particular current j and
pseudo-vorticity w = ∇ ∧ j, shows that there is no cre-
ation of scales smaller that the injected atomic length
size a. This makes a big difference with what is ob-
tained with the incompressible Euler or Navier-Stokes
equations, where a cascading phenomenon transfers en-
ergy towards the small scales, as recently put in evidence
while considering two colliding vortex rings in a experi-
mental (classical) flow [51]. We can thus infer that the hy-
drodynamics implied by the local and non-local versions
of the GP equations, because of its implied high level
of compressibility in the vicinity of the vortices, and the
unclear action of the additional quantum pressure term,
is indeed very different from the one of incompressible
viscous Newtonian fluids.
It would of tremendous importance to develop an in-

teraction term in the GP evolution of the wave function
able to include a more realistic prediction of the disper-
sion relation, without exhibiting crystallization phenom-
ena that are not expected in the superfluid phase of 4He.
We keep this perspective for future investigations.
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