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Abstract

Many articles have been devoted to the problem of estimating recursively the eigenvectors corresponding
to eigenvalues in decreasing order of the expectation of a random matrix A using an i.i.d. sample of it.
The present study makes the following contributions: the convergence of a normed process having the same
formal de�nition as that of Oja is proved under more general assumptions, the random matrices used at
each step are not supposed i.i.d.; at each step, a data mini-batch or all the data up to the current step
can be taken into account without storing them; three types of processes are studied and applied to online
principal component analysis of a data stream, assuming that data are realizations of a random vector Z
whose expectation is unknown and must be estimated online, as well as possibly the metric used when it
depends on unknown characteristics of Z.
Keywords: Big Data, Data Stream, Online Estimation, Principal Component Analysis, Stochastic Ap-

proximation.

1 Introduction

Data stream factorial analysis is de�ned as the factorial analysis of data that arrive continuously such as
process control data, web data, telecommunication data, medical data, �nancial data,.... Recursive stochastic
algorithms can be used for observations arriving sequentially to estimate principal components of a principal
component analysis (PCA), the estimations of which are updated by each new arriving observation vector.
When using such processes, it is not necessary to store the data and, due to the relative simplicity of the
computation involved, much more data than with other methods can be taken into account during the same
duration of time.
De�ne �rst some notations. Let Q be a positive de�nite symmetric p� p matrix called metric in Rp, h:; :i

and k:k respectively the inner product and the norm induced by Q: hx; yi = x0Qy, x0 denoting the transpose
of the column vector x. Remind that a p � p matrix A is Q-symmetric if (QA)0 = QA; then A has p real
eigenvalues and there exists a Q-orthonormal (i.e. orthonormal with respect to the metric Q) basis of Rp
composed of eigenvectors of A. The norm of a matrix A is the spectral norm denoted kAk :
Consider the following model: suppose that p quantitative variables are observed on individuals (p may

be very large); data vectors in Rp are thus obtained; considering that zn is observed at time n (or more
generally that several observations, a data mini-batch, are made at time n), there is a sequence of data vectors
z1; :::; zn; :::; assume that, for n � 1, zn is a realization of a random variable Zn de�ned on a probability
space (
; A; P ) and that (Z1; :::; Zn; :::) is an i.i.d sample of a random vector Z. Let � be the expectation of
Z and C its covariance matrix which are unknown in the case of a data stream. De�ne a metric M in Rp.
Recall brie�y the principal component analysis (PCA) algorithm of the random vector Z. At step l of PCA
is determined a linear combination c0lZ of the components of Z, called l

th principal component, uncorrelated
with the previous ones and of maximum variance, under the normalization constraint c0lM

�1cl = 1; cl is a
M�1-unit eigenvector, i.e. of norm 1 with respect to M�1, of MC corresponding to its lth largest eigenvalue
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�l. For l = 1; :::; r, aM -unit direction vector ul of the lth principal axis is de�ned asM�1cl; the vectors ul are
M -orthonormal and are eigenvectors of the matrix CM corresponding respectively to the same eigenvalues
�l. A particular case is normed PCA, where M is the diagonal matrix of the inverses of variances of the
p components of Z. This is equivalent to use standardized data, i.e. observations of M (Z � �), and the
identity metric. But the expectation � and the variances of the components of Z are usually unknown and
only raw data are observed. One application of this article is to recursively estimate the cl or the ul using
stochastic approximation processes.
Many articles have been devoted to this problem when supposing M and � known or more generally to

the problem of estimating eigenvectors and eigenvalues in decreasing order of the expectation B of a random
matrix, using an i.i.d. sample of it. See for example the well-known algorithms of Benzécri [1], Krasulina [2],
Karhunen and Oja [3], Oja and Karhunen [4], Brandière [5],[6], Brandière and Du�o [7]. Recall the normed
process studied in [3][4]:

Xn+1 =
(I + anBn)Xn
k(I + anBn)Xnk

,

with E[BnjTn] = B; an > 0;
1P
n=1

an =1;
1P
n=1

a2n <1, Tn the �-�eld generated by the events before time n.
This work makes the following contributions. The convergence of this process is proved under more

general assumptions: the random matrices Bn are not supposed i.i.d.; this is applied to online estimation of
principal components of PCA of a random vector Z, when its expectation is unknown, as well as possibly
the metric used, and must be estimated online, and a data mini-batch or all the data up to the current step
can be taken into account at each step without storing them, thus using all the information contained in the
previous data.
More precisely, let Q be a metric in Rp and B a Q-symmetric matrix. In the next section, the almost

sure (a.s.) convergence of normed processes to eigenvectors of B is studied. Three cases are considered:
- E[BnjTn] converges a.s. to B;
- Bn = !1nB1n + !2nB

2
n with !1n + !2n = 1; B

2
n is Tn-measurable, E[B

1
njTn] and B2n converge a.s. to B;

- Bn converges a.s. to B.
For each case, �rstly a theorem of a.s. convergence of (Xn) to a unit eigenvector of B corresponding to

its largest eigenvalue is proved with, in the �rst case, a method following that of [8] (in the case of PCA)
under more general assumptions, a corollary in the second case and another method of proof in the third
case; secondly, using arguments of exterior algebra, the convergence of processes

�
Xi
n

�
, i = 1; ::; r of the same

type, obtained by Gram-Schmidt orthonormalization, to unit eigenvectors corresponding to eigenvalues of B
in decreasing order is proved as a corollary.
Then, in the following section, the whole results are applied to online estimation of principal components

of a PCA. In order to reduce computing time, particularly in the case of a data stream, and to avoid possibly
numerical explosions, we propose:
a) to estimate the eigenvectors al of the symmetric p�p matrix B =M

1
2CM

1
2 ; then the orthonormalization

is computed with respect to I; estimates of cl and ul can be obtained from that of al;
b) to replace Zn by Zn �m, m being an estimation of E[Z] computed in a preliminary phase with a small
number of observations e.g. 1000;
c) to use a data mini-batch at step n or all the observations up to step n without storing them.
Three cases are studied: at each step are taken into account
- a data mini-batch,
- or all the observations up to this step with di¤erent weights for observations in the past, which are not

stored, and observations at this step,
- or all the observations up to this step with uniform weights.
The paper ends with a brief conclusion.

2 Convergence of a normed process

Let (Bn) be a sequence of random p � p matrices, B a p � p matrix, (an) a sequence of positive numbers,
X1 a random variable of norm 1 in Rp independent from the sequence of random matrices (Bn) and (Xn) a
stochastic process in Rp recursively de�ned at step n by:
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Xn+1 =
(I + anBn)Xn
jj (I + anBn)Xnjj

:

2.1 First case

2.1.1 Theorem of almost sure convergence

Suppose Bn not Tn-measurable (Bn is Tn+1-measurable). Make the following assumptions:
(H1a) B is Q-symmetric.
(H1b) B has distinct eigenvalues: �1 > �2 > ::: > �p. Denote Vi a unit eigenvector of B corresponding

to �i; i = 1; ::; p.
(H2a) There exists a positive number b such that supnjjBnjj < b a:s:

(H2b) E
� 1P
n=1

anjjE[BnjTn]�Bjj
�
<1 a:s:

(H3) an > 0;
1P
n=1

an =1;
1P
n=1

a2n <1.

Denote Un = hXn; BXni ;Wn = hXn; BnXni :

Theorem 1 Suppose assumptions H1a,b,H2a,b,H3 hold. Then :
1) Almost surely, Un converges to one of the eigenvalues of B; on Ej = fUn �! �jg, Xn converges to

Vj or �Vj,
1P
n=1

an (�j � Un) and
1P
n=1

an (�j �Wn) converge.

2) If moreover on
p
[
j=2
Ej, lim inf E

h
hBnXn; V1i2 jTn

i
> 0 a.s., then P (E1) = 1.

Let us state two lemmas of Du�o [8] used in the proof.

Lemma 2 Let (Mn) be a square-integrable martingale adapted to the �ltration (Tn) and (hMin) its increasing
process de�ned by:

hMi1 = M2
1

hMin+1 � hMin = E[(Mn+1 �Mn)
2jTn] = E[M2

n+1jTn]�M2
n:

Let hMi1 = lim hMin. If E [hMi1] <1, then (Mn) converges a.s. and in mean square to a �nite random
variable.

Lemma 3 Let (
n) be a sequence of positive numbers such that
1P
n=1


2n < 1. Let (Zn) and (�n) be two

sequences of random variables adapted to a �ltration (Tn), and (�n) a noise adapted to (Tn).
Suppose on the set �:
1) For every integer n, Zn+1 = Zn(1 + �n) + 
n�n+1;
2) (Zn) is bounded;

3)
1P
n=1

�2n <1, �n � 0 for n su¢ ciently large and there exists a sequence of positive numbers (bn) such that
1P
n=1

bn =1 and
1P
n=1

(bn � �n) converges;

4) for an a > 2, E[j�n+1jajTn] = O(1) and lim inf E[�2n+1jTn] > 0 a.s.
Then, P (�) = 0:

Proof of Theorem 1
Part 1: expression of Xn+1

Under H2a, as jj (I + anBn)Xnjj2 = 1 + 2anWn + a
2
n kBnXnk

2:

1

jj (I + anBn)Xnjj
= 1� anWn �

1

2
a2n kBnXnk

2
+ �n; �n = O(a

2
n):
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Xn+1 = (I + anBn)

�
1� anWn �

1

2
a2n kBnXnk

2
+ �n

�
Xn

= (I + an (Bn �WnI) + an�n)Xn; with

�n = �anWnBn �
1

2
an kBnXnk2 I �

1

2
a2nBn kBnXnk

2
+ a�1n �nI + �nBn:

Xn+1 = (I + an (B � UnI) + an�n)Xn; with
�n = (Bn �B)� hXn; (Bn �B)Xni I + �n:

Part 2: convergence of Un

E[Un+1jTn] = E [h(I + an (B � UnI) + an�n)Xn; B (I + an (B � UnI) + an�n)Xni jTn]
= Un + 2an h(B � UnI)Xn; BXni+ 2anE [h�nXn; BXni jTn] + a2n�n

with �n = h(B � UnI)Xn; B (B � UnI)Xni+ 2E [h�nXn; B (B � UnI)Xni jTn]
+E [h�nXn; B�nXni jTn] a.s.

As kXnk = 1, we have with �n = 2an hE [�n jTn]Xn; BXni+ a2n�n:

h(B � UnI)Xn; BXni = kBXnk2 � U2n = kBXn � UnXnk
2 > 0:

E[Un+1jTn] � Un + �n a.s.

E[Un+1 �
nX
i=1

�i jTn] � Un �
n�1X
i=1

�i a.s.

Prove the convergence of the submartingale Un�
n�1P
i=1

�i. By H2a:

k�nk � 3

2
an kBnk2 +

1

2
a2n kBnk

3
+ a�1n j�nj+ j�nj kBnk = O (an) ;

k�nk � 2 kBn �Bk+ k�nk = O (1) ;

k�nk � 4 kBk3 + 4 kBk2 kE [�n jTn]k+ kBkE
h
k�n k2 jTn

i
= O (1) :

kE [�n jTn]k � 2 kE [Bn jTn]�Bk+ kE [�n jTn]k a.s:
By H2b and H3:

E

"�����
n�1X
i=1

�i

�����
#

� 4 kBkE
" 1X
i=1

ai kE [Bi jTi]�Bk
#
+ 2 kBkE

" 1X
i=1

ai kE [�i jTi]k
#
+ E

" 1X
i=1

a2i k�ik
#

< 1:

By Doob lemma the submartingale Un�
n�1P
i=1

�i converges a.s. to an integrable random variable. As
n�1P
i=1

�i

converges, Un converges a.s.
Part 3: convergence of Xj

n= hXn;Vji
Let �jn = h�nXn; Vji.

Xj
n+1 = h(I + an(B � UnI) + an�n)Xn; Vji = Xj

n (1 + an(�j � Un)) + an�jn:

(Xj
n+1)

2 = (Xj
n)
2(1 + 2an(�j � Un)) + a2n(�j � Un)2(Xj

n)
2

+2an(1 + an(�j � Un))Xj
n�

j
n + a

2
n(�

j
n)
2

= (Xj
n)
2 (1 + 2an(�j � Un)) + a2n

�
(�j � Un)Xj

n + �
j
n

�2
+ 2anX

j
n�

j
n

= (Xj
1)
2 + 2

nX
l=1

al(�j � Ul)(Xj
l )
2 +

nX
l=1

a2l

�
(�j � Ul)Xj

l + �
j
l

�2
+ 2

nX
l=1

alX
j
l �

j
l

=
�
Xj
1

�2
+ (1) + (2) + (3):
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Study the convergence of the terms (2), (3), (1) of this decomposition.

(i) (2) =
nP
l=1

a2l

�
(�j � Ul)Xj

l + �
j
l

�2
converges a.s. by H2a and H3.

(ii) Consider now (3).

nX
l=1

alX
j
l �

j
l =

nX
l=1

alX
j
l (�

j
l � E[�

j
l jTl]) +

nX
l=1

alX
j
l E[�

j
l jTl]:

nX
l=1

aljXj
l E[�

j
l jTl]j �

nX
l=1

al jhE[�ljTl]Xl; Vjij

�
nX
l=1

aljjE[�ljTl]jj �
nX
l=1

al (2jjE[BljTl]�Bjj+ jjE[�ljTl]jj) :

By H2a,b and H3, as jj�njj = O(an);
+1P
l=1

alX
j
l E[�

j
l jTl] is convergent.

LetM j
n =

n�1P
l=1

alX
j
l (�

j
l � E[�

j
l jTl]); (M j

n) is a square-integrable martingale adapted to the �ltration (Tn);

denote (hM jin) its increasing process. By H2a:

hM jin+1 � hM jin = E[(M j
n+1 �M j

n)
2jTn] = a2nE[(Xj

n)
2(�jn � E[�jnjTn])2jTn]

� a2n
�
E[(�jn)

2jTn]� (E[�jnjTn])2jTn]
�
� a2nE[(k�nk

2 jTn]

is the general term of a convergent and uniformly bounded series; thus by Lemma 2 (M j
n) converges a.s. to

a �nite random variable.
Therefore (3) converges a.s.

(iii) Consider �nally (1). Let ! �xed belonging to the convergence set of Un. The writing of ! will be
omitted in the following. Let L be the limit of Un. If L 6= �j , the sign of �j � Un is constant from a certain
rank N depending on !. Thus there exists A > 0 such that:

2
nX

l=N

alj�j � Ulj(Xj
l )
2 = 2

�����
nX

l=N

al(�j � Ul)(Xj
l )
2

�����
=

�����(Xj
n+1)

2 � (Xj
N )

2 �
nX

l=N

a2l

�
(�j � Ul)Xj

l + �
j
l

�2
� 2

nX
l=N

alX
j
l �

j
l

�����
< A:

Then for L 6= �j , 2
nP

l=N

alj�j � Ulj(Xj
l )
2 converges.

It follows from the convergence of (1), (2) and (3) that for L 6= �j , (Xj
n)
2 converges a.s.

Part 4: convergence of Xn

If the limit of Un is di¤erent from �j , then by convergence of (1) in step 3,
1P
l=1

al(X
j
l )
2 <1 and Xj

n

converges a.s. to 0. As jjXnjj = 1, this can not be true for every j.
Thus the limit of Un is one of the eigenvalues of B, �i.
For j 6= i, Xj

n converges to 0, therefore (X
i
n)
2 converges to 1 and since

Xn+1 �Xn = an ((B � UnI) + �n)Xn,

Xn+1 �Xn converges to 0 and the limit of Xn is Vi or �Vi on Ei = fUn �! �ig (�rst assertion of Theorem
1).
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Consider now the decomposition:

1X
n=1

an(�i �Wn) =
1X
n=1

an(�i � Un) +
1X
n=1

an hXn; (Bn � E[BnjTn])Xni

+
1X
n=1

an hXn; (E[BnjTn]�B)Xni :

(i) Using the decomposition of (Xi
n)
2 in step 3, the convergence of (Xi

n)
2 and of (2) and (3) yields that

1P
n=1

an(�i � Un) converges a.s. (second assertion of Theorem 1).

(ii) By H2b:
1P
n=1

an hXn; (E[BnjTn]�B)Xni converges a.s.

(iii) Let Mn =
n�1P
l=1

al hXl; (Bl � E[BljTl])Xli : (Mn) is a square-integrable martingale adapted to the

�ltration (Tn). Its increasing process (hMin) converges; indeed:

hMin+1 � hMin = E[(Mn+1 �Mn)
2jTn]

= a2nE[hXn; (Bn � E[BnjTn])Xni
2 jTn]

� a2nE[jjBn � E[BnjTn]jj2jTn]

is the general term of a convergent and uniformly bounded series. Thus (Mn) converges a.s. to a �nite
random variable.

Therefore by (i), (ii) and (iii),
1P
n=1

an(�i �Wn) converges (third assertion of Theorem 1).

Part 5: convergence of Xn to �V1
Suppose i > 1.

X1
n+1 = (1 + an(�1 � Un))X1

n + an h�nXn; V1i
= (1 + an ((�1 � �i) + (�i � Un)))X1

n + an h�nXn; V1i :

In the following, apply Lemma 3 to the sequence
�
X1
n

�
on Ei = fXn �! Vig ; i > 1, with 
n = an;

�n = an(�1 � Un) > 0; bn = an (�1 � �i) > 0; �n+1 = h�nXn; V1i :
(i) X1

n is bounded.

(ii)
1P
n=1

a2n <1,
1P
n=1

a2n(�1 � Un)2 <1 by H3,
1P
n=1

an(�1 � �i) =1,
1P
n=1

an(�i � Un) converges a.s.

(iii) Consider the decomposition:

h�nXn; V1i = h(Bn �B)Xn; V1i � h(Bn �B)Xn; Xni hXn; V1i+ h�nXn; V1i
= hBnXn; V1i � hXn; V1i (�1 + h(Bn �B)Xn; Xni) + h�nXn; V1i :

By H2a, there exists a positive number c such that a.s.:

E[(h�nXn; V1i � hBnXn; V1i)2 jTn]
� 2(X1

n)
2E[(�1 + h(Bn �B)Xn; Xni)2 jTn] + 2E[(h�nXn; V1i)2 jTn]

� c(X1
n)
2 + 2E[jj�njj2 jTn] �!

n!+1
0

since jj�njj = O(an) and X1
n �!
n!+1

0. Likewise:

E[(h�nXn; V1i � hBnXn; V1i) hBnXn; V1i jTn] �!
n!+1

0.

Then, if lim inf E[ hBnXn; V1i 2 jTn] > 0, lim inf E[ h�nXn; V1i 2 jTn] > 0.
By Lemma 3, under (i), (ii), (iii), P (Ei) = 0; i > 1.
Then, P (E1) = 1 (fourth assertion of Theorem 1). �
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2.1.2 Simultaneous estimation of several eigenvectors

In this part, for i = 1; :::; r, Xi
n does not represent the i

th component of Xn, but a random variable in Rp
recursively de�ned by:

Y in+1 = (I + anBn)X
i
n;

T in+1 = Y in+1 �
X
j<i

hY in+1; X
j
n+1iX

j
n+1; X

i
n+1 =

T in+1
jjT in+1jj

:

(X1
n+1; :::; X

r
n+1) is obtained by Gram-Schmidt orthonormalization of (Y

1
n+1; :::; Y

r
n+1).

Corollary 4 Suppose assumptions H1a,b, H2a,b and H3 hold.
1) For i = 1; :::; r, almost surely Xi

n converges to one of the eigenvectors of B.

2) If moreover, for i = 1; :::; r, almost surely on
p
[

j=i+1

�
Xi
n �! �Vj

	
; lim inf E[



BnX

i
n; Vi)

�
2 jTn] > 0,

then Xi
n converges a.s. to Vi or �Vi;

1P
n=1

an
���i� 
BXi

n; X
i
n

��� and 1P
n=1

an(�i�


BnX

i
n; X

i
n

�
) converge a.s.

Before the proof, some concepts of exterior algebra are reminded.
Let (e1; :::; ep) be a basis of Rp. For r � p, let r�Rp be the exterior power of order r of Rp, generated by

the Crp exterior products ei1 ^ ei2 ^ ::: ^ eir , i1 < i2 < ::: < ir 2 f1; :::; pg.
a) Let Q be a metric in Rp. De�ne the inner product h:; :i in r�Rp induced by the metric Q by:

hei1 ^ ::: ^ eir ; ek1 ^ ::: ^ ekr i =
X
�2Gr

(�1)s(�)hei1 ; e�(k1)i:::heir ; e�(kr)i;

Gr being the set of permutations � of fk1; :::; krg and s(�) the number of inversions of �.
Let k:k be the associated norm. Note that if x1; :::; xr are Q-orthogonal, jjx1 ^ ::: ^ xrjj =

rQ
i=1

jjxijj, and

if (e1; :::; ep) is a Q-orthonormal basis of Rp, then the set of the Crp exterior products ei1 ^ ::: ^ eir is an
orthonormal basis of r�Rp.
b) Let U be an endomorphism in Rp. De�ne for j = 1; :::; r the endomorphism rjU in r�Rp such that:

rjU(x1 ^ ::: ^ xr) =
X

1�i1<i2<:::<ij�r
x1 ^ ::: ^ Uxi1 ^ ::: ^ Uxij ^ ::: ^ xr:

.

For j=1, r1U(x1 ^ ::: ^ xr) =
rX
i=1

x1 ^ ::: ^ Uxi ^ ::: ^ xr:

Let r�U be the endomorphism rrU such that:

r�U(x1 ^ ::: ^ xr) = Ux1 ^ Ux2 ^ ::: ^ Uxr:

c) The following properties hold:
(i) Suppose that the eigenvalues �1 > ::: > �p of U are distinct and denote for j = 1; :::; r, Vj an eigen-

vector corresponding to �j . Then the Crp vectors Vi1 ^ ::: ^ Vir , 1 � i1 < ::: < ir � p, are eigenvectors of r1U
respectively corresponding to the eigenvalues �i1 + :::+ �ir .

(ii) r�(I + U) = I +
rP
j=1

rjU .

(iii) There exists c(r) > 0 such that, for every endomorphism U in Rp and for 1 � j � r, jjrjU jj � c(r)jjU jjj .

Proof
Part 1
For i = 1; :::; r, it follows from the orthogonality of T 1n ; :::; T

i
n that:

jjT 1n+1 ^ ::: ^ T in+1jj =
iY
l=1

jjT ln+1jj:
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Let iXn+1 = X1
n+1 ^ ::: ^Xi

n+1 and D
i
n =

i1Bn +
iP

j=2

aj�1n
ijBn. Then:

iXn+1 =
T 1n+1 ^ ::: ^ T in+1
jjT 1n+1 ^ ::: ^ T in+1jj

=
Y 1n+1 ^ ::: ^ Y in+1
jjY 1n+1 ^ ::: ^ Y in+1jj

=
i�(I + anBn)

iXn
jji�(I + anBn) iXnjj

=

 
I + an

i1Bn +
iP

j=2

ajn
ijBn

!
iXn






 
I + an i1Bn +

iP
j=2

ajn ijBn

!
iXn







=

�
I + an D

i
n

�
iXn

jj (I + an Di
n)

iXnjj
:

As jjijBnjj � c(i)jjBnjjj , assumptions H2a and H3 yield that there exists b1 > 0 such that for all n,
jjDi

njj � b1.
Moreover, as U 7!i1 U is a linear application, assumptions H2a,b and H3 yield that:

E

" 1X
n=1

anjjE[Di
njTn]� i1Bjj

#
= E

24 1X
n=1

an







E
24i1Bn �i1 B + iX

j=2

aj�1n
ijBn jTn

35






35

� E

24 1X
n=1

an

0@jji1E[Bn �B jTn]jj+
iX

j=2

aj�1n E[jjijBnjj jTn]

1A35
� c(i)E

24 1X
n=1

an

0@jjE [BnjTn]�B]jj+ iX
j=2

aj�1n E[jjBnjjj jTn]

1A35 < 1:

Applying �rst assertion of Theorem 1 yields that almost surely,
iXn converges to a unit eigenvector �Vj1 ^ ::: ^ Vji of i1B,
1P
n=1

an(�j1 + :::+ �ji � h
i1
B iXn;

iXni) and
1P
n=1

an(�j1 + :::+ �ji � hDi
n
iXn;

iXni) converge.

Moreover by H2a and H3,
1P
n=1

an(�j1 + :::+ �ji � hi1Bn iXn;
iXni) converges a.s.

Part 2
Suppose that for k = 1; :::; i�1; Xk

n �!
n!+1

�Vk, which is veri�ed for k = 1, and prove that Xi
n �!
n!+1

�Vi.

1) Prove that there exists j > i� 1 such that Xi
n �!
n!+1

�Vj . Suppose that there exists k 2 f1; :::; i� 1g
such that, for l = 1; :::; i; Vjl 6= �Vk ; then, for l = 1; :::; i; hXk

n; Vjli �!n!+1
0 and hX1

n�:::�X
i
n; Vj1�:::�Vjii �!n!+1

0,

a contradiction. Therefore for all k 2 f1; :::; i� 1g, there exists jl such that Vjl = �Vk and there exists j
such that

iXn = X
1
n ^ ::: ^Xi

n �!
n!+1

�V1�:::�Vi�1 ^ Vj :

The only term which has a non-zero limit in the development ofD
X1
n ^ ::: ^Xi

n;� V1 ^ ::: ^ Vi�1 ^ V j
E
,

the limit of which is 1 as n�!1, is hX1
n; V1ihX2

n; V2i:::hXi�1
n ; Vi�1i



Xi
n; Vj

�
obtained for � = Id. As for

k = 1; :::; i� 1, hXk
n; Vki �!

n!+1
�1, then

D
Xi
n; V j

E
�!

n!+1
�1. Therefore Xi

n �!
n!+1

�Vj .
2) Prove now that Vj = �Vi. Suppose Xi

n �!
n!+1

�Vj 6= �Vi.
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LetGi be the set of permutations � of f1; :::; ig with � = (� (1) ; :::; � (i) ) and s(�) the number of inversions
of �.

hi1Bn(X1
n ^ :: ^Xi

n); V1 ^ :: ^ Vii =
iX
l=1

hX1
n ^ ::: ^BnX l

n ^ ::: ^Xi
n; V1 ^ ::: ^ Vii

=
iX
l=1

X
�2Gi

(�1)s(�)hX1
n; V�(1)i:::hBnX l

n; V�(l)i:::hXi
n; V�(i)i:

E
h

i1Bn(X

1
n ^ ::: ^Xi

n); V1 ^ ::: ^ Vi
�2 jTni

= E

24 iX
l=1

X
�2Gi

(�1)s(�)hX1
n; V�(1)i:::hBnX l

n; V�(l)i:::hXi
n; V�(i)i

!2
jTn

35 :
As for k = 1; :::; i � 1, Xk

n �!
n!+1

�Vk, the only term with a non-zero limit in the development of this

conditional expectation is
hX1

n; V1i
2
:::hXi�1

n ; Vi�1i
2
E
�
hBnXi

n; Vii2 jTn
�

and
lim inf E

h

i1Bn(X

1
n ^ ::: ^Xi

n); V1 ^ ::: ^ Vi
�2 jTni = lim inf E �hBnXi

n; Vii2 jTn
�
> 0:

Moreover, by H2a and lim
n�!1

an = 0:

lim inf E

24* iX
j=2

a j�1 ijn Bn(X
1
n ^ ::: ^Xi

n); V1 ^ ::: ^ Vi

+2
jTn

35
= lim inf E

264
0@ iX
j=2

aj�1n



ijBn(X

1
n ^ ::: ^Xi

n); V1 ^ ::: ^ Vi
�1A2

jTn

375 = 0:
Then lim inf E

�
hDi

n(X
1
n ^ ::: ^Xi

n); V1 ^ ::: ^ Vii2jTn
�
> 0:

Applying second assertion of Theorem 1 yields almost surely:

X1
n ^ ::: ^Xi

n �!
n!+1

�V1 ^ ::: ^ Vi; therefore Xi
n �!
n!+1

�Vi;
1X
n=1

an

 
iX
l=1

�l � hi1B iXn;
iXni

!
and

1X
n=1

an

 
iX
l=1

�l � hDi
n
iXn;

iXni
!
converge,

then by H2a and H3,
1P
n=1

an

�
iP
l=1

�l � hi1Bn iXn;
iXni

�
converges.

Part 3

hi1B iXn;
iXni =

iX
k=1

X
�2Gi

(�1)s(�)hX1
n; X

�(1)
n i:::hBXk

n; X
�(k)
n i:::hXi

n; X
�(i)
n i:

As X1
n; :::; X

i
n are orthonormal, this sum is equal to

iX
k=1

hX1
n; X

1
ni:::hBXk

n; X
k
ni:::hXi

n; X
i
ni =

iX
k=1

hBXk
n; X

k
ni:

Then, as
iP
l=1

�l is the largest eigenvalue of i1B:

�i �


BXi

n; X
i
n

�
=

 
iX
l=1

�l � hi1B iXn;
iXni

!
�
 
i�1X
l=1

�l � hi�1;1B i�1Xn;
i�1Xni

!

=

�����
iX
l=1

�l � hi1B iXn;
iXni

������
�����
i�1X
l=1

�l � hi�1;1B i�1Xn;
i�1Xni

����� .
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Almost surely,
1P
n=1

an

���� iP
l=1

�l � hi1B
i
Xn;

iXni
����<1, then 1P

n=1
an
���i � 
BXi

n; X
i
n

��� <1.
Likewise, as almost surely

1P
n=1

an

�
iP
l=1

�l � hi1Bn iXn;
iXni

�
converges, then

1P
n=1

an
�
�i �



BnX

i
n; X

i
n

��
converges. �

2.2 Second case

Consider the same processes (Xn) and
�
Xi
n

�
as in the �rst case.

Suppose now Bn = !1nB1n + !2nB
2
n with !1n > 0; !2n > 0; !1n + !2n = 1; B2n Tn-measurable.

2.2.1 Theorem of almost sure convergence

Make the following assumptions:
(H2a�) There exists a positive number b1 such that supn



B1n

 < b1 a.s.
(H2b�) E

� 1P
n=1

an


E �B1njTn��B

� <1.

(H2c�) B2n Tn-measurable, B
2
n �!
n!+1

B, E
� 1P
n=1

anjjB2n �Bjj
�
<1 a.s.

Theorem 5 Suppose assumptions H1a,b, H2a�,b�,c�and H3 hold. Then :
1) Almost surely, Un converges to one of the eigenvalues of B; on Ej = fUn �! �jg, Xn converges to

Vj or �Vj,
1P
n=1

an (�j � Un) and
1P
n=1

an (�j �Wn) converge.

2) If moreover lim
n�!1

!1n = !1 > 0 and on
p
[
j=2
Ej, lim inf E

h

B1nXn; V1

�2 jTni > 0 a.s., then P (E1) = 1.
Proof
Apply Theorem 1.
Under assumptions H2a�,b�,c�, assumptions H2a,b are veri�ed. Thus �rst part of Theorem 1 holds.
Prove that lim inf E[ hBnXn; V1i 2 jTn] > 0 a.s. when lim

n�!1
Xn = �Vj 6= �V1.

E
�
�
!1nB

1
n + !2nB

2
n

�
Xn; V1

�
2jTn

�
= (!2n)

2 

B2nXn; V 1

�
2 + 2!1n!2n



B2nXn; V 1

�
E
�

B1nXn; V1

�
jTn
�

+(!1n)
2
E
h

B1nXn; V1

�2 jTni a.s.
When lim

n�!1
Xn = �Vj 6= �V1, lim

n�!1



B2nXn; V 1

�
= �



BVj ; V 1

�
= ��j hVj ; V1i = 0. Then:

lim inf E
�
�
!1nB

1
n + !2nB

2
n

�
Xn; V1

�
2 jTn

�
= (!1)

2
lim infE

h

B1nXn; V1

�2 jTni >0 a.s. �
2.2.2 Simultaneous estimation of several eigenvectors

Corollary 6 Suppose assumptions H1a,b, H2a�,b�,c�and H3 hold. Then:
1) For i = 1; :::; r; almost surely Xi

n converges to one of the eigenvectors of B.

2) If moreover lim
n�!1

!1n = !1 > 0 and for i = 1; :::; r, a.s. on
p
[

j=i+1

�
Xi
n �! �Vj

	
, lim inf E

�

B1nX

i
n; Vi

�
2jTn

�
> 0,

then almost surely Xi
n converges to �Vi,

1P
n=1

an
���i� 
BXi

n; X
i
n

��� and 1P
n=1

an(�i�


BnX

i
n; X

i
n

�
) converge.

It is a direct application of Corollary 4 assumptions of which are veri�ed as proved above.
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2.3 Third case

It is assumed in the second case that !1 > 0. Now assume !1n = !1 = 0.

2.3.1 Theorem of almost sure convergence

Recursively de�ne the process ( eXn) such thateXn+1 = (I + anBn) eXn
and the process

�eUn� such that
eUn+1 =

eXn+1
nQ
i=1

(1 + �1ai)
=
I + anBn
1 + �1an

eUn
= eUn + an

1 + �1an
(Bn eUn � �1 eUn);fU1 = eX1:

Note that
eUn
keUnk = eXn

k eXnk = Xn. Make the following assumptions:
(H1c) kBk = �1:
(H2c)

1P
n=1

anjjBn �Bjj <1 a.s.

(H2d) For all n, I + anBn is invertible (especially veri�ed if Bn is non-negative).
(H5) eX1 is an absolutely continuous random variable, independent from B1; :::; Bn; :::.

Theorem 7 Suppose assumptions H1a,b,c, H2c,d, H3 and H5 hold. Almost surely, eUn converges to a ran-
dom vector colinear to V1, therefore Xn converges to �V1,

1P
n=1

an (�1 � hBXn; Xni) and
1P
n=1

an j�1 � hBnXn; Xnij
converge.

Remark 8 1) Note that assumption H2a is not required.
2) Since ! 2 
 is �xed throughout the following proof, an can be a positive random variable. �

Lemma 9 Suppose for all n, (zn), (�n), (�n) and (
n) are four sequences of non-negative numbers such
that:

for all n > 1; zn+1 � zn (1 + �n) + �n � 
n;
1X
n=1

�n <1;
1X
n=1

�n <1:

Then the sequence (zn) converges and
1P
n=1


n <1.

This is a deterministic form of the Robbins-Siegmund lemma [10], whose proof is based on the convergence
of the decreasing sequence (un):

un =
zn

n�1Q
l=1

(1 + �l)

�
n�1X
k=1

�k � 
k
kQ
l=1

(1 + �l)

.

Proof

Let ! be �xed, belonging to C1 =
� 1P
n=1

anjjBn �Bjj <1
�
. The writing of ! will be omitted in the

following.
Part 1

jjeUn+1jj2 = jjeUnjj2 + 2 an
1 + �1an

DeUn; (Bn � �1I)eUnE+ a2n
(1 + �1an)2

jj(Bn � �1I)eUnjj2
= jjeUnjj2 + 2 an

1 + �1an

DeUn; (Bn �B)eUnE+ a2n
(1 + �1an)2

jj(Bn � �1I)eUnjj2
�2 an
1 + �1an

DeUn; (�1I �B)eUnE :
11



�1I �B is a non-negative Q-symmetric matrix, with eigenvalues 0; �1 � �2; :::; �1 � �p.

jjBn � �1Ijj2 � 2jjBn �Bjj2 + 2jj�1I �Bjj2:
jjeUn+1jj2 � jjeUnjj2 �1 + 2anjjBn �Bjj+ 2a2njjBn �Bjj2 + 2a2n(�1 � �p)2�

�2 an
1 + �1an

DeUn; (�1I �B)eUnE :
By assumptions H2c and H3, applying Lemma 9 yields:

jjeUnjj2 �!
n!+1

eU; 1X
n=1

an

DeUn; (�1I �B)eUnE = 1X
n=1

anjjeUnjj2(�1 �
DeUn; B eUnE
jjeUnjj2 ) <1:

As
1P
n=1

an =1, either jjeUnjj �!
n!+1

0 or
1P
n=1

an(�1�hXn; BXni) <1.

Part 2: convergence of eU jn = DeUn; VjE
eU jn+1 =

�
Vj ;

I + anBn
1 + �1an

eUn� = �Vj ; 1

1 + �1an
(I + anB + an (Bn �B)) eUn�

=
1 + �jan
1 + �1an

eU jn + an
1 + �1an

D
Vj ; (Bn �B) eUnE :

a) For j > 1, as an �!
n!+1

0, there exists �n = O (an) > 0 such that for n su¢ ciently large:

��� eU jn+1��� � 1 + �jan
1 + �1an

��� eU jn���+ an kBn �Bk


eUn



� (1� �n)

��� eU jn���+ an kBn �Bk


eUn


 :
By H2c and as




eUn


 converges, applying Lemma 9 yields:
��� eU jn��� �!

n!+1
eU j ; 1X

n=1

�n

��� eU jn��� <1. As 1X
n=1

an =1, eU j = 0:
b) For j = 1, by H2c and jjeUnjj �!

n!+1

peU :
eU1n+1 = eU1n + an

1 + �1an

D
V1; (Bn �B) eUnE = eU11 + nX

i=1

ai
1 + �1ai

D
V1; (Bi �B) eUiE

�!
n!+1

eU1 = eU11 + 1X
i=1

ai
1 + �1ai

D
V1; (Bi �B) eUiE .

Now:

eU1n+1 =
D
V1; eUn+1E = *V1; nY

i=1

I + aiBi
1 + �1ai

eU1+ �!
n!+1

*
V1;

1Y
i=1

I + aiBi
1 + �1ai

eU1+

= V 01QS eU1 = eU1 with S = 1Y
i=1

I + aiBi
1 + �1ai

.

As eU1 is absolutely continuous, if V 01QS 6= 0, P
�
V 01QS

eU1 = 0 j S� = 0, then P
�eU1 = 0� = 0. Prove

that V 01QS 6= 0.

Part 3
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Denote C2 =
neU1 6= 0o. Suppose ! 2 C1 \ C2.

Under H2c, there exists N such that
1P
n=N

anjjBn �Bjj < ln 2.

V 01QS = V 01Q
1Y
i=N

I + aiBi
1 + �1ai

N�1Y
i=1

I + aiBi
1 + �1ai

= V 01QR
N�1Y
i=1

I + aiBi
1 + �1ai

with R =
1Y
i=N

I + aiBi
1 + �1ai

:

Under H2d, V 01QS 6= 0, V 01QR 6= 0.
Denote Cn =

ankBn�Bk
1+�1an

and (Wn; n > N) the process
�eUn; n > N� with WN = V1:

As kBk = �1, kI + ai�1Bk = 1 + �1ai�1. By Part 2, as WN = V1:

W 1
n+1 = hV1;Wn+1i = 1 +

nX
i=N

ai
1 + �1ai

hV1; (Bi �B)Wii > 1�
nX

i=N

Ci kWik :

kWik � kI + ai�1Bi�1k
1 + �1ai�1

kWi�1k

� kI + ai�1Bk+ ai�1 kBi�1 �Bk
1 + �1ai�1

kWi�1k = (1 + Ci�1) kWi�1k

�
i�1Y
l=N

(1 + Cl) ; i = N + 1; :::; n:

As
1P
n=N

Cn < ln 2, it follows that:

W 1
n+1 > 1�

nX
i=N

Ci

i�1Y
l=N

(1 + Cl) = 1�
 

nY
l=N

(1 + Cl)� 1
!

= 2�
nY

l=N

(1 + Cl) > 2� e
nP

l=N

Cl
> 2� e

1P
l=N

Cl
> 0:

By Part 2, W 1
n converges to hV1; RV1i = V 01QRV1 which is therefore strictly positive, thus V 01QR 6= 0.

Part 4: conclusion
It follows that

�eUn� converges to eU1V1 6= 0, therefore eUn
keUnk = Xn converges to �V1, and by the conclusion

of Part 1,
1P
n=1

an (�1 � hXn; BXni) <1.
Moreover by H2c:

1X
n=1

an j�1 � hXn; BnXnij =
1X
n=1

an j�1 � hXn; (Bn �B)Xni � hXn; BXnij

�
1X
n=1

an (�1 � hXn; BXni) +
1X
n=1

anjjBn �Bjj <1. �

Remark 10 Part 1 can be replaced by:
jjeUn+1jj � kI+anBnk

1+�1an




eUn


 � �1 + ankBn�Bk
1+�1an

�


eUn


 :
Under H2c,




eUn


 converges a.s. Assumption 1P
n=1

a2n <1 is not used and can be replaced by an �!
n!+1

0,

but in this case, the convergence of
1P
n=1

an (�1 � hBXn; Xni) and
1P
n=1

an j�1 � hBnXn; Xnij is not proved. �
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2.3.2 Simultaneous estimation of several eigenvectors

For i = 1; :::; r, recursively de�ne the process
� eXi

n

�
by:

eY in+1 = (I + anBn) eXi
n;

eXi
n+1 = eY in+1 �X

j<i

*eY in+1; eXj
n+1


 eXj
n+1





+ eXj

n+1


 eXj
n+1




 :
Note that

eXi
n

k eXi
nk = X

i
n.

Let Di
n =

i1Bn +
iP

j=2

aj�1n
ijBn.

Make the following assumptions:
(H1c�) For i = 1; :::; r,



i1B

 = �1 + :::+ �i.
(H2d�) For i = 1; :::; r, I + anDi

n is invertible.
(H5�) For i = 1; :::; r, Xi

1 is an absolutely continuous random variable, independent from B1; :::; Bn; :::.

Corollary 11 Suppose assumptions H1a,b,c�, H2c,d�, H3 and H5� hold. Then, for i = 1; :::; r, almost surely

Xi
n converges to �Vi;

1P
n=1

an
���i� 
Xi

n; BX
i
n

��� and 1P
n=1

an
���i� 
Xi

n; BnX
i
n

��� converge.
Proof
! is �xed throughout the proof, belonging to the intersection of the a.s. convergence sets. Its writing

will be omitted.
Let i 2 f1; :::; rg.

i eXn+1 = eX1
n+1 ^ ::: ^ eXi

n+1 = eY 1n+1 ^ ::: ^ eY in+1 =i �(I + anBn)i eXn
=

0@I + an i1Bn + an

iX
j=2

aj�1n
ijBn

1A ifXn = �I + an Di
n

�
i eXn:

Note that
i eXn+1

ki eXn+1k =
eX1
n+1

k eX1
n+1k

^ ::: ^
eXi
n+1

k eXi
n+1k

=
i�(I+anBn)

i eXn

ki�(I+anBn)i eXnk =
iXn+1.

By H2c and H3:

1X
n=1

an


Di

n �i1 B


 =

1X
n=1

an







i1 (Bn �B) +
iX

j=2

aj�1n
ijBn








� c(i)

0@ 1X
n=1

an kBn �Bk+
iX

j=2

1X
n=1

ajn kBnk
j

1A <1:

As B is Q-symmetric with distinct eigenvalues, V1 ^ :: ^ Vi is an eigenvector corresponding to its largest
eigenvalue �1 + :::+ �i. Applying Theorem 7 yields that:

iXn converges to � V1 ^ :: ^ Vi,
1X
n=1

an

 
iX
l=1

�l�


i1B iXn;

iXn
�!

and
1X
n=1

an

�����
iX
l=1

�l�


Di
n
iXn;

iXn
������ converge,

which implies that
1X
n=1

an

�����
iX
l=1

�l�


i1Bn

iXn;
iXn

������ converges.
Suppose that, for k = 1; :::; i � 1, Xk

n converges to �Vk, which is veri�ed for k = 1, and prove that it is
true for k = i.

14



In the development of


X1
n ^ ::: ^Xi

n;�V1 ^ :: ^ Vi
�
, which converges to �1, the only term which has a

non-zero limit is


X1
n; V1

�
:::


Xi�1
n ; Vi�1

� 

Xi
n; Vi

�
; since for k = 1; :::; i � 1,



Xk
n; Vk

�
converges to �1, it

follows that


Xi
n; Vi

�
converges to �1.

Applying the same proof as that of Corollary 4, Part 3, yields:
1P
n=1

an

����i�DXi
n; BX

i

n

E��� <1. By H2c:
1X
n=1

an

����i�DXi
n; BnX

i

n

E��� 6 1X
n=1

an

����i�DXi
n; BX

i

n

E���+ 1X
n=1

an kBn �Bk <1: �

3 Application to sequential principal component analysis of a data
stream

Let Z11; :::; Z1m1
; Z21; :::; Z2m2

; :::; Zn1; :::; Znmn
; ::: be an i.i.d sample of a random vector Z in Rp whose com-

ponents are denoted Z1; :::; Zp. LetM be the metric used for PCA andB =M
1
2E [(Z � E[Z])(Z � E[Z])0]M 1

2 .
Let m belonging to Rp (in practice m is an estimation of E [Z]); with Zc = Z �m, we have:

B =M
1
2

�
E
h
ZcZc

0
i
� E[Zc]E[Zc]0

�
M

1
2 :

Let Zn�1 be the mean of the sample (Z11; :::; Zn�1;mn�1) of Z and Mn�1 a Tn-measurable estimation of M .

3.1 Use of a data mini-batch at each step

Note that the metric used for orthonormalization is the identity.
Recursively de�ne the processes

�
Xi
n

�
; i = 1; :::; r, by

Y in+1 = (I + anBn)X
i
n;

T in+1 = Y in+1 �
X
j<i

hY in+1; X
j
n+1iX

j
n+1; X

i
n+1 =

T in+1
jjT in+1jj

:

.
Let Zcni = Zni �m; Z

c

n�1 = Zn�1 �m. We de�ne:

Bn =M
1
2
n�1

 
1

mn

mnX
i=1

ZcniZ
c
ni
0 � Zcn�1

�
Z
c

n�1

�
0

!
M

1
2
n�1:

Make the following assumptions:

(H3�) an > 0,
1P
n=1

an =1,
1P
n=1

anp
n
<1,

1P
n=1

a2n <1.

(H4a) kZk is a.s. bounded.
(H4b) There is no a¢ ne or quadratic relation between the components of Z.

(H6a) There exists a positive number d such that supn



M 1

2
n




 < d.
(H6b) M

1
2
n �!M

1
2

a.s.

(H6c) E
� 1P
n=1

an




M 1
2
n�1 �M

1
2




� <1.
Corollary 12 Suppose assumptions H1b, H3�, H4a,b and H6a,b,c hold. Then Xi

n converges a.s. to �Vi,
1P
n=1

an

����i� �Xi
n

�0
BXi

n

��� and 1P
n=1

an

�
�i�

�
Xi
n

�0
BnX

i
n

�
converge a.s. for i = 1; :::; r.
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Proof
Verify the assumptions of Corollary 4.
(H1a) B is symmetric.
(H2a) Under H4a and H6a, supn kBnk is a.s. uniformly bounded.
(H2b) Almost surely:

E [Bn j Tn]�B

= E

"
M

1
2
n�1

 
1

mn

mnX
i=1

ZcniZ
c
ni
0 � Zcn�1

�
Z
c

n�1

�
0

!
M

1
2
n�1 j Tn

#
�M 1

2

�
E
h
ZcZc

0
i
� E[Zc]E[Zc]0

�
M

1
2

= M
1
2
n�1

�
E
h
ZcZc

0
i
� Zcn�1Z

c

n�1
0
�
M

1
2
n�1 �M

1
2

�
E
h
ZcZc

0
i
� E[Zc]E[Zc]0

�
M

1
2

=
�
M

1
2
n�1 �M

1
2

��
E
h
ZcZc

0
i
� E[Zc]E[Zc]0

�
M

1
2
n�1

+M
1
2

�
E
h
ZcZc

0
i
� E[Zc]E[Zc]0

��
M

1
2
n�1 �M

1
2

�
�M

1
2
n�1

�
Z
c

n�1 � E[Zc]
�
Z
c

n�1
0M

1
2
n�1 �M

1
2
n�1E[Z

c]
�
Z
c

n�1 � E[Zc]
�0
M

1
2
n�1:

If Z has 4th order moments and an > 0,
1P
n=1

anp
n
<1:

1X
n=1

anE
h
jjZcn�1 � E[Zc]jj

i
=

1X
n=1

anE
�
jjZn�1 � E[Z]jj

�
<1: [9]

Therefore, under H4a, H6a,c, E
� 1P
n=1

an kE [Bn j Tn]�Bk
�
<1.

By Corollary 4, for k = 1; :::; r, Xk
n converges a.s. to one of the eigenvectors of B.

Prove now that lim
n!1

E[(Xk
n
0BnVk)

2 jTn] > 0 a.s. on the set fXn �! Vjg for j 6= k to apply second part
of Corollary 4.
In the following of the proof, Xk

n is denoted Xn.
Decompose E[(X 0

nBnVk)
2 jTn] into the sum of three terms (1),(2),(3):

E

24 X 0
nM

1
2
n�1

 
1

mn

mnX
i=1

ZcniZ
c
ni
0 � Zcn�1Z

c

n�1
0

!
M

1
2
n�1Vk

!2
j Tn

35
= E

24 1

mn

mnX
i=1

�
X 0
nM

1
2
n�1Z

c
ni

��
Zcni

0M
1
2
n�1Vk

�
�
�
X 0
nM

1
2
n�1Z

c

n�1

��
Z
c

n�1
0M

1
2
n�1Vk

�!2
j Tn

35
= E

24 1

mn

mnX
i=1

�
X 0
nM

1
2
n�1Z

c
ni

��
Zcni

0M
1
2
n�1Vk

�!2
j Tn

35 (1)

�2
�
X 0
nM

1
2
n�1Z

c

n�1

��
Z
c

n�1
0M

1
2
n�1Vk

� 1

mn

mnX
i=1

E
h�
X 0
nM

1
2
n�1Z

c
ni

��
Zcni

0M
1
2
n�1Vk

�
j Tn

i
(2)

+
�
X 0
nM

1
2
n�1Z

c

n�1

�2 �
Z
c

n�1
0M

1
2
n�1Vk

�2
: (3)

Note that the two random variables R = V 0jM
1
2Zc and S = V 0kM

1
2Zc are uncorrelated, then E[RS] =

E[R]E[S]:

E[(R� E[R])(S � E[S])] = E[V 0jM
1
2 (Z � E [Z]):V 0kM

1
2 (Z � E [Z])]

= V 0jM
1
2E
�
(Z � E [Z]) (Z � E [Z])0

�
M

1
2Vk = �kV

0
jVk = 0:
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Under H6b, we have:

(1) =
1

m2
n

mnX
i=1

mnX
l=1

E
h�
X 0
nM

1
2
n�1Z

c
ni

��
Zcni

0M
1
2
n�1Vk

��
X 0
nM

1
2
n�1Z

c
nl

��
Zcnl

0M
1
2
n�1Vk

�
jTn
i

= X 0
nM

1
2
n�1

1

m2
n

mnX
i=1

mnX
l=1

E
h�
V 0kM

1
2
n�1Z

c
ni

�
ZcniZ

c
nl
0
�
Zcnl

0M
1
2
n�1Vk

�
j Tn

i
M

1
2
n�1Xn

�!
n!+1

V 0jM
1
2E
h�
V 0kM

1
2Zc

�
ZcZc0

�
Zc0M

1
2Vk

�i
M

1
2Vj

= E

��
V 0kM

1
2Zc

�2 �
V 0jM

1
2Zc

�2�
a.s.

(2) �!
n!+1

�2E
h
V 0jM

1
2Zc

i
E
h
Zc0M

1
2Vk

i
E
h�
V 0jM

1
2Zc

��
Zc0M

1
2Vk

�i
= �2E

h�
V 0jM

1
2Zc

��
V 0kM

1
2Zc

�i2
a.s.

(3) �!
n!+1

�
E
h
V 0jM

1
2Zc

i
E
h
V 0kM

1
2Zc

i�2
= E

h�
V 0jM

1
2Zc

��
V 0kM

1
2Zc

�i2
a.s.

As a result:

E[(X 0
nBnVk)

2 jTn] �!
n!+1

E

��
V 0jM

1
2Zc

�2 �
V 0kM

1
2Zc

�2�
� E

h�
V 0jM

1
2Zc

��
V 0kM

1
2Zc

�i2
= V ar[V 0jM

1
2Zc:V 0kM

1
2Zc] > 0 a.s. by H4b. �

3.2 Use of all observations up to the current step with di¤erent weights

At each step, all the observations up to the current step are taken into account but with di¤erent weights
for observations at the current step and observations in the past.
In the de�nition of processes

�
Xi
n

�
; i = 1; :::; r, we take now:

Bn = w1B
1
n + w2B

2
n; w1 + w2 = 1; w1 > 0; w2 > 0; with

B1n = M
1
2
n�1

0@ 1

mn

mnX
j=1

ZcnjZ
c
nj
0 � Zcn�1Z

c

n�1
0

1AM 1
2
n�1;

B2n = M
1
2
n�1

0BB@ 1
n�1P
i=1

mi

n�1X
i=1

miX
j=1

ZcijZ
c
ij
0 � Zcn�1Z

c

n�1
0

1CCAM 1
2
n�1:

Corollary 13 Suppose assumptions H1b, H3�, H4a,b and H6a,b,c hold. Then Xi
n converges a.s. to �Vi,

1P
n=1

an

����i � �Xi
n

�0
BXi

n

��� and 1P
n=1

an(�i�
�
Xi
n

�0
BnX

i
n) converge a.s. for i = 1; :::; r.

Proof
Verify the assumptions of Corollary 6.

(i) It is established in the proof of Corollary 12 that E
� 1P
n=1

an


E[B1njTn]�B

�<1 a.s. under assump-

tions H3�, H4a and H6a,c.

(ii) Prove now that E
� 1P
n=1

an


B2n �B

�<1 a.s.

B2n = M
1
2
n�1Cn�1M

1
2
n�1 with

Cn�1 =
1

n�1P
i=1

mi

n�1X
i=1

miX
j=1

ZcijZ
c
ij
0 � Zcn�1Z

c

n�1
0 =

1
n�1P
i=1

mi

n�1X
i=1

miX
j=1

ZijZij
0 � Zn�1Zn�10:
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B = M
1
2CM

1
2 with C = E[ZZ 0]� E[Z]E[Z 0]:

B2n �B = M
1
2
n�1Cn�1M

1
2
n�1 �M

1
2CM

1
2

= (M
1
2
n�1 �M

1
2 )Cn�1M

1
2
n�1 +M

1
2 (Cn�1 � C)M

1
2
n�1 +M

1
2C(M

1
2
n�1 �M

1
2 ):

Cn�1 � C =
1

n�1P
i=1

mi

n�1X
i=1

miX
j=1

ZijZ
0
ij � E[ZZ 0]�

�
Zn�1 � E [Z]

�
Zn�1

0 � E[Z](Zn�1 � E [Z])0:

Under assumptions H3�and H4a:
1P
n=1

anE
�

Zn�1 � E [Z]

�<1, 1P

n=1
anE

�

ZZ 0n�1 � E[ZZ 0]

�<1 [9].

Therefore, under H4a and H6a,c, E
� 1P
n=1

anjjB2n �Bjj
�
<1.

(iii) Prove �nally that lim
n�!1

E[(Xk0
n BnVk)

2 jTn] > 0 when lim
n�!1

Xk
n = �Vj 6= �Vk a.s. By the proof of

Corollary 12, as lim
n�!1

Xk0
n B

2
nVk = �V 0jBVk = 0, under H4b and H6b:

lim
n�!1

E[(Xk0
n BnVk)

2jTn] = (!1)
2
lim
n�!1

E

��
Xk0

n B
1
nVk

�2
jTn
�

= (!1)
2
V ar[V 0jM

1
2Zc:V 0kM

1
2Zc] > 0 a.s. �

3.3 Use of all observations up to the current step with uniform weights

We de�ne now:

Bn=M
1
2
n

0BB@ 1
nP
i=1

mi

nX
i=1

miX
j=1

ZcijZ
c
ij
0 � ZcnZ

c

n
0

1CCAM 1
2
n :

Make the following assumptions:
(H4c) Z has 4th order moments.

(H6d)
1P
n=1

an




M 1
2
n �M

1
2




 <1 a.s.

Corollary 14 Suppose assumptions H1b, H3�, H4c, H5�and H6b,d hold. Then, for i = 1; :::; r, almost surely

Xi
n converges to �Vi;

1P
n=1

an
���i� 
Xi

n; BX
i
n

��� and 1P
n=1

an
���i� 
Xi

n; BnX
i
n

��� converge.
Proof
It su¢ ces to verify assumption H2c,

1P
n=1

anjjBn �Bjj <1 a.s. to apply Corollary 11. Under assumptions

H4c and H6b,d, the proof is similar to that of Corollary 13 for B2n without taking expectation. �
In the particular case of normed principal component analysis, M is the diagonal matrix of the inverses

of variances of Z1; :::; Zp. Denote for j = 1; :::; p; V jn the variance of the sample (Z
j
11; :::; Z

j
n;mn

) of Zj and

Mn the diagonal matrix of order p whose element (j; j) is the inverse of
�n
�n�1

V jn with �n =
nP
i=1

mi. Under

H4c, H6b holds; it is established in [9] (lemma5) that H6d holds under H4c and H3�.

4 Conclusion

In this article we have given theorems of almost sure convergence of a normed stochastic approximation
process to eigenvectors of a Q-symmetric matrix B corresponding to eigenvalues in decreasing order, as-
suming that E [Bn j Tn] or Bn converges a.s. to B. This extends previous results assuming Bn i.i.d. with
E [Bn j Tn] = B.
These results have been applied to online estimation of principal components of PCA of a random vector

when the data arrive continously. In this case, the expectation and the variance of the variables are unknown

18



and are estimated online along with the estimation of principal components. Classical results do not apply
to this case. Moreover we can use at each step a data mini-batch as usual, but also all the observations
obtained up to this step to take into account all the information contained in the previous data.
We have made a �rst set of experiments: several processes, with di¤erent numbers of observations used at

each step or with all the observations up to the current step, have been compared on datasets or simulations
(data not shown). It appears that processes that use all observations up to the current step yield the best
results.
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Future program under grant agreement No ANR-15-RHU-0004.
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