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A bsfrncf This paper presents experimental re- 
stilts of an original approach to the Neural Net- 
work learning architecture for the control and the 
adaptive control of mobile robots. The basic idea 
is to use non-recurrent multi-layer-network and 
the backpropagation algorithm without desired 
outputs, but with a quadratic criterion which 
spezify the control objective. To illustrate this 
method, we consider an experimental problem 
that is to control Cartesian position and orien- 
tation of an non-holonomic wheeled cart. 
The results establish that the neural net learns 
on-line the kinematic constraints of the robot. 
After several on-line learning lessons the net is 
able to control the robot at any configurations in 
a limited Cartesian space. 

I .  Introduction 

It is interesting to  use multilayered networks in control 
of robotic systems because of their following properties: 

0 their strong generalization capabilities of multilay- 
ered networks (a  neurocontroller can be designed 
even no explicit form of a control law is known), 

0 their reduced computation time, 

their inherent robustness to  real noisy data. 

A standard neural control scheme is build on the aca- 
demic feedback control approach. The neural net re- 
place the classical corrector (see Fig.1). The net input is 
a combination between the current state of the system 
a.nd a desired state. The net outputs are the control pa- 
rameters. Multilayered networks are usually trained with 
the well known backpropagation learning algorithm (di- 
rect backpropagation). The goal of backpropagation is 
to  minimize the quadratic error E (addition of quadratic 

feedback 

Fig. 1. Neural feedback control 

errors Ep for every input pattern p )  between the net and 
a desired ouput (see Fig. 2). Consequently, it requires 
an a priori knowledge of the desired outputs (e.g. the 
desired controls) corresponding to  the net input. 
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Fig. 2. Standard backpropagation (direct backpropaga- 
tion) 

Determination of desired controls is the main problem 
of using standard backpropagation in learning control of 
robotic applications. Two solutions are generally used to  
calculate it: 

the first requires a reference model: a PID or fuzzy 
controller [4] or a human teacher [5]. This solu- 
tion does not exploit the learning and identification 
capabilities of neural nets (except for the human 
teacher). 

The second inverse a model (geometric, kinematic 
or dynamic) of the robot. But in control of mechan- 
ical complex systems (arm or legged robots), the 
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inverse model can not, in general, be obtained an- 
alytically and it is not often uniquely determinable 
(kinematics redonduncy). So, the main academic 
methods used criterion optimization technics to  find 
a solution of this inversion. This increase the on-line 
learning complexity. 
In the case of non holonomic mobile robots (inde- 
pendant driving wheeled robots) the inverse model 
can not easily be obtained because of the non- 
integrability of equations. 

Then, neural learning with standard backpropagation 
has limitations in control of robotic systems. To make 
allowance for these remarks and since backpropagation is 
an optimization algorithm, we propose a learning method 
that doesn’t need desired output, but only a criterion 
specifying directly the robotics task. 
This method, named undirect backpropagation, has been 
used for a neural dynamic reflex control problem in which 
the network learns to  control the dynamic equilibrium of 
a simulated planar biped (see [6] for more details). 

weight update by 

In this paper, we presents experimental results on the 
on-line undirect backpropagation applied to  the control 
of the Cartesian position and orientation of a two inde- 
pendant driving wheeled mobile robot. The next section 
describes first the undirect backpropagation. 

V J  

I1 . Learning with a criterion 

set of 

The basic idea is t o  mimimize the arbitrary criterion J p  
(for every input pattern p )  as a function of the net ouput, 
instead of the error Ep between the net and the desired 
output. The advantage of learning with criterion is that 
we need not any desired output, but only a cost function 
which spezify the control objective and its constraints. 
The neural network determines itself the way to achieve 
this objective. 
In order to  minimize this criterion, we use also a gradient 
descent method : 

- -  -- a J p  a n e h  = - a J p  opi 8 J P  - 
BWji dnetpj a w j ,  dnetpj 

where 

e wji is the weight from neuron i to  neuron j ,  

e op is the net ouput vector, 

e netpj = Ci wjiopi denotes the activation of neuron 
j and fj its function (sigmoide). 

We set Spj = and obtain for a hidden neuron : 

new state 

and for an output one : 

Instead of the error Ep,  we backpropagate the gradient 
of the criterion V J = - % related to  the corresponding 
output. Therefore, the partial derivates of the criterion 
must be analytically calculable with respect to  the con- 
trol parameters. The computation of bihd remains un- 
changed. 

Figure 4 plottes the on-line learning control structure 
where the learning loop refines the weights to  the real 
robot a t  periodic times. 

V J  
weight update by 
gradient descent 

real 
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Fig. 4. Learning on-line with criterion (On-line undirect 
backpropagation) 

The backpropagation of the criterion gradient permits 
the network to  learn with the real system. This is the 
difference between our method and the one proposed by 
D. H .  Nguyen and B. Widrow in [7]. They use a network 
to  emulate the system. Then, they can backpropagate a 
criterion through the emulator net and trained the con- 
troller without a gradient. Nethertheless, the real robot 
cannot be used in their method because the criterion 
cannot be propagated throught it.  Consequently, they 
cannot refine their neural controller to  the real robot. 
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Experimental results presented in the next section es- 
t,ablish that on-line learning scheme adjust the neural 
controller in order to  solve the control objective. So it is 
an adaptive neural control scheme. 

I11 . On-line learning control of an experimental 
mobile robot 

A . Control problem 

'fhe problem is to  control Cartesian position and orien- 
Fig. 6. Neural control structure 

t.nt.ion (see fig 5) of a two independant driving wheeled 
aut~oiiomous mobile robot developed at  the L.R.P [ l ] .  

Then the criterion is : 

J = ( Y , ~ ~ ( t + i ) + a 2 ~ ~ ( t + i ) + ~ ~ ( e ( t + l ) - e , ) 2 ( 2 )  

Fig. 5. Control problem 

The  kinematic equations are: 

where: 

0 r is the radius wheels. 

0 R is the half length of the axis wheels. 

The main caracteristic of this robot is its non-holonomy 
(there is not stabilisant continous state feedback [2]). 
The neural controler has to  determine the instanta- 
neous wheel velocities 4 1  and 42 that drive the robot at 
the desired configuration (Xd, Yd, Bd)  where (Xd, Yd) are 
t,he absolute desired Cartesian coordinates of the middle 
point M of wheel axis. 
Then, net outputs are the two wheel velocities and net 
inputs are Cartesian and orientation errors. 
The desired configuration is set as x d  = Y d  = 8d = 0, 
the control structure is described on figure 6. 

where 

0 a1, a2, a3 are normalization coeficients 

0 Os = arctg(2YM(t)) is a strategy constraint that 
helps the network on the singular configuration 
X M  = 0 and YM # 0. 

By considering the time step At and the kinematic equa- 
tions ( l ) ,  the criterion becomes: 

J = a l ( X ( t )  + AX(t + 1))' 
+ ( ~ 2 ( Y ( t )  + AY(t + 
+ a g ( o ( t )  + AO(t f 1) - 

where 
A9 t + l  AX(t + 1 )  = AU(t + l)cos(O(t) + 3) 

Ae(t + 1 )  = &(ql ( t )  - qz(t))At 
AU(t + 1 )  = $(qi(t) + Qz(t))At 

AY(t + 1) = AU(t + l)sin(o(t) + +) 
( 1 )  

The gradient that trains the network is calculated with 
respect to  the net outputs (i.e wheel velocitities) : 

B . Control criterion and learning gradient 

where 

dAX(t + 1 )  d J  = 2@1X( t+ l )  
dji(t> aqi (t ) (3) 

(4) 

The objective is to  minimize the distance between the Note that gradient includes kinematic constraints of the 
robot configuration and the desired one. robot. 
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C . Learning control structure 

We see in section I1 . that our learning method trains 
the network off-line and on-line. The off-line learning 
method as been tested with good results. Nevertheless, 
we solely presents in this paper the results of the on- 
line learning phase because they are more interresting. 
Indeed, we argued that on-line learning scheme made 
feasible adaptive control. As an illustration of that, we 
proposed to use in the on-line structure (fig. 7) an un- 
trained neural network which is updating after each time 
control step. 

criterion 
I I 

Fig. 7. On-line learning scheme to solve our problem 

D . Experinaentals results 

We used a two hidden layers network (one layer has 6 
neurons, and the other 4 neurons). The robot velocity 
is limited at 10 cm/s. At the begining of each learning 
lesson, the robot is a t  an initial configuration far from 
the desired one (between 3 and 4 meters). We stop each 
training when the robot completly stops. 
We choose 2 initial robot configurations : 

the first : X M  = 3m, YM = 2m, 0 = 0", is use for 
two successives lessons. 

the second : X M  = 3m, YM = Om, 6 = 180", is use 
for one lesson. 

First training 

Weights of neural net are randomly initialized. Figure 
8 plottes training parameters and the M point Cartesian 
trajectory. The learning duration is 10 minutes. The 
robot trajectory is hasardous during the first 3 minutes 
but we see clearly that the robot is attracted to the de- 
sired configuration. Figures 9 and 10 plottes errors con- 
figuration and wheel velocities (velocity of f0 .15  rad/sec 
corresponds to a net output value of f l ) .  Final errors 
a.re reasonably good in regards with the robot size (1.6 
m x 0.7 m). 

Criterion evolution 
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Fig. 8. Criterion during the first training lesson 

Cartesian position error(m) 

0 200 400 600 
Time (secondes) 

Fig. 9. Cartesian errors during the first training lesson 
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Fig. 10. Orientation and Velocities during the first lesson 
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Second training 

There, the network has been trained in the first lesson 
and it is t,he same initial robot configuration. Figures 
11, 12 and 13 show that the learning is five times faster 
than the first one. The trajectory is shorter, the average 
velocity greater and final errors smaller. These results 
shows that there is an adaption of the network to  the 
robot kinematic constraints. Finally, we can argue that 
there is an knowledge acquisition of the robot kinematics. 
The following lesson used a different initial configuration 
( X A 4  = 3m, YM = Om, 6 = 180'). The results are 
similar to  the previous and the robot reaches the desired 
configuration in 2 minutes. 

Criterion evolution 
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Fig. 11. Criterion during the second lesson 
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Orientation error (degree) 
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Fig. 13. Wheel velocities during the second lesson 

Control after learning 

The trained network controls now the robot from an ini- 
tial configuration that has never used in the learning: 
X M  = 2m, YM = - lm,  8 = -90”. Figures 14 and 15 
show the net ability to  control the robot with small final 
errors. Others tests establish that the neural controls 
the robot at any configuration while -3 m 5 X M  5 3 m 
and -2 m 5 XM 5 2. 

Cartesian position errors (in m) 
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Fig. 14. Control after three trainings 

IV . Conclusion 

Our goal was to use backpropagation algorithm in order 
to learn control objective without desired output. The 
principle of our approach is to  express the control objec- 
tive as a. criterion. The gradient of the criterion is back- 

Cartesian trajectory 

0.2 
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. I  ................................... 
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Fig. 15. Control after three trainings 

propagated through the network instead of the classical 
quadratic error. Experimental validation is realised by 
the position and the orientation control of a two wheeled 
non-holonomic mobile robot. We show the feasability of 
the method, particularly the network adaptation in front 
of the robot kinematics constraints. 
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