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Abstract

A shape optimization procedure is presented. It is dedicated to the noise generated by obstacle flows.
The cost function is the acoustic power efficiency, which is derived directly from the fluctuations of the
aerodynamic force through for a single formula from the hypothesis of tonal noise. The force is estimated
from the direct solution of the 2D incompressible, unsteady flow in laminar regime over a convex symmetrical
obstacle without incidence. The no-slip condition at the boundary is assured by an Immersed Boundary
Method, that allows the use of the same mesh for all the geometries. The shape of the obstacle is defined
by 4 Bézier curves, constrained by second-order continuity leading to 4 degrees of freedom: the aspect
ratio, the position of the maximum cross section and two curvature parameters (up and downstream). The
optimization is performed via a Particle Swarm Optimization (PSO) routine. Several tests are performed
increasing complexity so that coefficients of the PSO be adjusted to the present response surface. There is
up to 16 dB of difference between the power efficiency of the extrema configurations for a fixed aspect ratio
(AR) and 8 dB for constrained surface or perimeter. For an AR of 1.5, the optimal shape leads to 3dB less
acoustic power than the ellipse of same AR. The shapes that minimize acoustic power are relatively different
from those that minimize the mean drag.

Keywords: aeroacoustics, airframe noise, shape optimization, Particle Swarm Optimization, Immersed
Boundary Method

1. Introduction

The use of optimization for aerodynamic design
is reported many times in the literature. When the
physics of the problem is not well defined or too
complex to be fully predicted, such as in most fluid5

mechanics applications, it is clear that optimization
is the most direct way to define the best parameters
under a set of criteria and weighted objectives. Al-
though being fairly represented with different test
cases and conditions, the reported results are re-10

stricted to the use of physical models under severe
restrictions (turbulence models, steady flow) and
approximations for the response surfaces. Addition-
ally, there is not much accounting for the aeroacous-
tics behavior of the flow.15

In that sense, we may highlight two aspects as-
sociated with the interaction with a body with a
flow: noise and vibration. Those two major issues

1Corresponding author: florent.margnat@univ-poitiers.fr

in modern engineering have a tremendous effects
in health and the occupation of the urban space.20

In this context, the comprehension and discussion
of adapted optimization techniques for aerodynam-
ics and aeroacoustics fulfills industrial and environ-
mental demands, specially on the transports field.

Apart of classical derivative based optimizers,25

meta-heuristic techniques work with the objective
function being a black box. No previous knowl-
edge of the behavior of the function or the response
surface must exist in order to achieve a converg-
ing point, only the evaluation of point-wise calcu-30

lations. Most interesting aspect of this kind of op-
timizer is the capability to be set to find global
extrema and in general, easy implementation and
parallel evaluation.

Most of those optimizers are a reproduction of35

a natural phenomenon, such as the Darwin’s the-
ory of biological evolution (Genetic Algorithms [1]
- GA, Differential Evolution [2] - DE) and the so-
cial behavior of animals (Ant Colony Optimization
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[3] - ACO, Particle Swarm Optimization [4] - PSO).40

Many previous uses of this family of optimizers in
the field of aerodynamics is found on the literature,
we highlight some recent articles: the shape opti-
mization of high-speed trains of Krajnovic [5]; the
optimization of wings of Praveen and Duvigneau45

[6], the aerodynamic and aeroacoustic optimization
of an extended Ahmed body of Beigmoradi et al.
[7]; and the high speed train nose optimization of
Yao and al. [8].

Study object of this paper are bluff bodies, a50

category of geometries common in many applica-
tions and of great interest in academic context once
they can be a test case for turbulence, aeroacous-
tics and instability analysis. A geometry can be
considered optimal for presenting either the mini-55

mum (reduced noise and fatigue) or the maximum
(for energy harvesting) force oscillations. From the
authors’ knowledge, the full description of a bluff
body wake at low Reynolds remains unclosed de-
spite the effort of many authors along the history60

[9, 10].
As far as aeroacoustics or vibration are targeted,

the description of the unsteady phenomena within
the flow is requested. However, such description at
the regimes of most of the engineering applications65

needs too much computational effort, which pre-
vents hundreds simulations, necessary for the op-
timization process, to be conducted without any
modeling strategy. In the present approach, the
numerical estimation of the objective function relies70

on unsteady simulations of bluff body flows in the
2D, laminar regime. Indeed, even at high Reynolds
numbers (excepted around the drag crisis) the vor-
tex shedding is the highly emerging element in the
acoustic spectrum ([11, 12], see also [13]). There-75

fore, the laminar flow is considered as a good rep-
resentation of the global mode of the wake which is
relevant regarding acoustics and which will persist
at higher Reynolds number. However, broadband
components, as well as its relative level with respect80

to the tonal components, cannot be included in the
present approach.

The direct numerical solution of the incompress-
ible Navier-Stokes equations uses the Immersed
Boundary Method (IBM), modeling the no-slip con-85

dition with an external force field [14]. Due to its
flexibility, it’s mostly used for simulations of com-
plex geometries and of fluid-structure interaction
[15]. An application of IBM in an aeroacoustic con-
text was conducted in [16]. The interest of apply-90

ing it for the optimization of static and relatively

simple shapes remains in the fact that modifying
the geometry is a simple task and re-meshing or
mesh deformation steps, such as the spring analogy
method [17] or radial functions interpolation [18],95

are not necessary. The acoustic calculations are
based on an hybrid method: the aerodynamic solu-
tion is used as an input for a model based on Curle’s
development [19] of Lighthill’s acoustical analogy
[20]. As only an explicit scalar formula is used to100

estimate the acoustic power of each geometry, the
aerodynamic solution is the most expensive element
of the optimization framework, which is based on a
PSO routine.

The paper is organized as follows. Section 2 is105

dedicated to describing the methodology of the nu-
merical solver for the aerodynamic and acoustic
fields, the optimization technique and a study of
its settings and the test case geometry. Section 3
contains the results of the application of the pro-110

posed framework. Final remarks and perspectives
conclude the document.

2. Methodology

2.1. Acoustic model
As the criterion for optimizing the total, tonal115

noise emission by the flow over a body, the acoustic
power W is selected.

From Curle integral solution [19] in the frequency
domain, assuming a compact source, considering
only the first non-vanishing modes of the Fourier120

transform of the acoustic intensity and neglecting
the influence of the motion in the observer domain,
an analytical expression was derived by [21] as:

W “
π

16
ρ0U

3
8dStM2p2C 1D

2 ` C 1L
2q (2.1)

where W is the acoustic power (integral of the
acoustic intensity over an observer circle of arbi-125

trary radius in the far field), ρ0 is the density in the
propagation medium, U8 is the upstream velocity,
d its the main cross section. The Strouhal num-
ber St is based on U8, d, and the main frequency
of lift fluctuations. Noting c0 the sound velocity,130

M “ U8{c0 is the Mach number. C 1D and C 1L are
the period’s root mean square (RMS) of the fluc-
tuations of the drag and lift coefficients (per unit
length):

CD “
F1

1
2ρ0U2

8d
CL “

F2
1
2ρ0U2

8d
(2.2)
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where F1 and F2 are the components of the aero-135

dynamic effort on the directions y1 and y2, respec-
tively, as displayed on Figure 1.

U1; ½0

dy1

y2

L

F1

F2

Figure 1: Problem definition.

Since ρ0U
3
8d represents the reference power (by

unit length) supplied by the incoming flow, all
results presented on this article are for the non-140

dimensional acoustical power Wa, quantifying an
acoustic efficiency:

Wa “W {ρ0U
3
8d (2.3)

Once all the simulations are incompressible, the
Mach number is chosen arbitrarily. The value
M “ 0.1 is set, consistently with the assumptions145

of the model. This quantity is the only acoustical
evaluation performed for every geometry. It’s inter-
esting to analyze the obstacle in terms of acoustic
emission as this combines the influence of both the
Strouhal and the fluctuations of the aerodynamic150

efforts.

2.2. Aerodynamic solver
The flow is numerically predicted by solution of

the incompressible Navier-Stokes equation in 2D.
The numerical code uses a 6th-order, compact cen-155

tered finite difference scheme for the evaluation
of space derivatives, and a 3rd-order Runge–Kutta
time-marching scheme. That solver is described in
details in [22].

Solid domain is modeled by the IBM method160

where a forcing term f is added to the momentum
equation [14, 23]:

Bu

Bt
` uj

Bui
Byj

“ ´
B

Byj
rpδij ´ τijs ` f

fpy, tq “ ´εpyq

„

ω2
n

ż

upy, tqdt` 2ζωnupy, tq



(2.4)

where, ωn is the natural frequency and ζ is the
damping coefficient of the second order controller
that forces a null velocity everywhere ε is non zero.165

On this work, the IBM coefficients are ωn “ 50 and
ζ “ 1, based on [23].

Selection of the solid and fluid domains is based
on the position of each node: ε “ 1 (forced grid
points) if the node is inside the analytical contour170

and ε “ 0 elsewhere, as illustrated by the circles
and triangles in the Figure 2 a). In the current
work, there is no interpolation of the forcing term
for refining the boundaries.

Although the easy utilization, it imposes a limi-175

tation in the geometrical precision of the curves as
big as the cells size as can be seen on Figure 2. For
the chosen refinement, more details on Appendix
A.2, there are 26 cells in a distance of length 1d.

In the present context, the IBM also yields a sim-180

ple way to estimate the aerodynamic effort, through
volume integral of the source term f over the solid
domain, as derived in [21].

The Cartesian grid is uniform streamwise, while,
in the transverse direction, it is stretched from the185

body center, the later being taken as the origin of
the reference frame. Free-slip conditions are set
at the lateral boundaries of the computational do-
main, while a convection condition is set outflow.

Once all the simulations are done in 2D, it is pos-190

sible that the flow for some specific geometries is
already tridimensional. These effects are not taken
in account in the simulation. The presented values
are for simulations with Reynolds number Re “
U8d{ν of 150, being the obstacle’s total height d195

the characteristic length and ν the kinematic vis-
cosity. That regime ensures unsteadiness for all the
bodies with length smaller than 3d. Moreover, it is
a standard value from literature, with, for instance,
direct noise computation for circular [24] and rect-200

angular [25] cylinders.
Regarding the grid, a careful convergence study

has been conducted for generic shapes, in order to
obtain a fruitful trade-off between low estimation
time of the unsteady flow statistics and errors. In-205

deed, the objective here is to correctly describe the
influence of the body shape, whose variety causes
a large range of reported aerodynamic coefficients.
Thus, based on the tests reported in Appendix A.2,
the domain is set 25d long streamwise and 20d in210

spanwise direction, and discretized in 649 ˆ 257
nodes. The center of the geometry is at 11d from
the inflow boundary, at the middle in the transverse
direction.
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Figure 2: (a) Definition of fluid and solid domains based
on nodes position, represented by the circles and triangles,
respectively; the thick line is the analytical contour of the
modeled shape; (b) Fluid (filled) and solid domains for the
circular cylinder of radius d/2, analytical geometry is repre-
sented by the dashed line, for better visualization, the cells
are centered on the nodes on this representation.

The initial condition is pu1, u2q “ pU8, 0q every-215

where. After the transient during which the veloc-
ity goes to zero in the solid domain and the wake
is established, the periodic flow is obtained. The
optimization process requires that the simulation
for a given geometry stops after convergence with-220

out human intervention. The definition of a cri-
terion based on the aerodynamic coefficients con-
vergence (for instance, less than 1% variation be-
tween two subsequent periods) was hardly found
as universal for all the geometries. A constant,225

large enough number of iterations was preferable,
thus, for every simulation, the physical time is
about 360d{U8, corresponding to 50,000 timesteps
∆t “ 0.0072d{U8, and about 50 lift periods.

With such settings, a single simulation of one230

body shape is completed within two hours, en-
abling about thirty runs to be conducted succes-
sively within three days. This is the starting point
when an optimization procedure is planed, request-
ing several objective function estimations.235

2.3. Parametrized geometry

Now that the objective function computation has
been described for a given geometry, the next step
in the design of the optimization process is the
space of parameters describing how the geometry240

can vary. In order to be consistent from the aerody-
namic point of view, the blocking height, d, of the
body is kept constant and is the reference length
of the problem. Also, except at the boundaries of
the parameter space, second-order continuity is de-245

sired so that acceleration of fluid particles be finite.
Moreover, focusing on the influence of shape on
the acoustic efficiency, only symmetric bodies with-
out incidence are considered, avoiding consideration
about mean lift, which is null by construction. Fi-250

nally, although some interesting solutions could be
got by concave shapes, these would form cavities,
thus greatly complicating the aeroacoustic problem
through possible acoustic feedbacks and whistling,
in particular as the Reynolds number is increased.255

That is why the present study is restricted to con-
vex shapes.

A first parameter strongly influencing both the
mean and unsteady flow is the aspect-ratio L{d.
Once it is fixed, this form a rectangle that circum-260

scribes the body. Within this, the next relevant
parameter is the position of the maximum cross
section. Here, this is controlled by k, such that
the maximum cross section is at kL. Finally, one
may want to adjust the curvature of the front part265

and the back part separately. For that purpose, two
parameters are introduced: jF and jB , allowing to
change continuously from a lozenge (jB = jF = 0)
to a rectangle (jB = jF = 1.0).

Accounting for all of these aerodynamic and geo-270

metrical constraints, the generic shape used in this
optimization study is built from 4 Bézier curves in
each hemisphere, two quadratic at the leading and
trailing end, and two cubic connected at the main
cross section. The full description of the geometry275

is at the Appendix B.1. Figure 3 illustrates some of
the geometries that can be obtained varying k, jB
and jF . For the sake of completeness, note that half
an ellipse is drawn when jB or jF equals

?
2´ 1.
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jF 2 [0.0, 1.0]
k = 0.50
jB = 0.50

jF = 0.30
k 2 [0.0, 1.0]
jB = 0.30

jF = 0.50
k = 0.50
jB 2 [0.0, 1.0]

Figure 3: Possible shapes for fixed aspect ratio (L{d “ 1.5) and varying jF (left), k (center) and jB (right) between 0 and 1
(thickest curve is for the maximum value of the varying parameter).

With the use of IBM, there is no need to re-mesh280

after every parameters modification. The mesh is a
Cartesian grid that is unchanged and independent
of the geometry and, for every evaluation, only the
array εpyq in Equation 2.4 is updated.

2.4. Optimization method285

Optimization is performed using the Particle
Swarm Optimization. Introduced by Kennedy and
Eberhart [4], it mimics the social behavior of a flock
of animals (originally birds) when they look for a
common objective, such as food.290

Consider a swarm composed by n agents (also
called particles), placed arbitrarily on a design
space of dimension D. A random initial velocity
is defined for every agent and the objective func-
tion is calculated for all of them. The coordinates295

of best result for the group of agents in the first
iteration is defined as gi, for i “ 1, ..., D. The posi-
tion at the following iteration pT ` 1q is a function
of the distance of each particle from its own best
(pi – xi,T ), the distance from the swarm’s best (gi300

– xi,T ), and its current velocity (vi,T ):

"

vi,T`1 “ cwvi,T ` c1r1ppi ´ xi,T q ` c2r2pgi ´ xi,T q
xi,T`1 “ xi,T ` vi,T`1

(2.5)
where cw is the inertial factor (later introduced by
Shi and Eberhart [26]), that regulates the influence
of previous velocity on the particle movement, c1
and c2 are the cognitive and social factor, respec-305

tively, that represents the influence of the distance
to the personal and the swarm’s best fitness loca-
tion, r1 and r2 are normally distributed random
number between 0 and 1. The function evaluation is
performed and the position of personal and swarm310

bests are updated. Those steps are repeated iter-
atively until the stopping criteria is reached (max-
imum number of iterations or value of error, for
example).

In the present application, when the particles315

reach outside of the design space, they are simply
repositioned to the limits without any modification
on the velocity. More elaborated strategies are re-
ported on the literature.

The gbest topology (communication structure) is320

used here, meaning all particles are aware of the
personal best of every member of the swarm. The
convergence is faster but the design space is not
explored as much as for other topologies where in-
formation is restricted to subgroups of particles.325

The version of PSO used on this work is very
close to the canonical due to its simplicity and ro-
bustness. Many improvements have been made to
the technique and the reader is invited to look at
[27] for an extensive description. A description of330

the used environment is on the following section.

2.4.1. Optimization framework
The optimization is implemented in Python,

while the aerodynamic solver is based on Fortran.
As the objective function requires the resolution335

of the unsteady Navier Stokes equations, the con-
sidered result is derived from the statistics of the
last complete flow cycle that was simulated, based
on the two final peaks on the lift signal (for this
regime, the aerodynamic efforts are clean sinusoidal340

signals).
Each simulation is single cored, and for every it-

eration, the n agents are evaluated simultaneously
in a cluster. As illustrated on Figure 4, the par-
allelism is done using the MPI standard with the345

package mpi4py [28]. For 36 particles (that means
36 simultaneous simulations) the calculation time
for each geometry increases from 2 hours to about
3 hours on the regional high-performance comput-
ing facility. This imperfect speed-up may be due to350

memory access issues.
Convergence of the swarm could be accelerated

using information acquired by other particles in the
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Figure 4: Optimization framework. For a given iteration, the geometrical parameters of the particles are scattered into n MPI
process using mpi4py method scatter, where comm is the main communicator. After the simulations are completed, data is
sent to the main process using the method gather, the best local and global position are updated and the particles are moved
if there isn’t swarm convergence or the maximum number of iterations is not reached.

current iteration [29]. However, this can not be im-
plemented here because of the parallel implemen-355

tation. Which leads the best swarm’s position and
each particle status (personal best, velocity and po-
sition) to be updated only after a complete itera-
tion.

As the geometry is discretized to a number of360

rectangular elements based on their coordinates in
a Cartesian mesh, small variations on the geomet-
rical parameters do not affect the simulated geom-
etry. For the size element used in this work (see
Appendix A.2), the minimum sensibility is of 0.001365

for any parameter. Therefore, all the inputs are
rounded when calling the Navier Stokes solver (the
value is unchanged in the optimization routine). In
order to avoid unnecessary calls, if the same set of
parameters has been used before in the optimiza-370

tion, the previously calculated value is considered
and the simulation is not performed. At the final
iterations, as the swarm converges, the number of
actual function evaluations per iteration is highly
reduced, specially for a 2D search space.375

As discussed by many authors, choosing the op-
timization parameters is the main difficult for the
use of a meta-heuristic optimizer such as PSO
[29, 27, 30]. Even though convergence can be
achieved based on values in the literature, they are380

mostly adapted for solving hard problems [31]. In
order to find parameters adapted to the present
context (the ones that result in a small number of
objective function evaluations/iterations), empiri-
cal tests are prepared regarding response surfaces385

and performances.

2.4.2. Test Response Surfaces
Once the general shape of the objective functions

is known, the optimizer’s parameters can be better
defined such as to avoid unnecessary steps of explo-390

ration or exploitation. Discrete response surfaces
are prepared with the simultaneous variation of 2
of the 4 geometrical parameters, as listed on Ta-
ble 1; the tested points are equally spaced. The
production of those surfaces shown in Figure 5 is395

of relatively low time cost, but this kind of analy-
sis is only reasonable for domains with low number
of dimensions. The surfaces are not used for the
production of interpolation functions of any kind.

For the evaluated set of geometrical parameters,400

only one minimum and one maximum are noticed
in the tested domain (resembling the surfaces pre-
sented by [5] in an aerodynamic optimization). It
is assumed that a similar behavior is present when
all the variables are analyzed simultaneously, with405

zero to a few local minima. The gbest topology
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Table 1: Discrete response surfaces parameters.

# 1 2 3
L{d 1.00 r0.25; 1.75s r0.25; 1.75s
k 0.50 r0.00; 1.00s 0.30

jF p0.00; 1.00q
?

2´ 1
?

2´ 1

jB p0.00; 1.00q
?

2´ 1 r0.00; 1.00s
points 15ˆ 15 16ˆ 11 16ˆ 11

suits these type of function and the influence of the
settings in the final result is small. Empirical tests
are thus performed for known functions with those
characteristics, allowing to find settings adapted to410

the present context. This study is performed with
those functions because of the cheap evaluation and
by the fact that once the value and the position
of the minimum are previously defined, the perfor-
mance of the optimizer is evaluated based on the415

expected final result and the rate of success of the
optimization can be measured.

2.4.3. Performance study
From the observed discrete response surfaces, the

Michalewicz test function [32] at low dimension is420

used as test case for the selection of the optimizer
parameters. An unimodal version is also proposed,
in 2 and 3 dimensions. Both functions are presented
on Table 2. Stepness factor m is set to 10 for the
original function so that the tests also contemplate425

very localized minima. The factor m equals 1 for
the modified version.

Performance maps are produced with multiple
values of the cognitive and the social factors: 19 val-
ues of c1 and c2 (total of 361 combinations) in (0.0;430

2.5); and the inertia factor is maintained, cw “ 0.6.
Since the chosen optimization is an stochastic

technique, a total of N = 10,000 optimization runs
are performed for each pair of values within the set
of parameters and the statistics of the obtained dis-435

tributions are used to represent the influence of the
factors. For those analyses, a number of 25 (2D)
or 27 (3D) particles are used and their initial posi-
tioning is a Cartesian mesh of equally spaced ele-
ments points (5 ˆ 5 or 3 ˆ 3 ˆ 3). As the function440

optima are known, the optimizations are stopped
when the absolute difference of it with the global
best is smaller than 0.001. The maximum number
of iterations is fixed at Tmax “ 200. If the final best
is not within the range of precision, the run is con-445

sidered a failure. As the number of total iterations

is restrictive, a high rate of failure may not be solely
caused by a bad choice of parameters. However, for
the intended use of the optimization in this article,
the selected maximum value is already beyond the450

desirable number of iterations, in a sense that, a
successful but long run is unfeasible.

The results are presented on Figure 7 with the
average number of function evaluations in the op-
timization for the total number of runs, and the455

failure rate (number of runs that did not found the
global best divided by N) for every tested pair of
parameters. In all 3 configurations, the cognitive
factor (c1) has low impact in the performance, what
is probably due to the topology (every particle has460

the access to the best result of the complete swarm).
A good trade off of function evaluations and small
failure rate shall be obtained on the center of the
map (about 1200 evaluations for Michalewicz in 2D,
250 for modified Michalewicz in 2D and 450 for465

modified Michalewicz in 3D). Based on those re-
sults, the parameters for the optimization are cho-
sen as cw “ 0.6 and c1 “ c2 “ 1.2, values within the
stability regions proposed in [33] and [31] and fairly
consistent even for harder problems than those we470

are dealing with (such as Michalewicz).
Considering the results for the modified

Michalewicz in 3D, the configuration that most
resembles the expected objective functions (single
minimum, more than 2 dimensions), the number475

of iterations for achieving the optimum with the
selected factors is about 20 (the average number
of functions evaluations divided by the number of
particles).

Similar technique is applied for the study of the480

number of agents to be selected. For a number of
particles from 1 to 40, placed on the search space us-
ing a Latin Hypercube Sampling (LHS), the same
10,000 runs are evaluated. The obtained evalua-
tions of mean number of function evaluations, nor-485

malized number of iterations (mean number of iter-
ations necessary to convergence divided by the max
number of iterations) and rate of success (number
of runs that converged divided by the total number
of runs) are presented on Figure 8.490

It is noted that, for a good success rate at a ten-
able number of iterations (less than 30, T {Tmax “
0.15), at least 30 particles must be used. For the
modified Michalewicz, after 20 particles, the in-
crease in the number of particles does not affect the495

success rate. According to those result, the follow-
ing optimizations are performed with 36 particles.
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Figure 5: Discrete response surfaces for |CD| (left), C1
L (center) and Wa (right) for the 3 pairs of variables - for every case,

the remaining geometrical parameters are fixed. The dots represent the coordinates of the calculated points; the up-pointing
triangle is placed at the maximum level and the down-pointing triangle at the minimum.

3. Results

The optimization procedure presented in the pre-
vious section is now applied to the unsteady flows500

over obstacles.
Several optimizations are performed for 3D de-

sign space (jF , jB and k). The aspect ratio is ei-
ther fixed or constrained to obtain a selected cross
section surface or perimeter. The 2 later properties505

are calculated via the discrete sum of surface and
length elements of each Bezier arc (2000 per arc).
As both quantities are monotonic laws of L, bisec-
tion method is applied for each particle in order
to obtain the AR that corresponds to the desired510

surface or contour.
Optimizations were performed in 4D, using AR

as a parameter. However, the influence of the

length of the obstacle surpasses the remaining geo-
metrical parameters in such a way that all the opti-515

mizations are rapidly reduced to 3D, so these runs
are not presented here. The swarm converged to
the maximum L when minimum drag or acoustic
power were aimed.

The search space boundaries are the parameters520

limits issued from the definition of the geometry,
what traduces to the design space r0; 1s3. The
starting points of the particles are the nodes of an
equally distributed rectangular grid of the design
space (4ˆ 3ˆ 3 nodes).525

Although several other cases were evaluated, only
the results for minimum mean drag and acous-
tic power are presented in details for conciseness.
Other results are evoked in the following sections
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Table 2: Test functions.

Function Equation Search
space Global minimum

Michalewicz
(m “ 10)

D
ř

i“0

sinpxiqsinp
ix2

i

π q
2m r0;πs2

´1.8013
at r2.20319; 1.57049s

mod. Michalewicz
(m “ 1)

D
ř

i“0

sinpxiqsinp
x2
i

π q
2m r0;πs2

´1.6819
at r2.07169s2

mod. Michalewicz
(m “ 1)

D
ř

i“0

sinpxiqsinp
x2
i

π q
2m r0;πs3

´2.5228
at r2.07169s3

Michalewicz (m = 10)

2

x100

2

x2

-1.5

-1

-0.5

0

mod. Michalewicz (m = 1)

2

x100

2

x2

-1.5

-0.5
0

-1

Figure 6: Test functions in 2D. For better visualization, the
colormap is inversed from the rest of the images on this doc-
ument

serving as a quantitative reference for the detailed530

cases. The conditions and objectives of those opti-
mizations are summarized on Table 3. The length
of L “ 1.5d is chosen to avoid the possible peaks of
lift fluctuation at reduced aspect ratio, as the one
reported by Inasawa et al. [25] for a rectangular sec-535

tion. When the length is not fixed, only the shapes
that present either the surface or the perimeter of
the circular section are considered.

Table 3: List of performed optimizations.

AR min CD min Wa

1.5 # 1 # 4
AR for S “ π{4 d2 # 2 # 5
AR for C “ πd # 3 # 6

The convergence of the swarm is illustrated by
Figure 9. For all runs, the final best is found be-540

fore 25 iterations. As it can be seen on the evo-
lution of the mean velocity (mean of the velocity
norm of all the members of the swarm in an spe-
cific iteration), the convergence is fast but there was
not enough time for the swarm to arrive, in aver-545

age, to the geometrical resolution of the calculation
(limited to a variation of 0.001 of any parameter)
based on the CFD mesh refinement. However, the
small variation of the best result infers that further
analysis would not give relevant improvements in550

the results. The total reduction of the cost func-
tion from the initial evaluations is lower than 10%,
specially for the mean drag (optimizations 1 to 3),
what may be explained by the use of a relatively
large number of particles for such reduced number555

of dimensions, condition that results in a significant
knowledge of the design space even at the initial it-
erations. Running the optimization procedure with
a smaller number of particles (12) revealed lower
computational time but the solution was depreci-560

ated (slightly higher Wa). That latter feature may
be also linked to the topology with full communi-
cation between particles.

Despite the small gain for the selected objective
functions, the advantages of performing the opti-565

mization also reside in the achieved precision. The
parameters that result in the final best are signif-
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Figure 7: Average number of function evaluations (top) and the failure rate (down). The up-pointing triangle is placed at the
maximum level and the down-pointing triangle at the minimum.

icantly different from the ones of the initial best
(smaller response obtained at the starting posi-
tions), as presented by the euclidean distance of570

those points listed in Table 4, recalling that the
maximum possible distance is of

?
3. The number

of evaluations of the objective function to achieve
a similar precision without the use of optimization
would be of 10003.575

Table 4: Comparison of initial and final best results.

# initial best
final best distance

1 -1% 0.136
2 -6% 0.424
3 -2% 0.174
4 -7% 0.186
5 -2% 0.473
6 -8% 0.070

The geometrical and aeroacoustic results are dis-
cussed in the next sections. Simulations of ellipses
at similar lengths are also performed and serve as
reference for the optimal results. The obtained op-
timal shapes and the associated flows are illustrated580

on Figures 10 and 11, respectively.

3.1. Minimum drag

The corresponding geometrical and aeroacoustic
properties of the shapes minimizing drag are pre-
sented on Table 5. At fixed length, there is a small585

reduction of the mean drag when compared to the
elliptical section of same length (1.3%). There are
reductions of 5.9% at equal surface and 0.9% at
same total contour when compared to the circular
cross section.590

At fixed length, the geometry can be interpreted
as an inflated circle. Since the perimeter is a very
restrictive constraint at fixed d, the obtained result
at fixed C is not so different from the circle itself,
what can be also noted on the slight variation of the595

quantities. Even so, the optimization routine was
able to successfully find a geometry with smaller
drag.

For fixed cross-surface, the smallest drag is ob-
tained with a drop shaped geometry. This result600

can be justified by two phenomenons: as presented
in other studies, the increase of the length is ac-
companied by a severe reduction of drag [25] in this
regime, what can only be achieved at constrained S
with sharp edges (jF or jB close to 0); also, there605

is a smaller influence of the pressure at the down-
stream part of the geometry (depression zone after

10



Table 5: Geometrical and aeroacoustical quantities for minimum mean drag shapes and elliptical cylinders.

min CD
fixed AR

min CD
fixed S

min CD
fixed C

ellipse
(AR “ 1.0)

ellipse
(AR “ 1.5)

jF 0.561 0.388 0.386 0.414 0.414
jB 0.475 0.000 0.359 0.414 0.414
k 0.519 0.277 0.526 0.500 0.500
L{d 1.500 1.363 1.024 1.000 1.500
|CD| 1.072 1.229 1.296 1.307 1.086
C 1L 0.143 0.327 0.333 0.338 0.166

C 1D ˆ 101 0.025 0.037 0.156 0.157 0.031
St 0.182 0.164 0.191 0.190 0.183

Wa ˆ 105 0.725 3.434 4.180 4.275 0.986
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Figure 8: Influence of the number of particles for
Michalewicz in 2D (right) and modified Michalewicz in 3D
(left).

x “ kL) due to the increased boundary angle, such
as in the streamlined bodies, even if the flow sepa-
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Figure 9: Convergence history: evolution of the normalized
best (current best result divided by the final best) on the left
and evolution of the mean velocity of the swarm (average of
the velocity norm of all particles) on the right.
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Figure 10: Comparison of optimal shapes for minimum drag (dash-dotted lines) and minimum acoustic power (full lines) at
fixed aspect ratio (a), fixed surface (b) and fixed contour (c). Dotted lines are representations of ellipses of AR = 1.5 (a) and
AR = 1.0 (b and c).

ration is still present. In this manner, it’s possible610

that concave surfaces, that are by definition of the
parametrization unreachable in our design space,
would be able to further reduce the mean drag.

3.2. Minimum acoustic power

The corresponding geometrical and aeroacoustic615

properties of the shapes minimizing the acoustical
emission are presented on Table 6. AtAR= 1.5, the
optimized section induces half the acoustic power of
an ellipse of same length, that means -3.0 dB. Per-
formance of the best shapes at fixed surface and620

contour are of -1.2 and -0.6 dB using the circular
section as reference. At the 3 cases, there is an
increase in the mean drag with respect to the el-
lipse, what emphasis the separation of the two phe-
nomenons. A similar dispute between acoustic and625

drag minimization was also noted by Beigmoradi et
al. [7].

For all of the geometries minimizing Wa, there
is an increase in the bluffness of the bodies, that
is increase of jB , followed by a slight modification630

in the topology of the wake. The vortex forma-
tion is pushed in the downstream direction when
compared to the flow in the presence of ellipses of
similar aspect ratio (see Figure 11).

Optimizations procedures searching the mini-635

mum lift fluctuation (C 1L) resulted in very similar
geometries. One conclusion is, as expected, that
the lift fluctuations are the major component of the
acoustic emission at this regime, once it is at least
one order higher than the drag contribution and the640

one that is most crucially influenced by the shape,
notably when compared to the Strouhal.

It’s important to note that the chosen reference
for all comparisons (the elliptical section), is al-
ready fairly optimal if compared to the other possi-645

ble geometries that reside within the proposed de-
sign space and constraints (such as lozenges and
triangles). Even so, there are reasonable gains, spe-
cially in terms of Wa. In that manner of emphasiz-
ing the potential of such routines, optimizations are650

performed for maximizing CD and Wa, using the
inverse of the correspondent quantity as cost func-
tion. The ratios between the associated extrema are
presented at Table 7. The maximum Wa is a back-
ward facing triangle (k = 0, jB = 0), independently655

of the constraint. Simultaneously, cross comparison
is performed with the presented values concerning
minimum drag and minimum acoustic power.

When geometries that minimize different quanti-
ties are confronted, their variance response to the660

shape is once again highlighted. At fixed aspect
ratio, for instance, the section that minimizes the
drag produces 1.7 dB more noise than the min Wa.
For the opposite situation, ratio between the drag
of the shape with min Wa and the minimum drag,665

3% difference in noted. Considering that the human
perception can differentiate noise only after 1 dB of
difference, one may imply that for the test case con-
figuration, the mean drag optimization may be also
sufficient for the acoustic point of view. However,670

the restrictiveness of the performed study in terms
of shape (constrained length L and fixed height d)
and flow regime confines this conclusion.

The ratios between maximum and minimum be-
haviors show that even respecting a set of strict675

continuity and geometrical constraints, the selected
geometry can produce up to 8 dB more noise than a
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Figure 11: Snapshots of instantaneous vorticity for optimized and canonical geometries: optimized geometry for minimum CD

(a) and minimum Wa (b) at fixed length L{d “ 1.5; optimized geometry for minimum CD (d) and minimum Wa (e) at fixed
cross section area S “ π{4 d2; optimized geometry for minimum CD (f) and minimum Wa (g) at fixed contour C “ πd; and
ellipses of AR “ 1.5 (c) and AR “ 1.0 (h). The contour intervals are 0.4 U8{d and dashed lines represent negative values.
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Table 6: Geometrical and aeroacoustical quantities for minimum acoustic power shapes and elliptical cylinders.

min Wa

fixed AR
min Wa

fixed S
min Wa

fixed C
ellipse

(AR “ 1.0)
ellipse

(AR “ 1.5)
jF 0.656 0.833 0.520 0.414 0.414
jB 0.603 0.329 0.483 0.414 0.414
k 0.136 1.000 0.465 0.500 0.500
L{d 1.500 0.815 0.933 1.000 1.500
|CD| 1.107 1.377 1.311 1.307 1.086
C 1L 0.120 0.296 0.316 0.338 0.166

C 1D ˆ 101 0.017 0.224 0.154 0.157 0.031
St 0.174 0.185 0.188 0.190 0.183

Wa ˆ 105 0.492 3.209 3.699 4.275 0.986

Table 7: Comparison of minimum and maximum results of optimized geometries

constraint CDpmin Waq

min CD
´1 Wapmin CDq

min Wa

max CD

min CD
´ 1 max Wa

min Wa

fixed AR 3% 1.7 dB 51% 16.5 dB
fixed S 12% 0.3 dB 32% 7.9 dB
fixed C 1% 0.5 dB 40% 9.3 dB

optimized version. Since the weight of each aspect
is a function of the final application, the importance
of this comparison resides in exemplifying the risk680

of not considering the acoustic aspects on product
design.

4. Concluding remarks

Optimization techniques are largely used in en-
gineering problems, what also globes aerodynam-685

ics. Although the numerous applications, the use is
mainly associated with both strong flow hypothesis
and surrogate models. On this work, an optimiza-
tion framework based on parallel evaluations of the
direct solution of Navier-Stokes equations and a sin-690

gle equation acoustic estimation based on Curle’s
analogy was reported. Simultaneously, results con-
cerning the most common objective in the aerody-
namic aspect, the mean drag, are confronted with
the shapes obtained when the minimum aeroacous-695

tic emission is searched.
The use of an stochastic optimization technique

(PSO) is normally associated with an elevated num-
ber of function evaluations. As noted from the char-
acteristics of the current response surface in con-700

trast with the typical problems associated with the
use of a meta-heuristic optimization routine, the

conclusion is that they must not be ignored even
without the use of surrogate models. The use of
a preliminary study of the optimizer settings and705

an optimized mesh allowed the use of such kind of
methodology and to profit from its robustness. The
flexibility and simplicity of the chosen parametriza-
tion, that resulted in a smooth low-dimension de-
sign space, were important factors for the represen-710

tativeness and the success of the performed opti-
mizations. Moreover, the possibility to use a single
mesh due to the application of an IBM technique
must be highlighted.

A maximum decrease of 6% of the mean drag rel-715

atively to a similar elliptical section was achieved.
Also, obtained results presented a reduction up to
3 dB when compared to ellipses of same length, be-
havior originated mainly from the reduction of lift
fluctuations. Less noisy geometries are of increased720

bluffness and, as its portrayed in previous publica-
tions, the aspect ratio surpassed all other geomet-
rical parameters in terms of regulating the acoustic
emission. Additionally, it must be emphasized that
for all the tested constraints, the shape that has725

minimum drag is different from the one that pro-
duces less noise. Thus, care must be taken in order
to keep the Wa reduced.

A large variation of the acoustic quantity is noted
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when both extrema (max and min) are compared.730

This behavior represents simultaneously the poten-
tial of the shape optimization in terms of acoustic
emission, even at a such specific conditions, and the
risk of ignoring the aeroacoustic behavior in engi-
neering design.735
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Appendix A. Simulation time reduction1015

In order to reduce the simulation time for the
realization of the optimization routines, two con-
vergence studies are performed for domain size and
mesh refinement. For both studies, unless other-
wise stated, 40,000 timesteps are considered with a1020

timestep physical duration of ∆t = 0.0042ˆ d{U8
and a Reynolds number of Re = 150. The do-
main is discretized by mesh elements of dimensions
∆y1 “ 1.953ˆ10´2d in the flow direction and vari-
able transverse size, with ∆y2 “ 1.125 ˆ 10´2d at1025

the center (mesh is stretched from the body center
[34]).

The presented aerodynamic quantities are the
statistics of the last simulated flow period, defined
by subsequent peaks of the lift signal. Indicated do-1030

main dimensions are normalized by the obstacle’s
total height d. The geometry is a streamlined 2D
body described by an ellipse until kL and a 2nd de-
gree polynomial downstream both connected with
same tangent, with k “ 0.4 and L “ 2.0d (Figure1035

A.12).

y1;U y1;D

Y1

Y2

L

center

y1;C

y2;C

kL

d

Figure A.12: Numerical domain and test geometry.

Appendix A.1. Domain convergence

Influence of upstream and downstream distance
from domain limits are tested independently. As
to maintain the size of the elements of the Carte-1040

sian mesh fixed, the number of elements is modified.
For all configurations, the blockage ratio is fixed at
5% (reasonable blockage according to the results of
Sohankar et al. [35]).

First test is performed for several upstream val-1045

ues while the downstream distance is fixed at
y1,D “ 27.00d. The obtained mean drag, fluctu-
ating lift and drag, and Strouhal number are pre-
sented in Table A.8 and Figure A.13. An horizontal,
asymptotic behavior is noticed for each quantity,1050

thus assessing convergence. An upstream distance
of 11.00d (indicated with an arrow) is chosen as
a good trade-off leading to a reduced calculation
time; from the curves, the aerodynamic values to
be obtained with this configuration are expected to1055

be a overestimation.

Table A.8: Upstream convergence test

y1,U{d |CD| C 1L C 1D St
3.500 1.0954 0.1166 0.00070 0.189
6.313 1.0286 0.1160 0.00062 0.179
9.477 1.0074 0.1079 0.00059 0.176
11.000 1.0031 0.1088 0.00059 0.176
14.750 0.9982 0.1068 0.00058 0.175
21.000 0.9962 0.1067 0.00058 0.175

For the selected upstream distance of 11.00d, five
downstream distances are simulated (see Table A.9,
Figure A.14). Based on the same criteria used for
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Figure A.13: Convergence of aerodynamic quantities as a function of the upstream distance. Arrows are placed at the selected
value.

defining y1,U , a downstream distance of 13d is se-1060

lected for the final domain without major losses in
the solution precision but reducing the number of
calculation points.

Table A.9: Downstream convergence test.

y1,D{d |CD| C 1L C 1D St
7.000 1.0008 0.1135 0.00067 0.175
12.313 1.0033 0.1100 0.00058 0.176
17.000 1.0031 0.1088 0.00059 0.176
27.000 1.0032 0.1088 0.00059 0.176
32.000 1.0034 0.1089 0.00059 0.176

Based on this results, the final domain (used for
all simulations presented in this article) has a total1065

length of Y1 “ 25.31d and the geometry center is
at y1,C “ 11.00d (that means y1,U “ 10.50d and
y1,D “ 13.81d for a geometry of length L “ 1d).
Compared to the biggest domains that were tested,
there is an average error of 0.8% for the mean1070

drag, 2.2% for C 1L, 11.9% for C 1D and 0.6% for the
Strouhal and a maximum local deviation of 2% for
the mean velocity profiles.

Appendix A.2. Mesh convergence
A study of convergence in terms of mesh refine-1075

ment is performed. The number of mesh points is
modified by the same factor in both y1 and y2 di-
rections, so the elements are simply scaled (note
that mesh step changes affect the description of the
geometry due to the use of the IBM).1080

For a better performance in the spectral solu-
tion of the Poisson equation, the number of points
is chosen as a multiple of small prime factors +

1. For this study, the timestep physical duration
of each simulation is modified to maintain numeri-1085

cal convergence. The results are presented at ta-
ble A.11. Reference simulation (simulation 2 at
table A.11) is the final configuration presented on
previous section, within the following element size:
(∆y1,min∆y2q “ p0.002d, 0.001dq.1090

From the performed tests, the factor 2 is consid-
ered reasonable (mesh 4). As demonstrated by the
tests, the loss in geometrical precision is not fol-
lowed by drastic modifications in the aerodynamic
results. This behavior can be explained by the re-1095

duced Reynolds number used in this work. Final
timestep duration is of ∆t = 0.0072ˆd{U8. When
compared to the most refined solution, the associ-
ated errors are: 1.2% for the mean drag; 2.3% for
C 1L; 8.5% for C 1D; 0.4% for the Strouhal number;1100

1% for the mean velocity profiles; and maximum
local error of 8ˆ 10´3ˆU8 for streamwise velocity
RMS profiles.

The use of a not so refined numerical setup is a
compromise for a reduced calculation time of the1105

aerodynamic estimations without major losses in
precision, so that the optimization is viable. The
total CPU time equals 13% of the one obtained with
the initial mesh for simulating an equal physical
time.1110

Appendix A.3. Validation
Multiple flow configurations with the chosen do-

main and mesh properties are evaluated for canon-
ical geometries.

Simulations are done for a range of Reynolds1115

numbers considering geometries of AR “ 1.0
(square and circular section) and for the evolution
of the length of the rectangular section at fixed
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Figure A.14: Convergence of aerodynamic quantities as a function of the downstream distance. Arrows are placed at the length
of the final mesh.

Table A.10: Final domain size.

case y1,U{d y1,D{d |CD| C 1L C 1D St
y1,U,max 21.0000 17.0000 0.9962 0.1067 0.00058 0.1749
y1,D,max 11.0000 32.0000 1.0034 0.1089 0.00059 0.1756
final domain 10.0000 13.3125 1.0080 0.1101 0.00065 0.1763

Reynolds Re = 150, so the capacity to compare
geometries at fixed inlet conditions such as its per-1120

formed on the optimization is proven. The results
for 3 aerodynamic quantities are presented on Fig-
ure A.15 and compared to published values from
references listed on Table A.12.

As expected from the performed convergence1125

studies, the chosen configuration results in aerody-
namic quantities larger than the values reported in
the literature. As can be noted on the graph of
the Strouhal number as a function of the Reynolds
number for the square section (Figure A.15.b), the1130

error decreases for a more refined grid (mesh 2).
For rectangular sections of different lengths, Fig-
ure A.15.d, there is an offset of the estimated lift
fluctuation for the shortest shapes (AR < 0.5) for
meshes 2 and 4 with respect to the literature data.1135

Note that such short obstacles are not in the design
space of any of the optimizations performed here.

This result assures the capacity of the chosen do-
main to represent the physics of the problem. Al-
though the differences, the offset remains reason-1140

able and, most importantly, the trends are kept
for different configurations; that is, the same be-
havior of the reference values is maintained, what
infers that comparing different shapes with this re-
finement is valid.1145

Appendix B. Geometry

Appendix B.1. The Bézier curve

A Bézier curve is a parametric curve based on
the Bernstein polynomial that uses the position of
control points:1150

rptq “
n
ÿ

i“0

piBi,bptq, 0 ď t ď 1. (B.1)

Bi,nptq “
n!

i!pn´ iq!
p1´ tqn´iti, i “ 0, ..., n.

(B.2)

where pi are the n control points (y1, y2) and
Bi, nptq are the Bernstein polynomial. A big advan-
tage of this kind of curve for the use in aerodynamic
and aeroacoustics contexts is the possibility to ob-
tain any desirable level of continuity by appropriate1155

choice of the order. More details on properties of
those curves are also available on [48].

Appendix B.2. Parametric obstacle

The obstacle is composed by a combination of 4
Bézier curves denoted as arcs uA, uB, uC and uD on1160

Figure B.16, being uA and uD quadratic curves and
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Table A.11: Mesh refinement.

# n1 n2 factor |CD| C 1L C 1D St
1 1945 769 0.667 1.0094 0.1101 0.00066 0.1764
2 1297 513 1.000 1.0080 0.1101 0.00065 0.1763
3 973 385 1.333 1.0031 0.1076 0.00065 0.1767
4 649 257 2.000 0.9970 0.1065 0.00060 0.1771
5 487 193 2.667 1.0093 0.1129 0.00070 0.1758
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Figure A.15: Validation of the final mesh with canonical geometries: (a) Strouhal number versus Reynolds number for the
circular section cylinder; (b) Strouhal number versus Reynolds number for the square section cylinder; (c) drag coefficient versus
Reynolds number for the circular section cylinder; and (d) lift coefficient RMS level versus aspect ratio for the rectangular
section cylinder.

uB and uC cubic curves, mirrored on the horizon-
tal axis. It is circumscribed by a rectangle, repre-
sented by the pointsMp0, 0q, Np0, d{2q, OpkL, d{2q,
P pL, d{2q, QpL, 0q and RpkL, 0q.1165

The control points are placed so the final geom-
etry shape respects the following geometrical con-
straints:

1. Length L and height d{2;
2. Symmetry in horizontal axis;1170

3. Tangency to the vertical axes at the beginning
(M) and end (Q) of the obstacle

4. Position, tangency and curvature continuities
(C0, C1 and C2) at the connections of the 4
curves (for the exception when it’s an edge - k,1175

jB and/or jF are on their limits);
5. Tangency at the end of arc uA/start of arc uB

parallel to segment line MO;
6. Tangency to the horizontal axis at the end of
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Table A.12: List of sources for the final mesh and domain
validation.

section methodology & author

ci
rc
ul
ar

exp. - Roshko (1954) [36]
exp. - Norberg (1987) [37]

exp. - Hammache & Gharib (1991)
[38]

2D num. - Barkley et al. (1996) [39]
2D num. - Pier (2002) [40]

2D num. - Posdziech & Grundmann
(2007) [41]

2D-3D num. - Qu et al. (2013) [42]

re
ct
an

gu
la
r

2D num. - Franke et al. (1990) [43]
2D num. - Sohankar et al. (1995)

[44]
2D num. - Robichaux et al. (1999)

[45]
2D num. - Sharma & Eswaran

(2004) [46]
2D num. - Sen et al. (2011) [47]

2D num. - Inasawa et al. (2013) [25]

D
a
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a

B
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C
a

L

lF lB

jF lF
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kL
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y2

RM
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Figure B.16: Scheme of the parametrized geometry. The
shape is convex and circumscribed by the rectangle MNPQ
of length L and height d{2. The form is completely defined
by 5 parameters: L, d, jF , k and jB . As d is fixed on this
work, the aspect ratio L{d is the only parameter affecting
the rectangle.

arc uB/start of arc uC - at point O;1180

7. Infinity curvature radius at the end of arc
uB/start of arc uC - at point O;

8. Tangency at the end of arc uC/start of arc uD
parallel to segment line OQ;

9. End of arc uA placed at the line segment NR,1185

at a normalized distance of jF P [0, 1] from the

intersection of NR with MO;
10. End of arc uC placed at the line segment PR,

at a normalized distance of jB P [0, 1] from the
intersection of PR with OQ;1190

Based on this constraints, geometry is completely
defined by the 5 cited parameters. Parameters jF
and jB allow the final result to be between a lozenge
(jF = jB = 0.0) and a rectangle (jF = jB = 1.0)
of dimensions L and d. The position of the control1195

points are (where yi,c,p indicates the coordinate on
direction i of the control-point number p of curve
c):

21



Table B.13: Control points

curve point y1 y2

uA
0 0 0
1 0 jF d{2
2 p1´ jF qkL{2 p1` jF qd{4

uB

0 y1,A,2 y2,A,2

1 kLp1´ jF q d{2

2

$

’

’

’

&

’

’

’

%

0 if jF “ 1.0
kLt1´ jF`

`r3jF {p1´ jF q
2s

r1´ p1` jF q{2s
2u

otherwise
d{2

3 kL d{2

uC

0 kL d{2

1

$

’

’

’

&

’

’

’

%

0 if jB “ 1.0
LtjB ` kp1´ jBq`

´r3jBp1´ kq{p1´ jBq
2s

r1´ p1` jBq{2s
2u

otherwise
d{2

2 Lrk ` p1´ kqjBs d{2
3 Lrk ` p1´ kqpjB ` 1q{2s p1` jBqd{4

uD

0 y1,C,3 y2,C,3

1 L jBd{2
2 L 0
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