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Power electronics – Areas for Progress

Source: Kolar et al. [1]
Source: Kerachev et al. [2]

◮ Excellent active devices are now available (SiC, GaN)
◮ Many topologies introduced over the years;

◮ Recent changes: multicellular structures
◮ Integration and Packaging are the main areas for progress

◮ Reduce size and circuit parasitics, improve thermal management. . .
◮ Manage incresed interconnexion density
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PCB Technology

Surface-mount component

Via

Microvia

Wirebonds

External copper layer

Internal copper layers

Semiconductor die

Fiber/polymer 
laminate

Solder

Printed Circuit Board is

Mature ◮ Large range of available design software
◮ Can be manufactured in large quantities, low price
◮ Mainly oriented towards microelectronics and low power

Flexible ◮ Custom design
◮ Many configurations possible

Limited ◮ Poor thermal conductivity
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Why Embedding?

◮ Optimize thermal management
◮ Heat sources closer to heatsink
◮ Dual side cooling

◮ Improve performance
◮ Shorter interconnects
◮ Lower inductances

◮ Reduce size
◮ Use substrate volume

◮ Manage complex interconnects
◮ Batch process

Surface-mount component

Via

Microvia

Wirebonds

External copper layer

Internal copper layers

Semiconductor die

Fiber/polymer 
laminate

Solder
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Embedding of Power Dies – 1

◮ Most embedding effort on power dies:
◮ Most power density
◮ Fastest voltage/current transients

◮ Requires special finish on dies
◮ 5-10 µm Cu (not standard)
◮ Buffer for UV laser
◮ Also for microetch in plating step

◮ Backside connexion by sintering or vias
◮ Sintering compatible with standard dies
◮ Vias require Cu finish and adhesive

conductive chip attach

embedding by lamination

via drilling top, through-via

Cu plating and structuring

Left and above, source: Ostmann [3]
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Embedding of Power Dies – 2
Some alternative techniques

◮ Stud bumps and machining
◮ Foam interposer
◮ Mechanical drilling

Source: Hoene et al. [4]
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Embedding of Power Dies – 2
Some alternative techniques

◮ Stud bumps and machining
◮ Foam interposer
◮ Mechanical drilling

Source: Hoene et al. [4]

Source: Pascal et al. [5]
Source: Sharma et al. [6]
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Embedding of Formed Components – Capacitors

Source: Dupont [7]

Source: Andresakis [8]

◮ introduction of a capacitive layer in
the stack-up
◮ thin layer (8–25 µm)
◮ high permittivity (e.g. BaTiO3 filler)

◮ single layer plane capacitor

➜ low capacitance density
➜ limited voltage strength

◮ ≈ 1 nF cm−2 for 100 V rating

➜ more suited to GHz-range
decoupling than to power electronics
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Embedding of Formed Components – Inductors

Magnetic Layer

◮ Relies on magnetic/polymer film ➜ Low µr

◮ Limited to 10 – 100 W
Source: Waffenschmidt et al. [9]

Planar magnetic components

◮ Very common, but not really embedded
◮ High performance
◮ Compatible with low (W) or high power (kW)

Embedded core

◮ Strong industrial development (Murata, AT&S,
Würth)

◮ Currently limited to low power (W)

Source: Ali et al. [10]
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Embedding of Inserted Components

Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connexions with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [3]

◮

◮
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Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connexions with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [3]

For power electronics

◮ Embedding of “large” capacitors (1 µF range)
◮ Embedding of gate driver ICs and peripheral components, control
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Thermal Management of Embedded Components – 1

◮ Poor thermal conductivity of FR4 compared to ceramics
(1–7 W m−1 K−1 vs 150 W m−1 K−1 for AlN)

◮ In theory better breakdown field (≈ 50 kV mm−1 vs. 20 kV mm−1)

◮

◮
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◮ Poor thermal conductivity of FR4 compared to ceramics
(1–7 W m−1 K−1 vs 150 W m−1 K−1 for AlN)

◮ In theory better breakdown field (≈ 50 kV mm−1 vs. 20 kV mm−1)

To improve through-plane heat conduction:

◮ Micro-vias (electrically conductive), Filled cores (e.g. alumina)

To increase in-plane heat conduction:

◮ Thicker copper, Anisotropic layers (Graphite), Dual-phase

Source: left: Liew et al. [11]; right: Silvano et al. [12]
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Reliability of PCB with Embedded Components

Infineon’

◦

◮ Temperature-related issues
◮ Rapid degradation above 190 ◦C
◮ Hydrocarbon, polyimide-based

PCBs resistant up to 250 ◦C
◮ Thermal cycling issues

◮ CTE of PCBs much higher than
ceramic or semiconductor

◮ Availability of low-CTE materials
➜ lacks data on large components

◮ Other PCB-specific issues
◮ moisture absorption,
◮ conductive anodic filaments. . .

➜ No showstopper identified yet!
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Source: Randoll et al. [13]. Superimposition of reliability
data for dies in PCB on Infineon’s results for standard
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Conclusions on Embedding Technology

Application to Power Electronics

◮ Many components can be
embedded
◮ Dies require Cu finish
◮ Large components?

◮ Acceptable thermal performance

◮

◮

◮

◮

◮

◮

SiC PFC Cell, 750 W, PCB size 7×7×1 cm3. SiC dies, gate
driver circuit, PFC inductor and temperature sensors embedded
in PCB.
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Conclusions on Embedding Technology

Application to Power Electronics

◮ Many components can be
embedded
◮ Dies require Cu finish
◮ Large components?

◮ Acceptable thermal performance

Open questions

◮ Find the sweet spot:
◮ Embedding power dies only?
◮ Embed everything?
◮ Or somewhere in-between?

◮ Are flat converters desirable?
◮ How to design for embedding?

SiC PFC Cell, 750 W, PCB size 7×7×1 cm3. SiC dies, gate
driver circuit, PFC inductor and temperature sensors embedded
in PCB.

15 / 28



Outline

Introduction

State of the Art of PCB embedding

Proposition – Design Tools for Power Electronics

Conclusions

16 / 28



Design in Power Electronics – Current State

Specifications
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Test

Manufacturing

Continous validation
for manufacturabilityHeterogeneous models

(various formats, 

physical domains)

Inputs

Implementation loop

Mechanical design

Parasitics extraction Thermal modeling

Circuit simulation

Pre-design

(ideal circuit)
Specifications

Power Modules

Components off-the-shelf

Custom components (magnetics...)

Custom parts (PCB...)

Standard parts 
(e.g. magnetic cores)

Semiconductor dies

PCB assembly

Final assembly

Converter

Other custom & standard parts (housing, heatsink...)
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Design in Power Electronics – Real-case example

Implementation

Manufacturing

Legend

Operation Transformer design Power electronics design Control design

Input Analytic design

Thermal management

design based

on converter

specifications

Power modules

design

Selection/design of

auxiliary elements

(gate driver,

capacitors, etc.)

Selection of real-

time platform

Output
Control design

in simulated

environment

Existing

mechanical design
First estimation of

converter losses

Detailed power

electronics circuit

Design of

a low power

converter mock-up

Finite Elements

design

Refinement of

transformer

losses calculation

Physical

implementation

of power electronics

Internal design of

the power modules

Routing of

gate driver
Mock-up

fabrication and test

Physical

implementation

of transformer

Mechanical design

of converter

Validation of control

with Mock-up PHIL

Circuit models,

including layout

parasitics, excl. driver

Design of control

system iterfaces

Manufacture

Transformer
Manufacture Module Manufacture Driver

Manufacture other

inverter elements

(frame, busbars. . . )

Manufacture

Interfaces

Transformer testing

Experimental

dynamic testing

(Double-pulse)

Modify drivers

Experimental losses

characterization,

second estimation

of converter losses

Assemble inverters

Design and

build test bench
Assemble converters

Installation in

dedicated test bench
Full converter testing

Source: Supergrid Institute, submitted article
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Design in Microelectronics

Source: Cadence

Integrated software for
◮ Circuit design
◮ Routing
◮ Simulation
◮ Mask generation. . .

◮

◮ ≈

◮

◮

◮
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Design in Microelectronics

Source: Cadence

Integrated software for
◮ Circuit design
◮ Routing
◮ Simulation
◮ Mask generation. . .

Why is it not available in power electronics?
◮ powerful financial incentive for virtual prototyping

◮ A 45 nm mask set costs ≈ 2 M$ (source: Electronic design, 2009)

◮ Limited technology variations
◮ Most of the circuit is monolithic
◮ No flexibility allowed in technology configuration
➜ Manufacturers supply a “design toolkit” describing the technology
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Proposition – Design in Power Electronics

Components off-the-shelf

Standard parts 
(e.g. magnetic cores)

Semiconductor dies

PCB manufacturing

Converter

Custom parts (heatsink...)

◮ Rationalized manufacturing

➜ Reduce design variability
◮ Design Toolkit for simulation

and validation

➜ Design for manufacturing

Specifications

Inputs

Components/cells
layout

Reduced-order 
models (EMC/
thermal/electrical)

Design Rules

Toolkit library
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Proposition – Expected Outcomes

What would we get?

◮ Fully custom designs, as opposed to modular
◮ Automatic Design for Manufacturing (fabless approach)
◮ Single, well controlled technology:

Qualification: of technology rather than products
Scalability: same technology for test and production runs
Prototyping: share panels across projects

➜ Basically all the usual features in IC design.

◮ Reduced choice of components
◮ Must be in the toolkit library

◮ Reduced design flexibility
◮ The fewer degrees of freedom, the simpler the toolkit
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Proposition – Getting There

◮ Better design tools
◮ Large choice of existing software (PCB layout, circuit

simulators, EM modeling)
◮ Need to identify suitable modelling approach

(speed/accuracy trade-off)
◮ Software “glue” required for automatic model generation

◮ Define design rules for PCB embedding
◮ Required for automatic design validation
◮ Long experimental work required.

◮ The impact on the supply chain must also be assessed
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Conclusions – Exploiting the PCB Embedding

◮ PCB embedding is very promising
◮ Provides a single, unified techology for power

electronics (W to 10’s of kW range)
◮ High performance
◮ Scalable, reasonable cost. . .

◮ Situation comparable to microelec. in the 70’s
◮ Many technologies available, but no standard
◮ No separation between design and manuf.
➜ Need for Design Rules and uniformization

◮ Large effort required on the design tools
◮ Allow Design for Manufacturing
◮ Objective: efficient virtual prototyping
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