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Abstract. Performing data augmentation for learning deep neural net-
works is well known to be important for training visual recognition sys-
tems. By artificially increasing the number of training examples, it helps
reducing overfitting and improves generalization. For object detection,
classical approaches for data augmentation consist of generating images
obtained by basic geometrical transformations and color changes of orig-
inal training images. In this work, we go one step further and lever-
age segmentation annotations to increase the number of object instances
present on training data. For this approach to be successful, we show
that modeling appropriately the visual context surrounding objects is
crucial to place them in the right environment. Otherwise, we show that
the previous strategy actually hurts. With our context model, we achieve
significant mean average precision improvements when few labeled ex-
amples are available on the VOC’12 benchmark.
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1 Introduction

Object detection is one of the most classical computer vision task and is often
considered as a basic proxy for scene understanding. Given an input image, an
algorithm is expected to produce a set of tight boxes around objects while auto-
matically classifying them. Obviously, modeling correctly object appearances is
important, but it is also well-known that visual context provides important cues
for recognition, both for computer vision systems and for humans [1].

Objects from the same class tend indeed to be grouped together in similar
environments; sometimes they interact with it and do not even make sense in its
absence. Whenever visual information is corrupted, ambiguous, or incomplete
(e.g., an image contains noise, bad illumination conditions, or an object is oc-
cluded or truncated), visual context becomes a crucial source of information.
Frequently, certain object categories may for instance most often appear in spe-
cific conditions (e.g., planes in the sky, plates on the table), in co-occurrence
with objects of other specific classes (e.g., baseball ball and baseball bat), and
more generally, any type of clue for object recognition that is not directly related
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Fig. 1. Examples of data-augmented training examples produced by our
approach. Images and objects are taken from the VOC’12 dataset that contains seg-
mentation annotations. We compare the output obtained by pasting the objects with
our context model vs. those obtained with random placements. Even though the re-
sults are not perfectly photorealistic and display blending artefacts, the visual context
surrounding objects is more often correct with the explicit context model.

to the object’s appearance is named “context” in the literature. For this reason,
a taxonomy of contextual information is proposed in [2] to better understand
what type of visual context is useful for object detection.

Before the deep learning/ImageNet revolution, the previous generation of
object detectors such as [3–6] modeled the interaction between object locations,
categories, and context by manual engineering of local descriptors, feature ag-
gregation methods, and by defining structural relationship between objects. In
contrast, recent works based on convolutional neural networks such as [7–10]
implicitly model visual context by design since the receptive field of “artificial
neurons” grows with the network’s depth, eventually covering the full image
for the last layers. For this reason, these CNNs-based approaches have shown
modest improvements when combined with an explicit context model [11].

Our results are not in contradiction with such previous findings. We show
that explicit context modeling is important only for a particular part of object
detection pipelines that was not considered in previous work. When training
a convolutional neural network, it is indeed important to control overfitting,
especially if few labeled training examples are available. Various heuristics are
typically used for that purpose such as DropOut [12], penalizing the norm of the
network parameters (also called weight decay), or early stopping the optimization
algorithm. Even though the exact regularization effect of such approaches on
learning is not well understood from a theoretical point of view, these heuristics
have been found to be useful in practice.

Besides these heuristics related to the learning procedure, another way to con-
trol overfitting consists of artificially increasing the size of training data by using
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prior knowledge on the task. For instance, all object classes from the VOC’12
dataset [13] are invariant to horizontal flips (e.g., a flipped car is still a car) and
to many less-trivial transformations. A more ambitious data augmentation tech-
nique consists of leveraging segmentation annotations, either obtained manually,
or from an automatic segmentation system, and create new images with objects
placed at various positions in existing scenes [14–16]. While not achieving perfect
photorealism, this strategy with random placements has proven to be surpris-
ingly effective for object instance detection [14], which is a fine-grained detection
task consisting of retrieving instances of a particular object from an image col-
lection; in contrast, object detection focuses on detecting object instances from
a particular category. Unfortunately, the random-placement strategy does not
extend to the object detection task, as shown in the experimental section. By
placing training objects at unrealistic positions, implicitely modeling context
becomes difficult and the detection accuracy drops substantially.

Along the same lines, the authors of [15] have proposed to augment datasets
for text recognition by adding text on images in a realistic fashion. There, placing
text with the right geometrical context proves to be critical. Significant improve-
ments in accuracy are obtained by first estimating the geometry of the scene,
before placing text on an estimated plane. Also related, the work of [16] is using
successfully such a data augmentation technique for object detection in indoor
scene environments. Modeling context has been found to be critical as well and
has been achieved by also estimating plane geometry and objects are typically
placed on detected tables or counters, which often occur in indoor scenes.

In this paper, we consider the general object detection problem, which re-
quires more generic context modeling than estimating plane and surfaces as done
for instance in [15, 16]. To this end, the first contribution of our paper is method-
ological: we propose a context model based on a convolutional neural network,
which will be made available as an open-source software package. The model
estimates the likelihood of a particular category of object to be present inside a
box given its neighborhood, and then automatically finds suitable locations on
images to place new objects and perform data augmentation. A brief illustration
of the output produced by this approach is presented in Figure 1. The sec-
ond contribution is experimental: We show with extensive tests on the VOC’12
benchmark that context modeling is in fact a key to obtain good results for
object detection and that substantial improvements over non-data-augmented
baselines may be achieved when few labeled examples are available.

2 Related Work

In this section, we briefly discuss related work for visual context modeling and
data augmentation for object detection.

Modeling visual context for object detection. Relatively early, visual context has
been modeled by computing statistical correlation between low-level features
of the global scene and descriptors representing an object [17, 18]. Later, the
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authors of [4] introduced a simple context re-scoring approach operating on
appearance-based detections. To encode more structure, graphical models were
then widely used in order to jointly model appearance, geometry, and contextual
relations [19, 20]. Then, deep learning approaches such as convolutional neural
networks started to be used [7–9]; as mentioned previously, their features al-
ready contain implicitly contextual information. Yet, the work of [21] explicitly
incorporates higher-level context clues and combines a conditional random field
model with detections obtained by Faster-RCNN. With a similar goal, recurrent
neural networks are used in [22] to model spatial locations of discovered objects.
Another complementary direction in context modeling with convolutional neural
networks use a deconvolution pipeline that increases the field of view of neurons
and fuse features at different scales [22–24], showing better performance essen-
tially on small objects. The works of [2, 25] analyze different types of contextual
relationships, identifying the most useful ones for detection, as well as various
ways to leverage them. However, despite these efforts, an improvement due to
purely contextual information has always been relatively modest [11, 26].

Data augmentation for object detection. Data augmentation is a major tool to
train deep neural networks. If varies from trivial geometrical transformations
such as horizontal flipping, cropping with color perturbations, and adding noise
to an image [27], to synthesizing new training images [28, 29]. Some recent object
detectors [9, 10, 23] benefit from standard data augmentation techniques more
than others [7, 8]. The performance of Fast- and Faster-RCNN could be for in-
stance increased by simply corrupting random parts of an image in order to
mimic occlusions [30]. Regarding image synthesis, recent works such as [31–33]
build and train their models on purely synthetic rendered 2d and 3d scenes. How-
ever, a major difficulty for models trained on synthetic images is to guarantee
that they will generalize well to real data since the synthesis process introduces
significant changes of image statistics [29]. To address this issue, the authors of
[15] adopt a different direction by pasting real segmented object into natural
images, which reduces the presence of rendering artefacts. For object instance
detection, the work [16] estimates scene geometry and spatial layout, before
synthetically placing objects in the image to create realistic training examples.
In [14], the authors propose an even simpler solution to the same problem by
pasting images in random positions but modeling well occluded and truncated
objects, and making the training step robust to boundary artifacts at pasted
locations.

3 Modeling Visual Context for Data Augmentation

Our approach for data augmentation mainly consists of two parts: we first model
visual context by using bounding box annotations, where the surrounding of a
box is used as an input to a convolutional neural network to predict the presence
or absence of an object within the box. Then, the trained context model is used to
generate a set of possible new locations for objects. The full pipeline is presented
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Fig. 2. Illustration of our data augmentation approach. We select an image for
augmentation and 1) generate 200 candidate boxes that cover the image. Then, 2) for
each box we find a neighborhood that contains the box entirely, crop this neighborhood
and mask all pixels falling inside the bounding box; this “neighborhood” with masked
pixels is then fed to the context neural network module and 3) object instances are
matched to boxes that have high confidence scores for the presence of an object cate-
gory. 4) We select at most two instances that are rescaled and blended into the selected
bounding boxes. The resulting image is then used for training the object detector.

in Fig. 2. In this section, we describe these two steps in details, but before that,
we present and discuss a preliminary experiment that has motivated our work.

3.1 Preliminary Experiment with Random Positioning

In [14], data augmentation is performed by placing segmented objects at random
positions in new scenes. As mentioned previously, the strategy was shown to be
effective for object instance detection, as soon as an appropriate procedure is
used for preventing the object detector to overfit blending artefacts—that is,
the main difficulty is to prevent the detector to “detect artefacts” instead of de-
tecting objects of interest. This is achieved by using various blending strategies
to smooth object boundaries such as Poisson blending [34], and by adding “dis-
tractors” that are objects that do not belong to any of the dataset categories, but
which are also synthetically pasted on random backgrounds. With distractors,
artefacts occur both in positive and negative examples, for each of the categories,
preventing the network trained for object detection to overfit them. According
to [14], this strategy can bring substantial improvements for the object instance
detection/retrieval task, where modeling the fine-grain appearance of an object
instance seems to be more important than modeling visual context as in the
general category object detection task.

Unfortunately, the above context-free strategy does not extend trivially to
the object detection task we consider. Our preliminary experiment conducted
on the VOC’12 dataset actually shows that it may even hurt the accuracy of the
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detector, which has motivated us to propose instead an explicit context model.
Specifically, we conducted an experiment by following the original strategy of [14]
as closely as possible. We use the subset of the VOC’12 train set that has ground-
truth segmentation annotations to cut object instances from images and then
place them on other images from the training set. As in [14], we experimented
with various blending strategies (Gaussian or linear blur, Poisson blending, or
using no blending at all) to smooth the boundary artifacts. Following [14], we also
considered “distractors”, which are then labeled as background. Distractors were
simply obtained by copy-pasting segmented objects from the COCO dataset [35]
from categories that do not appear in VOC’12.1

For any combination of blending strategy, by using distractors or not, the
naive data augmentation approach with random placement did not improve upon
the baseline without data augmentation for the classical object detection task.
A possible explanation may be that for instance object detection, the detector
does not need to learn intra-class variability of object/scene representations and
seems to concentrate only on appearance modeling of specific instances, which
is not the case for category-level object detection. This experiment was the key
motivation for proposing a context model, which we now present.

3.2 Modeling Visual Context with Convolutional Neural Networks

Since the context-free data augmentation failed, we propose to learn where to
automatically place objects by using a convolutional neural network. Here, we
present the data generation, model training, and object placement procedures.

Contextual data generation. We consider training data with bounding box and
category annotations. For each bounding box B associated to a training image I,
we create a set of training contexts, which are defined as subimages of I fully
enclosing the bounding box B whose content is masked out, as illustrated in Fig-
ure 3. Several contexts can be created from a single annotated bounding box B
by varying the size of the subimage around B and its aspect ratio. In addition,
“background” contexts are also created by considering random bounding boxes
whose intersection over union with any ground truth doesn’t exceed a threshold
of 0.3, and whose content is also masked out. The shape of such boxes is defined
by aspect ratio a and relative scale s. We draw a pair of parameters from the joint
distribution induced by bounding boxes containing positive objects, i.e. a 30×30
bins normalized histogram. Since in general, there is more background samples
than the ones actually containing objects, we sample “background” contexts 3
times more often following sampling strategies in [7, 9].

Model training. Given the set of all contexts, gathered from all training data,
we train a convolutional neural network to predict the presence of each object
in the masked bounding box. The input to the network are the “contextual

1 Note that external data from COCO was used only in this preliminary experiment
and not in the experiments reported later in Section 4.
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Fig. 3. Contextual images - examples of inputs to the context model. A
subimage bounded by a magenta box is used as an input to the context model after
masking-out the object information inside a red box. The top row lists examples of
positive samples encoding real objects surrounded by regular and predictable context.
Positive training examples with ambiguous or uninformative context are given in the
second row. The bottom row depicts negative examples enclosing background. This
figure shows that contextual images could be ambiguous to classify correctly and the
task of predicting the category given only the context is challenging.

Fig. 4. Different kinds of blending used in experiments. From left to right:
linear smoothing of boundaries, Gaussian smoothing, no processing, motion blur of the
whole image, Poisson blending [34].
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images” obtained during the data generation step, and which contain a masked
bounding box inside. These contextual images are resized to 300 × 300 pixels,
and the output of the network is a label in a set {1, 2, ...,K + 1}, where K is
the number of object categories and the (K + 1)-th class represents background.
For such a multi-class image classification problem here, we use the classical
ResNet50 network [36] pre-trained on ImageNet, and change the last layer to be
a softmax with K + 1 activations (see experimental section for details).

Selection of object locations at test time. Once the context model is trained by
using training data annotated with bounding boxes, we use it to select loca-
tions to perform data augmentation on a given image. As input, the trained
classifier receives “contextual images” with a bounding box masked out (as in
Section 3.2). The model is able to provide a set of “probabilities” representing
the presence of each object category in a given bounding box, by considering
its visual surrounding. Since evaluating all potential bounding boxes from an
image is too costly, we randomly draw 200 candidate bounding boxes and retain
the ones where an object category has a score greater than 0.8; empirically, the
number 200 was found to provide good enough bounding boxes among the top
scoring ones, while resulting in a reasonably fast data augmentation procedure.

Blending objects in their environment. Whenever a bounding box is selected
by the previous procedure, we need to blend an object at the corresponding
location. This step follows closely the findings of [14]. We consider different
types of blending techniques (Gaussian or linear blur, simple copy-pasting with
no post-processing, or generating blur on the whole image to imitate motion),
and randomly choose one of them in order to introduce a larger diversity of
blending artefacts. We also do not consider Poisson blending in our approach,
which was considerably slowing down the data generation procedure. Unlike [14]
and unlike our preliminary experiment described in Section 3.1, we do not use
distractors, which were found to be less important for our task than in [14].
As a consequence, we do not need to exploit external data to perform data
augmentation. Qualitative results are illustrated on Figure 4.

4 Experiments

In this section, we present experiments demonstrating the importance of context
modeling for data augmentation. We evaluate our approach on the subset of the
VOC’12 dataset that contains segmentation annotations, and study the impact
of data augmentation when changing the amount of training data available. In
Section 4.1, we present data, tools, and evaluation metrics. In Section 4.2, we
present implementation details that are common to all experiments, in order
to make our results easily reproducible (the source code to conduct our experi-
ments will also be made publicly available in an open-source software package).
First, we present experiments for object detectors trained on single categories
in Section 4.3—that is, detectors are trained individually for each object cate-
gory, and an experiment for the standard multiple-category setting is presented
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in Section 4.4. Finally, we present an ablation study in Section 4.5 whose pur-
pose is to understand the effect of various factors (importance blending strategy,
placement strategy, and amount of labeled data).

4.1 Dataset, Tools, and Metrics

Dataset. In all our experiments, we use a subset of the Pascal VOC’12 train-
ing dataset [13] that contains segmentation annotations to train all our models
(context-model and object detector). We call this training set VOC12train-seg,
which contains 1 464 images. Following standard practice, we use the test set of
VOC’07 to evaluate the models, which contains 4 952 images with the same 20
object categories as VOC’12. We call this image set VOC07-test.

Object detector. To test our data-augmentation strategy we chose one of the
state-of-the art object detectors with open-source implementation, BlitzNet [23]
that achieves 79.1% mAP on VOC07-test when trained on the union of the full
training and validation parts of VOC’07 and VOC’12, namely VOC07-train+val

and VOC12train+val (see [23]); this network is similar to the DSSD detector of
[24] that was also used in the Focal Loss paper [37]. The advantage of such class
of detectors is that it is relatively fast (it may work in real time) and supports
training with big batches of images without further modification.

Evaluation metric. In VOC’07, a bounding box is considered to be correct if its
Intersection over Union (IoU) with a ground truth box is higher than 0.5. The
metric for evaluating the quality of detection for one object class is the average
precision (AP), and the mean average precision (mAP) for the dataset.

4.2 Implementation Details

Selecting and blending objects. Since we widely use object instances extracted
from the training images in all our experiments, we create a database of objects
cut out from the VOC12train-seg set to quickly access them during training.
For a given candidate box, an instance is considered as matching if after scaling
it by a factor in [0.5, 1.5] the re-scaled instance’s bounding box fits inside the
candidate’s one and takes at least 80% of its area. When blending them into the
new background, we follow [14] and use randomly one of the following methods:
adding Gaussian or linear blur on the object boundaries, generating blur on the
whole image by imitating motion, or just paste an image with no blending. To
not introduce scaling artifacts, we keep the scaling factor close to 1.

Training the context model. After preparing the “contextual images” as de-
scribed in 3.2, we re-scale them to the standard size 300 × 300 and stack them
in batches of size 32. We use ResNet50 [36] with ImageNet initialization to train
a contextual model in all our experiments. Since we have access only to the
training set at any moment we train and apply the model on the same data. To
prevent overfitting, we use early stopping. In order to determine when to stop
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the training procedure, we monitor both training error on our training set and
validation error on the VOC’12 validation set VOC12-val. The moment when
the loss curves start diverging noticeably is used as a stopping point. To this
end, when building context model for one class vs. background, we train a net-
work for 1.5K iterations, then decrease the learning rate by a factor 10 and train
for 500 additional iterations. When learning a joint contextual model for all 20
categories, we first run the training procedure for 4K iterations and then for 2K
more iterations after decreasing the learning rate. We sample 3 times more back-
ground contextual images, as noted in Section 3.2. Visual examples of images
produced by the context model are presented in Figure 5. Overall, training the
context model is about 5 times faster than training the detector.

Training the object detector. In this work, the detector takes images of size 300×
300 as an input and produces a set of candidate object boxes with classification
scores; like our context model, it uses ResNet50 [36] pre-trained on ImageNet as
a backbone. The detector is trained by following [23], with the ADAM optimizer
[38] starting from learning rate 10−4 and decreasing it later during training by
a factor 10 (see Sections 4.3 and 4.4 for the number of epochs used in each
experiment). In addition to our data augmentation approach obtained by copy-
pasting objects, all experiments also include classical data augmentation steps
obtained by random-cropping, flips, and color transformations, following [23].

4.3 Single-Category Object Detection

In this section, we conduct an experiment to better understand the effect of the
proposed data augmentation approach, dubbed “Context-DA” in the different
tables, when compared to a baseline with random object placement “Random-
DA”, and when compared to standard data augmentation techniques called
“Base-DA”. The study is conducted in a single-category setting, where detec-
tors are trained independently for each object category, resulting in a relatively
small number of positive training examples per class. This allows us to evalu-
ate the importance of context when few labeled samples are available and see if
conclusions drawn for a category easily generalize to other ones.

The baseline with random object placements on random backgrounds is con-
ducted in a similar fashion as our context-driven approach, by following the
strategy described in the previous section. For each category, we treat all images
with no object from this category as background images, and consider a collec-
tion of cut instances as discussed in Section 4.1. During training, we augment a
negative (background) image with probability 0.5 by pasting up to two instances
on it, either at randomly selected locations (Random-DA), or using our context
model in the selected bounding boxes with top scores (Context-DA). The in-
stances are re-scaled by a random factor in [0.5, 2] and blended into an image
using a randomly selected blending method mentioned in Section 4.1. For all
models, we train the object detection network for 6K iterations and decrease the
learning rate after 2K and 4K iterations by a factor 10 each time. The results
for this experiment are presented in Table 1.
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The conclusions are the following: random placement indeed hurts the per-
formance on average. Only the category bird seems to benefit significantly from
it, perhaps because birds tend to appear in various contexts in this dataset and
some categories significantly suffer from random placement such as boat, table,
and sheep. Importantly, the visual context model always improve upon the ran-
dom placement one, on average by 5%, and upon the baseline that uses only
classical data augmentation, on average by 4%. Interestingly, we identify cate-
gories for which visual context is crucial (aeroplane, bird, boat, bus, cat, cow,
horse), for which context-driven data augmentation brings more than 5% im-
provement and some categories that display no significant gain or losses (chair,
table, persons, train), where the difference with the baseline is less than 1%.

Table 1. Comparison of detection accuracy on VOC07-test for the single-category
experiment. The models are trained independently for each category, by using the
1 464 images from VOC12train-seg. The first row represents the baseline experiment
that uses standard data augmentation techniques. The second row uses in addition
copy-pasting of objects with random placements. The third row presents the results
achieved by our context-driven approach and the last row presents the improvement
it brings over the baseline. The numbers represent average precision per class in %.
Large improvements over the baseline (greater than 5%) are in bold.

method aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.

Base-DA 58.8 64.3 48.8 47.8 33.9 66.5 69.7 68.0 40.4 59.0 61.0 56.2 72.1 64.2 66.7 36.6 54.5 53.0 73.4 63.6 58.0

Random-DA 60.2 66.5 55.1 41.9 29.7 66.5 70.0 70.1 37.4 57.4 45.3 56.7 68.3 66.1 67.0 37.0 49.9 55.8 72.1 62.6 56.9

Context-DA 67.0 68.6 60.0 53.3 38.8 73.3 72.4 74.3 39.7 64.3 61.4 60.3 77.6 69.0 67.3 38.6 56.2 56.9 74.4 66.8 62.0

Impr. Cont. 8.2 4.3 11.2 5.5 4.9 6.8 2.7 6.3 -0.7 5.3 0.4 4.1 5.5 4.8 0.6 2.0 1.7 3.9 1.0 3.2 4.0

Table 2. Comparison of detection accuracy on VOC07-test for the multiple-category
experiment. The model is trained on all categories at the same time, by using the 1 464
images from VOC12train-seg. The first row represents the baseline experiment that
uses standard data augmentation techniques. The second row uses also our context-
driven data augmentation. The numbers represent average precision per class in %.

method aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.

Base-DA 63.6 73.3 63.2 57.0 31.5 76.0 71.5 79.9 40.0 71.6 61.4 74.6 80.9 70.4 67.9 36.5 64.9 63.0 79.3 64.7 64.6

Context-DA 66.8 75.3 65.9 57.2 33.1 75.0 72.4 79.6 40.6 73.9 63.7 77.1 81.4 71.8 68.1 37.9 67.6 64.7 81.2 65.5 65.9

4.4 Multiple-Categories Object Detection

In this section, we conduct the same experiment as in 4.3, but we train a sin-
gle multiple-category object detector instead of independent ones per category.
Network parameters are trained with more labeled data (on average 20 times
more than for the models learned in Table 4.3), making them more robust to
overfitting. The results are presented in Table 2 and show a modest improve-
ment of 1.3% on average over the baseline, which is relatively consistent across
categories, with 18 categories out of 20 that benefit from the context-driven data
augmentation. This confirms that data augmentation is mostly crucial when few
labeled examples are available.
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4.5 Ablation Study

Finally, we conduct an ablation study to better understand (i) the importance of
visual context for object detection, (ii) the impact of blending artefacts, and (iii)
the importance of data augmentation when using very few labeled examples. For
simplicity, we choose the first 5 categories of VOC’12, namely aeroplane, bike,
bird, boat, bottle, and train independent detectors per category as in Section 4.3,
which corresponds to a setting where few samples are available for training.

Baseline when no object is in context. Our experiments show that augmenting
naively datasets with randomly placed objects slightly hurts the performance. To
confirm this finding, we consider a similar experiment, by learning on the same
number of instances as in Section 4.3, but we consider as positive examples only
objects that have been synthetically placed in a random context. This is achieved
by removing from the training data all the images that have an object from the
category we want to model, and replacing it by an instance of this object placed
on a background image. The main motivation for such study is to consider the
extreme case where (i) no object is placed in the right context; (ii) all objects
may suffer from rendering artefacts. As shown in Table 3, the average precision
degrades significantly by about 14% compared to the baseline. As a conclusion,
either visual context is indeed crucial for learning, or blending artefacts is also
a critical issue. The purpose of the next experiment is to clarify this ambiguity.

Impact of blending when the context is right. In the previous experiment, we
have shown that the lack of visual context and the presence of blending arte-
facts may explain the performance drop observed on the fourth row of Table 3.
Here, we propose a simple experiment showing that blending artefacts are not
critical when objects are placed in the right context: the experiment consists of
extracting each object instance from the dataset, up-scale it by a random factor
slightly greater than one (in the interval [1.2, 1.5]), and blend it back at the same
location, such that it covers the original instance. As a result, the new dataset
benefits slightly from data augmentation (thanks to object enlargement), but it
also suffers from blending artefacts for all object instances. As shown on the fifth
row of Table 3, this approach improves over the baseline, though not as much as
the full context-driven data augmentation, which suggests that the lack of visual
context was the key explaining the result observed before. The experiment also
confirms that the presence of blending artefacts is not critical for the object
detection task. Visual examples of such artefacts are presented in Figure 6.

Performance with very few labeled data. Finally, the last four rows of Table 3
present the result obtained by our approach when reducing the amount of labeled
data, in a setting where this amount is already small when using all training
data. The improvement provided by our approach is significant and consistent
(about 6% when using only 50% and 25% of the training data). Even though one
may naturally expect larger improvements when a very small number of training
examples are available, it should be noted that in such very small regimes, the
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quality of the context model may degrade as well (e.g., the dataset contains only
87 images of birds, meaning that with 25%, we use only 22 images with positive
instances, which is an extremely small sample size).

Table 3. Ablation study on the first five categories of VOC’12. All models are learned
independently as in Table 1. We compare classical data augmentation techniques (Base-
DA), approaches obtained by copy-pasting objects, either randomly (Random-DA) or
according to a context model (Context-DA). The line “Removing context” corresponds
to the first experiment described in Section 4.5; Enlarge-Reblend corresponds to the
second experiment, and the last four rows compare the performance of Base-DA and
Context-DA when varying the amount of training data from 50% to 25%.

Data portion aero bike bird boat bottle average

Base-DA 58.8 64.3 48.8 47.8 33.9 48.7
Random-DA 60.2 66.5 55.1 41.9 29.7 48.3
Context-DA 67.0 68.6 60.0 53.3 38.8 57.5

Removing context 44.0 46.8 42.0 20.9 15.5 33.9

Enlarge + Reblend-DA 60.1 63.4 51.6 48.0 34.8 51.6

Base-DA 50 % 55.6 60.1 47.6 40.1 21.0 42.2
Context-DA 50 % 62.2 65.9 55.2 46.9 27.2 48.8
Base-DA 25 % 51.3 54.0 33.8 28.2 14.0 32.5
Context-DA 25 % 57.8 59.5 40.6 34.3 19.0 38.3

5 Discussions and Future Work

In this paper, we introduce a data augmentation technique dedicated to ob-
ject detection, which exploits segmentation annotations. From a methodological
point of view, we show that this approach is effective and goes beyond traditional
augmentation approaches. One of the keys to obtain significant improvements in
terms of accuracy was to introduce an appropriate context model which allows
us to automatically find realistic locations for objects, which can then be pasted
and blended at in the new scenes. While the role of explicit context modeling
has been unclear so far for object detection, we show that it is in fact crucial
when performing data augmentation and learn with few labeled data, which is
one of the major issue that deep learning models are facing today.

We believe that these promising results pave the way to numerous extensions.
In future work, we will for instance study the application of our approach to
other scene understanding tasks, e.g., semantic or instance segmentation, and
investigate how to adapt it to larger datasets. Since our approach relies on pre-
segmented objects, which are subsequently used for data augmentation, we are
also planning to exploit automatic segmentation tools such as [39] in order to
use our method when only bounding box annotations are available.
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Fig. 5. Examples of instance placement with context model guidance. The
figure presents samples obtained by placing a matched examples into the box predicted
by the context model. The top row shows generated images that are visually almost
indistinguishable from the real ones. The middle row presents samples of good quality
although with some visual artifacts. For the two leftmost examples, the context module
proposed an appropriate object class, but the pasted instances do not look visually
appealing. Sometimes, the scene does not look natural because of the segmentation
artifacts as in the two middle images. The two rightmost examples show examples
where the category seems to be in the right environment, but not perfectly placed. The
bottom row presents some failure cases.

Fig. 6. Illustration of artifacts arising from enlargement augmentation. In
the enlargement data augmentation, an instance is cut out of the image, up-scaled by
a small factor and placed back at the same location. This approach leads to blend-
ing artefacts. Modified images are given in the top row. Zoomed parts of the images
centered on blending artifacts are presented in the bottom line.
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