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Abstract :

In this paper we present some mobile robotics
experimentations we are leading in our laboratory.
The first example we illustrated has for context
mobile robot cooperation. We propose a reactive
method to join and accost a dynamic vehicle in the
view to perform collaboration tasks. We will show
how the simple form of Takagi-Sugeno fuzzy
controllers permits to define the desired accosting
strategy according to the relative configuration of
both robots.

The second experimentation concerns the using of
neural techniques to control the cartesian position
and orientation of a mobile robot. The aim is to
illustrate how a neural controller could be used to
implement a reactive control.

1 Fuzzy Accosting Method

1.1 Problem presentation

The first experimentation of this paper concerns the
problem of mobile robots collaboration. Our aim is to
provide collaboration tasks between two autonomous
platforms [1], each one equipped with an arm. What
we are presenting here is the first step : the definition
of a strategy which permits to one robot, the Follower,
to join a second, the Target, and to follow it (Figure 1).

Fq)

Figure 1 : accosting configurations.

Figure 1 shows the three accosting configurations F(g).
The current target configuration is noticed 7(g). The
follower control point is noticed f{g) and the accosting
point is #(g).This tracking problem has been treated by
several authors [21,[3],[4]. But in these cases the
follower is already in the ideal tracking position, there
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is no accosting maneuver. In our study there is two

problems to solve :

o The initial problem is to develop a tracking control
law allowing to make f{g) join the accosting point
t(g). This control law has to respect the final
accosting condition :

Xf =X
Y=y, 1)
Ve=Wr

with (x5y;) and (x,y,) respectively the position of
points f and ¢, Vp and VT are the velocity vectors
of both mobiles.

e The definition of such a control law is not sufficient
because of the collision risk between both vehicles.
The configuration space of the target has to be on
line rebuilt in order to modify the follower
trajectory. At each sampling time this condition can
be resumed by F(q)NT(q)=2.

Experimental conditions

Two mobile robots are necessary to realize the
experimentation. The target is a ROBUTER 1I
(ROBOSOFT) with a maximum velocity about 1m/s. It
can be pilot by an operator with a joystick. So its
trajectory is a priori totally unknown. The follower
robot, ROMAIN, is an autonomous robot we built in
our laboratory [5], its maximum velocity is about 4m/s.
Both robots have approximately the same size (Im
long per 0.8m large). The Robuter is equipped with a
High Frequency Emitter. The target can send its
position (x,y,) with sample time of 10ms. For the
reception of this information, ROMAIN, is equipped
with a HF Receiver.

12 Tracking with Rendez-Vous Point

prediction

Our tracking method is based on prediction guidance

law [6]. At each sampling time # a pursuit vector Vp

determines the rendez-vous point P(t;) as the
intersection with target velocity direction. We obtain a
succession of points P which constitute the set of
predicted Rendez-Vous points (Figure 2).
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Figure 2 : Rendez Vous point prediction.

VP has for components (75, Vp). The idea is to compute

each sampling time these components which can then
give the instantaneous orientation and velocity of the

robot. Let Lthe Line Of Sight (LOS) vector, the
tracking law results from the relation Vp: VC +L
(Figure 3).

Figure 3 : tracking vector computation.

If r the distance between f and ¢ the final conditions
described in (1) implies for the pursuit vector :

lim Vp=Vc. This last Relation implies then
r—=0

lim Vi + L =V, that means lim L=0.
r-0 r—0

Considering figure 3, the target velocity can be
expressed in the mobile frame as Vi = Ve, ér+ Vgt -

VP components can be written :

Ve 2

6 2

= tg] ———— 1, Vp =.J|L+V, +V, .
Yp arcg[VCr+LJ P \/( o) +V

The projection V¢, and V, are computed each

sampling time according to the received target
position. 7p and Vp are depending on the L parameter.
A LOS controller gives according to the distance r the

value of this parameter. This is a Takagi-Sugeno fuzzy
controller with two rules :

if r is NUL then L=0

if ris BIG then L=L,,,.
The fuzzy subsets of the input variable are

1y (r) = L(r,0,ryay ) and pg(r) = T(r,0,rps) -

The rules expression of this controller allows to ensure

the condition lim L=0.
r—0

The analytical model of this LOS controller is :
o ifr2npy L=Lpay
o if rSrmax L=”BIG(7)’Lmax

The tracking vector components become :

2 2
VP = (PBIG(")-Lmax +Vcr) +VC9

and yp = amg(Vc(; / (Vc, +#Blc(r)lmax)) .

The experimentation implies to respect the saturation
condition Vp £ V. . So, from the Vp expression we
deduce the value of L,,, function of the maximal
linear follower velocity and the target velocity

components : Ly,y =~V + 1/Vn%‘,,x + Vge .

There is so an on line adaptation of the universe of
discourse of L. Figure 4 resumes the principle of this
point tracking method.

(x (k—l),y,(k~'1))(§"ge) % Vcery Ve
parameters

computation

[EAGSA (k))(érzs) —

distance r
b fande |~
computation

k), ydk)) g —— 1L0S

Controller | +

O£k, y{kDaw ==

Figure 4 : tracking scheme.

Experimentation

The following figure present an experimentation in a
ideal relative configuration. That means that both robot
configurations and trajectories are such that there is no
collision risk. The defined tracking method is in this
case sufficient and has been implemented on
ROMAIN. Figure 5 illustrates the evolution of the
robots consecutive instants for a rear accosting.

(a)

© m@\ﬁb

+> >
B m

(c)

Figure 5 : rear accosting (experimentation)
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Figure 6 shows the linear velocities during the motion.
We can see the stop of the target corresponding to
Figure 5.b, and the follower behavior.

Linear target velocity (m/s)

0 10 20 30 &% S0 6
Time (sec.)

Linear follower velocity (m/s)

o9t
osf

s 10 2 E) “© EY )

Time (sec.)

Figure 6 : linear velocity ofT and F.

1.3 Non ideal relative configurations

As we said before, the tracking method we developed
can be applied only in specific cases where there is no
collision risk. But most situations are such that the
intersection of spaces configuration are not empty :
F(q)nT(q)=#2. The configuration T{g) have to be taken
into account. Furthermore, the accosting side have also
to be consider, and can indicate how avoid the
collision with the target without losing the goal.

Fuzzy Modelisation Field

We introduce the concept of Fuzzy Modelisation Field
(FMF) issued from the artificial potential field [7]. Our
aim is, at each time of the process control to compute
an envelope representing the geometrical configuration
of the target. This envelope built on the repulsive
potentiel concept, has to be function of the side to be
accosted. Its specific influence zone will be then
disymetric, if relative position of both robots is
considered (Figure 7).

left rear

Figure 7 : dissymmetric influence zones of FMF.
(funcion of accosting side)

Such a repartition of the target field is obtained by a
fuzzy controller. This FMF Controller gives on line the
magnitude M of the field at the position of the follower
control point f. This magnitude is normalized between
0 and 1 wich correspond to the dicret values of the
Sugeno's rules (Figure 8).

I
Figure 8 : rules of the FMF Controller.

The influence zone is modify according to the
accosting side with the adaptation of the central values
of the inputs membership functions. The following
example (figure 9) is the result of the FMF
computation for the entire specific influence zone for a
right accosting.

1

i nmllmmn" :. N
i {
TN
e
A

Figure 9 : FMF for a right accosting.
Fuzzy Round Forces

We can now detect when the follower is entering the
FMF. We must then impose, considering point ¢ and
the relative configurations, the direction allowing to
avoid the collision. This directions are resumed in
figure 10 for each side. We see here that such
tangential forces can't be determined by a classical
potentiel field method. Furthermore a same line of
field must be composed of forces with adverse
directions.

igtadasssio

Figure 10 : round directions.

We introduce the Fuzzy Round Forces wich are a
priori defined by a Takagi-Sugeno fuzzy controller.
Memberships of the input universe of discourse are the
same as for the FMF. For a security question, we
complete the set of forces by fuzzy repulsive forces in
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the domaine where M=1. That means when collision
risk is high the follower behavior must be like a flight.
Figure 11 shows the rule table of the fuzzy round
forces for a right accosting.

Y

ko<

TNt

accosting side

N
t
!

7

SN

Figure 11 : fuzzy round forces.

The result of the inference procedure gives the force
field Figure 12.

vt e e e e e e e~ ~ SN NN
P S T ST SN [ NS
P e T TN RS N N Y IR N
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Figure 12 : force field.
14 Accosting Force

We have now two kinds of vectors computed each
sampling time. VP is the tracking vector, result of the
predicted point tracking law. It is only referred to a

point and doesn't take care about collision between
robots. The second kind of vector is the round force,

noticed F",. Its norm is given by the Fuzzy

Modelisation Field ]ji(q)" =M(g).

The accosting force, noticed f‘a , is the resultant of

both vectors. It will permits to track the predicted
Rendez Vous Point taking into account the collision
risk. Its expression is the following :

Fo@) = B+ (1-[F @) 22

Il

VP(CI)H
Experimentation

We present an experimentation of a left accosting. The
follower is place on the right rear of the target. The
relative configuration is non ideal because the position
are such that a collision can occur during the accosting
phase. Figure 13 illustrates the vehicles motion at
different times (a/b/c.) until the target stabilization (d).
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(d)
Figure 13 : non ideal left accosting (experimentation)

Following figures show the robots velocities.

Target velocity

H ® 15 0 2 k. 3

Time (sec.)

Qo

Follower velocity

\

Time (sec.)
Figure 14 : linear velocity of7and F

(]

Last figure gives the evolution of FMF magnitude. The
peak corresponds to the follower entry into the specific
influence zone. M

10 B 2 3

Time (sec.)
Figure 15 : FMF magnitude along the motion.

EREEE RS

1.5 Conclusion

We presented a fuzzy approach based on Takagi-
Sugeno controllers to solve the problem of
maneuvering target accosting. These solutions are
validated by efficient experimentations. We have so
define a reactive strategy allowing to perform
cooperation between mobile vehicles. Now we are
trying to optimize this accosting method, using for this
learning through gradient algorithm.
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2 Neural adaptive control of
a mobile robot

2.1 Interest of neural technique to
control mobile robots

We know the generalization and the learning capa-
bilities of Artificial Neural Networks (ANN) due to
the efficiency of the learning backpropagation algo-
rithm. This algorithm can train a neural-controller
to control a robot. This technique becomes very
interesting if the controller has to determine a re-
active control. Indeed, when backpropagation is
applied on-line (during the control), it permits to
adapt and train the controller at any situation.
The goal of the experimentation presented in this
section is to show that on-line backpropagation per-
mits a neural network to identify itself a control
law. We propose to experiment on-line training in
the most unfavorable case. We train an initial ran-
dom network to control the cartesian configuration
(position and orientation) of a mobile robot. The
ANN is updating after each control time step.

Our aim is to show that neural technique are able
to implement reactive controller in mobile robotics
(adaptivity, obstacle avoidance for wheeled robots,

* control of equilibrium for legged robots..). In this

paper, we experiment the control of the robot po-
sition without avoiding obstacles. The final objec-
tive is to prove that the neural-controller learn to
control the robot in a unknown environment. So,
in a next experimentation, backpropagation will be
used to train the neural-controller both to control
the robot and to avoid obstacles.

2.2 Robot position control problem

The problem is to control the cartesian position
and the orientation of a two independent driving
wheeled industrial mobile robot (figure 16). This
problem is not trivial because, the main character-
istic of this robot is its non-holonomy (see [14]{10]).
Kinematic equations are done by equation (1).

Xm = 5(q1+ g2)cost
Yu = 5(41+g2)sind
¢ = 5%(42 - ¢1) (1
ris radius of wheels
Ris half length of axis wheels

The neural controller has to determine instanta-
neous whee] velocities ¢; and ¢, that drive the robot
at the desired configuration (Xg,Yqs,84) where
(X4,Yy) are the absolute desired cartesian coordi-
nates of the middle point M of wheel axis (X; =

Figure 16: Control of the mobile robot

Y4 = 64 = 0). So, net inputs are cartesian and ori-
entation errors of the robot, and net outputs are its
wheel velocities ¢» and ¢;. Inputs are normalized
between —1 et 4+1 with respect to their maximum
value (4 meters for the cartesian errors and = for
the orientation).

2.3 Approach for the training

The goal of backpropagation is to minimize, on a
large set of examples, a cost function that depend-
ing on the net output. This minimization is ob-
tain by the gradient descent technique (see [15] for
more precisions). The gradient is calculated with
respect to the net outputs. Usually, the cost func-
tion is a quadratic error calculated between the net
output and a desired one. In the cartesian control
of non-holonomic mobile robots, it is often difficult
to determine the control law. Then, it is difficult
to compute a large set of desired outputs (desired
wheeled velocities).

Nevertheless, M.I. Jordan in [12] and [13] propose
to include in the quadratic error, some constraint
functions. He introduce the difficulties of using a
criterion for the learning particularly in the deter-
mination of the gradient when these constraints are
unknown.

In the case of the control of robots, it is often pos-
sible to explain the goal of the control as a function
of the control parameters. If we determine the gra-
dient of this objective function, calculated with re-
spect to the control parameters (or a approximation
of it) the neural controller can minimize this func-
tlon on a large set of possible inputs. Then back-
propagation permits to identify a control law that
satisfy the objective. Learning with a criterion is
an interresting method because, like reenforcement
techniques, we can train a neural controller on-line,
that is during the control.
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The experimentation described in this section is
based on a learning on-line architecture where the
neural controller try to minimize a control criterion
when it controls the real robot.

The objective is to determine, at each time step
k, the wheel velocities (g2, and gi,) that minimize
the distance between the robot configuration and
the desired one. Then the criterion is ( Xk, Yy are
coordinates of the M point at time step k) :

J= C¥1Xf+1 + a?,y;?+1 + a3(6k+1 - 65)2

@
where oy, a9, agz are normalization coefficients and
s = arctg(2 YTg)-) is a strategy constraint that helps
the network on the singular configuration X = 0
By considering the time step At and the kinematic
equations (1), the criterion becomes:

Jetr = o1(Xx + AXey1)? + ao(Ye + AYky1)?
-+ Ots(ek -+ Aé’k-}-l - 93)2

AXpyr = OUgprcos(f + 2041y

where AYk+1 = ArUk‘+1Sin‘(9k -+ éﬁ?i)
Orsr = 3g(du — 42.)A
AUry1 = (g1 +92.) s

The gradient that trains the network is calculated
with respect to the net outputs :

OJrk+1 0A X4 OAYr 4
—— = 21 Xpp1—5—— Yip1———
34i, (a1 Xk41 B4, + oY B3:,
3A9k+1
Ors1 — 05 -
+as( k41 ) 5qz'k )
where:
6—%%'511— = Akgcos(ek—i—é%—ﬂ)
43
- %%%ﬂAUk+lsin(ak + Slen
e = Aphsin(f + “HE)
-+ %%%AU/C.HCOS(@]C =+ _4_92&1-_1.)
8A0k41 - . .
L—a—q"‘kl = —ﬁz‘At(Zzl)OT’—i%At(i=2)

2.4 Experimentation of line training

The learning structure that trains the neural con-
troller is represented on Figure 17. This structure
has a control loop to control the robot and a learn-
ing loop to update the ANN.

This made feasible adaptive control. As an illustra-
tion of that affirmation, we proposed to experiment
on-line training with an untrained network which
is updating after each sampling time.

Protocol of experimentation

The ROBUTER II robot is the one used in the
dynamic target tracking experimentation based on
fuzzy techniques, presented in the first section.

backpropagation | gradient VJi.41
criterion Jj +1
Xie+1
Xk Y41
Ye Or 41
O

Figure 17: On-line training scheme

We have used a one hidden layer (of 9 neurons) net-
work. The robot velocity is limited at 0.8 m/s dur-
ing training. Only three learning lessons have been
necessary to train the network. At the beginning
of each lesson, the robot is at an initial configura-
tion far from the desired one (about 4 meters). The
protocol is as follows:

e Lesson 1: The network is untrained (all the
weights are randomly initialized). Initial robot
configuration is Xp = 3m, Ypr = 2m, § = 0°.

e Lesson 2: Network has been trained by the
first lesson. Initial robot configuration is still
Xy =3m, Yy =2m,0=0°

e Lesson 3: Network has been trained by the
firsts lessons. Initial robot configuration is
Xupr = 3m, Yyr = 0m, 6 = 180°.

We stop each training when ¢z, = ¢1, = 0.

First and second training

Figure 18 shows evolution of the training criterion.
The learning duration is three times faster for the
second training. Figure 19 shows cartesian trajec-
tory, orientation of the robot, error and velocities
of the wheels (i.e net outputs converted in m/s).

Evolution of the criterion

| 1 1 1 1
0.8 training 1 —— |
training 2 ——— 7
0.6 -
0.4 -
0.2 -
0 | | ]
0 20 40 60
Time (sec.)

Figure 18: First and second ‘trainings

For the first lesson, the robot trajectory is haz-
ardous during ten minutes but we see clearly that
the robot is attracted to the desired configura-
tion.The trajectory is more direct and shorter in
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lesson 2 than in lesson 1. Final errors are reason-
ably good (about lcm and 5 degrees) in regards
with the robot size (1.025 m x 0.68 m) and are
smaller after lesson 2.

Robot cartesian trajectory

2 1 I 1 T 7
i training 1 —%
L training 2 <=+ 7
7/

0 e v e aaaae A ._f.’-'.-..wx.\...,.,/.(./ .......... —
-1 -
2k : .
3 L L 1

-2 -1 0 1 2 3
Orientation ¢ (deg.)
80 | B N R R
training 1 —— 7
40 training 2 ---
0 T A R AP ¥ & R N 4 N T —
-40 b~ -
-80
0 20 60
Time (sec.)
Wheel velocity ¢1 (converted in m/s)
0.8 T T T T 1
~ training 1 —— 7
04 | training 2 --- -
~ =
0 .....{ .......................... -
P
- -
-0.4 ! -
E _
i
-0.8
0 20 40 60
Time (sec.)

Wheel velocity g2 (converted in m/s)

0.8 T T T T T T
n training 1 —— .
0.4 - : training 2 --- -
- 1 -
0 -t} -
i .
0.4 L.} —
= ,'J -

o8 el L1 ! I 1

0 20 40 60

Time (sec.)

Figure 19: Trajectory, orientation and wheel veloc-
itie of the robot during first and second trainings

Wheel velocities are more smooth in lesson 2 and
the average velocity greater. The third lesson used
a different initial configuration (X3 = 3m, Yy =
Om, § = 180°). The results are similar to the previ-
ous and the robot reaches the desired configuration
in 40 seconds. minutes (results are not plotted) .

These results shows that indirect backpropagation
allows the neural-controller to identify the real be-
havior of the robot and determine a control law to
drive the robot to the desired configuration and in-
crease the quality of the control. Finally, we can
argue that there is an knowledge acquisition of the
robot kinematics and an adaption of the control.

Control of the robot after on-line training

The trained network controls now the robot with-
out learning from an initial configuration which has
never been observed during the learning: Xpr =
dm, Yar = ~2m, § = —90°. The maximum velocity
of the robot is 1.25 m/s. Figures 20 and 21 show
the net ability to control the robot with small final
€rrors.

Robot cartesian trajectory

T { I

| | 1 I 1 |
0 2 4 6 8§ 10 12 14
Time (sec.)

Figure 20: Control of the robot after three trainings

Others tests establish that the neural net controls
the robot at any configuration while X,Y < +3 m
These results show clearly that indirect backpropa-
gation allows neural networks to learn control laws
by especially specifying the control objective.
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Wheel velocities (converted in m/s)

.14 | I | 1 | | |
0 2 4 6 8 10 12 14
Time (sec.)

Figure 21: Control of the robot after three trainings

2.5 Conclusion

In this paper, we have presented experimentation
results of the neural adaptive control of a mobile
robot. Qur approach consists to express the con-
trol objective as a criterion. The gradient of the
criterion is backpropagating through the network
instead of the classical quadratic error. The tech-
nique permits the neuro controller to learn on-line.
Experimental validation is realized by the position
and the orientation control of a fast industrial mo-
bile robot. To show the feasibility of the method, we
trained a random neural network on the real robot
with. Results show clearly the very good and very
fast adaption of the neural-network in front of the
kinematics constraints and the dynamics effects of
the robot.

We are now working on training a neural controller
to control the robot and to avoid obstacles. The
principle of the approach is to insert in the objective
function (2), the distance informations issued from
6 ultra-sonic sensors. The criterion (2) becomes:

Tyt = a1 Xy +ooYi + as(fetr — 65)°

6

— 42

+ 0142133'5 4
i=0

d;: measure issued from the sensor j
B is a penality : ; =0 if d;j > d;,
ﬁjzl if dj<d3,

ds : security distance

where

The gradient %%3} is determine by the distances d;
depending on ¢; and gz.

3 General Conclusion

We have presented in this paper solutions using Ar-
tificial Intelligent Techniques (Fuzzy Logic, Neu-
ral Networks) to solve complex mobile robotics
problems. These approaches are validated on real

robots. The corresponding experimentations are
taking place on a large study on the using of non
academic methods for reactive control of mobile
vehicles. Our final objective is to confer to an
autonomous plateform a reactive behavior and an
adaption capability to perform a wide class of tasks.
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