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The aim of this work is to model the generation and propagation of surface waves as a consequence of submarine 

landslides. The numerical approach presented in this paper allows for the simulation of both underwater granular 

flows at the grain scale and free surface wave propagation. The discrete element method (DEM), extensively used 

for dry granular avalanches, is coupled with the Lattice Boltzmann Method (LBM) for the integration of Navier-

Stokes equations. The fluid-grain coupling is introduced at the grain scale by imposing the no-slip condition for 

the fluid at the grain surface and by integrating at each time step the resulting hydrodynamic forces exerted by the 

fluid on each grain. The so-called “mass tracking method” is used to introduce a free surface in the model.  

I. INTRODUCTION 

The generation of tsunami is a major devastating hazard associated with submarine 

landslides occurring on the continental shelf [17]. The key mechanisms that control the 

nature of such tsunamis are not yet clearly established and seem to involve various 

parameters such as the volume of the landslide, its velocity and initial acceleration, its 

thickness, as well as the depth of water on which depends the propagation speed [11]. 

Idealised two-dimensional numerical and laboratory models of tsunamis generated by 

submarine landslides have recently been proposed [20][7][1] but they all assume a rigid 

block slide and do not account for the granular scale. A two-layer continuous model has 

been developed to represent water flow on a granular bed that is considered as a shallow 

fluid of greater density as water [19]. The two fluids differ in terms of rheology, 

compressibility, viscosity, and potential for mixing. Although successful in accounting for 

general phenomenology in a short computation time, such models, defined at a large scale, 

are limited in describing all features of seabed granular flows. A pending research issue 

thus remains the parameterization of the interactions between the water phase and the 

sediment phase.  Owing to the number of flow variables involved and measurement 

imprecision, estimating such parameters from laboratory experiments remains difficult. 

Contrarily to submarine landslides, aerial granular landslides have been extensively 

studied during the past two decades by means of experiments and numerical simulations 

[10][15] but the generalization of the results in the presence of a fluid remains unexplored 

to the present date. The onset and propagation of seabed instabilities involve strong 

coupling between water and the granular phase via water pressure gradients in the pore 

space or dilatancy of the granular phase [12][3][2]. Different approaches have been 

developed to take into account fluid-grain coupling [14][27][1]. A methodology has been 
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recently proposed to enable predictive simulations of underwater granular flows at the grain 
scale, but without accounting for free surface and possible wave generation [16][5][25]. 

The present work is based on this methodology in which the Discrete Element Method 
(DEM), extensively used to model dry avalanches [20], is coupled with the Lattice 
Boltzmann Method (LBM) that enables the introduction of a water phase and the 
calculation of the hydrodynamic forces on the grains. The so-called “mass tracking 

method” is used to introduce a free surface in the model [23]. 
This paper is structured as follows. The methodology is presented in section 2: The 

LBM is briefly introduced for 2D water flow with free surface modelling, and the coupling 
methodology with DEM is presented. Section 3 provides three validation tests and results: 
(i) the 2D model is first validated against 1D shallow water model for free surface wave 
propagation, (ii) the falling speed of a grain is compared to analytical results and (iii) the 
first results of the collapse of a grain column underwater are given.  

II. METHODOLOGY

2.1 LBM approach for modelling free surface flow in two vertical dimensions 

The LBM consists in applying the Boltzmann equation to the fluid, which is modelled as a 
collection of fluid particles moving on a fixed rectangular grid. To model free surface flows 
in two dimensions, the so-called D2Q9 model (2 dimensions, 9 velocities) is used along 
with the “mass tracking” approach (Figure1) [23]. 

Figure 1. Left: D2Q9 scheme and Right: discretization of the flow domain according to cells types. 

The flow domain is discretized in square cells of linear size x, to which are associated 
a position vector x, a density  t,x  and a velocity  t,xu . At each time step, the density
and velocity are transported from one cell to its 8 neighbouring cells (i=1,…,8) or remain 

within the cell (i=0). To each of the nine possible directions i, are associated a local density
distribution function fi, and a velocity ui such that 
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with ui=u ei where u=x/t.
At each time step, two main operations are performed on flow particles: collision and 

streaming. These are briefly recalled below (see e.g. [27] or [22] for more details). 
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Streaming: 

The particles with local density  tf i ,x  located at position x at time t, move with velocity 

ui to the point x+uit during a time step t: 

   tftttf iii ,, xux   (2) 

 

Collision: 

It is assumed that the particles with density  tf i ,x  entering simultaneously the same cell 

will collide with each other, yielding a new distribution function  tf i ,out
x  defined by the 

BGK model [27]: 
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where  is a dimensionless relaxation time and the eq
if  are the equilibrium distribution 

functions given by 
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where the wi are density weights (w0=4/9; wi=1/9 for i=1…4 and wi=1/36 for i=5…8). 

 

Boltzmann equation: 

Equations (2) and (3) are combined to give the Boltzmann equation that includes a 

supplementary term proportional to the external force F:  
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where cs is the so-called sound speed of the Boltzmann network, given by 3/22 ucs  . 

 

Treatment of the free surface:  

The free surface is taken into account by introducing 3 types of cells: fluid, empty and 

interface (Figure 1). Interface cells are partially filled cells that separate the air (empty 

cells) from fluid. The mass tracking approach [23] consists in tracking the movement of the 

fluid interface by the calculation of the mass exchange mi between interface cells and their 

neighbours. This flux can be directly computed from the fi movement at the streaming step. 

For each given direction i, three configurations can occur according the type of the 

neighbour cell (located at x+uit): 

- Type E (empty cell). The mass exchange is null: 

  0,  ttmi x  (6) 

- Type F (totally filled cell). The mass exchange is simply: 

     tfttfttm iiii ,,, ~ xuxx   (7) 

where ~i represents the opposite of direction i. The first (resp. second) density function is 

the amount of fluid that is entering (resp. leaving) the interface cell.  

- Type I (interface cell). The mass exchange between two interface cells must account for 

the quantity of fluid contained in the cells (fluid fraction ε = m/): 
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A more precise computation of the mass exchange can be done for this third case according 
to the type of the two cells neighbours. It is not presented here for the sake of conciseness 
but can be found [24]. 
The mass exchange is computed for each neighbouring cell and the mass is thus updated to: 

     

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Note that, at the end of this step, some interface cells can be emptied or filled. The cell type 
is thus changed accordingly and the lacking or exceeding mass is reallocated to 
neighbouring cells. 

Example: 
Figure 2 shows an example of free surface simulation. Results obtained for the classical 
dam-break problem are in very good agreement with those obtained from experimental test 
cases such as proposed in [7]. For the sake of comparison with [7] the classical non 
dimensional variable 0/ hgtT   is used, where h0 is the initial water depth in the left side 
of the dam. 

Figure 2. Dam-break on dry bed. Screen capture taken at T=0, T=0.88, and T=1.57 (these simulations are in good 
agreement with experimental results given in figure 3 of  [7]). 

2.2. Grain modelling: sample construction and DEM computation 

The Discrete Element Method is used to build a densely-packed sample of polydisperse 
spherical grains. A set of grain diameters according to the cumulative beta distribution is 
obtained with the statistical model proposed by [25]. The beta distribution has the 
advantage to be bounded on both sides and capable of representing double-curved 
distributions similar to the soil grain-size distributions encountered in practice. 
Once the diameters are generated, the grains are first placed on a regular grid in a 
rectangular column as a dilute sample and then compacted between two plates using the 
procedure proposed in [18].  

The force F between two grains is defined by F=(N,T) where the normal part N is due to the 
contacts between particles and the tangential part T stems from friction. A linear-elastic 
approximation is used to represent the force law between a pair (i,j) of contacting particles: 
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where  is the gap or the overlap between the two contacting particles i and j and  its
derivative with respect to time, kn is the normal stiffness, m=mimj/(mi+mj) is the reduced 
mass and  1,0  is a damping parameter which controls energy dissipation due to inelastic
collision. The friction is computed with the classical Coulomb law expressed as a nonlinear 
relation between the friction force T and the sliding velocity. 

   nNvT ft


 ,min

where  is the tangential viscosity parameter, f is the friction coefficient and vt the 
tangential velocity at contact.

2.3. Coupled LBM/DEM model for fluid/solid interactions 

Solid particles (grains) previously generated are introduced in the fluid domain of LBM 
using the same discretization scheme. Since in two dimensions the poral space does not 
percolate through the sample, for the fluid computation, we reduce the diameters of the 
grains in order to have a minimum of two nodes of fluid at contact between grains. A new 
type of cell is thus used: G for grain cell (see figure 3). As for free surface, the interaction 
between fluid and solid particles appears only at the interface.  

Figure 3. Grains and fluid discretization (cells types).

Grains are considered as moving boundaries on which the non-slip condition is imposed to 
the fluid using the standard bounce back rule. The hydrodynamic forces acting on grains are 
computed using the momentum exchange method proposed by [9]. The fluid particles that 
are bounced back on grain boundaries transmit forces to the grain proportionally to their 
momentum change [1][11]. The implementation of this method is straightforward since 
particles momenta are known at each time step. The total hydrodynamic forces exerted on a 
solid particle are obtained by summing up the forces on all boundary nodes of that particle. 
Finally, these forces are used to compute the motion of grains.
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Example: 
Figure 4 shows the velocity of a grain in freefall in comparison with theoretical results 
given by the second Newton’s law and a friction law of the form f=-ku2 valid for an inertial 
regime i.e. for a Reynolds number greater than one, which is the case here. 
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Figure 4. Validation of the grain fall velocity in water. The theoretical curve is obtained with a friction law of the 
form f=-ku2s.

III. NUMERICAL EXPERIMENT AND RESULTS
For the sake of conciseness and clarity, only qualitative results are presented here. A more 
precise physical interpretation as well as parameter study will be presented in detail in 
further work. 

Figure 5. Collapse of a grain column. Up: ratio column height/water depth = 0.508 (spl05). Down: ratio=0.915 
(spl09). Screen captures taken at T=0, T=0.04 and T=0.08. 

The methodology is used to assess the effect of the collapse of a grain column in water, on 
the generation of wave surface. The domain is chosen long enough to avoid the influence of 
the right-hand boundary condition and wave reflection. The initial water depth h0 is the 
same in each test case. Five grains samples (spl09; spl08; spl07; spl06; spl05) have been 
generated with the following ratio of column height over initial water depth: hc/h0=(0.915; 
0.813; 0.711; 0.610; 0.508). The column width remains identical for the five samples, 
corresponding to approximately ten grains. The total number of grains for the different 
samples is respectively N=(407; 360; 316; 275; 229). Figures 6 gives simulation results of a 
grain column collapsing in water at different non-dimensional time 0/ hgtT  . This test 
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has been performed with five different column heights and the same water depth. The ratio 

of the water depth over the initial water depth at T=0.08 has been reported in Figure 5 for 

each test case as well as the maximum and minimum water depth at T=0.08 as a function of 

the initial granular column height. As could be expected, the amplitude of the generated 

wave increases with the granular column height. It can also be seen in Figure 6 (left) that 

the extreme values are not located at the same abscissa. Further studies will allow for a 

more precise parameter analysis to be conducted. 
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Figure 6. Left: ratio of water depth h at T=0.08 over the initial water depth h0 for the different samples. Right: 

minimum and maximum water depth as a function of the initial granular column height (all values being 
normalized by h0) 

IV. CONCLUSION

The presented work gives the basis for the simulation of fluid/grain interactions in presence 

of free surface. The methodology has first been validated for simple cases. The dam-break 

test case (without grain) gives similar results to those experimentally obtained in the 

literature. The falling velocity of a unique grain in free fall has been successfully compared 

to theoretical laws.  

As a first parametric analysis, we assessed the influence of the initial column height on 

the amplitude of the wave generated at the free surface. Other parameters will also be 

studied such as the aspect ratio of the grain column, grain distribution characteristics, etc. 

An interesting problem is also to investigate the triggering of the collapse using a cohesive 

model for the contact of granular materials such as proposed in [4]. 

The comparison of the proposed methodology with experimental results obtained in [7] 

or [28] for dam-break upon sediments is also one of the forthcoming goals of this work. 
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