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Introduction
Maintaining sustained visual attention to a cognitive task is of high

importance [1]. Recent studies in Brain-Computer Interface (BCI)

using electroencephalography (EEG) shows a promising capability to

reveal moment-to-moment attentional states [2]. A number of studies

highlight the implication of Event-Related Potentials (ERPs) such as

N170 or P300, yet some other studies identified the significance of

alpha and beta bands elicited from specific parts of human scalp in

spotting level of attention. In the present study, we developed a deep

learning approach to analyzing the neurophysiological signals

collected during a visual attention task. An individualized EEG-based

classifier was developed to probe and extract underlying subject-

specific features of early visual attention.

Experiment Setup
The BCI platform will consist of a wireless EEG headset, a

workstation computer with dual monitors, data acquisition, and

analysis software.

A flexible Graphical User Interface (GUI) has been developed to

allow the experimenter to conveniently administer the experimental

protocols. The data collection protocol is borrowed and adapted from

a fMRI study [32]. Simulink is adopted as the data acquisition engine;

the signal processing, feature extraction, classification, presenting the

images, and recording behavioral responses were all carried out

within MATLAB. The participants were be primed into the

subcategories throughout the experiment by asking their overt

response during each trial.

Data
Thirty-eight healthy participants (11 females; 21.3±1.9 years and 27

males; 23.1±5.2 years) were recruited to conduct tasks on visual
attentional state evaluation.

The participants were exposed to 8 blocks of 50 trials. Each trial is a

single image followed by a black screen. Each block starts with a

1000ms cue texture that guides participants on the requested

behavioral response. Then, it continues with showing single images

randomly selected from scene subcategories (Indoor scene & outdoor

scene) or face subcategories (male face & female face) with a black

screen between images. Each image will be shown for 1000ms and

the black screen for 1000ms to 1500ms.

We also collected the behavioral response via keyboard button

presses.

Method
Information is reflected in the EEG as dynamical changes in time, frequency, and space. Among various time-frequency analysis methods,

Wavelet transform stands out for the efficiency. This technique brings multi-resolution analysis to analyze EEG at different scales. EEG

records for each block were divided into 50 epochs. Each epoch includes EEG records when subjects exposed to an image plus one second

EEG record during the successive blank image.

Results

Rectified Linear Unit (ReLU) activation function was used as a

nonlinear function. We also used Adam optimizer to adapt the learning

rate while preventing the fluctuations of the gradient descent. On

average, a dropout with a probability of 0.2 (Keep Prob = 0.8) in the

fully connected layers resulted in higher accuracy over the dataset.

Overall, the first approach achieved an average accuracy of 55% and

the second approach achieved an average accuracy of 73%.

Two different representations were studied. The spatio-spectral

representations lead to more accurate results compared to spatio-

temporal representations. The size and architecture of the model are

designed in a way that training the model would be considerably fast (

less that 1 minute for each participant’s dataset using a workstation

equipped with a Titan Xp GPU, an 8-core i7 CPU, and 32 GB RAM)

and enable it to run on small machines.

Conclusion
This study shows that EEG signal can be used to distinguish

attentional state using visual stimuli. The proposed deep learning

approach has advantages over the conventional selective visual

attention decoding procedures [3]; instead of using engineered features

of the EEG, we developed a classifier based on the convolutional

neural network using learned features.

We are also interested in more complex snapshot-based models such

as VGGNet and ResNet. The temporal correlation between samples of

EEG suggests that Recurrent Neural Network (RNN) may result in a

higher accuracy. We aim to apply a sequential model in the future.

The findings of this study may be beneficial to people with attention

deficit and attention disorder. Also, the platform may improve the

understanding of the causal attributes of human visual attention.
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Figure 2: An illustration of the experimental data collection protocol Figure 3: A flowchart of EEG data representation

A Convolutional Neural Network (CNN) classifier inspired by AlexNet has been developed. Two different representations of the EEG data

were used as input to the CNN classifier. The first approach utilizes a spatio-temporal representation and the second one utilizes a spatio-

spectral representation. We also used Adam optimizer to adapt the learning rate while preventing the fluctuations of the gradient descent.
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Figure 1: A schematic of the data collection

Figure 5: Accuracy of decoding over the individual participant
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