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Abstract

Many articles were devoted to the problem of estimating recursively the eigenvectors and eigenvalues in
decreasing order of the expectation of a random matrix using an i.i.d. sample of it. The present study makes
the following contributions. The convergence of a normed process is proved under more general assumptions:
the random matrices are not supposed i.i.d. and a new data mini-batch or all data until the current step are
taken into account at each step without storing them; three types of processes are studied; this is applied
to online principal component analysis of a data stream, assuming that data are realizations of a random
vector Z whose expectation is unknown and must be estimated online, as well as possibly the metrics used
when it depends on unknown characteristics of Z.

Keywords: Big data, Data stream, Online estimation, Principal component analysis, Stochastic approxi-
mation.

1 Introduction

Data stream factorial analysis is defined as the factorial analysis of data that arrive continuously such as
process control data, web data, telecommunication data, medical data, financial data,.... Recursive stochastic
algorithms can be used for observations arriving sequentially to estimate principal components or factors,
whose estimations are updated by each new arriving observation vector. When using such processes, it is
not necessary to store the data and, due to the relative simplicity of the computation involved, much more
data than with other methods can be taken into account during the same duration of time.

Consider the following model: suppose that p quantitative variables are observed on individuals (p may
be very large); data vectors in R? are thus obtained. Considering that z, is observed at time n (or more
generally that several observations, a data mini-batch, are made at time n), there is a sequence of data vectors
21y eees Zny .. Assume that, for n > 1, z, is a realization of a random variable Z,, defined on a probability
space (2, A, P) and that (Z1, ..., Z,, ...) is an i.i.d sample of a random vector Z. Denote 0 the expectation of
Z and C' its covariance matrix which are unknown in the case of a data stream.

Let M be a positive definite symmetric p X p matrix called metrics. Recall briefly the principal component
analysis (PCA) algorithm of the random vector Z. At step ! of PCA is determined a linear combination
¢;Z of the components of Z, called I*" principal component, uncorrelated with the previous ones and of
maximal variance, under the normalization constraint ¢jM ‘¢, = 1; ¢; is a M~ '-unit eigenvector of MC
corresponding to the I*" largest eigenvalue )\;. For | = 1,...,r, a M-unit direction vector wu; of the [*"
principal axis is defined as M ~1¢;; the vectors u; are M-orthonormal and are eigenvectors of the matrix C'M
corresponding respectively to the same eigenvalues A;. A particular case is normed PCA, where M is the
diagonal matrix of the inverses of variances of the p components of Z. This is equivalent to use standardized
data, i.e. observations of M (Z — @), and the identity metrics. But the expectation # and the variances of
the components of Z are usually unknown and only raw data are observed. One application of this article is
to recursively estimate the ¢; or the w; using stochastic approximation processes.
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Many articles were devoted to this problem when supposing M and 6 known or more generally to the
problem of estimating eigenvectors and eigenvalues in decreasing order of the expectation B of a random
matrix, using an i.i.d. sample of it. See for example the well-known algorithms of Benzécri [1], Krasulina [2],
Karhunen and Oja [3], Oja and Karhunen [4], Brandiére [5],[6], Brandiére and Duflo [7]. Recall the normed
process studied in [3][4]:

(I + anBp) X,

Xn = )
i (I + anBn) Xyl

with E [By] = B, a, > 0, Zan—oo Za < 0.

This work makes the following contrlbutlons The convergence of this process is proved under more
general assumptions: the random matrices B,, are not supposed i.i.d. and a new data mini-batch or all data
until the current step are taken into account at each step without storing them; this is applied to online
estimation of principal components in PCA of a random vector Z, when its expectation is unknown, as well
as possibly the metrics used, and must be estimated online.

Denote @ a metrics in RP, (.,.) and ||.|| respectively the inner product and the norm induced by Q:
(z,y) = 2’Qy, x' denoting the transposed of the column vector z. Remind that a p X p matrix A is Q-
symmetric if (QA)' = @QA; then A has p real eigenvalues and there exists a Q-orthonormal basis of RP
composed of eigenvectors of A. The norm of a matrix A is the spectral norm denoted ||A]| .

Let B be a @Q-symmetric matrix. Denote T}, the o-field generated by the events before time n.

In the next section, the almost sure (a.s.) convergence of the normed process to eigenvectors of B is
studied. Three cases are considered:

- E[B,|T},] converges a.s. to B;

- B, = w1, BL 4+ we, B2 with wy,, + w2, = 1, B2 is Tj,-measurable, E[B}|T,,] and B2 converge a.s. to B;

- B,, converges a.s. to B.

For each case, firstly a theorem of a.s. convergence of (X,) to a unit eigenvector of B associated to
its greatest eigenvalue is proved with, in the first case, a method following that of [8] under more general
assumptions, a corollary in the second case and another method of proof in the third case; secondly, using
arguments of exterior algebra, the convergence of processes (XfL)7 1 =1,..,r of the same type, obtained by
Gram-Schmidt orthonormalization, to unit eigenvectors associated to eigenvalues of B in decreasing order is
proved as a corollary.

Then, in the following section, the whole results are applied to online estimation of principal components
in PCA. In order to reduce computing time, particularly in the case of a data stream, and to avoid numerical
explosions, it is proposed:

a) to estimate the eigenvectors a; of the symmetric p x p matrix B = M:CM? (symmetrization); then the
orthonormalization is computed with respect to I; estimates of ¢; and u; can be obtained from that of a;;
b) to replace Z,, by Z,, —m, m being an estimation of E[Z] computed in a preliminary phase with a small
number of observations e.g. 1000 (pseudo-centering);

c) to use a data mini-batch at step n or all observations until step n without storing them.

This yields the following definitions of By, (Zy. 1, ..., Zn,m, ) denoting the new observations taken into
account at step n, Z,_1 the mean of the sample (Z1 1, ..., Zn—1,m, ), Mn—1 an estimation of M depending

on this sample, for i = 1,...,r, Z7 ;, = Z, ; —m and 7; =7, —m:

1 mn 1
1 _ 5 —C —c 3
Bn - § z Zn—l Zn 1 Mn 1
n

n m; .
¢ 2

>0 % - My

Zmlz 1j=1

i=1

5 1
— 2
B, = M;,

and a combination of both.

Three cases are studied: at each step are taken into account:

- a data mini-batch, supposing Z and M, _; uniformly bounded,

- or all observations until this step with different weights for observations in the past, which are not
stored, and observations at this step, supposing Z and M,, 1 uniformly bounded,



- or all observations until this step with uniform weights.
The paper ends with a brief conclusion.

2 Convergence of a normed process

Let (By,) be a sequence of random p X p matrices, B a p X p matrix, (a,) a sequence of positive numbers,
X1 arandom variable of norm 1 in RP independent from the sequence of random matrices (B,,) and (X,,) a
stochastic process in RP recursively defined at step n by:

(I +a,B,) X,
[ (I + anBn) Xul| '

X71+1 =

2.1 First case
2.1.1 Theorem of almost sure convergence

Suppose B,, not T,,-measurable (B, is T, 1-measurable). Make the following assumptions:

(Hla) B is @-symmetric.

(H1b) B has distinct eigenvalues: Ay > Az > ... > A,. Denote V; a unit eigenvector of B associated to
)\i,i = 1, .y P

(H2a) There exists a positive number b such that sup,||Bn|| <b a.s.

(H2b) E | > ayn||E[Bn|Tn] — Bl|| < <  a.s.

n=1
(H3) a,, > 0, Zan—oo Zan<oo
Denote U,, = (Xn,BX ), W = (Xpn, BpXn) .

Theorem 1 Suppose assumptions Hla,b,H2a,b,H3 hold. Then :
1) Almost surely, U, converges to one of the eigenvalues of B; on E; = {U, — A;}, X, converges to

o0 oo}
Vi or =V;, Y an, (N\j —Uy) and Y a, (Aj — W,,) converge.
n=1 n=1

2) If moreover on ‘SzEj’ liminf E (B, X,, V1)* |T7,} >0 a.s., then P (Fy) =1.
j:

State two lemmas of Duflo [8] used in the proof.

Lemma 2 Let (M,,) be a square-integrable martingale adapted to the filtration (T),) and ((M),,) its increasing
process defined by:

<M>1 = ]Wl2
= E[(Mn11 — Mn)2|Tn] = E[M72L+1|Tn} - M.

(M), — (M) n

n+1 n

Let (M) =1lim (M), . If E[(M)_] < oo, then (M,) converges a.s. and in mean square to a finite random
variable.

[e.e]

Lemma 3 Let (v,) be a sequence of positive numbers such that > ~v2 < co. Let (Z,) and (5,) be two
n=1

sequences of random variables adapted to a filtration (T,,), and €, a noise adapted to (T,).

Suppose on the set I':

1) For every integer n, Znpy1 = Zn(1+ 0,) + vV €nt1;

2) (Z,,) is bounded;

3) 3202 < 00, 8, >0 forn sufficiently large and there exists a sequence of positive numbers (by,) such that

n 1
Zb =00 and Z( 0n) converges;
4) for an a > 2, E[|en+1| IT;,] = O(1) and liminf E[e2 ,|T,] > 0 a.s.
Then, P(I') = 0.



Proof of Theorem 1
Step 1: expression of X,
Under H2a, as || (I + anBn) Xn||2 = 1+ 20, W, + a2 || B X, ||

1 1 )

= l—aan—fai B, X.|"+an, a,=0 ai .

T+ aB Xl g 150 Xl (@)

1
Xp1 = (I+anB,) (1 —ap W, — §ai | Bn X, + an> X,
= (I+4an (Bn—Wyl)+ang,) X,, with
1 1
B, = —anWnB,— Sn | BpX,||> I — §aiBn | BnXnll? 4 a; tond + an B,
Xpt1 = I+ an(B—=Un)+ apl'y) Xy, with
r, = (Bn - B) - <Xnv (Bn - B) Xn> I+3,, ||Bn” = O(an)~

B,, and I';, are uniformly bounded by assumption H2a.
Step 2: convergence of U,

ElUpn1|T,] = E[{I 4 an(B—UnI) +anl'y) Xn, B(I+ ay (B = UyI) +anT'n) X)) |Th)
U, +2ay, (B —U,I) X,,, BX,)) + 20, E (T, X, BX,,)) |T,] +a2n,
(B—-U,I)X,,B(B—-U,I)X,)+2E[(T,X,,B(B—-U,I)X,) |T,]
+E[([,X,, BT, X)) |T,] a.s.

with 7,

As || X,.|| = 1, denoting p,, = 2a, (E [Ty, |T}] Xy, BX,,) + a2n,,:

(B-=Uyl) X, BXy) = HBXTL||2 - UZ = [|BX; — Uan||2 2 0.
ElUp1|Tn] > Up+p, as.
n n—1
ElUp41 — Zﬂi T.] = U, — Zﬂ'i a.s.
i=1 i=1
n—1
Prove the convergence of the submartingale U,,— > u,. By H2a:
i=1
3 2 1 9 3 1
1Ball < Zan|Ball” + 5an [Ball™ + ay " lan| + lan] | Ball = O (an) ;
ITall < 2[|Bn = Bl + B, =0 (1);
3 2 2
.l < 4lBI" +4BI" [|E[Tn [Tu]ll + | Bl E [IIFn | ITn} =0(1).
[E[Ln |Tolll < 2[|E[Bn [To] = Bl + | E[B, |Tn]ll as.
By H2b and H3:
n—1 00 0o 00
E Zu] < 4|BIE|Y a|E[B: |T] = Bll| +2|BIE|> alEB; ITII| +E|>ai IImI]
i=1 i=1 i=1 i=1
< oo

n—1
By Doob lemma the submartingale U,,— > u, converges a.s. to an integrable random variable. As
i=1

n—1
Z My
=1
converges, U, converges a.s.

Step 3: convergence of X/= (X, , V)

Denote I'Y, = (', X,,, V).

X) = (I +an(B = Upd) + anly) X0, V;) = X2 (1 4+ an(N; — Uyp)) + an T



(X71)° = (XD)2(1+2a,(N — Un)) +as (N — Up)* (X))
+2a5, (1 + an (N — Up)) X219 + a2 (1%)?
= (XD)2 (14 2an(Nj — Un)) + a2 (N — Un) X5 +T19)° + 20, XIT9,

. n . n . N 2 n _
(X242 @y - U)X)? + D at (4 = U)X +17) +23 ax{T]
=1 =1 =1

= (X{)2+(1>+(2)+(3).

Study the convergence of the terms (2), (3), (1) of this decomposition.
n . N 2

(i) (2) = Y af (()\j -U)Xj + I‘f) converges a.s. by H2a and H3.
=1

(ii) Consider now (3).

> axiT] = Za;XJ (TJ — E[TY|T)) + Za;XJE [TJ|3).
= =1

S alx{EMT)| < Zal E[L|Ti) X, ;)|
=1
< S allEDm)| Z QlEBIT] - Bl + [|E[BITi]) -
=1 =1

+oo ; .
By H2a,b and H3, as ||3,,]| = O(ay), Y. @ X]E[I]|T;] is convergent.

n—1 . .
Let Mj = 3 aXj (I} — E[T}|T)]); (M}) is a square-integrable martingale adapted to the filtration (T},);
=1
denote ((M7),,) its increasing process. By H2a:
(MP)pr = (M), = B[(My .y — MJ)?|T] = a B[(X7)*(D), — B[ |T0))*|T)

n

a;, (B[(T3)*|T) = (BIT|T))*|Tl) < af B[(ITal* 1 T:)

IA

is the general term of a convergent and uniformly bounded series; thus by lemma 2 (M) converges a.s. to
a finite random variable.
Therefore (3) converges a.s.

(iii) Consider finally (1). Let w fixed belonging to the convergence set of U,,. The writing of w will be
omitted in the following. Denote L the limit of U,,. If L # A;, the sign of A; — U, is constant from a certain
rank N depending on w. Thus there exists A > 0 such that:

n

=213 w(\ - U)(X])?

=N

2) " wlh - Ul|(X])?

=N

= |(x7,,)2- at (= 00) XJ+PJ) —23 axjT]
=N =N

< A

n .
Then for L # Aj, 2 Y ai|A; — Ui|(X])? converges.
I=N

It follows from the c?)nvergence of (1), (2) and (3) that for L # \;, (X7)? converges a.s.

Step 4: convergence of X,



S . .
If the limit of U, is different from );, then by convergence of (1) in step 3, Y. a;/(X])? < co and X7
i=1
converges a.s. to 0. As [|X,,|| = 1, this can not be true for every j.

Thus the limit of U, is one of the eigenvalues of B, ;.
For j # i, XJ converges to 0, therefore (X! )? converges to 1 and since

Xpi1— Xn = an (B =UnI) +Ty) X,

Xp+1 — Xp, converges to 0 and the limit of X, is V; or —V; on E; = {U,, — A;} (first assertion of theorem

1).

Consider now the decomposition:

Z af’n(Ai - Wn) = Z an(Ai - Un) + Z an, <Xn7 (Bn - E[BTL|T7L])XTL>
n=1 n=1 n=1

+3 " an (Xp, (B[B,|T] — B)X) .

N (i) Using the decomposition of (X?)? in step 3, the convergence of (X! )? and of (2) and (3) yields that

an(A; — U,) converges a.s. (second assertion of theorem 1).
n=1

(ii) By H2b: > an (Xy, (E[Bn|Tn] — B)X,) converges a.s.
n=1

n—1

(iii) Let M, = > a;(X;, (Bi — E[B||T}])X;) . (M,) is a square-integrable martingale adapted to the

[
filtration (7),). Its in_creasing process ((M),,) converges; indeed:

<M> M> = E[(Mn+1 - Mn)2|Tn]
aiEKX’ru (Bn - E[BTL|T7L])XTL>2 |Tn}

aiEHan - E[Bn|Tn]H2|Tn]

n+1_< n

IN

is the general term of a convergent and uniformly bounded series. Thus (M,,) converges a.s. to a finite
random variable.

Therefore by (i), (ii) and (iii), > an(A; — W,,) converges (third assertion of theorem 1).

n=1
Step 5: convergence of X, to £V}
Suppose i > 1.

Xrll-&-l = (1+an(>‘1*Un))leL+an <Fan7V1>
= (I+an (M= X)+ AN —Un)) Xy + an (Tn Xy, V1) .

In the following, apply lemma 3 to the sequence (X,ll) on E; = {X,, — V;},i > 1, with v,, = an,
5n = an()\l - Un) = 07 bn = Qn ()\1 - >\7,) > 0; €Ent1 = <Fan7 V1> .
(i) X} is bounded.

(ii) i a? < oo, io: a2(\ — Up)? < oo by H3, io: an(A1 —N\;) = oo, ioj an(X; —U,,) converges a.s.
(iii) néénsider then(zlelzcomposition: " "
(Cn X, Vi) = {(Bn = B) X, Vi) = ((Bn = B) X, X)) (X0, V1) + (8, X, V1)
= (BaXn, V1) = (X0, V1) (M 4 (B = B) X, X)) + (8, X0, V1) -
By H2a, there exists a positive number ¢ such that a.s.:
E[((CnXn, Vi) = (BuXn, V2))* |T]

Q(Xi)QE[()‘l + <(Bn - B)Xm Xn>)2 ‘Tn] + 2E[(<ﬂnXm Vl>)2 |Tn]

(X1 + 2818, T, — 0

IN N



since ||83,,|| = O(a,) and X! — 0. Likewise:

n—-+o0o

El((TnXn, V1) — (Bp X0, V1)) (BnXn, V1) |T0] — 0.

n—-+o0o

Then, if liminf E[ (B, X,,V4) 2 |T,] > 0, liminf E[(T,,X,,,V4) 2 |T,] > 0.
By lemma 3, under (i), (ii), (iii), P (E;) =0, ¢ > 1.
Then, P (E;) =1 (fourth assertion of theorem 1). B

2.1.2 Simultaneous estimation of several eigenvectors

In this part, for i = 1,...,r, X} does not denote the it" component of X,,, but a random variable in RP
recursively defined by:

Y7:+1 = I+ aan)va,a
. . . . , , T 1
711+1 = er+1 - Z<Yr§+1vX}71+1>X%+1a rlz+1 = TTF :
1T

(Xpi1,-s X} 11) is obtained by Gram-Schmidt orthonormalization of (Y,! q, ..., Y,/ ).

Corollary 4 Suppose assumptions Hla,b, H2a,b and H3 hold.
1) Fori=1,....,r, almost surely X' converges to one of the eigenvectors of B.

2) If moreover, fori=1,...,r, almost surely on LI__jJH {Xﬁl — j:Vj}7 liminfE[<BanL,VZ-)> 21T,] >0,
j=i

then X! converges a.s. to V; or —V;, i G |)\i, <BX;,X:L>| and i an(Xi— <BanL,Xfl>) converge a.s.
n=1 n=1

Before the proof, some concepts of exterior algebra are reminded.

Let (e, ...,ep) be a basis of RP. For r < p, denote "ARP the exterior power of order r of R?, generated
by the C} exterior products e;; Aei, A ... Ae;, i1 <iz <..<i,€ {1,...,p}.
a) Let @ be a metrics in RP. Define the inner product in "ARP induced by the metrics @, also denoted (., .),
such that:

(ei, N Nej e, Ao Neg, ) = Z (71)8(") (€irsa(ky))+(€irs Co(n))s

oeG,
G, being the set of permutations o of {k1,...,k,} and s(o) the number of inversions of o.
-
Denote also ||.|| the associated norm. Note that if x4, ..., z, are Q-orthogonal, ||z1 A ... Az || = ] ||z,
i=1

and if (e1, ..., e,) is a Q-orthonormal basis of R?, then the set of the C} exterior products e;, A ... Ae;, is an
orthonormal basis of "ARP.
b) Let U be an endomorphism in R”. Define for j = 1, ...,r the endomorphism "/ in "ARP such that:

Uz A Axy) = Z Ty A AUz Ao AU A A 2
1<i1<i2<...<4i;<r

-
For j=1,""U(z1 A ... Ax,) = Zm AN AUz Ao Ny,
i=1
Denote "AU the endomorphism ""U such that:

"AU(x1 Ao ANay) =Uxy ANUzg Ao AU,

¢) The following properties hold:

(i) Suppose that the eigenvalues Ay > ... > A\, of U are distinct and denote for j = 1,...,r, V; an eigen-
vector associated to A;. Then the C’g vectors Vi, AL AV, 1 <4y < ... < i, <p, are eigenvectors of g
respectively associated to the eigenvalues A;; + ... + A, .



(i) "A(I+U) =T+ 3 ",

j=1
(iii) There exists ¢(r) > 0 such that, for every endomorphism U in R? and for 1 < j <, ||"U|| < c(r)||U]}.

Proof
Step 1
For i = 1, ..., 7, it follows from the orthogonality of T}, ..., T} that:

| Tas1 A AT, +1||*HH el

Then, denoting * X, 11 = XnJrl A AXE a1 and Di =%B,+ > @l tB,:
j=2

T1+1/\ AT Y1+1/\ AYia o A +anB) X,
T A AT

| ERAN AY, +1H AL + anBp) “Xal|
(I—i— a, 1B, + E al Y B,

an+1

an
iz _ (I+a, D) X,
(I +an Dj) *Xall

Jj=2

H (I+ an 1B, + . ) ijBn> iX,

As ||[YB, || < c(i)||B,,||, assumptions H2a and H3 yield that there exists by > 0 such that for all n,

1Dl < by
Moreover, as U ' U is a linear application, assumptions H2a,b and H3 yield that:

E | an||E[D,|T,] — "B > an|E|"B,-" B+ al 'VB, T,

j=2
< E Z I"E[B, — B Tl +>_ al, 'E[|| Bul| ]
n=1 j=2
< > an | |1E[BaTo] = Bl + Y al ' E[|Bull? |T0] | | < 0.

=2

Applying first assertion of theorem 1 yields that almost surely,
X, converges to a unit eigenvector £V;, A ... AV}, of B,

S an(Njy + o+ N — (B X, X)) and
n=1

S an(Mjy o+ Ny, — (DE X, X)) converge.

n=1
Moreover by H2a and H3, Y a,(\j, + ... + Aj, — (' B, 'X,,," X,,)) converges a.s.
n=1
Step 2 )
Suppose that for k =1,...,i— 1, X* 7 £Vj, which is verified for £ = 1, and prove that X, - +V;.
1) Prove that there exists j > i — 1 such that X} - +V;. Suppose that there exists k € {1,...,i — 1}
such that, for I = 1,...,4, V;, # £V} ; then, forl = 1, ..., 4, (X%, V},) — 0 and (XIALAXE, Vi ALLAV) —.0

a contradiction. Therefore for all k& € {1,...,7 — 1}, there exists j; such that V;, = £V}, and there exists j

such that _ _
Xp=Xp AN ANXE — EVIALAV_ AV

n—-+oo



The only term which has a non-zero limit in the development of
(XAA AKX EVIA LAV AV,

whose limit is 1 as n— o0, is (X}, Vi)(X2,Va)...(X:71, Vie1) (X1, V;) obtained for 0 = Id. As for k =

n»"J

Lwi =1, (XE, Vi) — 1, then <X§L,Vj> — 1. Therefore X| — £V},

n——+oo n~>+oo

2) Prove now that V; = £V;. Suppose X7 — +V; # £V,

Denote G; the set of permutations ¢ of {1,...,i} with 0 = (o (1),...,0(7)) and s(o) the number of
inversions of o.
S UXp A ABR XL A ANXEVEA LAV
1=1

("B (XEANAXD),VIN LAV

Z Z V(1)> <B va > '<XZmVa(i)>'

=1 0€G;

B [(1Bu(Xh A AXID) VAN A V) [T

2
(Z > (-1)rx, V(1)>...<BanL,Vg(l)>...(XfL,Va(m) T3,

=1 0c€qG;

Asfor k= 1,..,i—1, XF - +Vk, the only term with a non-zero limit in the development of this
n—

(oo}

conditional expectation is
(X2 V) (X Vi) B (B X, Vi)? [T,
and ' ‘
lim inf & [(“B,L(X;A...AXZ) ViA AV T } = liminf E [(B, X2, V;)? |T,] > 0

Moreover, by H2a and lim a, =0:

i 2
lim inf £ <Zanj—1iJ'Bn(X;A...AXf;),VlA...Avi> T,
Jj=2

2

= liminf B | | Y al " (TBu(XAA L AXL), VAN LAV | |Ta| =0.
j=2

Then liminf E [(DL (X2 A AXD),ViA L AVAT,] >0
Applying second assertion of theorem 1 yields almost surely:

Xp A AXE T EVi AL AV, therefore Xt — Vi
Zan (Z)\l ("B szan>> and Zan (Z)\l — (D; an,an>> converge,
n=1 =1
then by H2a and H3, > a, (Z)\l — ("B, ‘X, Xn)> converges.

n=1 =1
Step 3

("B'X,," X,) Z > (=X, Xg W) (BXE, XgW) (X, x50,
k=10c€G;



As X}, ..., X! are orthonormal, this sum is equal to

D (X X)) (BXE, XE) (X, X0) = ) (BXG, X0,
k=1 k=1

i .
Then, as Y. )\ is the greatest eigenvalue of ! B:
1=1

% i—1
(Z)\l o <ZIB anyi Xn>> o (Z}\l o <Z‘71’1B ilendifl Xn>>
=1 =1
i—1
Z)\l o <Z‘71’1B ilen,ifl Xn>
=1

i — (BX, X1

S N=("B'X,, X,)
=1

< o0, then f: G, |)\i — <BX%,X;>’ < oo0.

n=1

o0
Almost surely, > a,

n=1

Likewise, as almost surely > a, (Z)\l - <”B" L, Xn>> converges, then
=1

n=1

SN — (1B'X,,)i X,,)
=1

i Gn, ()\i — <Banl,Xfl>) converges. ll

n=1

2.2 Second case

Consider the same processes (X,,) and (Xﬁl) as in the first case.
Suppose now B,, = w1, Bl + wa, B2 with w1, > 0,wa, = 0,w1, + wa, = 1, B2 T,,-measurable.
2.2.1 Theorem of almost sure convergence

Make the following assumptions:
(H2a’) There exists a positive number b; such that sup,, ||B,1LH < by a.s.

(H2b") E | Y a, ||E [BLT,] - B||] < 0.
n=1
(H2¢’) B2 T,,-measurable, B2 . B, E {Z ay||B2 — B||} < 00 as.
n— 400 n—1

Theorem 5 Suppose assumptions Hla,b, H2a’,b’,c’ and H3 hold. Then :
1) Almost surely, U, converges to one of the eigenvalues of B; on E; = {U, — A;}, X, converges to

o0 o0
Vi or =V;, > an(Xj —Uy) and Y a, (A\j — W) converge.
n=1 n=1

2) If moreover lim wy, =wi > 0 and on 'GQE]-, liminf F/ [(B}LX,L,Vl>2 \Tn] >0 a.s., then P (Fy) =1.
n——o0 1=

Proof

Apply theorem 1.

Under assumptions H2a’,b’,c’, assumptions H2a,b are verified. Thus first part of theorem 1 holds.
Prove that liminf E[ (B, X,,, V1) 2 |T,,] > 0 a.s. when nﬂann =+V; #+W.

E [{(winByy + wanB2) Xn, V1) *|T0]
= (won)?(B2X,, V)2 4 201,000 (B2X,,, V) E [(BL X, Vi) |T5]
+(win)* E [<B,1LXm V1>2 \Tn} a.s.

When lim X, =+V; #+Vi, lim (B2X,,V,)=+(BV;,V,) = +); (V;,Vi) = 0. Then:
n——:aoo n—aoo

liminf B [{ (1B} + w20 B2) Xus Vi) 2 |T] = (@) liminf B [(BLX,, V1)” [T] >0 a.5. W

10



2.2.2 Simultaneous estimation of several eigenvectors

Corollary 6 Suppose assumptions Hla,b, H2a’,b’ ,¢’ and HS3 hold. Then:
1) Fori=1,...,r, almost surely X! converges to one of the eigenvectors of B.

2) If moreover lim wy, =wy >0 and fori=1,..,r, a.s. on 6+1 {Xfl — :I:Vj}, liminf F [<B XLV > T ]
n—-00 Jj=i

then almost surely X, converges to £V;, > an |[Ni— (BX}, X1)| and Y. an(Xi— (Ba X2, X.)) converge.
n=1 n=1
It is a direct application of corollary 4 whose assumptions are verified as proved above.

2.3 Third case

It is assumed in the second case that w; > 0. Now assume wq,, = wy; = 0.

2.3.1 Theorem of almost sure convergence

Recursively define the process (X,,) such that
X1 = +a,B,)X,

and the process (ﬁn) such that

7 Xn-&-l 1 + CLan 7

Un+1 = ™ = n
H(1+)\1a2) 1+)\1an
i=1
~ an ~ ~ — ~
= Up+ ——F— (B U, —\U,), U
+ 1+ Ma, ( ! ) !
Note that ”U 1= = Hf%“” = X,,. Make the following assumptions:

(Hic) | B] = A1

(H2¢) 3" an||By — B|| < o0 aus.

(H2d):1§)i all n, I + a,,B,, is invertible (especially verified if B,, is non-negative).

(H5) X is an absolutely continuous random variable, independent from By, ..., B, ...
Theorem 7 Suppose assumptions Hla,b,c, H2¢c,d, H3 and H5 hold. Almost surely, U com;erges to a ran-
dom vector colinear to Vi, therefore X,, converges to £V, Z an (M1 — (BX,,, X,)) and Zlan A — (BnXn, X5)]

n=1
converge.

Remark 8 1) Note that assumption H2a is not required.
2) Since w € Q is fixed throughout the following proof, a, can be a positive random variable. B

Lemma 9 Suppose for all n, (z,), (o), (8,) and (v,) are four sequences of non-negative numbers such
that:

oo oo
fO"” all n 1 Zn+1 < Zn (1 + O‘n Bn - fYny Za” < 0, Zﬂn < 0.

o0
Then the sequence (zy,) converges and »_ 7y, < 0.
n=1

This is a deterministic form of the Robbins-Siegmund lemma [10], whose proof is based on the convergence
of the decreasing sequence
p— Zn —
Un = n—1 Z
k=1

IT (1+a)
=1

- .
]:[ 14+ o)

11



Proof

Let w be fixed, belonging to C; = { > ap||Bn — B|| < oo}. The writing of w will be omitted in the

n=1
following.
Step 1
2
Uniall? = Ul +2—2" (T, (By — MDTp ) + —2 (B, — M )T, |?
1Tl = NP+ 2475 (T (Bo =MD} + gy N (Ba = Dl
2
~ a ~ ~ a ~
= [|U,|]?+2———{(U,, (B, — B)U, —" (B, — MDU,|?
1l + 255 (O (Ba = BYOn) + (st 1B = D)
Qn 7 r7
I T - 1-B)YU,).
1+ Alan <Un7 (Al )Un>

A1l — B is a non-negative @-symmetric matrix, with eigenvalues 0, \; — Aa,..., A1 — Ap.

||Bn - /\1I||2

||Un+1||2

2/[B, - BIP + 2\ I - BI.
||[7n||2 (1 + 2an||Bn - B|[+ 2“?L||Bn - B||2 + 2a721(>‘1 - )‘p)z)

_Qﬁ <l7n, Ol — B)ﬁn> .

<
<

By assumptions H2c and H3, applying lemma 9 yields:

oo

A an<(7n,(/\11—B)[7n>:ian|(7n|z(>\l_<U"’BUn>
n=1

U2 )

n—-+4oo
n=1

o) ~ o0
As > ap, = oo, either ||U,]] - 0or > an(M—(X,,BX,)) < .
n=1 n—T0o0 n=1

Step 2: convergence of 17731 = <17n,VJ>

~ I+a,B, ~ 1 ~
U’ = V., — U, VN=(V,, —— (I nB n(Bn— B))U,
n+1 <J’ 1+>\1an > <J71+>\1an< +ta +a ( )) >

1+)\jan~v
= []-7
1—|—)\1an n+

an
1+ )\1an

<Vj,(Bn—B) ﬁn>.

a) For j > 1, as a, — 0, there exists a,, = O (a,,) > 0 such that for n sufficiently large:

n—-+4oo

Ul U,

1+ )\1an

n+1
(1-ay)

+an B - Bll|

Un

IN

Ui

+an | B - Bll|

By H2c¢ and as ‘ (}n converges, applying lemma 9 yields:

Uj

o0 o0
[7J — i —
n—>—+>ooU, g o' <oo.AsElan—oo,U—O.
n—

i

b) For j = 1, by H2c and ||U,|| — VU

n—-+oo
771 _ an < B—B~>:~1 - @i < B: — B ~.>
Un+1 Un+1+)\1an ‘/17( n )UTL Ul +;1+)\1ai ‘/13( 7 )Uv
O = 1711+§:L<V1 (Bi—B)ﬁi>.
n—-+oo —1+Ma; \

12



Now:

~ ~ "I+ a;B; ~ I +a;B; ~
! = n :Vui’ Uy Y — V|| it i
Ups1 <V1,U +1> < 1’i:11+)\1¢1¢ L) e 1,i:11+/\1ai 1

~ I+a;B;

! 71 11

ViQSU, =U" with § = | I 1+)\1ai

As U is absolutely continuous, if V{/QS # 0, P (Vl’QSﬁl =0 | S) = 0, then P ((71 = O) = 0. Prove
that V/QS # 0.

Step 3

Denote Cy = {171 % O} Suppose w € C1 N Cs.

Under H2c, there exists N such that E an||Bn — Bl| <In2.

n=N

N-1
I+ a;B I+ a;B;
/ _ 144 7%
ViQs = VlQHHAlalglﬂlai

I—|—al i I+a/z
B VlQRH g, A= H1+)\1a

Under H2d, V/QS # 0 < VIQR # 0.
Denote C,, = %ﬁ;ﬁ” and (W,,,n > N) the process <[7,,L,n > N) with Wy = V4.
As |B|| = A1, [ + a;—1B| =1+ Aa;—1. By step 2, as Wy = Vi:

Wi = (Vi,Wapa —14—2 )\1 p 1, (Bi — B)W, 1—20 Wil
I+ ai—1B;i-1]|
W; < — ||
il < ks Bl
I +a;—1B| + a;—1 ||Bi—1 — B]|
< Wil =10+ Ci—qp) ||Wiz
< el Wil = (14 Cn) I
i—1
< (1-‘,—01),2':]\[-‘1-17...7%

T
=

As Y C, <1n2, it follows that:
n=N

By step 2, W,! converges to (V1, RV;) = V/QRV; which is therefore strictly positive, thus V/QR # 0.
Step 4: conclusion

It follows that (U ) converges to Uv, # 0, therefore ” A = X,, converges to £V7, and by the conclusion

n |

of step 1, > an (A — (Xpn, BX,,)) < o0.

n=1

13



Moreover by H2c:

Zan |)\1 - <XnaBan>| = Zan |>\1 - <Xn7 (Bn - B) Xn> - <XnaBXn>‘

n=1

> an (M = (Xn, BXy)) + > anl|[By— Bl < oco. B

n=1

IN

Remark 10 Step 1 can be replaced by:

~ |I+anB -~ Llnan Bl
10all < Sgcet |0 < (1 2tz ) [ 2

Under H2c,

n

converges a.s. Assumption Z a2 < oo is not used and can be replaced by a, S 0,
n=1 n—

but in this case, the convergence of Z an (M — (BX,, X)) and E an | A1 — (BnXn, Xn)| is not proved. B
n=1

n=1
2.3.2 Simultaneous estimation of several eigenvectors

For i =1,...,r, recursively define the process ()Z'ﬁl) by:

)/ri—i-l = ([+a,B, )Xrlu
_ - X/ X7
) ) ) n+1 n+1
Xn-',—l = )/n-i-l - Z <}/n+17 ~ - >
AN A VA R |
Note that = X?,
i = X |
Denote D!, = 1B, + Y a/~1¥B,.
j=2

Make the following assumptions:

(Hlc¢’) Fori=1,...,r, “BH =AM+ ...+ A

(H2d’) For i = 1,...,7, I + a, D! is invertible.

(H5’) For i = 1,...,7, X} is an absolutely continuous random variable, independent from By, ..., By, ....

Corollary 11 Suppose assumptions Hla,b,c’, H2c,d’, H3 and H5  hold. Then, fori=1,...,r, almost surely
X converges to £V;, Y ap, |)\i— <X%,BX§L>’ and Y any |)\¢ <Xn,B X1>’ converge.
n=1 n=1

Proof

w is fixed throughout the proof, belonging to the intersection of the a.s. convergence sets. Its writing
will be omitted.

Let i € {1,...,r}.

ijszrl - X1+1 A A X"+1 Y711+1 A A ?Terl = A(I + aan)szn

I+a, “Bn+anzag‘;“ﬂ’3n X, = (I +a, DY) 'X,.
j=2

Xnia Xt X 1A(I+¢ln n) Xn
Notethat o2y = [y Ao A RE = ks pye] = Xt

By H2c and H3:

I v S !
n=1 n=1

IN

Zan B, _B||+Zzaﬂ |B.] | < oc.

j=2n=1

14



As B is Q-symmetric with distinct eigenvalues, *' B has the same properties ; V1 A.. AV; is an eigenvector
associated to its greatest eigenvalue A1 + ... + A;. Applying theorem 7 yields that:

X, converges to = Vi A .. AV,

00 i >
Zan (ZA;— <ilB ‘X, ¢ n>> and Zan
n=1 =1 n=1

i
Z)\l_ <i1Bn an) an
=1

Zz:Al_ <D; iXTH an>

converge,

oo
which implies that Z an

n=1

converges.

Suppose that, for k = 1,...,i — 1, Xk converges to +V},, which is verified for £ = 1, and prove that it is
true for k = 4.

In the development of <X1 A ANXE EVIA LA Vi>, which converges to 1, the only term which has a
non-zero limit is <X,1L,V1> < nfl,Vl, ><Xﬁ,%>; since for k = 1,...,4 — 1, <X5,Vk> converges to *1, it
follows that <Xf1, V;> converges to +1.

Applying the same proof as that of corollary 4, step 3, yields:

> an [N (X0, BX,)

n=1

< o0. By H2c:

[e.e] oo
<> an |hi- <X,§,BX;> +3 . |By — Bl < . W

n=1 n=1

A— <X;’L, BnX;>

)
D an
n=1

3 Application to sequential principal component analysis of a data
stream

Let Z11, ooy Zimys Z215 -, Z2msg s s Znls -y Lnm, s --- be an 1.i.d sample of a random vector Z in R? whose com-
ponents are denoted Z', ..., ZP. Denote M the metrics used for PCA and B = M2 E [(Z — E[Z])(Z — E[Z))'] M=.
Let m belonging to RP (in practice m is an estimation of F [Z]); denoting Z¢ = Z — m:

B=M? (E [ZCZC’} - E[ZC]E[ZC]’> M.

Denote Z,,_1 the mean of the sample (Z1, ..., Zn—-1,m,_,) of Z and M,,_1 a T,,-measurable estimation of M.

3.1 Use of a data mini-batch at each step

Note that the metrics used for orthonormalization is the identity because of the symmetrization.
Recursively define the processes (X;) ,i=1,...,r, by

Vi, = (I+a,By)X},

4 v T,

7zz+1 = Y7:+1 Z<Y;+17X51+1>X7]z+1’ X:LJrl ||T+1||.
J<i nt

Denote Z7, = Z,,; — m, 7;_1 = Z,_1—m. Take

My
zezer— 7 (7 )| M2
— ni<ni n—1 n—1 n—1-
mn

i=1

3 Wl

Bn =

Make the following assumptions

(H3) ay, >0, Zan—oo Z 4r < oo, Za < 0.

n=1

15



(H4a) ||Z]| is a.s. bounded.
(H4b) There is no affine or quadratic relation between the components of Z.

1
(H6a) There exists a positive number d such that sup,, || M3 || < d.

1
(H6b) M7 — M aus.

o 1
(H6c) E [Z an ||M? | — M2 } < 0.
n=1

Corollary 12 Suppose assumptions H1b, H3’, Hja,b and H6a,b,c hold. Then X! converges a.s. to £V,
> an | Ni— (X2) BXE| and Y ay ()\if (XfL)/Ban;L) converge a.s. fori=1,...,r
n=1

n=1

Proof
Verify the assumptions of corollary 4.

(Hla) B is symmetric.
(H2a) Under H4a and H6a, sup,, || B, is a.s. uniformly bounded.
(H2b) Almost surely:

E[B.| T, - B

1 1
s (S a7 () )k

i=1

|
|

1

M3 (E keal | - E[z9E[29) ) M*
(E :ZCZC’ 757, ) M? . — M} (E [ZCZC’} . E[ZC]E[ZC]’) M3
() (] - i)

(B [z027] —E[ZC]E[ZC]) (M - M%)

M

~ME (Zos - BIZ9) Zos My - M B(2) (7, - BL27) M

n—1-

If Z has 4" order moments and a,, > 0, Z I < o0

> anB [||1Z, - — Bl2])]] = Zan (1Zn-1 = BIZ]|l] < oc. [9]

Therefore, under H4a, H6a,c, £ {Z an |E [Bn | Tn) — B||} < 00
n=1
By corollary 4, for k = 1,...,7, almost surely, X* converges a.s. to one of the eigenvectors of B.
Prove now that lim E[(X¥ B, Vi)? |T,] > 0 a.s. on the set {X,, — V;} for j # k to apply second part
n—oo
of corollary 4.
In the following of the proof, X* is denoted X,,.

16



Decompose E[(X! B, Vi)? |T,] into the sum of three terms (1),(2),(3):

2
E|(x M2 ZCZC’—*C 75\ M) I
n—1 ni“~ni n—1n—1 n—1Yk n

m 2
1 ~ / 2 C c !/ 2 / 3 7€ ¢ / %

= F m Z(X Mn 1Z )(Z M IV’f) (X Mn 1Zn71> (anl n—le) |T7l
" i=1

- . 9

1 ~ I p) c c/ 2

= B> (xaMmiazs) (zeMi i) ) 1| ()
(O
’ % ¢ Z¢ % 1 S l 2 c c/ 2

—2 (XnMn—lznfl) (anl n—lV]"J) 7ZE |:(X MrL 1Z ) (Z M lvk) ‘Tn:| (2)
" i=1

c 2 /. 1 2
+(X/M7f Ianl) (anl/ 7?—1‘/’6) (3)

Note that the two random variables R = V/M 27¢ and § = V/M2 Z¢ are uncorrelated, then E[RS] =
E[R]E[S]:

E[(R - E[R])(S — EIS))] BIV/M?(Z — BE[Z)).ViM*(Z — E[Z])]
= VIM:E[(Z - E|[Z))(Z - E[Z))] M*V, = AV} V;, = 0.

Consider (1). Under H6b:

© = W;;ﬂ@@&@@MW@WWJ@(MW@M

mMnp Mnp

- -~ ZZE[(Vk 1Z5) ZiaZia (2 My Vi) | ] M X,
—  VIM3E [(VkaZc> ATAL (ZC’M%Vk)] M3V,
- E [(v,;M%ZC)2 (vj’M%ZC)Q} as.
Consider (2):
(), — 2B |[V/Mize| B|zoMbve] B [(vinbze) (2903 )|
= 2B [(vjmize) (v,;M%ZC)r a.s.
Consider (3):
3) — (E [V{M%ZC}E[V,C’M%ZCDZ :E[(V;M%ZC) (V,;M%ZC)F a.s.
As a result:
(X, BVi)? IT.] — E {(vj’M%ZC)2 (Vk’MéZCf} ~E [(VJ’M%ZC) (V,;M%ZC)r

= Var[V/M*Z¢V{M*Z°] > 0 as. by Hib. B

17



3.2 Use of all observations until the current step with different weights

At each step, all observations until the current step are taken into account but with different weights for
observations at the current step and observations in the past.
In the definition of processes (le) ,i=1,...,r, take now

B, = wlB}L + wngmwl +wy =1, w; > 0,we 2= 0, with
. My .
1 3 / *C Z¢ 2
Bn = Mn2—l 722’2‘]2’;‘] - n 1Zn71 an—17
. 1 n—1 m; .
2 2 > 1 7€ I 2
By = M| > > 2525 ~ 20 Zy | M

i m; i=1 j=1
i=1
Corollary 13 Suppose assumptions H1b, H3’, Hja,b and H6a,b,c hold. Then X! converges a.s. to £V,
3 an | A — (Xﬁ'L)IBX}'Z and > an(Xi— (XZ’L)/B”X%) converge a.s. fori=1,..,r
n=1

n=1

Proof
Verify the assumptions of corollary 6.

(i) It is established in the proof of corollary 12 that £ { an ||E[BLIT,] — B||| < oo a.s. under assump-
tions H3’, H4a and H6a,c.
(ii) Prove now that E [ >

an ||BZ - BM < 00 a.8.

B: = Mn 1Cn— _, with
n—1 m; . . n—1 m; . .
Cn—l = ZC/ - n IZn—l/ = lJ — Zn— 1Zn—1/~
Zmzlﬂl Zmi1_1]1
=1 =1
B = M3>CM? with C = E[ZZ'| — E|Z]E|Z).
B2-B = M? Cp M, — M%CM%
1 1 1
= (Mn2 —M%)C” IM -1 +M2(Gn—1 _C)Mi—l +M%C(va—l _M%)
n—1 m;
Cor—C = ——> > 7;Z}; = E|ZZ') = (Zn-1 — E|2)) Zn' — E|Z)(Zn-1 — E[Z])".

Zm i=1 j=1
i=1

Under assumptions H3’ and H4a:
21 anE (|| Zn-1 — E[Z]||] < o0, 21 anE (|| ZZ7-1 — E[22']]|] < oo [9].
n= n=

Therefore, under H4a and H6a,c, £ {Z an||B2 — B||] < 00.

(iii) Prove finally that lzm E[(Xk’B Vi)? |T,) > 0 when lim X = 4V; # £V}, a.s. By the proof of
n—-aoo
corollary 12, as lvm X’;’B,%Vk = :I:VJ BVy, = 0, under H4b and H6b:

, 2
lim E[(XMBVi)2|T,] = (w1)? lim E{(X’; B}LVk) |Tn}

n—-mao©0 n——-:ao0

= ()’ Var[ViM2Z°ViM2Z] >0 as. B
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3.3 Use of all observations until the current step with uniform weights

Take now

1 1 L —c—c 1
Bo=M; | — > > 7575 - Z2,7Z, | M.
> my; i=1 j=1
=1

Make the following assumptions:
(H4c) Z has 4" order moments.

(H6A) 3 an |[M2 — M3

n=1

< 00 a.s.

Corollary 14 Suppose assumptions H1b, H3’, Hjc, H5" and H6b,d hold. Then, fori =1,...,r, almost surely
X, converges to £Vi, > an |Ni— (X}, BX.)| and Y an [Ni— (X}, B, X})| converge.
n=1

n=1

Proof -
It suffices to verify assumption H2¢, > a,||B, — B|| <co a.s. to apply corollary 11. Under assumptions
n=1

H4c and H6b,d, proof is similar to that of corollary 13 for B2 without taking expectation. B
In the particular case of normed principal component analysis, M is the diagonal matrix of the inverses
of variances of Z1, ..., ZP. Denote for j = 1,...,p, V;J the variance of the sample (Z7,, ..., Z} , ) of Z7 and

n,Mn

. n
M,, the diagonal matrix of order p whose element (7, ) is the inverse of M“’leg with p,, = Y m;. Under
" i=1

H4c, H6Db holds; it is established in [9] (lemmab) that H6d holds under H4c and H3’.

4 Conclusion

In this article we gave theorems of almost sure convergence of a normed stochastic approximation process
to eigenvectors of a (Q-symmetric matrix B associated to eigenvalues in decreasing order, assuming that
E[B,, |T,] or B, converges a.s. to B. This extends previous results assuming B,, i.i.d. with F[B,] = B.
Several observations can be used at each step or all observations until the current step.

These results are applied to online estimation of principal components in PCA when the data arrive
continously. In this case, the expectation and the variance of the variables are unknown and are estimated
online in parallel with the estimation of principal components. To reduce the computing time and to avoid
numerical explosions, we proposed to use symmetrisation (B is I-symmetric) and pseudo-centering with
respect to a preliminary estimation of the expectation.

We made a first set of experiments: several processes, with or without symmetrization, with or without
pseudo-centering, with different numbers of observations used at each step or with all observations until the
current step, were compared on datasets or simulations (data not shown). It appeared that processes with
symmetrization, pseudo-centering and use of all observations until the current step typically yield the best
results.
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