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A shape optimization procedure is presented. It is dedicated to the noise generated by obstacle flows. The cost function is the acoustic power efficiency, which is derived directly from the fluctuations of the aerodynamic force through for a single formula from the hypothesis of tonal noise. The force is estimated from the direct solution of the 2D incompressible, unsteady flow in laminar regime over a convex symmetrical obstacle without incidence. The no-slip condition at the boundary is assured by an Immersed Boundary Method, that allows the use of the same mesh for all the geometries. The shape of the obstacle is defined by 4 Bézier curves, constrained by second-order continuity leading to 4 degrees of freedom: the aspect ratio, the position of the maximum cross section and two curvature parameters (up and downstream). The optimization is performed via a Particle Swarm Optimization (PSO) routine. Several tests are performed increasing complexity so that coefficients of the PSO be adjusted to the present response surface. There is up to 16 dB of difference between the power efficiency of the extrema configurations for a fixed aspect ratio (AR) and 8 dB for constrained surface or perimeter. For an AR of 1.5, the optimal shape leads to 3dB less acoustic power than the ellipse of same AR. The shapes that minimize acoustic power are relatively different from those that minimize the mean drag.

Introduction

The use of optimization for aerodynamic design is reported many times in the literature. When the physics of the problem is not well defined or too complex to be fully predicted, such as in most fluid mechanics applications, it is clear that optimization is the most direct way to define the best parameters under a set of criteria and weighted objectives. Although being fairly represented with different test cases and conditions, the reported results are restricted to the use of physical models under severe restrictions (turbulence models, steady flow) and approximations for the response surfaces. Additionally, there is not much accounting for the aeroacoustics behavior of the flow.

In that sense, we may highlight two aspects associated with the interaction with a body with a flow: noise and vibration. Those two major issues 1 Corresponding author: florent.margnat@univ-poitiers.fr in modern engineering have a tremendous effects in health and the occupation of the urban space. [START_REF] Lighthill | On sound generated aerodynamically i. general theory[END_REF] In this context, the comprehension and discussion of adapted optimization techniques for aerodynamics and aeroacoustics fulfills industrial and environmental demands, specially on the transports field.

Apart of classical derivative based optimizers,
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meta-heuristic techniques work with the objective function being a black box. No previous knowledge of the behavior of the function or the response surface must exist in order to achieve a converging point, only the evaluation of point-wise calcu-30 lations. Most interesting aspect of this kind of optimizer is the capability to be set to find global extrema and in general, easy implementation and parallel evaluation. Most of those optimizers are a reproduction of 35 a natural phenomenon, such as the Darwin's theory of biological evolution (Genetic Algorithms [START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF] -GA, Differential Evolution [START_REF] Storn | Differential evolution -a simple 745 and efficient heuristic for global optimization over continuous spaces[END_REF] -DE) and the social behavior of animals (Ant Colony Optimization [START_REF] Dorigo | Ant system: Op-750 timization by a colony of cooperating agents[END_REF] -ACO, Particle Swarm Optimization [START_REF] Kennedy | Particle swarm optimization[END_REF] -PSO).

Many previous uses of this family of optimizers in the field of aerodynamics is found on the literature, we highlight some recent articles: the shape optimization of high-speed trains of Krajnovic [START_REF] Krajnovic | Shape optimization of high-speed trains for improved aerodynamic performance[END_REF]; the optimization of wings of Praveen and Duvigneau [START_REF] Praveen | Low cost pso using metamodels and inexact pre-evaluation: Application to aerodynamic shape design[END_REF], the aerodynamic and aeroacoustic optimization of an extended Ahmed body of Beigmoradi et al. [START_REF] Beigmoradi | Multi-770 objective aero acoustic optimization of rear end in a simplified car model by using hybrid robust parameter design, artificial neural networks and genetic algorithm methods[END_REF]; and the high speed train nose optimization of Yao and al. [START_REF] Yao | Parametric design and optimization of high 780 speed train nose[END_REF]. Study object of this paper are bluff bodies, a category of geometries common in many applications and of great interest in academic context once they can be a test case for turbulence, aeroacoustics and instability analysis. A geometry can be considered optimal for presenting either the minimum (reduced noise and fatigue) or the maximum (for energy harvesting) force oscillations. From the authors' knowledge, the full description of a bluff body wake at low Reynolds remains unclosed despite the effort of many authors along the history [START_REF] Williamson | Vortex dynamics in the 785 cylinder wake[END_REF][START_REF] Roshko | Perspectives on bluff body aerodynamics[END_REF].

As far as aeroacoustics or vibration are targeted, the description of the unsteady phenomena within the flow is requested. However, such description at the regimes of most of the engineering applications needs too much computational effort, which prevents hundreds simulations, necessary for the optimization process, to be conducted without any modeling strategy. In the present approach, the numerical estimation of the objective function relies on unsteady simulations of bluff body flows in the 2D, laminar regime. Indeed, even at high Reynolds numbers (excepted around the drag crisis) the vortex shedding is the highly emerging element in the acoustic spectrum ( [START_REF] King | An experimental study of sound generated by flows around cylinders of different cross-section[END_REF][START_REF] Samion | Aerodynamic sound from a square 805 cylinder with a downstream wedge[END_REF], see also [START_REF] Becker | Flowinduced sound of wall-mounted cylinders with different geometries[END_REF]). Therefore, the laminar flow is considered as a good representation of the global mode of the wake which is relevant regarding acoustics and which will persist at higher Reynolds number. However, broadband components, as well as its relative level with respect to the tonal components, cannot be included in the present approach.

The direct numerical solution of the incompressible Navier-Stokes equations uses the Immersed Boundary Method (IBM), modeling the no-slip condition with an external force field [START_REF] Goldstein | Modeling a noslip flow boundary with an external force field[END_REF]. Due to its flexibility, it's mostly used for simulations of complex geometries and of fluid-structure interaction [START_REF] Peskin | The immersed boundary method[END_REF]. An application of IBM in an aeroacoustic context was conducted in [START_REF] Margnat | Noise radiated 825 by flow impingement on a flat plate using DNS with a virtual boundary method[END_REF]. The interest of applying it for the optimization of static and relatively simple shapes remains in the fact that modifying the geometry is a simple task and re-meshing or mesh deformation steps, such as the spring analogy method [START_REF] Degand | A three-dimensional torsional spring analogy method for unstruc-830 tured dynamic meshes[END_REF] or radial functions interpolation [START_REF] De Boer | Mesh deformation based on radial basis function interpolation[END_REF], 95 are not necessary. The acoustic calculations are based on an hybrid method: the aerodynamic solution is used as an input for a model based on Curle's development [START_REF] Curle | The influence of solid boundaries upon aerodynamic sound[END_REF] of Lighthill's acoustical analogy [START_REF] Lighthill | On sound generated aerodynamically i. general theory[END_REF]. As only an explicit scalar formula is used to 100 estimate the acoustic power of each geometry, the aerodynamic solution is the most expensive element of the optimization framework, which is based on a PSO routine.

The paper is organized as follows. Section 2 is 105 dedicated to describing the methodology of the numerical solver for the aerodynamic and acoustic fields, the optimization technique and a study of its settings and the test case geometry. Section 3 contains the results of the application of the pro-110 posed framework. Final remarks and perspectives conclude the document.

Methodology

Acoustic model

As the criterion for optimizing the total, tonal 115 noise emission by the flow over a body, the acoustic power W is selected. From Curle integral solution [START_REF] Curle | The influence of solid boundaries upon aerodynamic sound[END_REF] in the frequency domain, assuming a compact source, considering only the first non-vanishing modes of the Fourier 120 transform of the acoustic intensity and neglecting the influence of the motion in the observer domain, an analytical expression was derived by [START_REF] Margnat | Hybrid prediction of the aerodynamic 860 noise radiated by a rectangular cylinder at incidence[END_REF] as:

W " π 16 ρ 0 U 3 8 dStM 2 p2C 1 D 2 `C1 L 2 q (2.1)
where W is the acoustic power (integral of the acoustic intensity over an observer circle of arbi- 

C D " F 1 1 2 ρ 0 U 2 8 d C L " F 2 1 2 ρ 0 U 2 8 d (2.2)
where F 1 and F 2 are the components of the aerodynamic effort on the directions y 1 and y 2 , respectively, as displayed on Figure 1.

U 1 ; ½ 0 d y 1 y 2 L F 1 F 2 Figure 1: Problem definition.
Since ρ 0 U 3 8 d represents the reference power (by unit length) supplied by the incoming flow, all results presented on this article are for the non-140 dimensional acoustical power W a , quantifying an acoustic efficiency:

W a " W {ρ 0 U 3 8 d (2.3) 
Once all the simulations are incompressible, the Mach number is chosen arbitrarily. The value M " 0.1 is set, consistently with the assumptions 145 of the model. This quantity is the only acoustical evaluation performed for every geometry. It's interesting to analyze the obstacle in terms of acoustic emission as this combines the influence of both the Strouhal and the fluctuations of the aerodynamic 150 efforts.

Aerodynamic solver

The flow is numerically predicted by solution of the incompressible Navier-Stokes equation in 2D. The numerical code uses a 6 th -order, compact centered finite difference scheme for the evaluation of space derivatives, and a 3 rd -order Runge-Kutta time-marching scheme. That solver is described in details in [START_REF] Laizet | High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy[END_REF].

Solid domain is modeled by the IBM method 160 where a forcing term f is added to the momentum equation [START_REF] Goldstein | Modeling a noslip flow boundary with an external force field[END_REF][START_REF] Margnat | Behaviour of an immersed boundary method in unsteady flows over sharp-edged bodies[END_REF]:

Bu Bt `uj Bu i By j " ´B By j rpδ ij ´τij s `f f py, tq " ´ pyq " ω 2 n ż upy, tqdt `2ζω n upy, tq  (2.4)
where, ω n is the natural frequency and ζ is the damping coefficient of the second order controller that forces a null velocity everywhere is non zero.
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On this work, the IBM coefficients are ω n " 50 and ζ " 1, based on [START_REF] Margnat | Behaviour of an immersed boundary method in unsteady flows over sharp-edged bodies[END_REF]. Selection of the solid and fluid domains is based on the position of each node:

" 1 (forced grid points) if the node is inside the analytical contour 170 and " 0 elsewhere, as illustrated by the circles and triangles in the Figure 2 a). In the current work, there is no interpolation of the forcing term for refining the boundaries.

Although the easy utilization, it imposes a limi-175 tation in the geometrical precision of the curves as big as the cells size as can be seen on Figure 2. For the chosen refinement, more details on Appendix A.2, there are 26 cells in a distance of length 1d.

In the present context, the IBM also yields a sim-180 ple way to estimate the aerodynamic effort, through volume integral of the source term f over the solid domain, as derived in [START_REF] Margnat | Hybrid prediction of the aerodynamic 860 noise radiated by a rectangular cylinder at incidence[END_REF]. The Cartesian grid is uniform streamwise, while, in the transverse direction, it is stretched from the 185 body center, the later being taken as the origin of the reference frame. Free-slip conditions are set at the lateral boundaries of the computational domain, while a convection condition is set outflow.

Once all the simulations are done in 2D, it is pos-190 sible that the flow for some specific geometries is already tridimensional. These effects are not taken in account in the simulation. The presented values are for simulations with Reynolds number Re " U 8 d{ν of 150, being the obstacle's total height d 195 the characteristic length and ν the kinematic viscosity. That regime ensures unsteadiness for all the bodies with length smaller than 3d. Moreover, it is a standard value from literature, with, for instance, direct noise computation for circular [START_REF] Inoue | Sound generation by a twodimensional circular cylinder in a uniform flow[END_REF] and rect-200 angular [START_REF] Inasawa | Sound generation in the flow behind a rectangular cylinder of various aspect ratios at low mach numbers[END_REF] cylinders.

Regarding the grid, a careful convergence study has been conducted for generic shapes, in order to obtain a fruitful trade-off between low estimation time of the unsteady flow statistics and errors. In-205 deed, the objective here is to correctly describe the influence of the body shape, whose variety causes a large range of reported aerodynamic coefficients. Thus, based on the tests reported in Appendix A. The initial condition is pu 1 , u 2 q " pU 8 , 0q everywhere. After the transient during which the velocity goes to zero in the solid domain and the wake is established, the periodic flow is obtained. The optimization process requires that the simulation for a given geometry stops after convergence without human intervention. The definition of a criterion based on the aerodynamic coefficients convergence (for instance, less than 1% variation between two subsequent periods) was hardly found as universal for all the geometries. A constant, large enough number of iterations was preferable, thus, for every simulation, the physical time is about 360d{U 8 , corresponding to 50,000 timesteps ∆t " 0.0072d{U 8 , and about 50 lift periods.

With such settings, a single simulation of one 230 body shape is completed within two hours, enabling about thirty runs to be conducted successively within three days. This is the starting point when an optimization procedure is planed, requesting several objective function estimations. 

Parametrized geometry

Now that the objective function computation has been described for a given geometry, the next step in the design of the optimization process is the space of parameters describing how the geometry 240 can vary. In order to be consistent from the aerodynamic point of view, the blocking height, d, of the body is kept constant and is the reference length of the problem. Also, except at the boundaries of the parameter space, second-order continuity is de-245 sired so that acceleration of fluid particles be finite. Moreover, focusing on the influence of shape on the acoustic efficiency, only symmetric bodies without incidence are considered, avoiding consideration about mean lift, which is null by construction. Fi-250 nally, although some interesting solutions could be got by concave shapes, these would form cavities, thus greatly complicating the aeroacoustic problem through possible acoustic feedbacks and whistling, in particular as the Reynolds number is increased.
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That is why the present study is restricted to convex shapes.

A first parameter strongly influencing both the mean and unsteady flow is the aspect-ratio L{d. Once it is fixed, this form a rectangle that circum-260 scribes the body. Within this, the next relevant parameter is the position of the maximum cross section. Here, this is controlled by k, such that the maximum cross section is at kL. Finally, one may want to adjust the curvature of the front part 265 and the back part separately. For that purpose, two parameters are introduced: j F and j B , allowing to change continuously from a lozenge (j

B = j F = 0) to a rectangle (j B = j F = 1.0).
Accounting for all of these aerodynamic and geo-270 metrical constraints, the generic shape used in this optimization study is built from 4 Bézier curves in each hemisphere, two quadratic at the leading and trailing end, and two cubic connected at the main cross section. The full description of the geometry 275 is at the Appendix B.1. Figure 3 illustrates some of the geometries that can be obtained varying k, j B and j F . For the sake of completeness, note that half an ellipse is drawn when j B or j F equals ? 2 ´1. With the use of IBM, there is no need to re-mesh after every parameters modification. The mesh is a Cartesian grid that is unchanged and independent of the geometry and, for every evaluation, only the array pyq in Equation 2.4 is updated.

j F 2 [0.0, 1.0] k = 0.50 j B = 0.50 j F = 0.30 k 2 [0.0, 1.0] j B = 0.30 j F = 0.50 k = 0.50 j B 2 [0.0, 1.0]

Optimization method

Optimization is performed using the Particle Swarm Optimization. Introduced by Kennedy and Eberhart [START_REF] Kennedy | Particle swarm optimization[END_REF], it mimics the social behavior of a flock of animals (originally birds) when they look for a common objective, such as food.

Consider a swarm composed by n agents (also called particles), placed arbitrarily on a design space of dimension D. A random initial velocity is defined for every agent and the objective function is calculated for all of them. The coordinates of best result for the group of agents in the first iteration is defined as g i , for i " 1, ..., D. The position at the following iteration pT `1q is a function of the distance of each particle from its own best (p i -x i,T ), the distance from the swarm's best (g i x i,T ), and its current velocity (v i,T ):

" v i,T `1 " c w v i,T `c1 r 1 pp i ´xi,T q `c2 r 2 pg i ´xi,T q x i,T `1 " x i,T `vi,T `1 (2.5
) where c w is the inertial factor (later introduced by Shi and Eberhart [START_REF] Shi | A modified particle swarm optimizer[END_REF]), that regulates the influence of previous velocity on the particle movement, c 1 and c 2 are the cognitive and social factor, respectively, that represents the influence of the distance to the personal and the swarm's best fitness location, r 1 and r 2 are normally distributed random number between 0 and 1. The function evaluation is performed and the position of personal and swarm bests are updated. Those steps are repeated iteratively until the stopping criteria is reached (maximum number of iterations or value of error, for example).

In the present application, when the particles 315 reach outside of the design space, they are simply repositioned to the limits without any modification on the velocity. More elaborated strategies are reported on the literature.

The gbest topology (communication structure) is 320 used here, meaning all particles are aware of the personal best of every member of the swarm. The convergence is faster but the design space is not explored as much as for other topologies where information is restricted to subgroups of particles.
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The version of PSO used on this work is very close to the canonical due to its simplicity and robustness. Many improvements have been made to the technique and the reader is invited to look at [START_REF] Poli | Particle swarm optimization[END_REF] for an extensive description. A description of 330 the used environment is on the following section.

Optimization framework

The optimization is implemented in Python, while the aerodynamic solver is based on Fortran. As the objective function requires the resolution 335 of the unsteady Navier Stokes equations, the considered result is derived from the statistics of the last complete flow cycle that was simulated, based on the two final peaks on the lift signal (for this regime, the aerodynamic efforts are clean sinusoidal

340 signals).
Each simulation is single cored, and for every iteration, the n agents are evaluated simultaneously in a cluster. As illustrated on Figure 4, the parallelism is done using the MPI standard with the 345 package mpi4py [START_REF] Dalcín | Mpi for python: Performance improvements and mpi-2 extensions[END_REF]. For 36 particles (that means 36 simultaneous simulations) the calculation time for each geometry increases from 2 hours to about 3 hours on the regional high-performance computing facility. This imperfect speed-up may be due to 350 memory access issues.

Convergence of the swarm could be accelerated using information acquired by other particles in the 

#n

Figure 4: Optimization framework. For a given iteration, the geometrical parameters of the particles are scattered into n MPI process using mpi4py method scatter, where comm is the main communicator. After the simulations are completed, data is sent to the main process using the method gather, the best local and global position are updated and the particles are moved if there isn't swarm convergence or the maximum number of iterations is not reached.

current iteration [START_REF] Clerc | Particle Swarm Optimization[END_REF]. However, this can not be implemented here because of the parallel implementation. Which leads the best swarm's position and each particle status (personal best, velocity and position) to be updated only after a complete iteration.

As the geometry is discretized to a number of rectangular elements based on their coordinates in a Cartesian mesh, small variations on the geometrical parameters do not affect the simulated geometry. For the size element used in this work (see Appendix A.2), the minimum sensibility is of 0.001 for any parameter. Therefore, all the inputs are rounded when calling the Navier Stokes solver (the value is unchanged in the optimization routine). In order to avoid unnecessary calls, if the same set of parameters has been used before in the optimization, the previously calculated value is considered and the simulation is not performed. At the final iterations, as the swarm converges, the number of actual function evaluations per iteration is highly reduced, specially for a 2D search space.

As discussed by many authors, choosing the optimization parameters is the main difficult for the use of a meta-heuristic optimizer such as PSO [START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Poli | Particle swarm optimization[END_REF][START_REF] Bonyadi | Particle swarm optimization for single objective continuous space problems: A review[END_REF]. Even though convergence can be achieved based on values in the literature, they are mostly adapted for solving hard problems [START_REF] Liu | Order-2 stability analysis of particle swarm optimization[END_REF]. In order to find parameters adapted to the present context (the ones that result in a small number of objective function evaluations/iterations), empirical tests are prepared regarding response surfaces 385 and performances.

Test Response Surfaces

Once the general shape of the objective functions is known, the optimizer's parameters can be better defined such as to avoid unnecessary steps of explo-390 ration or exploitation. Discrete response surfaces are prepared with the simultaneous variation of 2 of the 4 geometrical parameters, as listed on Table 1; the tested points are equally spaced. The production of those surfaces shown in Figure 5 is 395 of relatively low time cost, but this kind of analysis is only reasonable for domains with low number of dimensions. The surfaces are not used for the production of interpolation functions of any kind.

For the evaluated set of geometrical parameters, 400 only one minimum and one maximum are noticed in the tested domain (resembling the surfaces presented by [START_REF] Krajnovic | Shape optimization of high-speed trains for improved aerodynamic performance[END_REF] in an aerodynamic optimization). It is assumed that a similar behavior is present when all the variables are analyzed simultaneously, with 405 zero to a few local minima. The gbest topology suits these type of function and the influence of the settings in the final result is small. Empirical tests are thus performed for known functions with those characteristics, allowing to find settings adapted to the present context. This study is performed with those functions because of the cheap evaluation and by the fact that once the value and the position of the minimum are previously defined, the performance of the optimizer is evaluated based on the expected final result and the rate of success of the optimization can be measured.

Performance study

From the observed discrete response surfaces, the Michalewicz test function [START_REF] Yang | Engineering Optimization: An Introduction with Metaheuristic Applications[END_REF] at low dimension is used as test case for the selection of the optimizer parameters. An unimodal version is also proposed, in 2 and 3 dimensions. Both functions are presented on Table 2. Stepness factor m is set to 10 for the original function so that the tests also contemplate very localized minima. The factor m equals 1 for the modified version.

Performance maps are produced with multiple values of the cognitive and the social factors: 19 values of c 1 and c 2 (total of 361 combinations) in (0.0; 2.5); and the inertia factor is maintained, c w " 0.6.

Since the chosen optimization is an stochastic technique, a total of N = 10,000 optimization runs are performed for each pair of values within the set of parameters and the statistics of the obtained distributions are used to represent the influence of the factors. For those analyses, a number of 25 (2D) or 27 (3D) particles are used and their initial positioning is a Cartesian mesh of equally spaced elements points (5 ˆ5 or 3 ˆ3 ˆ3). As the function optima are known, the optimizations are stopped when the absolute difference of it with the global best is smaller than 0.001. The maximum number of iterations is fixed at T max " 200. If the final best is not within the range of precision, the run is considered a failure. As the number of total iterations is restrictive, a high rate of failure may not be solely caused by a bad choice of parameters. However, for the intended use of the optimization in this article, the selected maximum value is already beyond the 450 desirable number of iterations, in a sense that, a successful but long run is unfeasible.

The results are presented on Figure 7 with the average number of function evaluations in the optimization for the total number of runs, and the 455 failure rate (number of runs that did not found the global best divided by N ) for every tested pair of parameters. In all 3 configurations, the cognitive factor (c 1 ) has low impact in the performance, what is probably due to the topology (every particle has 460 the access to the best result of the complete swarm). A good trade off of function evaluations and small failure rate shall be obtained on the center of the map (about 1200 evaluations for Michalewicz in 2D, 250 for modified Michalewicz in 2D and 450 for 465 modified Michalewicz in 3D). Based on those results, the parameters for the optimization are chosen as c w " 0.6 and c 1 " c 2 " 1.2, values within the stability regions proposed in [START_REF] Trelea | The particle swarm optimization algorithm: convergence analysis and pa-920 rameter selection[END_REF] and [START_REF] Liu | Order-2 stability analysis of particle swarm optimization[END_REF] and fairly consistent even for harder problems than those we 470 are dealing with (such as Michalewicz).

Considering the results for the modified Michalewicz in 3D, the configuration that most resembles the expected objective functions (single minimum, more than 2 dimensions), the number 475 of iterations for achieving the optimum with the selected factors is about 20 (the average number of functions evaluations divided by the number of particles).

Similar technique is applied for the study of the 480 number of agents to be selected. For a number of particles from 1 to 40, placed on the search space using a Latin Hypercube Sampling (LHS), the same 10,000 runs are evaluated. The obtained evaluations of mean number of function evaluations, nor-485 malized number of iterations (mean number of iterations necessary to convergence divided by the max number of iterations) and rate of success (number of runs that converged divided by the total number of runs) are presented on Figure 8.
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It is noted that, for a good success rate at a tenable number of iterations (less than 30, T {T max " 0.15), at least 30 particles must be used. For the modified Michalewicz, after 20 particles, the increase in the number of particles does not affect the 495 success rate. According to those result, the following optimizations are performed with 36 particles. 

Results

The optimization procedure presented in the previous section is now applied to the unsteady flows over obstacles.

Several optimizations are performed for 3D design space (j F , j B and k). The aspect ratio is either fixed or constrained to obtain a selected cross section surface or perimeter. The 2 later properties are calculated via the discrete sum of surface and length elements of each Bezier arc (2000 per arc). As both quantities are monotonic laws of L, bisection method is applied for each particle in order to obtain the AR that corresponds to the desired surface or contour.

Optimizations were performed in 4D, using AR as a parameter. However, the influence of the length of the obstacle surpasses the remaining geometrical parameters in such a way that all the opti-515 mizations are rapidly reduced to 3D, so these runs are not presented here. The swarm converged to the maximum L when minimum drag or acoustic power were aimed.

The search space boundaries are the parameters 520 limits issued from the definition of the geometry, what traduces to the design space r0; 1s 3 . The starting points of the particles are the nodes of an equally distributed rectangular grid of the design space (4 ˆ3 ˆ3 nodes).
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Although several other cases were evaluated, only the results for minimum mean drag and acoustic power are presented in details for conciseness. Other results are evoked in the following sections 3. The length of L " 1.5d is chosen to avoid the possible peaks of lift fluctuation at reduced aspect ratio, as the one reported by Inasawa et al. [START_REF] Inasawa | Sound generation in the flow behind a rectangular cylinder of various aspect ratios at low mach numbers[END_REF] for a rectangular section. When the length is not fixed, only the shapes that present either the surface or the perimeter of the circular section are considered. 

AR

min

C D min W a 1.5 # 1 # 4 AR for S " π{4 d 2 # 2 # 5 AR for C " πd # 3 # 6
The convergence of the swarm is illustrated by Figure 9. For all runs, the final best is found be-540 fore 25 iterations. As it can be seen on the evolution of the mean velocity (mean of the velocity norm of all the members of the swarm in an specific iteration), the convergence is fast but there was not enough time for the swarm to arrive, in aver-545 age, to the geometrical resolution of the calculation (limited to a variation of 0.001 of any parameter) based on the CFD mesh refinement. However, the small variation of the best result infers that further analysis would not give relevant improvements in 550 the results. The total reduction of the cost function from the initial evaluations is lower than 10%, specially for the mean drag (optimizations 1 to 3), what may be explained by the use of a relatively large number of particles for such reduced number 555 of dimensions, condition that results in a significant knowledge of the design space even at the initial iterations. Running the optimization procedure with a smaller number of particles (12) revealed lower computational time but the solution was depreci-560 ated (slightly higher W a ). That latter feature may be also linked to the topology with full communication between particles.

Despite the small gain for the selected objective functions, the advantages of performing the opti- icantly different from the ones of the initial best (smaller response obtained at the starting positions), as presented by the euclidean distance of those points listed in Table 4, recalling that the maximum possible distance is of ? 3. The number of evaluations of the objective function to achieve a similar precision without the use of optimization would be of 1000 3 . The geometrical and aeroacoustic results are discussed in the next sections. Simulations of ellipses at similar lengths are also performed and serve as reference for the optimal results. The obtained optimal shapes and the associated flows are illustrated on Figures 10 and11, respectively.

Minimum drag

The corresponding geometrical and aeroacoustic properties of the shapes minimizing drag are presented on Table 5. At fixed length, there is a small 585 reduction of the mean drag when compared to the elliptical section of same length (1.3%). There are reductions of 5.9% at equal surface and 0.9% at same total contour when compared to the circular cross section.
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At fixed length, the geometry can be interpreted as an inflated circle. Since the perimeter is a very restrictive constraint at fixed d, the obtained result at fixed C is not so different from the circle itself, what can be also noted on the slight variation of the 595 quantities. Even so, the optimization routine was able to successfully find a geometry with smaller drag.

For fixed cross-surface, the smallest drag is obtained with a drop shaped geometry. This result 600 can be justified by two phenomenons: as presented in other studies, the increase of the length is accompanied by a severe reduction of drag [START_REF] Inasawa | Sound generation in the flow behind a rectangular cylinder of various aspect ratios at low mach numbers[END_REF] in this regime, what can only be achieved at constrained S with sharp edges (j F or j B close to 0); also, there 605 is a smaller influence of the pressure at the downstream part of the geometry (depression zone after x " kL) due to the increased boundary angle, such as in the streamlined bodies, even if the flow sepa-number of iterations ration is still present. In this manner, it's possible that concave surfaces, that are by definition of the parametrization unreachable in our design space, would be able to further reduce the mean drag.

Minimum acoustic power

The corresponding geometrical and aeroacoustic properties of the shapes minimizing the acoustical emission are presented on Table 6. At AR = 1.5, the optimized section induces half the acoustic power of an ellipse of same length, that means -3.0 dB. Performance of the best shapes at fixed surface and contour are of -1.2 and -0.6 dB using the circular section as reference. At the 3 cases, there is an increase in the mean drag with respect to the ellipse, what emphasis the separation of the two phenomenons. A similar dispute between acoustic and drag minimization was also noted by Beigmoradi et al. [START_REF] Beigmoradi | Multi-770 objective aero acoustic optimization of rear end in a simplified car model by using hybrid robust parameter design, artificial neural networks and genetic algorithm methods[END_REF]. For all of the geometries minimizing W a , there is an increase in the bluffness of the bodies, that is increase of j B , followed by a slight modification in the topology of the wake. The vortex formation is pushed in the downstream direction when compared to the flow in the presence of ellipses of similar aspect ratio (see Figure 11).

Optimizations procedures searching the minimum lift fluctuation (C 1 L ) resulted in very similar geometries. One conclusion is, as expected, that the lift fluctuations are the major component of the acoustic emission at this regime, once it is at least one order higher than the drag contribution and the one that is most crucially influenced by the shape, notably when compared to the Strouhal.

It's important to note that the chosen reference for all comparisons (the elliptical section), is already fairly optimal if compared to the other possi-645 ble geometries that reside within the proposed design space and constraints (such as lozenges and triangles). Even so, there are reasonable gains, specially in terms of W a . In that manner of emphasizing the potential of such routines, optimizations are 650 performed for maximizing C D and W a , using the inverse of the correspondent quantity as cost function. The ratios between the associated extrema are presented at Table 7. The maximum W a is a backward facing triangle (k = 0, j B = 0), independently 655 of the constraint. Simultaneously, cross comparison is performed with the presented values concerning minimum drag and minimum acoustic power.

When geometries that minimize different quantities are confronted, their variance response to the 660 shape is once again highlighted. At fixed aspect ratio, for instance, the section that minimizes the drag produces 1.7 dB more noise than the min W a . For the opposite situation, ratio between the drag of the shape with min W a and the minimum drag, 665 3% difference in noted. Considering that the human perception can differentiate noise only after 1 dB of difference, one may imply that for the test case configuration, the mean drag optimization may be also sufficient for the acoustic point of view. However, 670 the restrictiveness of the performed study in terms of shape (constrained length L and fixed height d) and flow regime confines this conclusion.

The ratios between maximum and minimum behaviors show that even respecting a set of strict 675 continuity and geometrical constraints, the selected geometry can produce up to 8 dB more noise than a (a) 

(b) (c) (d) (e) (f) (g) (h)

Concluding remarks

Optimization techniques are largely used in engineering problems, what also globes aerodynamics. Although the numerous applications, the use is mainly associated with both strong flow hypothesis and surrogate models. On this work, an optimization framework based on parallel evaluations of the direct solution of Navier-Stokes equations and a single equation acoustic estimation based on Curle's analogy was reported. Simultaneously, results concerning the most common objective in the aerodynamic aspect, the mean drag, are confronted with the shapes obtained when the minimum aeroacoustic emission is searched.

The use of an stochastic optimization technique (PSO) is normally associated with an elevated number of function evaluations. As noted from the characteristics of the current response surface in contrast with the typical problems associated with the use of a meta-heuristic optimization routine, the conclusion is that they must not be ignored even without the use of surrogate models. The use of a preliminary study of the optimizer settings and 705 an optimized mesh allowed the use of such kind of methodology and to profit from its robustness. The flexibility and simplicity of the chosen parametrization, that resulted in a smooth low-dimension design space, were important factors for the represen-710 tativeness and the success of the performed optimizations. Moreover, the possibility to use a single mesh due to the application of an IBM technique must be highlighted.

A maximum decrease of 6% of the mean drag rel-715 atively to a similar elliptical section was achieved. Also, obtained results presented a reduction up to 3 dB when compared to ellipses of same length, behavior originated mainly from the reduction of lift fluctuations. Less noisy geometries are of increased 720 bluffness and, as its portrayed in previous publications, the aspect ratio surpassed all other geometrical parameters in terms of regulating the acoustic emission. Additionally, it must be emphasized that for all the tested constraints, the shape that has 725 minimum drag is different from the one that produces less noise. Thus, care must be taken in order to keep the W a reduced.

A large variation of the acoustic quantity is noted when both extrema (max and min) are compared. This behavior represents simultaneously the potential of the shape optimization in terms of acoustic emission, even at a such specific conditions, and the risk of ignoring the aeroacoustic behavior in engineering design. defining y 1,U , a downstream distance of 13d is selected for the final domain without major losses in the solution precision but reducing the number of calculation points. Based on this results, the final domain (used for all simulations presented in this article) has a total length of Y 1 " 25.31d and the geometry center is at y 1,C " 11.00d (that means y 1,U " 10.50d and y 1,D " 13.81d for a geometry of length L " 1d). Compared to the biggest domains that were tested, there is an average error of 0.8% for the mean drag, 2.2% for C 1 L , 11.9% for C 1 D and 0.6% for the Strouhal and a maximum local deviation of 2% for the mean velocity profiles.

Appendix A.2. Mesh convergence

A study of convergence in terms of mesh refinement is performed. The number of mesh points is modified by the same factor in both y 1 and y 2 directions, so the elements are simply scaled (note that mesh step changes affect the description of the geometry due to the use of the IBM).

For a better performance in the spectral solution of the Poisson equation, the number of points is chosen as a multiple of small prime factors + 1. For this study, the timestep physical duration of each simulation is modified to maintain numeri-1085 cal convergence. The results are presented at table A.11. Reference simulation (simulation 2 at table A.11) is the final configuration presented on previous section, within the following element size: (∆y 1 , min∆y 2 q " p0.002d, 0.001dq.

1090

From the performed tests, the factor 2 is considered reasonable (mesh 4). As demonstrated by the tests, the loss in geometrical precision is not followed by drastic modifications in the aerodynamic results. This behavior can be explained by the re-1095 duced Reynolds number used in this work. Final timestep duration is of ∆t = 0.0072 ˆd{U 8 . When compared to the most refined solution, the associated errors are: 1.2% for the mean drag; 2.3% for C 1 L ; 8.5% for C 1 D ; 0.4% for the Strouhal number; 1100 1% for the mean velocity profiles; and maximum local error of 8 ˆ10 ´3 ˆU8 for streamwise velocity RMS profiles. The use of a not so refined numerical setup is a compromise for a reduced calculation time of the 1105 aerodynamic estimations without major losses in precision, so that the optimization is viable. The total CPU time equals 13% of the one obtained with the initial mesh for simulating an equal physical time. As expected from the performed convergence studies, the chosen configuration results in aerodynamic quantities larger than the values reported in the literature. As can be noted on the graph of the Strouhal number as a function of the Reynolds number for the square section ( Note that such short obstacles are not in the design space of any of the optimizations performed here. The control points are placed so the final geometry shape respects the following geometrical constraints:

1. Length L and height d{2; 2. Symmetry in horizontal axis; 
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  trary radius in the far field), ρ 0 is the density in the propagation medium, U 8 is the upstream velocity, d its the main cross section. The Strouhal number St is based on U 8 , d, and the main frequency of lift fluctuations. Noting c 0 the sound velocity, 130 M " U 8 {c 0 is the Mach number. C 1 D and C 1 L are the period's root mean square (RMS) of the fluctuations of the drag and lift coefficients (per unit length):

Figure 2 :

 2 Figure 2: (a) Definition of fluid and solid domains based on nodes position, represented by the circles and triangles, respectively; the thick line is the analytical contour of the modeled shape; (b) Fluid (filled) and solid domains for the circular cylinder of radius d/2, analytical geometry is represented by the dashed line, for better visualization, the cells are centered on the nodes on this representation.
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Figure 3 :

 3 Figure3: Possible shapes for fixed aspect ratio (L{d " 1.5) and varying j F (left), k (center) and j B (right) between 0 and 1 (thickest curve is for the maximum value of the varying parameter).

Figure 5 :

 5 Figure 5: Discrete response surfaces for |C D | (left), C 1L (center) and Wa (right) for the 3 pairs of variables -for every case, the remaining geometrical parameters are fixed. The dots represent the coordinates of the calculated points; the up-pointing triangle is placed at the maximum level and the down-pointing triangle at the minimum.

Figure 6 :

 6 Figure 6: Test functions in 2D. For better visualization, the colormap is inversed from the rest of the images on this document

Figure 7 :

 7 Figure 7: Average number of function evaluations (top) and the failure rate (down). The up-pointing triangle is placed at the maximum level and the down-pointing triangle at the minimum.

Figure 8 :

 8 Figure 8: Influence of the number of particles for Michalewicz in 2D (right) and modified Michalewicz in 3D (left).

Figure 9 :Figure 10 :

 910 Figure 9: Convergence history: evolution of the normalized best (current best result divided by the final best) on the left and evolution of the mean velocity of the swarm (average of the velocity norm of all particles) on the right.

Figure 11 :

 11 Figure 11: Snapshots of instantaneous vorticity for optimized and canonical geometries: optimized geometry for minimum C D (a) and minimum Wa (b) at fixed length L{d " 1.5; optimized geometry for minimum C D (d) and minimum Wa (e) at fixed cross section area S " π{4 d 2 ; optimized geometry for minimum C D (f) and minimum Wa (g) at fixed contour C " πd; and ellipses of AR " 1.5 (c) and AR " 1.0 (h). The contour intervals are 0.4 U8{d and dashed lines represent negative values.

  ues while the downstream distance is fixed at y 1,D " 27.00d. The obtained mean drag, fluctuating lift and drag, and Strouhal number are presented in Table A.8 and Figure A.13. An horizontal, asymptotic behavior is noticed for each quantity, 1050 thus assessing convergence. An upstream distance of 11.00d (indicated with an arrow) is chosen as a good trade-off leading to a reduced calculation time; from the curves, the aerodynamic values to be obtained with this configuration are expected to 1055 be a overestimation.

Figure A. 14 :

 14 Figure A.14: Convergence of aerodynamic quantities as a function of the downstream distance. Arrows are placed at the length of the final mesh.

  Figure A.15.b), the error decreases for a more refined grid (mesh 2). For rectangular sections of different lengths, Figure A.15.d, there is an offset of the estimated lift fluctuation for the shortest shapes (AR < 0.5) for meshes 2 and 4 with respect to the literature data.

4 Figure A. 15 :

 415 Figure A.15: Validation of the final mesh with canonical geometries: (a) Strouhal number versus Reynolds number for the circular section cylinder; (b) Strouhal number versus Reynolds number for the square section cylinder; (c) drag coefficient versus Reynolds number for the circular section cylinder; and (d) lift coefficient RMS level versus aspect ratio for the rectangular section cylinder.
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 35 Tangency to the vertical axes at the beginning (M ) and end (Q) of the obstacle 4. Position, tangency and curvature continuities (C 0 , C 1 and C 2 ) at the connections of the 4 curves (for the exception when it's an edge -k, 1175 j B and/or j F are on their limits); Tangency at the end of arc u A/start of arc u B parallel to segment line M O; 6. Tangency to the horizontal axis at the end of

Figure B. 16 : 7 .

 167 Figure B.16: Scheme of the parametrized geometry. The shape is convex and circumscribed by the rectangle MNPQ of length L and height d{2. The form is completely defined by 5 parameters: L, d, j F , k and j B . As d is fixed on this work, the aspect ratio L{d is the only parameter affecting the rectangle.

Table 1 :

 1 Discrete response surfaces parameters.

	#	1	2	3
	L{d	1.00	r0.25; 1.75s r0.25; 1.75s
	k j F j B	0.50 p0.00; 1.00q p0.00; 1.00q	r0.00; 1.00s ? 2 ´1 ? 2 ´1	0.30 ? 2 ´1 r0.00; 1.00s
	points	15 ˆ15	16 ˆ11	16 ˆ11

Table 2 :

 2 Test functions.

	Function		Equation	Search space	Global minimum
	Michalewicz (m " 10)	D ř i"0	sinpx i qsinp	ix 2 i π q 2m	r0; πs 2	´1.8013 at r2.20319; 1.57049s
	mod. Michalewicz (m " 1)	D ř i"0	sinpx i qsinp	x 2 i π q 2m	r0; πs 2	´1.6819 at r2.07169s 2
	mod. Michalewicz (m " 1)	D ř i"0	sinpx i qsinp	x 2 i π q 2m	r0; πs 3	´2.5228 at r2.07169s 3

Table 3 :

 3 List of performed optimizations.

Table 4 :

 4 Comparison of initial and final best results.

	# initial best final best	distance
	1	-1%	0.136
	2	-6%	0.424
	3	-2%	0.174
	4	-7%	0.186
	5	-2%	0.473
	6	-8%	0.070

Table 5 :

 5 Geometrical and aeroacoustical quantities for minimum mean drag shapes and elliptical cylinders.

				min C D	min C D	min C D	ellipse	ellipse
				fixed AR	fixed S	fixed C	(AR " 1.0)	(AR " 1.5)
			j F	0.561		0.388	0.386	0.414	0.414
			j B	0.475		0.000	0.359	0.414	0.414
			k	0.519		0.277	0.526	0.500	0.500
			L{d	1.500		1.363	1.024	1.000	1.500
			|C D |	1.072		1.229	1.296	1.307	1.086
			C 1 L D ˆ10 1 C 1	0.143 0.025		0.327 0.037	0.333 0.156	0.338 0.157	0.166 0.031
			S t	0.182		0.164	0.191	0.190	0.183
			W a ˆ10 5	0.725		3.434	4.180	4.275	0.986
		1500				1
						0.8
	evaluations	500 1000				0.4 0.6	rate
						0.2
		0				0
		0	10	20	30	40
			number of particles	
		600				1
		500				0.8
	evaluations	400				0.4 0.6	rate
		300				0.2
		200				0
		0	10	20	30	40
			number of particles	
			average number of function evaluations
			number of iterations/max iterations
			success rate			

Table 6 :

 6 Geometrical and aeroacoustical quantities for minimum acoustic power shapes and elliptical cylinders.

		min W a	min W a	min W a	ellipse	ellipse
		fixed AR	fixed S	fixed C	(AR " 1.0)	(AR " 1.5)
	j F	0.656	0.833	0.520	0.414	0.414
	j B	0.603	0.329	0.483	0.414	0.414
	k	0.136	1.000	0.465	0.500	0.500
	L{d	1.500	0.815	0.933	1.000	1.500
	|C D |	1.107	1.377	1.311	1.307	1.086
	C 1 L D ˆ10 1 C 1	0.120 0.017	0.296 0.224	0.316 0.154	0.338 0.157	0.166 0.031
	S t	0.174	0.185	0.188	0.190	0.183
	W a ˆ10 5	0.492	3.209	3.699	4.275	0.986

Table 7 :

 7 Comparison of minimum and maximum results of optimized geometries constraint C D pmin Waq

		min C D	´1	Wapmin C D q min Wa	max C D min C D	´1	max Wa min Wa
	fixed AR	3%		1.7 dB	51%		16.5 dB
	fixed S	12%		0.3 dB	32%		7.9 dB
	fixed C	1%		0.5 dB	40%		9.3 dB
	optimized version. Since the weight of each aspect		
	is a function of the final application, the importance		
	of this comparison resides in exemplifying the risk		
	of not considering the acoustic aspects on product		
	design.					

Table A .

 A Figure A.13: Convergence of aerodynamic quantities as a function of the upstream distance. Arrows are placed at the selected value.

	1.10		|C D |		7.0E-4		C' D		0.118		C' L			0.190		St
					6.8E-4									0.186		
	1.06				6.5E-4				0.114							
														0.182		
	1.02				6.0E-4 6.3E-4				0.110					0.178		
	0.98	2.0	12.0 y 1;U =d	22.0	5.8E-4	2.0	12.0 y 1;U =d	22.0	0.106	2.0	12.0 y 1;U =d	22.0	0.174	2.0	12.0 y 1;U =d	22.0
												8: Upstream convergence test
										y 1,U {d	|C D |		C 1 L		C 1 D	St
										3.500	1.0954 0.1166 0.00070 0.189
										6.313	1.0286 0.1160 0.00062 0.179
										9.477	1.0074 0.1079 0.00059 0.176
										11.000 1.0031 0.1088 0.00059 0.176
										14.750 0.9982 0.1068 0.00058 0.175
										21.000 0.9962 0.1067 0.00058 0.175
										For the selected upstream distance of 11.00d, five
									downstream distances are simulated (see Table A.9,
									Figure A.14). Based on the same criteria used for

Table A .

 A 9: Downstream convergence test.

	y 1,D {d	|C D |	C 1 L	C 1 D	St
	7.000	1.0008 0.1135 0.00067 0.175
	12.313 1.0033 0.1100 0.00058 0.176
	17.000 1.0031 0.1088 0.00059 0.176
	27.000 1.0032 0.1088 0.00059 0.176
	32.000 1.0034 0.1089 0.00059 0.176

Table A .

 A 10: Final domain size.

	case	y 1,U {d	y 1,D {d	|C D |	C 1 L	C 1 D	St
	y 1,U,max	21.0000 17.0000 0.9962 0.1067 0.00058 0.1749
	y 1,D,max	11.0000 32.0000 1.0034 0.1089 0.00059 0.1756
	final domain 10.0000 13.3125 1.0080 0.1101 0.00065 0.1763
	Reynolds Re = 150, so the capacity to compare				
	geometries at fixed inlet conditions such as its per-				
	formed on the optimization is proven. The results				
	for 3 aerodynamic quantities are presented on Fig-				
	ure A.15 and compared to published values from				
	references listed on Table A.12.						

Table A .

 A 11: Mesh refinement.

				#	n 1	n 2 factor	|C D |	C 1 L	C 1 D	St
				1	1945 769 0.667 1.0094 0.1101 0.00066 0.1764
				2	1297 513 1.000 1.0080 0.1101 0.00065 0.1763
				3	973 385 1.333 1.0031 0.1076 0.00065 0.1767
				4	649 257 2.000 0.9970 0.1065 0.00060 0.1771
				5	487 193 2.667 1.0093 0.1129 0.00070 0.1758
					(a)					(b)
		0.20						0.17	
		0.19						0.16	
		0.17						0.15	
	St	0.11 0.13 0.14 0.16	40	90 exp. -Roshko 140 Re exp. -Norberg exp. -Hammache & Gharib num. -Barkley et al. num. -Pier num. -Posdziech & Grundmann 190 num. -Qu et al. current work -mesh 4	St	0.14 0.13 0.12	60	110	160 num. -Franke et al. Re num. -Robichaux et al. num. -Sharma & Eswaran 210 num. -Sen et al. current work -mesh 2 current work -mesh 4

Table A .

 A 12: List of sources for the final mesh and domain validation.

spanwise direction, and discretized in 649 ˆ257 nodes. The center of the geometry is at 11d from the inflow boundary, at the middle in the transverse direction.

This result assures the capacity of the chosen domain to represent the physics of the problem. Although the differences, the offset remains reasonable and, most importantly, the trends are kept for different configurations; that is, the same behavior of the reference values is maintained, what infers that comparing different shapes with this refinement is valid.

Acknowledgements

Computations have been performed on the supercomputer facilities of the Mésocentre de Calcul de Poitou Charentes.

Appendix A. Simulation time reduction

In order to reduce the simulation time for the realization of the optimization routines, two convergence studies are performed for domain size and mesh refinement. For both studies, unless otherwise stated, 40,000 timesteps are considered with a timestep physical duration of ∆t = 0.0042 ˆd{U 8 and a Reynolds number of Re = 150. The domain is discretized by mesh elements of dimensions ∆y 1 " 1.953 ˆ10 ´2d in the flow direction and variable transverse size, with ∆y 2 " 1.125 ˆ10 ´2d at the center (mesh is stretched from the body center [START_REF] Avital | Stretched cartesian grids for solution of the incompressible navier-stokes equations[END_REF]).

The presented aerodynamic quantities are the statistics of the last simulated flow period, defined by subsequent peaks of the lift signal. Indicated domain dimensions are normalized by the obstacle's total height d. The geometry is a streamlined 2D body described by an ellipse until kL and a 2nd degree polynomial downstream both connected with same tangent, with k " 0. Influence of upstream and downstream distance from domain limits are tested independently. As to maintain the size of the elements of the Carte-1040 sian mesh fixed, the number of elements is modified. For all configurations, the blockage ratio is fixed at 5% (reasonable blockage according to the results of Sohankar et al. [START_REF] Sohankar | Low-reynolds-935 number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition[END_REF]).

First test is performed for several upstream val-Appendix A.3. Validation Multiple flow configurations with the chosen domain and mesh properties are evaluated for canonical geometries.

Simulations are done for a range of Reynolds (B.1)

where p i are the n control points (y 1 , y 2 ) and B i , nptq are the Bernstein polynomial. A big advantage of this kind of curve for the use in aerodynamic and aeroacoustics contexts is the possibility to obtain any desirable level of continuity by appropriate 1155 choice of the order. More details on properties of those curves are also available on [START_REF] Maekawa | Shape Interrogation for Computer Aided Design and Manufacturing[END_REF].