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Letter

Fire on ice and frozen trees?
Inappropriate radiocarbon dating
leads to unrealistic
reconstructions

Comment on Carcaillet & Blarquez (2017) ‘Fire
ecology of a tree glacial refugium on a nunatak with a
view on Alpine glaciers’.

The questions as to where and how trees survived the Quaternary
ice ages are key for understanding climate-driven range expansion
processes (Clark, 1998; Giesecke et al., 2017) and the influence of
ice-age legacies on current mid- and high-latitude biodiversity
patterns (Willis & Whittaker, 2000). Such questions have long
intrigued plant ecologists, biogeographers and palaeoecologists
(Bennett et al., 1991; Kaltenrieder et al., 2009) and have recently
become the focus of combined molecular-ecological and biogeo-
graphical studies (Magri et al., 2006; Wagner et al., 2015).

The classic southern-refugia paradigm (van der Hammen et al.,
1971; Tzedakis et al., 2013) postulates treeless landscapes in central
Europe and at the margins of the continental and Alpine ice-sheets
for the time of the LastGlacialMaximum (LGM; c. 23 000–19 000
calendar years before present (cal yr BP, where 0 cal yr BP = AD

1950), that is, the interval representing the most extreme
conditions of the Last Glacial). Widespread cold-adapted alpine
and arctic plants and boreal dwarf shrubs are documented to have
occurred north of the Alps (Birks & Willis, 2008; Tzedakis et al.,
2013), while small populations of temperate and boreal trees
persisted in southern European peninsulas (Iberia, Italy, and the
Balkans) (Bennett et al., 1991). Boreal and mountain conifers (e.g.
Larix deciduaMill. andPinus cembraL.) occurred atmore northerly
locations (up to c. 46°N) in eastern Europe, and grew closer to the
southern margin of the Alpine and Carpathian ice-caps than
temperate trees (Willis, 2000; Vescovi et al., 2007; Kune!s et al.,
2008). This view has been challenged by the alternative interpre-
tation that temperate plant species could have survived the LGM
further north in locally favourable conditions as small populations
that may be hard to detect with palaeoecological tools (e.g. Stewart
& Lister, 2001; Heikkil€a et al., 2009; V€aliranta et al., 2011).

Recently, Carcaillet & Blarquez (2017) presented evidence for
the occurrence of an LGM ‘tree refugium’ located at c. 2200 m
above sea level (asl) on a nunatak (amountain top or peak emerging
from or at the edge of an ice sheet or glacier) on the western flank of
the European Alps. The reported presence of L. decidua and
P. cembra plant macrofossils during the LGM in sediments from
LakeMiroir, a site located close to modern treeline altitude (TLA),
challenges the consensus on the LGM distributions of trees in

Europe. The authors further provided evidence of fire occurrence
on the nunatak during the LGM, which they suggest demonstrates
that ‘a glacial climate does not prevent the ignition of biomass and
fire spread’. Finally, they concluded that their findings support the
hypothesis of western Alpine glacial refugia of P. cembra and
L. decidua (Mosca et al., 2012). The study uses the powerful
approach of plant-macrofossil analysis (Birks & Birks, 2000) to
determine the occurrence of trees in a high-alpine environment.
Being located on a ridge rather than at the bottom of a cirque basin,
it is possible that the LGM glacier did not cover the studied lake.
Thus, this sitemay bear sediments older than typical Alpine glacial-
cirque lakes, where organic sediment accumulation generally
started not earlier than the onset of the Holocene (e.g. Tinner &
Theurillat, 2003). Moreover, given the evidence for tree occur-
rences at elevations above glacier fronts nowadays (e.g. L€udi, 1950),
the occurrence of trees on nunataks in the past is a reasonable
hypothesis. However, the hypothesis should be critically assessed
because modern treeline is located significantly below the snowline
(roughly the elevation of the 0°C isotherm of the warmest month),
above which the ground remains snow covered throughout the year
(K€orner, 2003).

Claiming an LGM refugium on a nunatak for tree species in
modern treeline environments requires strong evidence. First, the
evidence for a nunatak around Lake Miroir is poorly supported
because the LGM glacier-cover reconstruction referred to by
Carcaillet & Blarquez (2017) is at the scale of the whole Durance-
valley glacier (Cossart, 2008; Cossart et al., 2012). A detailed
description of local glacial/periglacial landforms (e.g. trimlines,
roches moutonn!ees, erratics) around the lake would be needed to
firmly constrain the existence of a nunatak. Second, historical
biogeography depends on reliable age assessments of sediment
sequences, and here we argue that the choice of material used for
radiocarbon (14C) dating led to unsupported conclusions. To
estimate the ages of sediments deposited before the Holocene,
Carcaillet&Blarquez (2017) used 14Cdates of total organic carbon
extracted from lacustrine sediments (hereafter ‘bulk dates’). There
are several studies (see for instance Bj€orck &Wohlfarth, 2001, and
references cited therein) that demonstrate that in many cases bulk
dates yield older ages than the actual sediment deposition time due,
for instance, to (1) contamination by 14C depleted (dead) fossil
carbon from pre-Quaternary sediments/bedrocks and from Qua-
ternary glacial till (Walker et al., 2001; H#agvar & Ohlson, 2013;
van Mourik et al., 2013), and to (2) the well-known ‘hard-water
reservoir effect’ (Deevey et al., 1954). The latter effect arises in areas
with calcareous bedrock, soils, or aeolian input of carbonate-rich
dust (Grimm et al., 2009) because aquatic organisms take up dead
carbon from dissolved carbonates and incorporate it into their
tissues, thereby leading to overestimations of the sediment ages
based on samples consisting entirely or partly of aquatic organic
matter. While early-Holocene plant-macrofossils and bulk 14C
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dates at 710–715 cm provided nearly the same ages (see table 1 in
Carcaillet&Blarquez, 2017) suggesting little or no early-Holocene
hard-water effects, discrepancies are expected to increase down-
core in sediments with low organic content (Fowler et al., 1986),
because it is reasonable to assume that low organic content mostly
reflects low terrestrial productivity. In down-core sequences such
ages can become rapidly older with age, down to 14C exhaustion,
while their sequence still displays a regular, yet fatal, stratigraphic
consistency. Both biases are relevant in critically assessing the
chronology of the sediments analysed by Carcaillet & Blarquez
(2017) because LakeMiroir is located in a catchment dominated by
biogenic-limestone bedrocks (Fig. 1), which in this context is
important information that was not mentioned in the article.

Because such potential biases are well known, bulk dates or dates
of aquatic-plantmacrofossils are usually avoided (Marty&Myrbo,
2014) or rejected (Andree et al., 1986; Grimm et al., 2009;
Giesecke et al., 2014; Hubay et al., 2018), particularly if they differ
from those expected according to other sources of information. The
justification given by Carcaillet & Blarquez (2017) for using bulk

dates is weak, especially because conifer needles were found in the
lower part of the Lake Miroir sediment core. Using a different
sampling device able to retrieve larger sediment volume, or taking
repeated parallel cores would have significantly increased the
chance of finding sufficient terrestrial plant-macrofossils for AMS
14C dating (Tinner & Theurillat, 2003). Alternatively, the
chronology could have been supported with other dating methods
such as, for instance, tephrochronology (Lane et al., 2012) or by
applying pollen-biostratigraphical marker horizons to detect well-
known regional vegetation changes during the Lateglacial
(c. 14 700–11 650 cal yr BP, where 0 cal yr BP = AD 1950; Magyari
et al., 2012; Giesecke et al., 2014; Heiri et al., 2014).

Here, we provide an alternative interpretation of the results
based on available geomorphological and palaeoecological data.
The modern equilibrium-line altitude (ELA), which broadly
coincides with the snow line altitude and separates the zones of net
accumulation and net ablation on glaciers (Bakke &Nesje, 2011),
is located at c. 3000! 200 m asl in the western Alps (Cossart et al.,
2012; Rabatel et al., 2013; Fig. 2a). The LGM-to-modern ELA rise
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Fig. 1 Excerpt from the geologicalmapof France (no. 871, scale 1/50 000) showing the bedrock geology and surface deposits around LakeMiroir (‘LacMiroir’
in French; Kerckhove et al., 2005).
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has been estimated to c. 1000 m (Broecker & Denton, 1990;
Federici et al., 2017). This is a conservative estimate, given that
greater ELA rises (c. 1300–1400 m) have been suggested, for
instance, for the Durance valley itself (Cossart et al., 2012) and as
far south asMontenegro (Bavec et al., 2004). Thus, if we assume an
ELA 1000–1400 m lower than present this would lead to
permanent snow and ice accumulation during the LGM at an
altitude of c. 1600–2000 masl, an elevationwell belowLakeMiroir
(Fig. 2a). Lake Miroir, even as a nunatak, would thus have been
perennially frozen and snow-covered, making tree or shrub growth
impossible. Furthermore, snowline and treeline co-vary in space
and are separated today by an altitudinal difference (DZ) of c. 800–
900 m in the Alps (K€orner, 2003; Landolt, 2003). If the modern
DZwas used to infer the upper limit of LGM tree growth, the TLA
would have been at 800–1300 m asl (Fig. 2a).

Quantitative vegetation-independent palaeotemperature recon-
structions (Fig. 2b) as well as palaeoclimatic simulations show that
LGMmean July-air temperatures were 10–12°C lower than today in
the south-eastern sector of the Alps (Samartin et al., 2016) and that
the western Alpine sector was likely cooler than the eastern sector
(Heyman et al., 2013). At the upper treeline tree growth is mainly
temperature limited (K€orner, 2003), and the upper treeline in the
Alps is located at mean July temperatures of 7.5 to 9.5°C (Landolt,

2003). Assuming a lapse rate of 6°C km"1 close to modern
conditions (Livingstone & Lotter, 1998; Becker et al., 2016), a 10–
12°C drop would result in c. 0°C mean July temperatures at Lake
Miroir. This temperature estimate agrees well with estimated ELAs
and supports the argument that during the LGMthe areawas covered
by snow, ice, and permafrost (Osterkamp & Burn, 2003), making
tree growth or persistence impossible (K€orner, 2003; MacDonald
et al., 2008; Kruse et al., 2016).

Obtaining amean July-air temperature of 8°Cat LakeMiroir on
the basis of the reconstructed palaeotemperature records (Fig. 2b)
would require an unrealistic summer-temperature lapse rate of c.
2°C km"1. Such low lapse rates, however, are not needed to model
the LGM Alpine ice cap (Becker et al., 2016). Instead, TLA
depressions of c. 1400–1700 m are in much better agreement with
both theoretical (models) and empirical evidence (pollen, plant
macrofossils), which suggest LGM TLA depressions south of the
Alps > 2000 m (Tinner & Vescovi, 2005; Marta et al., 2013),
resulting in realistic TLA reconstructions (e.g. of L. decidua) below
500 m asl (Kaltenrieder et al., 2009;Monegato et al., 2015), that is
> 1500 mbelow LacMiroir. Taken together, the available evidence
suggests that even if Lake Miroir was located on a nunatak at the
margin of valley glaciers, it was most likely permanently covered by
snow or ice, thus unsuited for tree growth, and far above treeline.
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based on geomorphological, palaeoclimatological, and ecological data. Modern ELAs are based on Cossart et al. (2012) (dark blue bar)
and Rabatel et al. (2013) (light blue bar); LGM ELAs are based on Cossart et al. (2012), and on the difference between modern ELA as from
Rabatel et al. (2013) and LGM ELAs, following Broecker & Denton (1990) and Federici et al. (2017) (light blue bar). Modern local TLA (yellow bar) is between
2200 and 2400m above sea level (asl) (Carcaillet & Blarquez, 2017), and LGM TLA (orange bar) south of the Alps was c. 200–400m asl
(Tinner & Vescovi, 2005), corresponding to an LGM-to-modern treeline rise of c. 2000m (Marta et al., 2013). Modern and LGM ELA-estimated TLAs
(green bars) were inferred based on the elevation of the ELA and themodern altitudinal difference (DZ = 900! 100m) between ELA and TLA (K€orner, 2003).
LGM TLA was also estimated using chironomid-inferred July-air temperatures from Lago della Costa (Samartin et al., 2016), July temperatures of 7.5
to 9.5°C necessary for tree growth and lapse rates of 6°C km"1 (brown bar). The altitudinal position of Lake Miroir is shown with a horizontal dashed line.
(b) Mean July-air temperature scenarios for the LGM to present estimated for the altitude of Lake Miroir using two chironomid-based temperature
reconstructions from the Alpine region (Lago della Costa, Samartin et al., 2016; Lago di Origlio, Samartin et al., 2012), and a chironomid-inferred stacked
Alpine temperature record representing temperature in the northern and central Swiss Alps (Heiri et al., 2015). Temperatures were corrected assuming a
constant modern temperature lapse rate of 6°C km"1 (Livingstone & Lotter, 1998). The Origlio record is only shown for the older section (> 14 000 cal yr BP,
where 0 cal yr BP = AD 1950). Current July-air temperatures are shown for the area of LakeMiroir (horizontal red bar) based onWorldClim 2.0 (Fick &Hijmans,
2017). In addition, historical (AD 1755–2017) 30-yr moving average July-air temperature measurements from Basel Binningen (black line) are displayed,
corrected to the altitude of LakeMiroir. ELA, TLA and alpine vegetation temperature thresholds are inferred from today’s observations in space (K€orner, 2003;
Landolt, 2003). All three temperature scenarios indicate that LakeMiroir was locatedwell above the TLA and, for two scenarios, even above the limit of alpine
vegetation during the LGM and the end of the last glaciation > 14 700 cal yr BP.
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The picture does not change when considering single trees in
sheltered microhabitats (e.g. rocky slopes) that are located today c.
200–300 m above the treeline (K€orner, 2003).

The evidence clearly argues in favour of a more conservative
interpretation than that proposed byCarcaillet&Blarquez (2017),
implying that the macrofossils assigned to the LGM actually were
deposited either during the early Holocene (< 11 650 cal yr BP) or
during the Bølling-Allerød Lateglacial Interstadial (c. 14 700–
12 850 cal yr BP). An early-Holocene age would fit with evidence
attesting that the spread of L. decidua in the western sector of the
Alps occurred later than in the eastern sector (Wagner et al., 2015).
By contrast, a Bølling-Allerød age would be truly a novel
palaeoecological finding showing the establishment of modern
treeline before theHolocene. This finding would be conceivable on
the basis of (1) the lowermost plant-macrofossil 14C date
(9980! 50 14C yr BP), and (2) palaeotemperature records (i.e.
the chironomid-inferred mean July temperatures shown in
Fig. 2b). Both scenarios would show that L. decidua populations
spread fast at high altitudes. Thus, the presence of tree refugia on
nunataks is not required to explain the genetic differentiation of
western and eastern populations (Mosca et al., 2012). Because
charcoal-accumulation rates strongly depend on the sediment-
accumulation rates that are inferred from the depth-age model, the
charcoal-inferred fire history presented by Carcaillet & Blarquez
(2017) is also poorly supported.Moreover, to obtain amore robust
reconstruction of Fire-Return Intervals, the analysis should have
included statistical testing of potentially spurious peaks (Higuera
et al., 2010; Finsinger et al., 2014).

We conclude that currently available evidence rather suggests
that during the LGM the area around Lake Miroir was located far
above the treeline and at near-to-zero July temperatures. Ulti-
mately, there is only one type of evidence that could convincingly
and unambiguously support the conclusion of tree growth on a
nunatak at 2200 m asl during the LGM in the European Alps: the
use of amore accurate datingmethod, such as repeated radiocarbon
dates on terrestrial plant macrofossils from the basal part of the
sediment sequence. Without this, the interpretations given by
Carcaillet & Blarquez (2017) remain unsupported and in conflict
with independent palaeoecological, palaeoclimatological, and
geomorphological evidence.
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