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Abstract
This paper introduce an original approach to the
Neural Network learning architecture for the
control of robotics systems. The basic idea is
to use multi-layer-network and the backpropa-
gation algorithm without desired outputs, but
with a quadratic criterion which spezify the con-
trol objective. Use a criterion avoid the com-
puting of the inverse model of the robot which
is required in the case of the desired outputs
and difficult to obtain for complex systems. The
method allows on-line learning that is impos-
sible with classic backpropagation. We argued
that on-line learning scheme made feasible adap-
tive control.

To illustrate the idea of a control criterion on
backpropagation algorithm, we first considered
a cartesian control problem of a simplified sim-
ulated planar manipulator. Next, we presents
the results of a more difficult problem where
the goal is to control the dynamic stability of a
simulated planar biped. In this study, the re-
sults of the on-line learning scheme validate the
adaptive control hypothesis.

Finally, we outline a more real problem, that
is to control the dynamic equilibrium of a
quadruped robot. We are specially studying re-
flex behavior to control unexpected situations.

1 INTRODUCTION
In dynamic reflex control of robots, one of problems

is the required inversion of the dynamic model. This
model can not, in general, be obtained analytically and
it is not often uniquely determinable ( kinematics re-

donduncy). So, the academics methods used criterion
optimization technics to find a solution of this inver-
sion.
Tough, these technics has limitations in reflex dynamic
control of mechanical complex systems like walking ma-
chines. For example, when unexpected situations make
lost the legged-ground contact and throw off balance
the robot, the dynamic model and control laws to ob-
tained the reflex behavior are often unknown.

On the other hand, the reduced computation time,
the inherent robustness to real noisy data and the
strong generalisation capability of multi-layer-networks
(a neurocontroller can be designed even no explicit form
of a control law is known) make them very suitable
for control applications in robotics. In addition, neural
learning algorithms are optimization algorithms.

For these reasons, it is interesting to use multi-layer-
networks. A standart neural control scheme is build on
the academic feedback control approach. The neural
net replace the classical corrector (see Fig. 1).
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Figure 1: Neural feedback control

Multi-layer-networks are usually trained with the
well known backpropagation learning algorithm she-
matically described on figure 2.
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Figure 2: Standard backpropagation learning scheme

The goal of this algorithm is to minimize the
quadratic error Ep (for every input pattern p) between
the net and the desired ouputs. Consequently, it re-
quires the a priori knowledge of the desired output (e.g.
the desired command) corresponding to the net input
(e.g. the actual state of the system).
So, the use of standard backpropagation in control ap-
plications raise some problems:

• On dynamic applications, calculate the desired
output require to invert a model (geometric, kine-
matic or dynamic) of the robot. The choice of a
solution of this inversion is based on criterion opti-
mization (energy, manoeuvrability, dynamic equi-
librium, . . . ) which increase the on-line learning
complexity.

• It is impossible to learn on-line the desired com-
mand [2]. Then it is impossible to do adaptive
control with the backpropagation algorithm.

As a result, we propose a learning method that doesn’t
need desired output, but only a criterion specifying di-
rectly the robotic task (distance minimization, equilib-
rium, . . . ) .

2 LEARNING A CRITERION
The main basic idea is to mimimize the arbitrary

criterion Jp (for every input pattern p) as a function of
the net ouput, instead of the error Ep between the net
and the desired output (For more details see [1] or [3]).

In order to minimize this criterion, we use also a gra-
dient descent method :

∂Jp
∂wji

=
∂Jp

∂netpj

∂netpj
∂wji

=
∂Jp

∂netpj
opi

where
• wji is the weight from neuron i to neuron j,

• op is the net ouput vector,

• netpj =
∑

i wjiopi denotes the activation of neuron
j and fj its function (sigmöıde).

We set δpj = − ∂Jp

∂netpj
and obtain for a hidden neuron :

δhidpj = f ′
j(netpj)

∑
k

δpkwkj

and for an output one :

δoutpj = − ∂Jp
∂opj

∂opj
∂netpj

= − ∂Jp
∂opj

f ′
j(netpj) = ∇J f ′

j(netpj)

Instead of the actual and desired output error, we
backpropagate the gradient of the criterion related to
the corresponding output : − ∂Jp

∂opj
.

Therefore, the partial derivates of the criterion must
be analytically calculable. The computation of δhidpj re-
mains unchanged.

2.1 Off-line learning scheme
Figure 3 plottes the new learning scheme (links to 2).
The gradient criterion ∇J is computing on the new
state of the simulated robot obtained with the neural
outputs. Notes that we do not use a real robot in this
training loop. Indeed, from the learning outset, neural
outputs (command parameters) are physically incoher-
ent.

Furthermore, we can use a robot simulation based on
a degraded model. Then, we obtain a nearly optimal
net which will be very easy to refine, during the control,
wth respect to the real robot . It is an on-line training
method describe on the next subsection.
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Figure 3: Learning off-line a criterion

2.2 On-line learning scheme
Figure 4 plottes adaptive neural control structure where
the learning loop permit to refine the weights to the real
robot parameters at periodic times . Note that unlearn-
ing network should be prohibited on this loop, because
of the incoherent outputs on the training outset.
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Figure 4: Learning on-line a criterion
(adaptive neural control)

3 SIMPLE CARTESIAN
CONTROL PROBLEM

In order to test our method, the new learning algo-
rithm has been first applied to control the cartesian
position of a three link simulated planar manipulator
(without dynamic effects). The net output includes
the three articular velocities. The net inputs includes
the three articular positions, the three articular veloc-
ities and the cartesian errors. The criterion was the
euclidean distance between the tool-center-point of the
manipulator and the desired cartesian position. A two
hidden layers neural net (respectively 9 an 5 neurons)
was able to minimize the cartesian distance.
During tests, the tool-center-point was controlled at
any cartesian position in an 1m × 1m cartesian plan.
Some examples of results are plottes on Figures 5 and
6. The initial articular configuration was q1 = 0o, q2 =
90o, q3 = 90o, and velocities are normalized with re-
spect to πrad/s.
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Figure 5: Cartesian control after Off-Line learning

We have tested the two learning shemes : off-line and
one-line learning. The results proved that on-line learn-
ing can be used to adapt the network during the control.
The interests of the on-line learning algorithm are pre-
sented in next section, for which the control problem is
more difficult.
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Figure 6: Cartesian control after Off-Line learning

4 DYNAMIC REFLEX
CONTROL PROBLEM
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Figure 7: Model of the biped walking robot
(refere to [5])

We applied our method to control the dynamic sta-
bility of a simulated planar biped (7). In this problem
we proposed a neural network solution which calculates
the trunk motion as a function of the actual state of the
biped walking robot (qt, q̇t) when an analytical pattern
generator impose legs accelerations([8]). The goal of
the network is to learned a reflex behavior to ensure the
dynamic equilibirium during the single support phase.

The net output consists on the trunk acceleration q̈0.
The net input includes:

• Articular positions, velocities and accelerations of
the two legs.

• Articular position and velocitie of the trunk.

The dynamic stability of a walking machine can be
define by the ZMP (Zero-Moment-Point) position ([7]
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and[4] ). It must falls always into the supporting sur-
face. During the single-support-phase, it corresponds
to a single point. Then, dynamic stability is garanteed
when the ZMP position is equal the contact point po-
sition.
Thus, the criterion Jp can be stated as follows:

Jp(q̈0) = (xzmp − xcontact)
2

and gradient as

∂Jp
∂q̈0

= 2(xzmp − xcontact)
∂xzmp

∂q̈0

Is the only information used by the learning algorithm
to find the optimal solution.

After off-line learning, the neural net was able to
provide the necessary trunk acceleration to maintain
dynamic equilibrium. Since no gait specific a-priori
knowledge was used for the generation of learning ex-
amples, the neural net should also be able to control
noncycloidleg-movements.
Additionally, learning algorithm can be used to adapt
on-line the network to a specific leg-trajectory. The
network used has only 182 weights, so it can be easily
applied on-line, in contrast to a numerical approach.

Figure 8 plottes the ZMP position during the on-
line training for 150 biped strides. The network is upt-
date at the end of each stride. From the outset of the
weight adaptation, ZMP oscillation stems from the off-
line learning result. The adaptive neural control de-
crease the amplitude of ZMP motion (i.e increase equi-
librium). This establishes that on-line learning scheme
adjust the neural controler in order to solve the control
objective. So it is an adaptive neural control system.
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Figure 8: ZMP position during the On-line learning,
establishes that adaptive neural control

increase biped equilibrium.

5 CONCLUSION
Our goal was to propose the modification of the back-
propagation algorithm in order to learn control objec-
tive without desired output. The principle of our ap-
proach is to express the control objective as a criterion.
This criterion is backpropagated through the network
instead of the error between desired and net output.

In conclusion, the significance of our control approach
is :

• It is a learning control method without a need for
a desired output,

• Its neural controler outputs are simply the com-
mand parameters,

• It can be used for adaptive control (adaptive neural
control ),

• Its control objective depends on the command pa-
rameters.

We are now working on dynamic equilibrium con-
trol of a quadruped robot. We are studying reflex
behavior when unexpected situations make lost the
legged-ground contact and throw off balance the robot.
The network compute legs torques to ensure the dy-
namic equilibirium. We used the 3-dimensional dy-
namic model of the robot which exists and which on
classical control algorithm have been tested.
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