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USING BACKPROPAGATION ALGORITHM FOR NEURAL 
ADAPTIVE CONTROL: EXPERIMENTAL VALIDATION ON AN 

INDUSTRIAL MOBILE ROBOT 

P. Henaff and S. Delaplace 

University of Paris 6, Velizy, France 

and 

Versailles Saint-Quentin University, V elizy 

Abstract :This paper presents an original method in the use of neural networks and 

backpropagation algorithm to learn control of robotics systems. The originality consists 

to express the control objective as a criterion of which the gradient is backpropagating 

through the network instead of the classical quadratic error used in standard backpropaga­

tion. This technic allows on-line learning that is impossible to do with standard backpropa­

gation. Experimental validation is realised by the position and the orientation control of a 

faster industrial mobile robot. Results show the feasability of the method, and particularly 

establish that on-line learning scheme permit to refine the weights of the network in front 

of the kinematics constraints of the robot. 

1 Introduction : problems of direct backpropagation 

Multi-layered networks are very interesting in control of robotic systems because of their 

known generalization capabilities. A standard neural control scheme is build on the 

academic feedback control approach where the neural net replace the classical corrector. 
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On right figure, net input is a 

combination between the cur­
rent state of the system and a 

desired state. Net outputs are 

the control parameters (joint 

torques for example). 

Multi-layered networks are usually trained with the well known backpropagation learning 

algorithm we named direct backpropagatioi_J.. The goal of direct backpropagation is to 

minimize the quadratic error E (addition of quadratic errors E, for every input pattern 

p) between the net and a desired output (see Fig. 1). Consequently, it requires an a priori 

knowledge of the desired outputs (e.g. the desired controls parameters) corresponding to 

the net input. 
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desired 
Determination of desired outputs 

state is the main problem of using stan-
of system dard backpropagation in learning 

control of robotic applications, 

because either a reference model 
is use (PID, fuzzy controller [5], 

human teacher [2], ... ) and it does 
not exploit the whole learning ca-

pabilities of neural nets (except 
for the human teacher); or a in­

L-----------------------------------------..J 
verse model of the robot is use, 

Figure 1: Standard Backpropagation and the inversion can not, in gen-
eral, easily be solved on-line. 

In the case of non holonomic mobile robots (independent driving wheeled robots) the in­
verse model can not easily be obtained because of the non-integrability of the equations. 
Then it is impossible to learn on-line with Direct Backpropagation. 
To make allowance for these remarks and since backpropagation is an optimization al­
gorithm, we propose a learning method that doesn't need desired outputs, but only a 
criterion specifying the robotics task. 

The first idea of this approach has been introduced before in [6] for a simulated arm carte­
sian control problem. Our method has been presented in [8] for a dynamic reflex control 
problem in which the network learns to control the dynamic equilibrium of a simulated 
planar biped. In [10], we have presented experimentations on a slow mobile robot that 
show the feasibility of our learning approach. 
In this paper, we presents experimental results on this approach (we named it indirect 
backpropagation) applied to the control of a faster industrial mobile robot where dynamic 
effects are very important. Next section describes indirect backpropagation. 

2 Solution : learning with indirect backpropagation 

The basic idea is to minimize the arbitrary criterion Jp (for every input pattern p) as 
a function of the net output, instead of the error Ep between the net and the desired 
output. This criterion explain mathematically the control objective. The advantage of 
learning with criterion is that we need not any desired output, but only a cost function 
which specify the control objective and its constraints. So, the neural network determines 
itself the way to achieve this objective. 

In order to minimize this criterion, we use also a gradient descent method : 
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where w;; is the weight from neuron i to neuron j, Op is the net output vector, netpj = 

L; w;;op; denotes the activation of neuron j and fi its function (sigmoide). 

We set op; = - 8~~fp, and obtain: 

• for a hidden neuron : o;jd = !j(netp;) Lk OpkWkj 

• for an output one: o;•;t = -;t:;a!:r;,j = -;t:;JJ(netp;) = 'VJ fj(netp;) 

Instead of the error vector Ep, we backpropagate the gradient vector of the criterion 

'V J P = - .::.:2.8
8J related to the corresponding output. Therefore, the partial derivates of 

OpJ 

the criterion must be analytically calculable with respect to the control parameters. The 

computation of o;;d remains unchanged. 

2.1 Learning Off-line and on-line with indirect backpropagation 

Figures 2 and 3 illustrate the new learning algorithm (compares with figure 1). It can be 

use to train the net off-line with a model of the robot and on-line with the real robot. 
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Figure 2: Learning off-line with criterion 
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Figure 3: Learning on-line with criterion 

y 

Our learning struc~ure is very 

simple. The on-line structure' 

allows to refine the neural con­

troller in front of real behavior 

of the robot. In comparison, 

D. H. Nguyen and B. Widrow 

proposed in [3] to use a net­

work to emulate the system. 

Then, they can backpropa­
gate a criterion through the 

emulator net and trained the 

controller without a gradient. 

Nevertheless, their method al­

lows not to control the robot 

during the learning because 

the criterion cannot be prop­

agated through it. Conse-

quently, they cannot refine 

their neural controller to the 

real behavior of the robot. 
We presents in next section experimental results of on-line learning because they are much 

more pertinent than results of off-line learning. Results establish that on-line learning 

scheme adapt the weights of the neural controller in order to solve the control objective. 
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3 Experimental validation of indirect backpropagation 

3.1 Robot position control problem 

The problem is to control the cartesian position and the orientation of a two independent 

driving wheeled industrial mobile robot. Kinematic equations are done by equation (1) 

on figure 1. The main characteristic of this robot is its non-holonomy (see [7] and [4]). 

j ~; (}d L : Ex : 
:<··············· · ··········· ·>: XM = ~( 41 + 42)cos0 
j x~;yd·-r··· YM = H41 + 42)sin0 
i ~ . 
: ~~ · where iJ = {R(41- 42) 

q~ i [ '• r is mdius of wheel. 
> f.;: ~i~;~ 1, ~~~t:l pmblem and ~~:matio::~:::f axis wheel. 

(1) 

The neural controller has to determine the instantaneous wheel velocities q1 and q2 that. 

drive the robot at the desired configuration (Xd, Yd, (}d) where (Xd, Yd) are the absolute 

desired cartesian coordinates of the middle point M of wheel axis (Xd = Yd = (}d = 0). So, 

net inputs are cartesian and orientation errors and net outputs are the wheel velocities. 

The control structure is described on figure 2. Inputs of the network are normalized 

between -1 et +1 with respect to their maximum value (D = 4 meters is the half-longer 

of experimentation room). 
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O(t) 
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Figure 2: Neural control structure 

3.2 Control criterion and learning gradient 

X = I5 
y 
75 

= p_ 
71" 

The objective is to minimize the distance between the robot configuration and the desired 

one. Then the criterion is : 

(2) 

where 0:1, a2, 0:3 are normalization coefficients and 0. = arctg(2Y~(t}) is a strategy 

constraint that helps the network on the singular configuration XM = 0 and YM # 0. 

By considering the time step t::..t and the kinematic equations (1), the criterion becomes: 

J = a 1(X(t) + t::..X(t + 1))2 + a 2(Y(t) + t::..Y(t + 1))2 + a3(0(t) + t::..O(t + 1)- o.? (3) 
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I ~X(t + 1) = .6-U(t + 1)cos(O(t) + ~e(~+ll) 
~Y(t + 1) = ~U(t + 1)sin(O(t) + ~~~<~+tl) 

where 
.6.0(t + 1) = ;R(qt(t)- q2(t))~t 

~U(t + 1) = i(4t(t) + q2(t))~t 
The gradient that trains the network is calculated with respect to the net outputs : 

{)J 8~X(t + 1) 8~Y(t + 1) 8~0(t + 1) 
oq;(t) = 2(a1X(t + 1) oq;(t) + a2Y(t + 1) oq;(t) + a3(0(t + 1)- O.) oq;(t) ) 

where: 

~t'!.cos(O(t) + ~B(t+ll) - l 8ae(t+l) ~U(t + 1)sin(O(t) + AB(t+tl) 
2 2 2 8q,(t) 2 

~t!:.sin(O(t) + .6-B(t+l)) + l 8.6-B(t+t) ~U(t + 1)cos(O(t) + ae(t+l)) 
2 2 2 8q;(t) 2 

;R~t (i = 1) or - ;R~t (i = 2) 
{ 

8.6-X(t+l} = 8q;(t) 
8.6-Y{t+l} = 8q;(t) 
8.6.8 t+l = 8q; t 

3.3 On line indirect backpropagation 

We see in section 2 that our learning method permits to train the network off-line and on­

line. The off-line learning method has been tested with good results. We solely presents· 

in this section the results of the on-line learning method (Figure 3) because they are much 

more interesting. We argued that on-line learning scheme made feasible adaptive control. 
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Figure 3: On-line learning scheme to solve our problem 

As an illustration of that affirmation, we proposed to experiment on-line training with an 

untrained network which is updating after each control time step. 

Protocol of experimentation 

We have used a one hidden layer (of 9 neurons) network. The robot velocity is limited 

at 0.8 m/s during training. Only three training lessons have been necessary to train the 

network. At the beginning of each lesson, the robot is at an initial configuration far from 

the desired one (between 3 and 4 meters). The protocol is as follows: 

• Lesson 1: The network is untrained (all the weights are randomly initialized). 

Initial robot configuration is XM = 3m, YM = 2m, 8 = 0°. 
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• Lesson 2: Network has been trained by the first lesson. Initial robot configuration 

is still XM =3m, YM =2m, 0 = 0°. 

• Lesson 3: Network has been trained by the firsts lessons and Initial robot config­

uration is XM =3m, YM =Om, 0 = 180°. 

We stop each training when the robot completely stops. 

First and second training 
Right figure shows evolution of the training 

criterion. The learning duration is three times 

faster for the second training. Figure 4 shows 

cartesian trajectory, orientation of the robot, 

error and velocities of the wheels (i.e net out­

puts). For the first lesson, the robot trajec­

tory is hazardous during ten minutes but we 

see clearly that the robot is attracted to the 

desired configuration. 
Robot cartesian trajectory 
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Figure 4: Trajectory (M point), orientation and control parameters of the robot 

The trajectory is more direct and shorter in lesson 2 than in lesson 1. Final errors are 

reasonably good (about lcm and 5 degrees) in regards with the robot size (1.025 m x 

0.68 m) and are smaller after lesson 2. Wheel velocities are more smooth in lesson 2 and 
the average velocity greater. 
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The third lesson used a different initial configuration (XM = 3m, YM = Om, () = 180°). 

The results are similar to the previous and the robot reaches the desired configuration in 

40 seconds. minutes (results are not plotted) . 

These results shows that indirect backpropagation allows the neural-controller to identify 

the real behavior of the robot and determine a control law to drive the robot to the desired 

configuration and increase the quality of the control. Finally, we can argue that there is 

an knowledge acquisition of the robot kinematics and an adaption of the control. 

Control of the real robot after on-line training 

The trained network controls now the robot 

without learning from an initial configuration 

which has never been used for the learning: 

XM = 4m, YM = -2m, () = -90°. The maxi­

mum velocity of the robot is 1.25 m/s. Right 

figure and figure 5 shows the net ability to 

control the robot with small final errors. 
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Figure 5: Control of the robot after three on-line trainings : trajectory and orientation 

Others tests establish that the neural net controls the robot at any configuration in the 

experimentation room while -3 m :::; XM :::; 3 m and -3 m :::; XM :::; 3 m. 

These results show clearly that indirect backpropagation allows neural networks to learn 

control laws by especially specifying the control objective. 

4 Conclusion 

In this paper, we have presented experimentation results of an original approach to the 

Neural Network learning architecture for the control and the adaptive control of mobile 

robots. Our goal was to use multi-layer-networks and the backpropagation algorithm in 
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order to learn control objective without desired output. The principle of our approach is 

to express the control objective as a criterion. The gradient of the criterion is backpropa­
gating through the network instead of the classical quadratic error. The technic permits 
the neuro controller to learn off-line or on-line. Experimental validation is realized by 
the position and the orientation control of a fast industrial mobile robot. To show the 
feasibility of the method, we trained a random neural network on the real robot with the 

on-line learning scheme. Results show clearly the very good and very fast adaption of 
the neural-network in front of the kinematics constraints and the dynamics effects of the 

robot. 
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