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ABSTRACT:  Water- and sediment-transfer models are commonly used to explain or

predict patterns in the landscape at scales different from those at which observations

are available. These patterns are often the result of emergent properties that occur

because processes of water and sediment transfer are connected in different ways.

Recent advances in geomorphology suggest that it  is important to consider,  at  a

specific spatio-temporal scale, the structural connectivity of system properties that

control  processes,  and  the  functional  connectivity  resulting  from  the  way  those

processes  operate  and  evolve  through  time.  We  argue  that  a  more  careful

consideration of how structural and functional connectivity are represented in models

should lead to more robust models that are appropriate for the scale of application

and provide  results  that  can be upscaled.  This  approach is  necessary  because,

notwithstanding the significant advances in computer power in recent years, many

geomorphic models are still unable to represent the landscape in sufficient detail to

allow  all  connectivity  to  emerge.  It  is  important  to  go  beyond  the  simple

representation  of  structural  connectivity  elements  and  allow  the  dynamics  of

processes to  be  represented,  for  example  by  using  a  connectivity  function.  This

commentary aims to show how a better representation of connectivity in models can

be achieved, by considering the sorts of landscape features present, and whether

these features can be represented explicitly in the model spatial structure, or must

be represented implicitly at the subgrid scale.

KEYWORDS:  structural  connectivity,  functional  connectivity,  water  and  sediment

transfers, modelling, subgrid processes
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Introduction

The  catchment  provides  a  versatile  domain  for  understanding  geomorphic  and

hydrologic  processes  at  a  range  of  spatial  and  temporal  scales.  However,

interactions, feedbacks and complex behaviour within catchments produce emergent

properties which make it difficult to translate understanding between different scales,

both  in  estimating  larger-scale  properties  from  smaller-scale  observations

(upscaling)  or  smaller-scale  patterns  from  larger-scale  outcomes  (downscaling).

Numerical modelling is often used as a tool to understand catchments and to attempt

to  overcome these scaling  difficulties,  either  by  supplementing  observations with

model results for unmeasured variables or at unmeasured locations (e.g. Stieglitz et

al.,  2003;  Nunes  et  al.,  2009;  Croke  et  al.,  2013),  or  for  designing  and  testing

different conceptual models of catchment behaviour (e.g. Van Nieuwenhuyse et al.,

2011; Hoffmann, 2015).  To do so, models should be able to reproduce both the

patterns and the linkages of water and sediment fluxes within the catchment(s) under

simulation  –  herein  referred  to  as  landscape  connectivity.  Recent  theoretical

advances have improved the understanding of connectivity and the description of

associated processes (Bracken et al., 2013, 2015), and these advances can be used

to create better hydrologic and geomorphic catchment models by improving the way

in  which  they  represent  landscape  connectivity.  However,  achieving  these

improvements is far from straightforward; so far, there is no clear framework to guide

how connectivity should be represented inside model components. 

We  argue  that  the  path  to  building  better  models  is  to  build  more  effectively

connected models, i.e. models which better represent fluxes of water and sediment

through  space,  by  better  representing  connectivity  within  and  between  its

fundamental spatial units. The aim of this commentary is to suggest some ways in

which  a  better  representation  of  connectivity  can  be  achieved.  We  discuss

improvements in parameterizing connectivity,  and propose using the scale of the

fundamental  modelling  unit  to  select  an  appropriate  combination  between

parameterized and emergent connectivity modelling approaches.
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Representing landscape connectivity

The  representation  of  connectivity  in  models  must  first  recognize  the  difference

between structural and functional connectivity. The former reflects static properties of

the system at a given timescale, while the latter represents the dynamic behaviour of

the system at that timescale (Turnbull  et al., 2008; Wainwright et al., 2011; With et

al.,  1997;  Wu  and  David,  2002).  The  actual  separation  between  structural  and

functional  connectivity  depends  on  the  timescale  of  the  analysis,  as  functional

connectivity may act to reorganize the system and change structural connectivity at

longer timescales, which must also be considered in model design (Wainwright et al.,

2011). Once the timescale for a given model is set, functional connectivity will be

represented by the water and material flows simulated by the model, while structural

connectivity  will  be  represented  by  the  model’s  underlying  spatial  structure.

Structural connectivity can be conceptualized as a spatial pattern of interconnected

elements, linking the (microscopic) scale of the fundamental units via their basic links

to neighbouring units, and the (macroscopic) scale at which the overall behaviour is

considered: in this case, the catchment.

The  fundamental  unit  is  the  lowest  level  within  this  spatial  hierarchy,  i.e.  the

measurement  unit  of  the  entity  of  interest.  In  hydrology,  the  fundamental  unit  is

traditionally  defined  based  on  structural  characteristics  of  hydrological  networks,

such as  the  channel  reach  or  sub-catchment,  but  could  equally  well  be  defined

based on the scale of a process or, for convenience, as a single cell (pixel). Defining

the appropriate scale of the fundamental unit should depend on the scale at which it

is  conceptually  robust  to  work  for  a  given  application.  However,  typically,  the

fundamental  unit  is  defined  based  on  the  scale  at  which  measurements  of

parameters or processes are made, or at which data are available (often limited by

access to DTMs), which does not necessarily equate to the scale(s) at which it is

conceptually robust to work (see Grieve  et al., 2016). This mismatch between the

theoretical and the actual scale of the fundamental unit is a common limitation when

designing the spatial structure of models.

Links between fundamental units define the directionality and magnitude of transfers

of  water  or  materials  among  them.  In  catchment  models,  these  links  create  a
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network for the transfers throughout the system from which, ultimately, the larger

scale  behaviour  is  determined  (see  Heckmann  and  Schwanghart,  2013).  The

properties of each basic link can be represented as continuous (i.e.  based on a

process,  such  as  the  water  flux  through  a  stream  reach)  or  discretized  (i.e.

classifying the property as high, intermediate, low, null) or even binary (i.e. on/off)

(e.g. Larsen et al., 2012). The scale at which fundamental units are represented will

affect how links can be represented, and therefore limitations in defining units will

affect the structural link network.

Addressing connectivity in models

Distributed hydrological and sediment-transport models have been developed over

the last few decades to take advantage of increased process understanding and

availability  of  spatio-temporal  data.  To  implement  the  concepts  of  landscape

connectivity  in  these models (e.g.  Bracken and Croke,  2007;  Lexartza-Artza and

Wainwright,  2009; Western  et al.,  2001),  a range of approaches can be adopted

between two extremes (Figure 1): 

(i) A fully  explicit  approach,  in  which all  system properties and processes

considered  relevant  are  explicitly  taken  into  account,  and  where

connectivity is an emergent property from model results – in other words

where basic  links are considered explicitly;  for  instance,  high-resolution

spatially distributed models. 

(ii) An implicit approach, in which some or all connectivity-relevant links and

properties  are  represented  through  proxies,  and  processes  have  been

parameterized  to  include  connectivity;  for  instance,  lumped  catchment

models.

(iii) Hybrid  approaches,  standing  in-between  these  extremes,  are  also

possible; for instance, large watershed models linking lumped models of

individual catchments to a distributed model of the stream network.
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Figure  1:  Schematic  overview  of  the  different  representations  of  landscape

connectivity in different modelling approaches.

A large  number  of  spatially  distributed  hydrological  and  erosion  models  seek  to

represent the connectivity of most processes explicitly, by attempting to appropriately

define the fundamental unit and their links (e.g. De Roo et al., 1996; Cerdan et al.,

2002;  Nunes  et  al.,  2005;  Wainwright  et  al.,  2008),  providing a physically  based

description of the link (e.g. Finger  et al., 2011) and, in some cases, including the

dynamic evolution of links due to micro- or macro-topographic changes (e.g. Schoorl

et al., 2002; Fiener et al., 2008; Ciampalini et al., 2012). However, even in the most

complicated  of  these  models,  connectivity-relevant  properties  and  processes  are

only in part represented explicitly, due to (i) the incomplete understanding or coding

of  processes,  (ii)  model  resolution  and  computational  considerations,  and  (iii)

theoretical  limitations  to  model  completeness  (Mulligan  and  Wainwright,  2013a;

Rosenblueth and Wiener,  1945).  Model  resolution is,  in  fact,  often too coarse to

represent the system in such a way that connectivity can emerge.

Furthermore,  links  between  fundamental  units  are  often  hidden  in  effective

parameters  (i.e.  model  parameters  which  are  different  from  the  equivalent

measurement  to  account  for  a  process  which  the  model  structure  does  not

represent),  and  thus,  links  do  not  dynamically  interact  with  connectivity-related

processes.  A typical  case in  many runoff  models is  where random or  orientated
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surface roughness is parameterized (e.g. as static Manning’s n or roughness height

due to tillage operations) without any process interaction (e.g.  Smith  et al.  2007;

Williams, 1970; Fiener et al., 2008). These problems may be hidden by the disparity

in  the  scales  of  the  fundamental  unit  (usually  the  raster  cell)  and  of  the  field

observation used to evaluate the model (often a catchment outflow), but they are

important in the simulation of spatial patterns.

Problems can be circumvented by using the implicit  approach:  representing fine-

scale structures and processes within coarser-scale modelling approaches, which

helps to improve representations of landscape connectivity, and at a lesser cost in

terms of data input and computational requirements but at the expense of some loss

of accuracy compared to a fully explicit model. This approach is usually adopted by

lumped  and  semi-distributed  models  used  on  larger  scales,  i.e.  where  the

fundamental unit is defined at a much coarser spatial scale  (e.g. in SWAT; Arnold

and Fohrer, 2005; see discussion in Mulligan and Wainwright 2013b). However, in

the implicit approach, connectivity is also often represented by effective parameters

with little dynamic evolution or interaction between processes, limiting the simulation

of emergent behaviour at the catchment scale. For example, connectivity is implicit in

the use of soil moisture to select different rainfall-runoff response functions such as

with the Curve Number approach (Garen and Moore, 2005), or in the use of a single

value to represent sediment transfer between units, either a fixed percentage (e.g.

Watem-Sedem, Van Oost et al., 2000) or a fixed mass (e.g. STREAM, Cerdan et al.,

2002), even though these values may, in fact, evolve through space and time.

What is common to many of these approaches is the representation of functional

connectivity as a static property or, at best, one with limited changes.  Stochastic

approaches have been proposed where deterministic links are replaced by all units

having  a  probability  of  being  linked  to  others  (see  Hütt  et  al.,  2012,  for  a  non-

geomorphologic example), but they still do not overcome the inherently static nature

in which the system is represented. Models that attempt to simulate the temporal

behaviour of systems cannot represent the evolutionary behaviour of those systems

correctly if they do not capture the dynamics of functional connectivity in some way.

One approach to achieve this dynamic representation of connectivity would be to use

a connectivity function.
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From functional connectivity to connectivity functions

To produce a connectivity function, one must first start with an explicit representation

of fundamental units; then, once the emergent behaviour of these links has been

described, a simple and sound functional relationship can be derived to represent

implicitly the interactions among individual links. A landscape-connectivity function

will  reflect  the  connectivity  in  overland flow or  sediment  transfer  within  the  unit.

Percolation theory provides an example of a conceptual framework in which these

relationships can be derived from first principles (e.g. Berkowitz and Ewing, 1998;

Darboux  et  al.,  2002;  Harel  and  Mouche,  2014),  although  more  often  the

relationships  are  derived  by  the  confrontation  of  empirical  data  with  transport

equations of varying degrees of complexity. 

A connectivity function can, in principle, be represented by a binary or continuous

approach. A continuous definition does not necessarily lead to a better assessment

of connectivity and it is even usual for a connectivity evaluation procedure to start

with the binarization of the continuous values of individual links (e.g. Souchère et al.,

1998). A simple example of a connectivity-based binary switch at a relatively small

scale (DTM grid cell)  is  when a decision is made regarding flow direction in the

presence  of  orientated  roughness  whenever  the  orientation  of  tillage-induced

roughness does not coincide with slope aspect (Souchère et al., 1998; Takken et al.,

2001). In this case, the binary switch does not affect whether or not two contiguous

cells are connected, but it governs the directionality of the flow, i.e. it controls which

neighbouring  cell  gets  connected  to  the  source  cell.  Other  examples  of  binary

connectivity  switches  in  hydrological  models  include  the  use  of  the  maximum

depression storage as a threshold to transfer flow from one modelling unit to one or

more neighbours (Singh and Frevert, 2002), and the so-called “bucket models” in

which water is transferred from one soil  layer to the next only after the moisture

content reaches field capacity (Walker and Zhang, 2001).

Alternatively, a continuous function may be used to describe connectivity whereby

units are connected via links with varying levels of connectivity. Taking the examples

given above, Razafison et al. (2012) introduced a non-binary approach to determine
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water flow in the topographic or the tillage direction based on an anisotropic friction

coefficient;  and  the  LISEM  model  replaces  the  maximum  depression  storage

approach by a continuous function governing the rate of water transfer as a function

of  the  degree  of  filling  of  the  depression  storage  (De  Roo  et  al.,  1996).  Other

examples of such continuous switches are the recent use of the “porosity concept” to

regulate the amount and cross section of flow between adjacent cells (Lane et al.,

2004; McMillan and Brasington, 2007).

Antoine et al. (1999) developed a more complex approach to express sub-grid water

connectivity  as  a  function  of  the  level  of  depression  storage  filled,  the  Relative

Surface  Connection  function  (RSCf).  Depressions  and  flow-paths  within  a  given

model cell are explicitly simulated from rainfall using a very high resolution (10-mm)

DTM. The RSCf can be combined with a weighted surface procedure to generate

realistic hydrographs of elementary units (Antoine et al., 2011). Peñuela et al. (2015)

replaced  the  need  of  a  high-resolution  DTM with  a  three-point  parameterization

estimated from slope and structural terrain information for random roughness, which

allows the application of this method at the watershed scale.

Building more effectively connected models

Models can effectively integrate connectivity by using connectivity functions. These

functions should be selected to represent the fundamental unit for which the model

was designed, which can range from small to large scales, e.g. from single DTM grid

cells and fields to entire watersheds. Figure 2 provides an initial assessment of the

likely scales at which connectivity could be included in model design, and whether

the representation of  connectivity  should be explicit,  i.e.  allowed to  emerge from

existing connectivity links; or implicit, i.e. through connectivity functions.
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Random roughness

Field edges, hedges, …

Rills

Gullies

Vegetation patches

LU pattern

Snow patches

Grass strips, waterways

Ponds, reservoirs

Pipes, ditches

Orientated roughness

-3        -2        -1        0         1        2         3         4         5        6 (log m)

Explicit representation possible (connectivity emerges)

Implicit representation only

Spatial discretization

Figure  2: Schematic representation of scales at which certain landscape features

that are influential in terms of water or sediment connectivity are resolved explicitly

or implicitly in environmental models.

A schematic representation such as this can help decide the appropriate resolution

of  application  for  a  given  model,  based  on  the  processes  that  are  represented

implicitly. For example, commonly used spatially distributed models such as LISEM

(De Roo et al., 1996) or LandSoil (Ciampalini et al., 2012) are typically applied with

spatial resolutions between 1 and 10 m. While these relatively fine resolutions should

allow  them  to  represent  most  connectivity  processes  explicitly,  implicit  solutions

should be found to address, for example, connectivity due to roughness and rills.

Moreover,  the  application of  these models  with  larger-resolutions  DTMs such as

global datasets with resolutions between 30 and 90 m would stretch their capacities,

as it would be difficult for the connectivity effects of vegetation patches, field edges

or gullies to be explicitly represented. Past approaches have tried to address this

issue using sub-grid scale parameterization (e.g. Zhang et al., 2002), but progress is
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now  needed  to  integrate  sub-grid  scale  processes  in  models  using  connectivity

functions to take advantage of the opportunities offered by these datasets.

Model development is always a trade-off between inclusion of detail and parsimony

of representation. By considering why parameters may be appropriate at different

scales,  and  how connectivity  functions  can  represent  linkages  between  different

scales, we suggest that more robust models can be designed that will require less

(or no) empirical calibration, and thus underpin their physical basis and potential for

extrapolation.  The  use  of  such  linkages  also  supports  process  based  up-  or

downscaling, and can thus aid in model evaluation and testing where data are only

available at very different scales from model implementation. While the increasing

availability of high resolution topographic data (e.g. from TLS and UAVs: Ouedraogo

et al., 2014; Pineux et al., 2017) means that models could be applied at very high

spatial  resolutions  to  account  for  connectivity  explicitly,  computational  tractability

means that it is unlikely that direct advantage can be taken of these data for some

time to come. By using these data in the definitions of connectivity functions, direct

advantage can be taken of these data immediately, especially if connectivity links

across different scales can be defined a priori. More research is required to define

connectivity functions that can be applied at a wide range of scales and in relation to

different processes, and in particular to define the feedbacks between functional and

structural connectivity at different scales.
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