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A B S T R A C T

Two sonochemical processes were compared for the removal of ibuprofen in different water matrixes (distilled
water and effluent from wastewater treatment plant). The effect of various operating parameters, such as pH
(2.6–8.0), ultrasound power density (25–100 W/L), sonication frequency (12–862 kHz), addition of radical
promoters (H2O2 and Fenton’s reagent) or scavengers (n-butanol and acetic acid), was evaluated.

Sono-degradation of ibuprofen followed a first-order kinetic trend, whose rate constant increased with ul-
trasound density and frequency. For this hydrophobic and low volatile molecule, a free-radical mechanism at the
bubble interface was established. Coupling ultrasound with Fenton reaction showed a positive synergy, espe-
cially in terms of mineralization yield, while adding H2O2 alone had no significant beneficial effect. Dedicated
experiments proved this synergy to be due to the enhanced regeneration of ferrous ions by ultrasound.

Efficacy of the sonolysis process was hampered in wastewater matrix, mainly as the consequence of higher pH
increasing the molecule solubility. However, after convenient acidification, sono-Fenton oxidation results re-
mained almost unchanged, indicating no significant radical scavenging effects from the effluent compounds.

1. Introduction

Ibuprofen (IBP) (2-[4-(2-methylpropyl)phenyl]propanoic acid) is a
common drug used to treat fever, pain, inflammation or minor injury,
its annual consumption being about 200 tons/year [1]. IBP can enter
the environment through domestic, farming (intensive livestock pro-
duction and aquaculture) and industry routes [2]. Several studies re-
ported the presence of IBP in effluents from wastewater treatment
plants (0.002–95 µg/L), in surface water (0.01–0.4 µg/L) and in
drinking water (0.0002–0.0013 µg/L) [3,4], proving the inability of
actual treatment processes to completely remove this compound, as
well as its persistence in the environment. Notwithstanding its medic-
inal use, IBP was shown to significantly affect the growth of several
fishes, microorganisms, algae, bacterial and fungal species [5,6]. Fur-
thermore, partial degradation of IBP might be dangerous since its
transformation products can be more toxic [7]. Therefore, the devel-
opment of water treatment processes for the conversion of IBP into
innocuous compounds (small organic acids and/or CO2 and H2O) is
needed.

To date, advanced oxidation processes (AOPs) are among the most
efficient treatments for the elimination of pharmaceutical contaminants

in water [2]. AOPs are characterized by the formation of highly reactive
and non-selective hydroxyl radicals (%OH) which are able to mineralize
almost all organic compounds. Among these, Fenton oxidation is very
appealing due to its simplicity in generating %OH. Homogeneous Fenton
oxidation (Eq. (1)) is based on the reaction between ferrous ions (Fe2+)
and hydrogen peroxide (H2O2) under acidic condition [8]. This reaction
is characterized by a rapid degradation of organic compounds in the
early stage of the process involving ferrous ions, followed by a much
slower oxidation by Fe3+/H2O2 [9].

%+ → + + = −+ + − − −Fe H O Fe OH OH { k 40 80 L. mol . s [10]}2
2 2

3 1 1 (1)

+ ↔ + = ×+ + + −Fe H O Fe-OOH H { K 3.1 10 [11]}3
2 2

2 3 (2)

%→ + = ×+ + − −sFe-OOH OOH Fe { k 2.7 10 [11]}2 2 3 1 (3)

Its main limitation is indeed due to the uneasy regeneration of Fe2+

(Eqs. (2) and (3)) that may cause wastage of expensive H2O2 reagent
[12]. Furthermore, high iron salt concentrations (10–500 mg/L) – well
above discharge limit (2 mg/L) – are normally needed to gain appre-
ciable conversion and mineralization [10,13]. Such high concentrations
can lead to techno-economic issues related to the formation of excessive
Fe(III) hydroxide sludge and continuous loss of iron especially in large
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scale operation.
Ultrasound (US) is another promising AOP because it does not re-

quire any chemical addition and it is able to degrade organic pollutants
through direct thermolysis (Eq. (4), in case of volatile compound) and/
or %OH attack (Eqs. (5) and (6)). Sonication generates compression and
rarefaction cycles, thus cavitation bubbles are formed from nuclei and
then collapse violently producing localized shock waves (temperature
of around 5000 °C and pressure of 500 atmospheres during a few mi-
croseconds) [14,15]. Such phenomenon gives rise to a pyrolytic clea-
vage of the molecules (including water) inside the bubble and to che-
mical reactions with the generated radicals at the bubble interface and/
or in the liquid bulk.

+ →Pollutant ))) degradation products (4)

% %+ → +H O ))) OH H2 (5)

%+ →Pollutant OH degradation products (6)

where))) refers to the ultrasound irradiation
However, a low mineralization efficiency and a high energy con-

sumption are the main drawbacks when US is used as single treatment
[16]. Thus, it is more interesting to combine US with another AOP, for
instance Fenton reaction [13]. Theoretically, coupling US irradiation
and Fenton oxidation (in the so-called sono-Fenton or US/Fenton pro-
cess) can promote faster pollutant conversion/mineralization due to (i)
higher generation of %OH (Eqs. (1) and (5)) [17], (ii) improved mixing
and contact between %OH and pollutant [13,16], and (iii) enhanced
regeneration of ferrous ions (Eq. (7)) [18].

%+ → ++ +Fe-OOH ))) Fe OOH2 2 (7)

Several works have investigated the coupling of ultrasound and
Fenton oxidation for the elimination of various organic compounds
such as dyes, phenolic compounds and pesticides [13,19,20], and more
recently pharmaceuticals [21–23]. However, to our knowledge, this
latter mechanism (Eq. (7)) was not fully established.

The aim of this work is to investigate IBP removal by sonolysis,
Fenton oxidation and coupled ultrasound/Fenton oxidation process.
The effects of sonication parameters and Fenton’s reagent dosage are
also addressed, as well as the influence of real water matrix.

2. Material and methods

2.1. Chemicals and solvents

IBP (C13H18O2, purity 99.99%) was purchased from BASF
Corporation and used as received. The physicochemical properties of
IBP are listed in Table 1. Hydrogen peroxide (H2O2) solution 30% w/w,
monopotassium phosphate (KH2PO4), sodium phosphate dibasic dehy-
drate (Na2HPO4·2H2O), potassium iodide (KI), titanium tetrachloride
(TiCl4), sodium sulfite (Na2SO3) and iron sulfate heptahydrate
(FeSO4·7H2O) were obtained from Sigma-Aldrich.

2.2. Experimental set-up

Experiments were performed in a 1 L glass reactor, whose jacket

was connected to a cooling thermostat in order to maintain the tem-
perature (25 ± 2 °C). The reactor was stirred by a pitched-blade im-
peller. US probe was mounted at the bottom of the reactor (cup horn
type) and direct continuous sonication of the solution was applied.
Several ultrasonic devices were used in this study (Table 2). However,
as shown in literature, calorimetric power can be used as reference for
comparison of their results [16,29,30]. In addition, most of the ex-
periments were carried out with equipment 1 since 20 kHz is a most
common US frequency, which had already been successfully applied for
such purpose [10,13]. It is also worth mentioning that a preliminary
study indicated same sonochemical performance with various probe
diameters (51 mm vs 35 mm).

20 mg/L IBP aqueous solution was prepared by dissolving IBP under
vigorous stirring for 10 h in either distilled water or effluent from a
municipal wastewater treatment plant (cf. Section 3.3). As above-
mentioned, concentration of IBP in water bodies of the environment is
usually of tens of ng/L to tens of μg/L. However considering that ap-
plication of AOPs is more economical for high contaminant loadings
[31,32], as well as to achieve enough analytical precision, 20 mg/L of
IBP (just below the molecule solubility) was used as initial concentra-
tion. For the Fenton-related experiments, the pH of the solution was
adjusted to 2.6 with H2SO4 (1 M solution), prior to the simultaneous
addition of iron salt and H2O2 to start the reaction. For the US-related
experiments, sonication was applied from the starting of the reaction.
During the experiments several samples were withdrawn (of 1 and 8 mL
for HPLC and TOC analyses, respectively) and were immediately
treated by 1 mL of phosphate buffer (mixture of KH2PO4 0.05 M and
Na2HPO4·2H2O 0.05 M) before HPLC analysis or 3 mL of quenching
solution (mixture of phosphate buffer, KI 0.1 M and Na2SO3 0.1 M)
before TOC analysis to stop the reaction by precipitating dissolved iron
(buffer) and/or reducing remaining oxidant (KI/Na2O3 mixture) [33].
The iron precipitate was removed on a 0.45 µm RC syringe filter prior
to analyses of pollutant concentration.

Several experimental runs were duplicated to check for the re-
producibility of concentration-time profiles of IBP and Total Organic
Carbon (TOC) and the experimental errors were estimated by pooled
standard deviations. The observed deviation was less than 5% for IBP
and TOC concentration.

Table 1

Physicochemical properties of ibuprofen.

Properties

Molecular weight 206.29 g/mol
Molecular size 1.3 nm × 0.6 nm [24]
Log Kow 3.97 [1]
pKa 4.9 (carboxylic group) [25]
Solubility in water 21 mg/L at 25 °C [26]
Henry’s law constant 1.5 × 10−7 atm.m3/mol [27]
Vapor pressure 1.18 × 10−8 atm at 25 °C [28]

Table 2

Characteristics of sonication equipment.

Properties Equipment

1 2 3

Supplier Sonics &Materials, Inc. SinapTec Meinhardt
Ultraschalltechnik

Model VCX750 NexTgen
Inside 500

E/805/T/M

Frequency (kHz) 20 12 580–862
Max nominal

power (W)a
180 200 250

Max calorimetric
power (W)b

131 156 32

Applied power
(W)c

25, 50, 100 50 12.5

Liquid volume
(mL)

1000 1000 250

Applied DUS (W/
L)d

25, 50, 100 50 50

Probe diameter
(mm)

51 35 40

Applied IUS (W/
cm2)e

1.2, 2.5, 4.9 5.2 1

a Nominal power displayed on generator.
b Dissipated power measured by calorimetry[29].
c Power used in experiments.
d Ultrasound density: applied power/liquid volume[14].
e Ultrasound intensity: applied power/probe surface area[14].



2.3. Analysis

IBP concentration was measured by liquid phase chromatography
with UV detection at λ = 222 nm (PDA detector, Thermo Finnigan).
Separation was performed on a C18 reverse phase column (ProntoSIL
C18 AQ 5 μm, 250 × 4 mm) maintained at 40 °C. The mobile phase
consisted in a mixture of acetonitrile and water (acidified with phos-
phoric acid at 0.1% v/v) fed in isocratic mode (60/40) at 1 mL/min.
Samples were readily injected in the chromatograph after buffer
treatment and filtration. Injection volume was set to 20 µL.

Total organic carbon (TOC) concentration was obtained from the
difference between total carbon (TC) and inorganic carbon (IC) mea-
sured by a TOC analyzer (TOC–L, Shimadzu Corp.). In this case, samples
were diluted by twofold with ultrapure water after addition of the
quenching solution and filtrated. Injection volume was set to 50 µL and
400 µL for TC and IC, respectively.

Residual concentration of H2O2 was determined by titanium tetra-
chloride method [34].

3. Results and discussion

The first series of experiments, described in Section 3.1 and 3.2,
were performed using IBP solutions prepared in distilled water (DW).
The matrix effect is addressed in Section 3.3.

3.1. Sonolysis (US)

3.1.1. Mechanism of IBP degradation under sonication

Under ultrasound irradiation (sonolysis), organic compounds can be
degraded in three different zones, i.e. inside cavitation bubbles by
thermolysis (Eq. (4)) and/or in the bubble interface and/or in the bulk
solution by free radical attack (Eqs. (5) and (6)), depending on the
volatility and the hydrophobicity of the molecule [29,35]. According to
its low volatility and low water solubility (see Table 1), IBP degradation
mechanism may correspond to a radical attack at the bubble surface. In
order to confirm this hypothesis, two types of radical scavengers,
namely n-butanol and acetic acid, were added to the IBP solution before
20 kHz sonolysis: n-butanol is a short chain alcohol with only partial
solubility in water (logKow = 0.88) known to be an effective %OH sca-
venger for the gaseous region and/or the interfacial region of the col-
lapsing bubble [22,36], while fully miscible acetic acid
(logKow = −0.17) reacts with %OH in the solution bulk [37]. As shown
in Fig. 1, addition of n-butanol and acetic acid (at 50 mM or 500 times
the molar concentration of IBP) reduced the pollutant conversion from
48% after 3 h to 8% and 40%, respectively. Therefore, sono-degrada-
tion of IBP is mainly due to %OH attack at the liquid-bubble interface.

3.1.2. pH effect

The pH of IBP solution, initially at 4.3, was also adjusted before
sonolysis to 2.6 and 8.0 with H2SO4 and NaOH (1 M solution), re-
spectively. The aim was to mimic pH condition of the Fenton reaction
on the one hand, and pH of the wastewater effluent on the other hand.
Lowering the pH did not modify IBP degradation rate, but a significant
reduction (from 0.0035 min−1 to 0.0020 min−1) was observed at the
alkaline value (Fig. 2). It can be explained by the different forms of IBP
at a given pH. As the pKa of its carboxyl group is 4.9, IBP is in molecular
form at pH 2.6 and 4.3, but fully deprotonated at pH 8.0. In ionic form,
IBP should be less accumulated at the surface of the cavitation bubbles,
where radical attacks mainly occurred. This result is also in agreement
with previous studies on the sonolysis of ibuprofen [27], diclofenac
[38], dicloxacilin [39], paracetamol [21,40] and sulfadiazine [22]
conducted at high sonication frequency (300–862 kHz), that showed a
reduction of the degradation rate at a pH value higher than the pKa of
the molecule.

3.1.3. Effect of H2O2 addition on sonolysis

The stoichiometric amount of H2O2 required for IBP mineralization
was calculated according to Eq. (8):

+ → +C H O 33H O 13CO 42H O13 18 2 2 2 2 2 (8)

Under silent conditions, addition of two times (2×) the stoichio-
metric amount of H2O2 did not result in any measurable IBP and H2O2

conversion within 3 h at pH 4.3 or 8.0 and did not modify pH.
However, H2O2 is expected to be decomposed by US and/or to react

with %H generated by water sonolysis (Eq. (5)) thus generating addi-
tional %OH (Eqs. (9) and (10)) [41,42].

%+ →H O ))) 2 OH2 2 (9)

% %+ → +H O H OH H O2 2 2 (10)

Formed %OH can degrade organic compounds (Eq. (6)), but also
react with H2O2 (especially when in large excess) (Eq. (11)) [22,34,41]
or recombine with different radicals (Eqs. (12)-(16)) [23,27,43].

% %+ → +H O OH OOH H O2 2 2 (11)

% %+ →OH OH H O2 2 (12)

% %+ →OH H H O2 (13)

% %+ → +OH OOH H O O2 2 (14)

% %+ ↔ +OOH OOH H O O2 2 2 (15)

% %+ →OOH H H O2 2 (16)

At natural pH, addition of two times the stoichiometric amount of
H2O2 (6.4 mM) did not modify IBP sono-oxidation rate, while a slight
decrease was observed at seven times (7×) the stoichiometric amount

Fig. 1. Effect of radical scavenger on IBP sonolysis. ([IBP]0 = 20 mg/L in DW, pH0 = 4.3
(natural), T = 25 °C, fUS = 20 kHz, DUS = 50 W/L, [scavenger]0 = 50 mM).

Fig. 2. Effect of the solution pH on IBP sonolysis. ([IBP]0 = 20 mg/L in DW,
pH0 = 2.6–8, T = 25 °C, fUS = 20 kHz, DUS = 50 W/L).



of H2O2 (22.4 mM) of oxidant (Fig. 3A). These results confirmed those
of some previous studies reporting no effect [34] or even a detrimental
effect of H2O2 [44] for hydrophobic compounds and low frequency US.

The existence of different reaction zones for IBP (bubble surface)
and H2O2 (bulk solution) could be hypothesized to explain why H2O2

did not help the pollutant degradation under US irradiation [44], while
its scavenging effect at high concentration (Eq. (11)) could explain the
results observed at 22.4 mM. However, no decomposition of H2O2 was
measured at the lowest concentration, excluding the first mechanism.

On the other hand, at alkaline pH, H2O2 sonolysis did occur (5%
conversion) and accelerated the pollutant oxidation (Fig. 3B), although
not reaching the degradation yield observed at pH 4.3.

3.1.4. Effect of ultrasound operating parameters

3.1.4.1. Effect of ultrasound power density (DUS). Three levels of
ultrasound power density (DUS) – 25, 50 and 100 W/L – were tested
during 180 min, corresponding to a specific energy (EUS) of 270, 540
and 1080 kJ/kg, respectively. As shown in Fig. 4A, the degradation rate
of IBP increased with increasing DUS in the investigated range. This is
the consequence of higher number of collapsing bubbles that enhanced
the formation of %OH. An optimum value of DUS should be expected,
due to bubble cloud formation on the emitter surface absorbing or
scattering the sound waves above a critical value [45], but due to the
limitation of our ultrasonic equipment it could not be
attained. Calculated first-order rate constants were as follows:
k25W/L = 0.0024 min−1 (R2 = 0.992), k50W/L = 0.0035 min−1

(R2 = 0.996), k100W/L = 0.0048 min−1 (R2 = 0.994), showing
however that the positive effect of DUS already levelled off (Fig. 4B).

3.1.4.2. Effect of sonication frequency (fUS). The influence of frequency
on sonochemistry is complex. Cavitation threshold increases and
cavities appear to release less energy upon collapse at high frequency
(> 100 kHz), but fewer acoustic cycles are required for the bubbles to
reach their resonant size (which means more cavitation events) [46].
Moreover, more radicals should escape before being recombined due to
a more rapid collapse [47]. Therefore, high frequency is usually
preferred for sonochemistry applications. Indeed, according to Fig. 5,
IBP removal after 180 min was increased from 48% to 87% when
increasing fUS in the 20–862 kHz range. Degradation rates followed a
first-order kinetic trend with: k20kHz = 0.0035 min−1 (R2 = 0.996),
k580kHz = 0.0084 min−1 (R2 = 0.984) and k862kHz = 0.0102 min−1

(R2 = 0.959). Close values obtained at 580 and 862 kHz could be
explained by similar %OH effective production rate (evaluated from
H2O2 concentration monitoring), as reported by Güyer and Ince with
analogous equipment [38]. An optimal frequency for radical-mediated
sonolysis was also observed by these authors as a consequence of
abovementioned antagonist effects at high frequency.

Interestingly, audible frequency (12 kHz) was also able to slightly
degrade IBP (16% after 3 h, k12kHz = 0.0008 min−1, R2 = 0.968).
Corresponding H2O2 generation rate was 0.18 µM/min (R2 = 0.928)
with respect to 0.45 µM/min (R2 = 0.940) for 20 kHz irradiation,
confirming the similar evolution of H2O2 generation and IBP degrada-
tion rates.

In all cases, TOC removal was low: 2%, 7%, 10% and 11% under 12,
20, 580 and 862 kHz irradiation, respectively. It could indicate that
more hydrophilic degradation products were formed during sonication,
as for instance n-hydroxyl-ibuprofen (logKow = 2.25) [48,49].

Fig. 3. Effect of H2O2 addition on IBP removal under US irradiation: (A) pH0 = 4.3 and
(B) pH0 = 8.0 ([IBP]0 = 20 mg/L in DW, T = 25 °C, fUS = 20 kHz with DUS = 50 W/L
under sonication, [H2O2]0 = 0–22.4 mM).

Fig. 4. Effect of ultrasound density on IBP sonolysis: (A) concentration-time profile and
(B) first-order rate constant ([IBP]0 = 20 mg/L in DW, pH0 = 4.3, T = 25 °C,
fUS = 20 kHz, DUS = 25–100 W/L).



3.2. Homogeneous sono-Fenton oxidation process

3.2.1. Effect of Fenton’s reagent concentration and 20 kHz US

In order to evaluate the effect of ultrasound irradiation on homo-
geneous Fenton oxidation, Fenton experiments were first conducted
under silent conditions. Two concentration levels of Fenton’s reagent
were applied with molar ratio of H2O2/Fe set to 48: [H2O2] = 3.2 mM
and [Fe2+] = 0.067 mM (referred to as F(−)), [H2O2] = 6.4 mM and
[Fe2+] = 0.134 mM (F(+)). It is worth noting that iron concentrations
used in this study (3.75–7.5 mg/L) were below the classical range
(between 10 and 500 mg/L) [10,13].

Under silent conditions, the Fenton reaction (F) proceeded in two
distinct steps (Fig. 6A): first a fast oxidation yielding up to 60% con-
version of IBP within 5 min; then, a much slower degradation rate until
the end of the reaction, which cannot be fitted either with first or
second order kinetics. This behavior is consistent with that reported in
previous studies on homogeneous Fenton oxidation of IBP [50,51]. At
higher iron concentration (0.5–1 mM Fe), the authors observed 90% of
IBP degradation in the first 5 min. The initial reaction stage corre-
sponded to the fast %OH generation from reaction between ferrous ions
and H2O2 (Eq. (1)). Then, formation of stable ferric complexes, such as
Fe-OOH2+ (Eqs. (2) and (3)), hindered Fe2+ regeneration and further
radical generation. In the low concentration range investigated, in-
creasing Fenton’s reagent was found beneficial (no scavenging effect
from H2O2 or Fe2+).

Coupling Fenton reaction with 20 kHz ultrasound (US/F) led to a
clear enhancement of IBP degradation rate after the first 5 min of re-
action (Fig. 6A). At low reagent concentration, full abatement of IBP
was observed in US/F(−) process after 3 h vs. only 62% in F(−). At
high reagent concentration, application of US reduced the time needed
for 95% IBP degradation from 180 to 60 min.

TOC removal was also significantly improved by the process cou-
pling, but a much slower reaction rate indicated that more refractory
degradation products were formed during the oxidation (Fig. 6B). At
best conditions, US/F(+) achieved 40% TOC conversion within
180 min, vs. 10% or less for each of the separate process (cf. Section
3.1.4 for sonolysis).

Moreover, H2O2 consumption at the end of Fenton (F(+)) and sono-
Fenton (US/F(+)) oxidation was 13% and 44%, respectively. Higher
amount of residual oxidant confirmed a lower overall activity of the
Fenton catalytic system under silent conditions. Indeed, beyond addi-
tional radicals generated from water sonolysis (Eq. (5)), positive sy-
nergistic effect observed in the combined process could be ascribed to
the sono-regeneration of ferrous ions, as illustrated by Eq. (7) [18].

In order to confirm such effect, a complementary experiment was
conducted. Same amounts of H2O2 and ferrous salt as in F(+) experi-
ment were mixed into 100 mL of acidic distillated water (pH 2.6)
during 60 min to pre-form the expected Fe-OOH2+ complex. Fenton
oxidation was then started by addition of this solution into 900 mL of
IBP solution. The system was let under stirring for 180 min (silent
Fenton oxidation), then sonication was applied for another 180 min
period (sono-Fenton oxidation). In this case, only 4% of IBP was con-
verted within 5 min (Fig. 7) vs. 60% for the standard Fenton oxidation
procedure (Fig. 6A). The time-concentration profile of the pollutant
also exhibited two different stages, with an IBP removal yield almost
plateauing at 20–25% after 90 min. Ultrasound application at
t = 240 min immediately accelerated IBP oxidation, the first-order rate
constant (k = 0.0102 min−1, R2 = 0.978) being three times higher
than for the sole sonolysis (cf. Section 3.1.4, k = 0.0035 min−1).

Fig. 5. Effect of sonication frequency on IBP sonolysis: (A) concentration-time profile and
(B) first-order rate constant ([IBP]0 = 20 mg/L in DW, pH0 = 4.3, T = 25 °C,
fUS = 12–862 kHz, DUS = 50 W/L).

Fig. 6. Fenton (F) and sono-Fenton oxidation (US/F) of IBP: evolution of (A) pollutant
and (B) TOC concentration ([IBP]0 = 20 mg/L in DW, pH0 = 2.6, T = 25 °C,
fUS = 20 kHz with DUS = 50 W/L under sonication, (−): [H2O2] = 3.2 mM and [Fe2+]
= 0.067 mM, (+): [H2O2] = 6.4 mM and [Fe2+] = 0.134 mM).



3.2.2. Effect of ultrasound operating parameters

To achieve appreciable TOC removal, the highest concentration of
Fenton’s reagent was applied for the study of ultrasonic parameters:
[H2O2] = 6.4 mM (twice the stoichiometric amount) and [Fe2+]
= 0.134 mM.

3.2.2.1. Effect of ultrasound power density (DUS). As abovementioned,
high ultrasound power density (DUS) promotes higher formation of %OH
and thus improves degradation rate and efficiency of sonolysis process
(Section 3.1.4). Nonetheless, the effect of DUS on sono-Fenton oxidation
process has been scarcely investigated. Siddique and coworkers [19]
reported that degradation of dye by homogeneous sono-Fenton
oxidation increased from 60% to 75% with increasing ultrasonic
intensity from 4 W/cm2 (40 W/L) to 8 W/cm2 (80 W/L). In the
present study, the effect of ultrasound power density on sono-Fenton
oxidation process was evaluated at 25 W/L, 50 W/L and 100 W/L
(figure not shown). Time-concentration profiles of IBP were found
similar on the whole DUS range. Conversely, varying DUS from 25 to
50 W/L improved TOC removal from 29% to 39%, but further increase
to 100 W/L did not show additional benefit. This observation suggests
the existence of optimum DUS for sono-Fenton process.

3.2.2.2. Effect of ultrasound frequency (fUS). Despite growing interest
for sono-Fenton process in the literature, information about optimum
US frequency is still scarce, because previous studies [10,13,23] usually
operated at a single value (in the 20–40 kHz range). Sonochemical
effects being suspected in the enhanced ferrous iron regeneration, two
high US frequencies (580 and 862 kHz) were investigated. An audible
frequency (12 kHz) was also applied since this frequency is rarely used

in sono-Fenton process. Experimental operating conditions were set to
20 mg/L IBP, 6.4 mM H2O2, 0.134 mM Fe, pH 2.6 and temperature
25 °C.

Fig. 8 revealed that degradation rate of IBP increased with in-
creasing sonication frequency, but the differences were mostly marked
between 12 and 20 kHz. Likewise, TOC abatement was also favored at
high frequency: 25% at 12 kHz vs. 48% at 862 kHz (after 3 h of reac-
tion). The mineralization results are comparable to that obtained in
previous studies on sono-Fenton oxidation of IBP (55% in 240 min)
performed with high frequency ultrasound (300 kHz) and low molar
ratio of H2O2/Fe (0.3) [52], and on sono-enzymatic degradation of IBP
(37% in 60 min) using low frequency ultrasound (37 kHz) and horse-
radish peroxidase enzyme [53].

3.3. Effect of real water matrix

Sonolysis and homogeneous sono-Fenton oxidation processes were
shown to be promising methods for the removal of IBP in water.
However, all the experiments that have been done so far were con-
ducted in distillated water (DW). In order to investigate the efficiency
in real application, some experiments with a real wastewater matrix
(WW) were performed. Wastewater consists in a complex mixture of
organic and inorganic compounds, such as nutrients, salts and many
substances that could influence the outcome of advanced oxidation
processes [54]. For instance, the presence of organic (humic acid, fulvic
acid, etc.) and inorganic compounds (chloride, carbonate, bicarbonate,
and phosphate ions) in WW may hamper Fenton reaction by scavenging
%OH and/or forming iron complex [26,55]. On the other hand, phenolic
compounds that WW may contain could reduce ferric ion to ferrous ion
and thus enhance Fenton reaction [55].

According to recent reviews on hybrid processes [56,57], AOPs are
recommended in combination with membrane filtration as post-treat-
ment of biological process for destruction of refractory organics in
concentrate stream. Such hybridization allows the AOPs to reach ap-
preciable mineralization level in relatively short oxidation time, and to
save chemicals and energy.

In this study, water samples taken after biological treatment of a
municipal wastewater treatment plant located in Nailloux village
(France) were used to prepare the IBP solution (at 20 mg/L). Table 3
shows the physicochemical characteristics of this effluent. After addi-
tion of IBP, TOC concentration increased to 25 mg/L, IBP being the
major organic compound in this matrix. The amount of carbonate and
bicarbonate was evaluated from inorganic carbon (IC) analysis and the
measured concentration level (29.4 mg/L) could be high enough to
scavenge %OH at neutral and alkaline pH [58]. On the other hand, the
initial iron concentration (< 0.05 mg/L) appeared too low to effec-
tively contribute to Fenton oxidation mechanism.

Matrix effect is evaluated for sonolysis (US), homogeneous Fenton
(F) and sono-Fenton (US/F) oxidation in Fig. 9. The treatment efficiency
in distilled water (DW) was also recalled for comparison purpose. As
usual, the initial pH of DW and WWwas set to 2.6 (using H2SO4) for the
Fenton and sono-Fenton oxidation runs, while the pH of WW was not

Fig. 7. Effect of sonication on Fenton catalyst regeneration. ([IBP]0 = 20 mg/L in DW,
pH0 = 2.6, T = 25 °C, fUS = 20 kHz with DUS = 50 W/L under US, [H2O2] = 6.4 mM
and [Fe2+] = 0.134 mM).

Fig. 8. Effect of sonication frequency on sono-Fenton oxidation of IBP: evolution of
pollutant concentration ([IBP]0 = 20 mg/L, pH0 = 2.6, T = 25 °C, f(U)S = 12–862 kHz
with DUS = 50 W/L under sonication, [H2O2] = 6.4 mM and [Fe2+] = 0.134 mM).

Table 3

Physicochemical properties of the WW.

Parameters

pH 8
Turbidity (NFU) 1
BOD (mg/L) < 2
COD (mg/L) < 30
TC (mg/L) 39.2
IC (mg/L) 29.4
TOC (mg/L) 9.8 (25a)
Total Fe (mg/L) < 0.05

a After the addition of IBP.



adjusted for sonolysis.
Degradation of both IBP and TOC by ultrasound was significantly

hampered in WW. Lower IBP removal in WW (24% vs. 48% in DW after
180 min) could be mainly explained by a pH effect, the initial pH of the
IBP solution varying from 4.3 to 8.0 whether prepared with DW or WW,
respectively. As abovementioned (see Section 3.1.2.), pH value of 8.0
indeed reduced the sono-degradation of IBP to 31% in DW by in-
creasing the molecule solubility. Competition or scavenging effects
from organic and/or inorganic compounds of WW thus seemed to have
only a minor effect.

After preliminary acidification to 2.6, time-concentration profiles of
IBP during Fenton oxidation were almost superimposed for the two
matrixes, while a slight decrease was observed for sono-Fenton process
when in WW (Fig. 9A). Therefore, it seems to confirm that IBP didn’t
strongly compete for radicals with the organic molecules present in
WW, and that iron complexation and free-radical scavenging were not
significantly increased in this matrix. In particular, inorganic carbon
content was almost totally converted into carbonic acid and CO2.

Moreover, overall TOC removal by Fenton oxidation was improved
in WW (25% vs. 9%, Fig. 9B). Fenton oxidation test without IBP proved
this result to be mainly the consequence of more readily oxidized or-
ganic compounds in WW (50% TOC removal). However, similar beha-
vior was not observed in sono-Fenton oxidation. This might due to se-
lective effect of acoustic cavitation towards specific organic molecules
[59] and complex interplay between iron and WW compounds (and/or
their oxidation intermediates) somewhat hampering sono-regeneration
of Fe2+.

All these results showed Fenton and sono-Fenton oxidation as

promising post-treatment

processes for pharmaceutical containing wastewaters.

4. Conclusion

The objective of this work was to study ibuprofen removal by so-
nolysis and sono-Fenton process. %OH-mediated oxidation at the bubble
surface was proved as the main degradation mechanism in the pollutant
sonolysis. Combination of homogeneous Fenton oxidation with US ir-
radiation was found to be more effective than the sum of individual
processes, especially in terms of mineralization yield. The sono-re-
generation of ferrous ions from ferric complex could explain this posi-
tive synergy, which yielded up to 50% of TOC removal in 3 h with a low
concentration of Fenton’s reagent (especially an iron concentration
below 10 mg/L). In real wastewater effluent, sonolysis was hampered
mainly due to alkaline pH conditions increasing the pollutant solubility.
Preliminary acidification could maintain the efficiency of Fenton and
sono-Fenton oxidation.
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