

Analyse démographique des effets de la pollution sur la mortalité dans quatre métropoles françaises

Alain Jourdain

▶ To cite this version:

Alain Jourdain. Analyse démographique des effets de la pollution sur la mortalité dans quatre métropoles françaises. 2017. hal-01844415

HAL Id: hal-01844415 https://hal.science/hal-01844415v1

Submitted on 19 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analyse démographique des effets de la pollution sur la mortalité dans quatre métropoles françaises.

Alain Jourdain

EHESP, SHS, Arènes UMR 6051.

Introduction

Les effets à long terme de la pollution atmosphérique sont l'objet d'une attention croissante de la population et des autorités de santé publique. Le dioxyde d'azote (NO2) fait partie des polluants les plus dangereux. (Extrapol, 2006). Il est produit notamment par les combustibles fossiles utilisés par la circulation routière. Il a des effets néfastes sur la santé car une exposition à long terme (Crouse et al., 2015) peut altérer la fonction pulmonaire et augmenter les risques de troubles respiratoires.

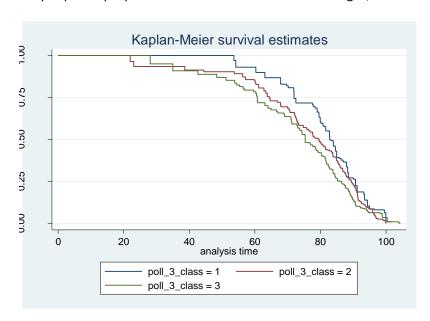
Les arguments pour une politique de santé environnementale sont édifiés à partir de la charge de mortalité ou de morbidité. Elle est souvent formulée en terme de nombre de décès attribuables à la pollution(Pruss-Ustun A, Mathers C, Corvalan C, & Woodward A, 2003). Ceux-ci sont évalués par l'observation des séries chronologiques de mortalité à la suite d'événements exceptionnels, généralement des pics de pollution. L'impact de la pollution peut aussi se mesurer en termes de mortalité évitable (nombre de décès avant un certain âge, généralement 65 ans) ou d'années de vie perdues entre l'âge du décès et un âge de référence. (European Environment Agency, 2016).

L'effet du NO2 se produisant sur le long terme, une approche transversale s'avère insuffisante. L'absence de données longitudinales (cohortes) est un obstacle couramment rencontré par tous ceux qui veulent mesurer la charge de mortalité ou de morbidité. Il est courant, dans l'analyse démographique de prendre le modèle théorique de la génération pour décrire de manière rigoureuse un phénomène démographique. Par exemple, mesurer l'espérance de vie du moment à partir des données de mortalité de l'année. Dans cette étude nous proposons de mesurer les espérances de vie de générations fictives qui seraient exposées à différents niveaux de pollution au NO2, le nombre de décès de la table ainsi que le risque relatif de mortalité attribuable à différents niveaux de pollution.

Sources de données

Pour ce faire nous avons utilisé les résultats d'une enquête représentative de la population française en 1999 pour en définir la structure (âge, sexe, état de santé) à cette date (n=16732). Avec les données de l'état civil, nous avons mesuré la mortalité de cette cohorte entre 1999 et 2011. La concentration en dioxyde d'azote a été mesurée en 2011 dans le district du recensement (iris 2000) de chaque membre de la cohorte résidant dans quatre grandes agglomérations françaises : Paris, Lille, Lyon, Marseille (n=1283). Le niveau de pollution est exprimé en quintiles ou terciles de répartition des iris2000.

Pour des raisons pratiques, nous faisons le postulat que le niveau de pollution relevé en 2011 est une bonne approximation de la pollution subie par les membres de la cohorte entre 1999 et 2011 dont nous avons observé le statut vital par l'Etat civil.


Méthode

Nous souhaitons mesurer l'effet de la pollution sur les personnes qui y sont exposées pendant leur vie entière. Nous avons dans un premier temps mesuré la mortalité par âge entre 1999 et 2011 dans les sous populations ayant différents niveau d'exposition en 2011- quintiles et terciles (annexe). Nous avons représenté par la méthode de Kaplan Meier la série de survivants dans les sous-populations classées en fonction du niveau de pollution. Nous avons établi les tables de mortalité correspondantes par la méthode actuarielle (annexe) et avons calculé les différences d'espérances de vie correspondantes (A). Dans un second temps nous avons comparé les proportions de survivants aux différents âges et calculé le nombre de décès correspondant au passage d'un niveau faible à un niveau élevé de pollution (B). Enfin, nous avons calculé avec une régression logistique de Cox le risque relatif de mortalité correspondant à un niveau élevé de pollution par rapport à un niveau moyen (C). D'après Crouse (2015), il existe une forte corrélation entre la pollution par le NO2 et celles de l'ozone et des microparticules, nous avons par la suite assimilé la première et les deux autres dans la notion de pollution atmosphérique.

Résultats

A) Mortalité par âge dans les sous populations ayant différents niveau d'exposition

Graphique 1 : proportion de survivants aux différents âges, selon le degré de pollution au NO2

Instruction stata: sts graph, by(poll_3_class) failure _d: _d == 1 analysis time _t: agedeces weight: fweight=POIDSFIN]

La proportion de survivants montre un gradient de mortalité croissant avec le tercile de pollution de la zone habitée par les personnes de l'enquête (poll_3_class). A tout âge, la class=1 des personnes des zones les moins polluées a une proportion de survivants supérieure à celle des deux autres classes.

Les espérances de vie à 30 ans de ces trois sous populations sont 58,14 et 54,11 respectivement pour la classe la moins polluée et la plus polluée¹. Les différences ne sont pas significatives au seuil de 5%, elles ne le deviennent que pour le seuil d'erreur de 10%.

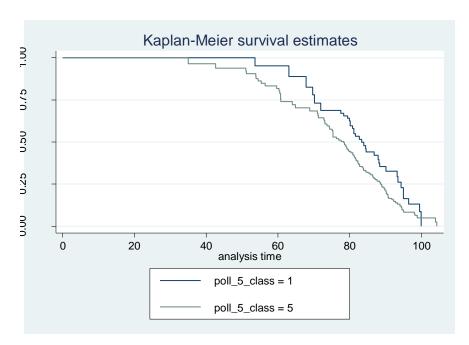
B) Décès prématurés attribuables à la pollution par le NO2

Nous avons calculé le nombre de décès annuels dans les populations stationnaires associées aux tables de mortalité des trois niveaux de pollution. Le nombre de décès est estimé, pour la population des quatre métropoles étudiées, soit 9984841 habitants. Les décès prématurés sont, par convention, survenus avant 65 ans.

Tableau 1 : nombre et taux de décès selon le taux de NO2 vécu par la génération.

	Classe 1	Classe 2	Classe 3	Valeur très-	Valeur
	Peu polluée	Moyennement	Très polluée	peu	moyen-
		polluée			peu
Nombre de	120129	121560	126210	6081	1431
décès					
Avant 65 dans					
la génération					
Taux de	0,70	0,83	1,16	0,43	0,13
mortalité					
évitable (moins					
de 65) pour					
1000					
Taux de	12,03	12,17	12,64	0,61	0,14
mortalité tous					
âges pour 1000					

Table en annexe.


C) Mesure du risque tout au long de la vie en contrôlant des variables concurrentes.

Les risques différentiels selon le niveau de NO2 semblent distribués de manière uniforme selon l'âge (graphique 2)².

¹ La classe intermédiaire est égale à 57,21.

² Cela est confirmé par le test de log log.

Graphique 2 : proportion de survivants dans les deux générations ayant vécu dans les quintiles extrêmes de pollution

Les risques correpondants ont été estimés par une régression de Cox qui nous fournit le risque relatif de mortalité entre les niveaux d'exposition. Cette méthode permet en outre de contrôler l'effet de certaines variables, telles que le sexe, le niveau de handicap et la catégorie sociale (Aschan-Leygonie, Baudet-Michel, Mathian, & Sanders, 2013).

Tableau 2: régression de Cox appliquée à la distribution en terciles de pollution.

t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
poll_3_class	1.050901	.0843113	0.62	0.536	.8979913	1.229849
SEXE	.6240832	.0676476	-4.35	0.000	.5046338	.7718068
kartz_gnew	1.906617	.2464806	4.99	0.000	1.479869	2.456427
cs1	1.159276	.0408303	4.20	0.000	1.081949	1.242128
classe3	1.041713	.0706234	0.60	0.547	.9120959	1.18975

 $Instruction\ stata:\ stcox\ poll_3_class\ \ kartz_gnew\ SEXE\ \ cs1\ classe3\ .$

L'effet propre de la pollution est de l'ordre de 5% quand on passe d'une classe de pollution à une autre et de 10% maximum quand on passe d'in niveau élevé à un niveau faible de pollution.

Conclusion

Les effets possibles de la pollution par le NO2 dans une population ont été évalués en comparant les tables de mortalité de populations soumises à trois niveaux de pollution d' intensité croissante.

Les résultats de cette comparaison réalisée avec ces mêmes tables donnent les résultats suivants, selon les concepts démographiques utilisés :

- Il y a un gradient de mortalité croissant avec le niveau de pollution au NO2. Ce gradient s'exprime notamment par une différence de 2,11 années **d'espérance de vie** à 30 ans entre les niveaux de pollution faible et forts exprimés en terciles. Cette valeur est très supérieure à celle proposée par Rabl A (2003), il est possible que la différence d'espérance de vie observée soit associée aux différences de structures des trois sous-populations.
- Le taux de mortalité prématuré correspondant à la différence entre les niveaux extrêmes de pollution est égal à 0,43 pour mille. Une génération d'effectif égal à celui de la population française soumise à un forte pollution connaitrait pendant son histoire 4 2350 décès annuels. Ce chifffre est proche de celui avancé par l'étude Extrapol (2006). La comparaison entre les tables de mortalité est réalisée sur la base objective des populations stationnaires, mais ces comparaisons sont peut-être influencées par les structures d'âge.
- En contrôlant les variables sexe, catégorie socioprofessionnelle, indice de précarité et incapacité, le **risque relatif** de mortalité entre une pollution moyenne et une faible pollution est estimé à 5%, ce chiffre est compatible avec l'étude ESCAPE (Beelen R et al, 2014).

Ces trois niveaux d'indicateurs démographiques montrent la diversité des indicateurs de santé publique relatifs à la pollution athmospérique. La différence des espérances de vie est un bon indicateur de santé publique mais elle omet les autres variables qui pourraient expliquer la différences entre les groupes de pollution. Les taux de mortalité et nombre annuel de décès sont parlants quand il s'agit de communiquer sur le fardeau de mortalité dû à la pollution, mais la différence comporte un biais possible lié à l'âge. La régression de Cox qui mesure un risque relatif de mortalité est moins parlante en termes de communication auprès du grand public, mais elle assure un meilleur contrôle des biais d'interprétation.

Cette contribution démographique à la connaissance des répercussions de la pollution athmosphérique sur la santé a été réalisée par le traitement secondaire d'enquêtes de santé et de données d'état civil. L'expérience montre le grand intérêt de ce type d'approche, dans un domaine où les données sont rares, mais sa limite principale vient de la taille insuffisante de l'échantillon constitué (n=1283). De ce fait, de nombreux écarts observés sont non significatifs.

Une autre limite tient au fait que les caractéristiques de la population sont mesurées en début d'observation, l'observatin des décès pendant 11 ans et les degrés de pollution ne sont mesurés qu'en fin de période. Un déphasage temporel entre ces trois composantes est possible.

Le fait d'assimiler la pollution locale au NO2 à l'ensemble de la pollution athomospérique est une dernière limite aux résultats présentés dans cette étude.

Remerciements à Pierre Mormiche, Nicolas Brouard, Severine Deguen et Denis Zmirou pour leurs conseils, Cindy Padilla et Benoit Laloue pour les données fournies.

Reference List

Aschan-Leygonie, C., Baudet-Michel, S., Mathian, H., & Sanders, L. (2013). Gaining a better understanding of respiratory health inequalities among cities: An ecological case study on elderly males in the larger French cities. *International Journal of Health Geographics*, 12, 19.

Crouse, D. L., Peters, P. A., Hystad, P., Brook, J. R., Donkelaar, A. v., Martin, R. V. et al. (2015). Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). *Environmental Health Perspectives, 123,* 1180-1186.

Extrapol (2006). Effets à long terme de la pollution athmosphérique: études européennes. In IVS, ADEME, & Ministère de la santé (Eds.).

Pruss-Ustun A, Mathers C, Corvalan C, & Woodward A. (2003). Assessing the environmental burden of disease at national and local levels. WHO Potection of the human environment. Genova. Environmental Burden of Disease at national and local levels.

Annexe

Life table of the general population

. ltable agedeces _d [fweight = POIDSFIN], survival intervals(5) (warning: _d has missing values; 2 obs not used)

	Inte	erval	Beg. Total	Deaths	Lost	Survival	Std. Error	[95% Con	f. Int.]
_	10	15	9984841	0	96004	1.0000	0.0000		
	15	20	9888837	0	338190	1.0000	0.0000		
	20	25	9550647	20568	233288	0.9978	0.0000	0.9978	0.9978
	25	30	9296791	14010	209022	0.9963	0.0000	0.9963	0.9963
	30	35	9073759	14429	280096	0.9947	0.0000	0.9946	0.9947
	35	40	8779234	10906	339940	0.9934	0.0000	0.9934	0.9935
	40	45	8428388	14693	371829	0.9917	0.0000	0.9916	0.9917
			8041866	9267	425508	0.9905	0.0000	0.9904	0.9905
			7607091	59358	500834	0.9825	0.0000	0.9824	0.9826
			7046899	62053	603719	0.9735	0.0001	0.9733	0.9736
									0.9256
		85							
	ăň								
	95								
	100								
	40 45 50 55 60 65 70 75 80 85 90 95	45 50 55 60 65 70 75 80 85 90 95 100	8041866	9267 59358 62053 207210 81525 298035 336419 538884 595400	425508 500834 603719 673488 572122 537700 528316 574729 472403 190499	0.9905	0.0000	0.9904	0.9905 0.9826 0.9736 0.9403

Life table of the populations, by level of pollution

. ltable agedeces _d [fweight = POIDSFIM], survival by(classe3) intervals(5) (warning: _d has missing values; 2 obs not used)

Inte	rval	Beg. Total	Deaths	Lost	Survival	Std. Error	[95% Con	f. Int.]
:lasse3	- 1							
10	15	3540836	0	3782	1.0000	0.0000		
15	20	3537054	ŏ	144340	1.0000	0.0000		
20	25	3392714 3297233	Ó	95481	1.0000 0.9957	0.0000		
20 25 30 35	30	3297233	14010	85264	0.9957	0.0000	0.9956	0.9958
30	35	3197959	0	68484	0.9957	0.0000	0.9956	0.9958
35	40	3129475		124824	0.9957	0.0000	0.9956	0.9958
40	45	3004651	ŏ	96329	0.9957	0.0000	0.9956	0.9958
45	50	2908322		140156	0.9957	0.0000	0.9956	0.9958
50	55	2768166		140798	0.9957	0.0000	0.9956	0.9958
55 60 65	55 60	2627368	28212	226174 177763	0.9845	0.0001	0.9844	0.9847
60	65	2372982	83343	177763	0.9486	0.0001	0.9483	0.9489
65	65 70	2111876	15122	198124	0.9415	0.0002	0.9412	0.9418
70	75	1898630	07024	217246	0.8900	0.0002	0.8895	0.8904
70 75	75 80	1583450	97934 73585	241030	0.8452	0.0002	0.8447	0.8457
80	85	1268835	184872	224036	0.7101	0.0004	0.7094	0.7108
ου	90	859927	240812	224168	0.7101	0.0004	0.7094	0.7106
85 90	90	839927	240012	224100	0.4613	0.0005	0.4600	0.4024
90	95	394947	171888	65410	0.4815 0.2530 0.0765	0.0005 0.0005 0.0004	0.4806 0.2521 0.0758 0.0177	0.2539
95	100	157649	91453	53124	0.0/65	0.0004	0.0/58	0.4824 0.2539 0.0772 0.0189
100	105	13072	8027	5045	0.0183	0.0003	0.0177	0.0189
lasse3	= 2		_					
10	15	3090905	Ō	26527	1.0000	0.0000		
10 15 20 25 30 35 40 45	20 25	3064378	0	105453 82595	1.0000	0.0000	:	:
20	25	2958925	20568	82595	0.9930	0.0000	0.9929	0.9930
25	30	2855762	0	79953 79799	0.9930	0.0000	0.9929	0.9930
30	35	2775809	0	79799	0.9930	0.0000	0.9929	0.9930
35	40	2696010	0	78806	0.9930	0.0000	0.9929	0.9930
40	45	2617204	14693	147197	0.9872	0.0001	0 0871	0.9873
45	50	2455314	9267	125470	0.9834	0.0001	0.9832 0.9728 0.9658 0.9523	0.9835
50 55 60	55 60	2320577	23724	153183 168752 263700	0.9730 0.9660	0.0001	0.9728	0.9732
55	60	2143670	14773	168752	0.9660	0.0001	0.9658	0.9662
60	65	1960145	25387	263700	0.9526	0.0001	0.9523	0.9529
65	70	1671058	35485	183980	0.9312	0.0002	0.9308	0.9315
65 70	75	1451593	61286	193812	0.9312 0.8891	0.0002	0.9308 0.8886	0.9662 0.9529 0.9315 0.8895
75 80	80	1196495	120065	124204	0.7950	0.0003	0.7943	0.7956
80	85	952226	112589	237080	0.6876 0.4662 0.2374	0.0004 0.0005 0.0005	0 6868	A 6004
85	90	952226 602557	169897	150078	0.4662	0.0005	0.4651 0.2363 0.0862	0.4672 0.2384
90	95	282582	118399	82662	0.7002	0.0005	0.7051	0.7072
ae	100	81521	44356	23233	0.0871	0.0005	0.2303	0.0880
95 100	100	14032	44256 14032	23233	0.0000	0.0003	0.0002	0.0000
lasse3	105	14032	14032	v	0.0000	•	•	
. I & 5 5 E J	:	3303413	0	65695	1.0000	0.0000		
10	15 20	3237718	ŏ	85921	1.0000	0.0000	•	
7.2	20	323//10		55212	1.0000	0.0000		
20	25 30	3151797	Ŏ	22575	1.0000 1.0000	0.0000		
25	30	3096585	0	43805	1.0000	0.0000	:	
30	35 40	3052780	14429	131813 136310	0.9952 0.9913	0.0000	0.9951 0.9912	0.9952
35	40	2906538	10906	136310	0.9913	0.0001	0.9912	0.9915
40	45	2759322	0		0.9913	0.0001	0.9912	0.9915
45	50	2631019 2471137	0	159882	0.9913	0.0001	0.9912	0.9915
50	55	2471137	27431	199798	0.9799	0.0001	0.9797	0.9800
10 15 20 25 30 35 40 45 50 65 70 75 80	60	2243908	19068	208793	0.9913 0.9799 0.9711	0.0001	0.9912 0.9797 0.9709	0.9915 0.9800 0.9714
60	65 70	2016047	90083	210677	0.9254 0.9077	0.0002	0.9250 0.9073	0.9257 0.9081
65	70	1715287	30918	190018	0.9077	0.0002	0.9073	0.9081
70	75 80	1494351	138815	126642	A 2107	0.0003	A 2101	0.8202
75	80	1228894	142769	163082	0.7177	0.0004	0.7170	0.7184
80	85 90	923043	241423	111630	0.5179	0.0004	0.5170	0.5187
85	90	569990	184691	98157	0.3343	0.0004	0.3334	0.7184 0.5187 0.3351
85 90	95	923043 569990 287142	168574	42427	0.7177 0.5179 0.3343 0.1224	0.0004	0.7170 0.5170 0.3334 0.1217	0.1231
95 100	100	76141	27803	47660	0.0573	0.0003	0.0567	0.0579
	105	678	678	7,000	0.0000	0.0003	0.0007	