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2Université Paris-Sud, 91403 Orsay, France
{pkaran, yvon, lavergne, lamel}@limsi.fr

Abstract
To enhance the recognition lexicon, it is important to be able
to add pronunciation variants while keeping the confusability
introduced by the extra phonemic variation low. However, this
confusability is not easily correlated with the ASR performance,
as it is an inherent phenomenon of speech. This paper proposes
a method to construct a multiple pronunciation lexicon with a
high discriminability. To do so, a phoneme confusion model
is used to expand the phonemic search space of pronunciation
variants during ASR decoding and a discriminative framework
is adopted for the training of the weights of the phoneme confu-
sions. For the parameter estimation, two training algorithms are
implemented, the perceptron and the CRF model, using finite
state transducers. Experiments on English data were conducted
using a large state-of-the-art ASR system of continuous speech.
.
Index Terms: FST-based ASR decoding, dynamic recognition
lexicon, phoneme confusion model, discriminative training

1. Introduction
Modern ASR systems rely on a set of parameterized knowl-
edge sources, often taking the form of statistical models esti-
mated on appropriate training data. Amongst those knowledge
sources, the pronunciation dictionary has a peculiar role, and its
optimization for a specific task is not so easily performed; yet
many studies have found that integrating pronunciation variants
in a lexicon without optimizing their weights could severely
degrade the ASR performance. This explains the growing in-
terest in the design of dynamic, speech-dependent lexica, and
of subsequent weight training procedures. One such approach
is to label existing speech training data at the phonemic level
(for ex. using a phoneme recognizer), then to align these real-
izations with baseform pronunciations, thereby identifying new
variants for known words. These methods are a priori limited to
words present in the training set. To circumvent this limitation,
it is possible to extract phonological rules once the alignment is
done. These rules are not the result of linguistic knowledge
as the ones used in knowledge-based approaches. They just
adapt the baseform pronunciations to a transcription that bet-
ter matches the spoken utterance. Some instanciations of this
generic methodology are described in [1, 2, 3, 4, 5] to name a
few.

Once these surface pronunciations or phonological rules are
chosen, the next step is to add weights to them. A basic method
is to extract pronunciation probabilities based on the frequency
counts of each word [6]. Such weights can only be defined
for words occurring in the training set and no further training
of the weights is performed. Another method proposed in [7]

and [8] is to use the EM algorithm to train these lexical prob-
abilities, a method that seems prone to over-fitting the training
data. This explains why the last years there is a turn towards dis-
criminative models. In [9], a maximum entropy model is used
to evaluate the pronunciation weights, and in [10] a minimum-
classification-error approach is used. The drawback is that such
methods are often computationally expensive and, are thus of-
ten applied to small data sets. Moreover, the latter works are
once again limited to words present in the training set.

In this work, we develop a discriminative framework for
training the weights of the pronunciation model and we evalu-
ate the proposed method in a real-world task with experiments
on large data sets. First, the output of a phoneme recognizer
is aligned with the reference and a set of phoneme confusion
pairs is extracted. These confusion pairs are used to expand
the phonemic search space of pronunciations during the ASR
decoding. In this way, we hope to have pronunciations that bet-
ter reflect the actual spoken utterances. To train their weights,
a discriminative training is performed so as to minimize the
phoneme edit distance between the output of the phoneme rec-
ognizer and the reference. Two training criteria are imple-
mented, the perceptron and the CRF model. The advantage
of using a discriminative model is that the parameters of the
model are adapted to minimize the recognition error rate. By
contrast, the parameters of a maximum likelihood model are de-
rived, as the name suggests, to maximize the likelihood of some
data given the model; increases of the likelihood of the training
data, however, do not always translate into reduced error rates.

Another way of seeing the application of our confusion
model is as a corrector of the errors of the phoneme recognizer.
The study of [11] has shown that phonetic and word errors are
correlated, a fact that justifies our choice of an objective func-
tion in the phoneme level. This allows us to add variants to
the baseform pronunciations of any word and not be limited to
words that occur in the training data. Note also that in this way
we do not add a fixed number of pronunciations per word, as is
done with static g2p conversion.

2. Modelisation of the problem
In this section, we present our model, using concepts and nota-
tions borrowed in the structured learning litterature [12] and in
the theory of Finite-State Transducers (see [13] for a review).

We first assume the availability of a phoneme recognizer
(described in Section 4), turning input speech segments into
phonemic lattices (aka weighted acyclic automata) Ph. Lat-
tices contain acoustic scores, which are used during the train-
ing of the pronunciation weights, enabling us to integrate some
phonemic information provided by the acoustic model. This can
improve the results, as observed in [6, 14].
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In this work, a unigram model of phonemic confusions
(substitutions and deletions) is used, represented by an FST
C(θ), where the vector θ has one component for each possi-
ble confusion. C(θ) is an one-state FST whose structure is
designed as follows. We first run a forced alignment of the
training data with the reference, yielding phonemic references;
we then align the one-best outputs of the phoneme recognizer
with the corresponding reference sequences and count the num-
ber of phoneme deletions and substitutions. Confusions that
appear less than 20 times are not kept to avoid learning haz-
ardous mistakes. The resulting FST contains 1, 021 confusion
pairs, for which weights have to be trained. Each confusion is
represented by one arc in the FST, whose input (resp. output)
symbol corresponds to the recognized (resp. reference) symbol.
No particular initialization of the weights θ is performed, since
the training algorithms to be used maximize a convex objective
function (see details below).

We assume a training set consisting of n examples
{〈x(i), y(i)〉}ni=1, where x(i) is a phoneme lattice Ph and y(i) is
the reference corresponding to the true phoneme sequence. The
phoneme lattice x(i) can be expanded with the use of the confu-
sion model through formal composition Ph◦C(θ). Let Y(x(i))
be the set of phoneme sequences of the expanded phoneme lat-
tice. Each path π in Y(x(i)) corresponds to an alignment (x, y)
of a recognized phoneme sequence x and a possible correction
y; the weight of a path is the sum over all arcs of (i) the acoustic
score of x, and (ii) the parameters associated with the confu-
sions along the sequences (x, y). The phoneme decoding prob-
lem requires solving

y∗ = argmax
y′∈Y(x)

θ>f(x, y′). (1)

Decoding thus amounts to choosing the minimum-scoring path
in the FST representing Y(x). By changing the weights θ,
we also change the path weights and, thereby changes the best
path in this FST. Discriminative training aims at changing the
weights θ in such a way that the best path gets closer to the
reference phoneme sequence. This approach can be viewed as
a discriminative “reranking” of the pairs (x, y) that occur in
Y(x).

3. Training criteria
We review two criteria for training the parameter vector θ cor-
responding to two popular models: first Conditional Random
Fields, then the Perceptron model, using the notations of [15].

3.1. The CRF model

To derive the first training criterion, we can use the conditional
log-linear model of Equation 2. Note that, in addition to the
weights θ of the confusion model, we need to take the acoustic
scores ax for sequence x into account. These scores are inde-
pendent of θ and appear as an additive factor. Since they do not
depend on θ, they do not contribute to the derivatives as we will
see below and, therefore do not complicate the optimization.

pθ(y|x) = exp{θ>f(x, y) + ax}P
y′∈Y(x) exp{θ>f(x, y′) + ax}

(2)

The weights θ can then be trained by maximizing the con-
ditional log-likelihood

max
θ

nX
i=1

ˆ
θ>f(x(i), y(i)) + ax(i) − log

X
y∈Y(x(i))

exp{Ai}
˜
,

(3)

where Ai = θ>f(x(i), y) + ax(i) . Note that for the time be-
ing, no regularization term is used in the CRF model. Later,
we plan to experiment on using L2 and L1 regularizations (see
Section 6).

The CRF training criterion, originally proposed by [16], is
equivalent to MMI training that is traditionally used in speech
recognition to discriminatively train the acoustic model’s
weights [17]. Note that this framework is pretty generic and can
be extended to more complex representations of (x, y), taking
for instance the input or output context into account (subject
to decomposability constraints, so as to keep the optimization
tractable). We leave these extensions for future work.

3.2. Perceptron

The perceptron can be seen as an approximation of the online
version of the CRF training criterion, where we equal the pos-
terior probability of the most likely hypothesis to one and of all
the other hypotheses to zero. The perceptron algorithm itera-
tively updates weights by considering each training example in
turn. On each round, it uses the current model to make a pre-
diction. If the prediction is correct, there is no change to the
weights. If the prediction is incorrect, the weights are updated
proportionally to the difference between the correct feature vec-
tor f(x(i), y(i)) and the predicted feature vector f(x(i), y∗).
Following the presentation of [12], the weight update for each
training example is:

θ ← θ + a
`
f(x(i), y(i))− f(x(i), y∗)

´
, (4)

where a is the learning rate.
It can be shown that this approach minimizes the following

loss function, which approximates the zero-one loss:

1

n

nX
i=1

θ>
`
f(x(i), y(i))− f(x(i), y∗)

´
, (5)

Following common practice, we use the average version of
the perceptron: denoting θ(i)t the parameter vector after the ith
example is processed on the tth pass through the data. Then
the averaged parameters are defined as θAVG =

P
i,t θ

(i)
t /nT ,

where n is the number of examples in the training set and T
is the number of passes. The averaged perceptron, originally
proposed by [18], has been shown to give substantial improve-
ments in accuracy over the non averaged version for tagging
tasks [19].

3.3. Optimization algorithms

For the perceptron, its built-in update formula is used as already
mentioned. For the CRF model a gradient descent with learning
rate a can be used as an optimization algorithm. The derivatives
that need to be calculated are:

∂CRF (θ)

∂θj
=

nX
i=1

ˆ
fj(x

(i), y(i))−
X

y∈Y(x(i))

fj(x
(i), y)pθ(y|x(i))

˜
=

nX
i=1

ˆ
fj(x

(i), y(i))− Epθ(y|x(i))[fj(x
(i), y)]

˜
(6)

The feature expectation Epθ(y|x(i))[fj(x
(i), y)] is the aver-

aged value of the feature fj across all y ∈ Y(x(i)), with each y
weighted by its conditional probability given x(i). Using the
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log-linear form of the model (Equation (2)), the expectation
equates:

Epθ(y|x(i))[fj(x
(i), y)] =

P
y∈Y(x(i)) fj(x

(i), y) exp{Ai}
Zx(i)

,

where Zx(i) =
P
y′∈Y(x(i)) exp{θ>f(x(i), y′) + ax(i)} is the

normalization term, independent of y. The expectation is calcu-
lated using the standard forward-backward algorithm.

An additional comment regarding CRF training is in or-
der: until now we presented a simple supervised learning setup
where learning is done with gradient descent. However, in this
work online training is chosen and stochastic gradient descent is
used. Meaning that each iteration estimates this gradient on the
basis of a single randomly selected example [20]. In the percep-
tron case, the stochastic gradient descent matches the original
algorithm.

In online training, it has been found that is is better not to
use a fixed learning rate a. Instead, learning rates are generally
decreased according a schedule of the form a = a0/(1+a0∗t),
where t = 1, 2, ...n is the iteration of the learning algorithm
(the example we are processing). This schedule was originally
proposed by [21]. It is a gradually decaying learning rate, but
smoother than 1/t. The initial rate a0 was heuristically set to
a0 = 0.1.

4. Experimental set-up
The phoneme recognizer used in these experiments is built
using acoustic models that are tied-state, left-to-right 3-
state HMMs with Gaussian mixture observation densities.
The acoustic models are word position independent, gender-
dependent, speaker-adapted, and Maximum Likelihood trained
on about 500 hours of audio data. They cover about 30k phone
contexts with a total of 11, 500 tied states. Unsupervised acous-
tic model adaptation is performed for each segment cluster us-
ing the CMLLR and MLLR techniques prior to decoding. A
phonemic 3-gram language model is used in the construction
of the phoneme recognizer to impose some constraints in the
generated phonemic sequences.

Discriminative training is done on 40h of broadcast news
(BN) data used for the Quaero projet (www.quaero.org). These
data include around 5k phoneme lattices. Lattices with very
high error rate were removed and the remaining ∼ 4k lattices
were used for training. Reasons for the very high error rate on
some lattices include lack of reference for the particular time
segments, or other unpredictable factors (i.e., extreme presence
of noise,...). The Phoneme Error Rate (PER) on the training data
is 35%. Note that we are working with real-world continuous
speech, segmented in particularly long sentences (on average 80
words/sentence).

The Quaero 2010 development data (4h) were equally sub-
divided into test and dev sets, each containing 350 lattices.
This data set covers a range of styles, from BN to talk shows.
Roughly 50% of the data can be classed as BN and 50% broad-
cast conversation (BC). These data are considerably more diffi-
cult than pure BN data.

An FST decoder is also needed for the experiments pre-
sented in Section 5. We use a simple one-pass decoder. The
recognition dictionary used as a baseline is the LIMSI American
English recognition dictionary with 78k word entries with 1.2
pronunciations per word. The pronunciations are represented
using a set of 45 phonemes [22]. A 4-gram word LM is used,
trained on a corpus of 1.2 billion words of texts from various

LDC corpora , news articles downloaded from the web, and as-
sorted audio transcriptions.

5. Results
5.1. Objective calculation

A first control of the correct functioning of the discriminative
training is the calculation of the objective on the training data.
Only one epoch on the training data is traversed to keep the time
of computation low. This is why we actually chose to use online
training which has been shown to be asymptotically efficient
after a single pass on the training set [20]. The objective is
calculated after each 50 iterations (examples) on a randomly
chosen sub-set of the training data set.

In the case of the perceptron, the loss function is given in
Equation 5. This loss function, in the ideal case, should be zero
if no difference between the best hypothesis and the reference
was observed. In our case, as can be seen in Figure 1, the loss
function converges to a minimum after around 1,250 iterations
of the training algorithm.

Figure 1: Perceptron loss on training data
In the case of the CRF model, we want to train the weights θ

while maximizing the conditional log-likelihood (Equation 3).
To see some improvement in the upper objective, some normal-
ization of the acoustic weights ax was necessary before com-
bining them with the weights θ in order to have the weights in
the same scale of values. After this normalization, the objective
is indeed maximized as expected, though not presented here for
lack of space. Note that, for both perceptron and CRF, a con-
vergence towards a stable point is reached within the first epoch
on the training data.

5.2. Phoneme Accuracy

Next the phoneme accuracy is calculated, a measure related to
the objective function. Slight improvements are observed over
the baseline for both the development (dev) and the test sets. Ta-
ble 1 presents the results on the test set. Note that the proposed
simple unigram model can surely not capture the phoneme con-
text dependencies presented in pronunciation modeling. How-
ever, some partial improvements can be observed. For example,
looking at the column “Deletions” of Table 1, the system with
the CRF-trained confusion model reduces the deletion rate from
19% to 16%. The best performance is achieved by the averaged
perceptron which slightly improves the phoneme accuracy from

Table 1: Phoneme Accuracy of the phoneme recognizer on the
test set
System Phon Acc(%) Del(%) Sub(%) Ins(%)
Baseline 55 19 20 3
Perceptron 54 19 22 3
Av. Perceptron 56 19 20 3
CRF 52 16 25 5
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55% to 56%. The online training is very sensitive to the order
of processing of the examples and taking the average value cir-
cumvents this drawback.

Note that adding the confusion model without any training
of its weights severely degrades the system’s performance. This
is because of an augmentation of 126% in the average number
of paths in the phoneme lattices of the test set after the applica-
tion of the confusion model, which adds a detrimental amount
of confusability. However, the training of the weights of our
confusion model manages to handle the confusability in this
doubled search space.

Note also that the acoustic models we use are already
context-dependent, plus a 3-gram phonemic LM is used in the
phoneme recognizer. That means that a big part of the phone-
mic variation is already covered by the acoustic model and the
phonemic LM. It would be maybe easier to see some improve-
ment if a simple phoneme-loop phoneme recognizer was used
to generate the phoneme hypotheses.

5.3. Decoding process

The next step is to introduce the confusion model into the de-
coding process of a word recognizer and expand the phonemic
search space of pronunciations. Thus, instead of using a static
recognition lexicon, a dynamically adapted lexicon is produced.
To do so, an FST-based decoder is needed, which is not the case
of the LIMSI decoder [23]. To circumvent this problem, we de-
cided to add the confusion model in a post-processing step to the
1-best word output of the LIMSI decoder, expressed as an FST
W . We compose it with the inverted FST of the pronunciation
model Pr−1 and the result is a phoneme latticeA =W ◦Pr−1.

The Phoneme Accuracy of the baseline phoneme lattice A
is 70% (see Table 2). Note that this Accuracy is significantly
higher than the Phoneme Accuracy of the phoneme recognizer,
which is 55% for the same test set (see “Baseline” in Table 1).
Meaning that using these lattices as an input to an FST word
decoder will propagate less noise and will result in word se-
quences of better quality.

The phoneme latticeA is then expanded with the confusion
model C(θ) and a new phoneme latticeB =W ◦Pr−1 ◦C(θ)
is generated. The Phoneme Accuracy of the expanded lattice
B is 77% (see Table 2), which corresponds to a significant im-
provement over the baseline. Note that the confusion model
we apply to the experiments on the decoding process is the one
trained with the CRF model.

Table 2: Phoneme Accuracy of the word recognizer on the test
set)

Phon Acc(%) Del(%) Sub(%) Ins(%)
Lattice A 70 4 7 20
Lattice B 77 7 12 4

Then, we recompose with the pronunciation model Pr and
the language model G to produce a new word sequence W1. To
sum up, the series of compositions to get to W1 is:

W1 =W ◦ Pr−1 ◦ C(θ) ◦ Pr ◦G (7)

This series of inverse compositions and recompositions is
based on the idea presented in [24], implemented to find the
confusable words and predict ASR errors. Ideally the new word
sequence W1 would have a lower word error rate compared to
W . However, the following problem occurs: comparingW and
W1 is not a fair comparison because they are not the outputs
of the same decoder. Our FST decoder is surely a more simple
one compared to the LIMSI decoder. It is an one-pass decoder,

Table 3: Word Accuracy on the test set
Word Acc(%) Del(%) Sub(%) Ins(%)

Lattice Wb 61 10 22 6
Lattice W1 62 12 21 5

keeping no time information and applying no normalization on
the output data before scoring. Moreover, since the inverted
mappings are one-to-many (i.e., the lexicon Pr includes more
than one pronunciations for certain words) and the word bound-
ary information is lost after the compositions, the set W1 will
typically have more elements than W , meaning a lot of homo-
phones. Last but not least, the acoustic scores are lost during
the inverse composition. The baseline Word Accuracy of the
FST decoder (before introducing the confusion model: “Lat-
tice Wb” in Table 3) is thus lower than the one of the LIMSI
decoder (around 70%). The lattice Wb is the result of the post-
processing compositions Wb =W ◦ Pr−1 ◦ Pr ◦G.

As can be seen in Table 3, using the confusion model
(“Lattice W1”) results in a slight improvement over the base-
line (“Lattice Wb”). However, the large improvement ob-
served in the phoneme level (Phoneme Accuracy improved
from 70% to 77%, see Table 2) is not propagated when pass-
ing to words. This can be again because of the characteristics of
the FST-decoder mentioned in the above paragraphs (the acous-
tic model’s infomation is lost, no word-boundaries,...). It is not
straightforward though how to integrate the FST-based confu-
sion model to a non-FST decoder.

6. Conclusion and Future Work
We close this paper by summarizing some interesting aspects of
this work. Discriminative training of the weights of a phoneme
confusion model used to expand the phonemic search space of
pronunciations during decoding has been presented. A purely
FST-based implementation of training enables us to integrate
the training modules and the trained confusion model in any
FST-based ASR system. Moreover, working at the phoneme
level allows us to add pronunciation variants to any word, with-
out limiting the method to words in the training set.

Experiments were conducted in the context of a continu-
ous speech ASR system on English data segmented in long sen-
tences, which is admittedly a difficult baseline. Even though we
used a simple unigram confusion model, no additional confus-
ability was introduced to the system and some improvements
were observed. This suggests that this method and its possible
extensions can be used to adapt the recognition dictionary to a
particular data set .

In the future, we plan to experiment with different objective
functions, such as cost-augmented CRF and large-margin meth-
ods. In addition, a regularization term will be added to the loss
function so as to reduce overfitting and improve generalization
performance. Another important direction in which we need
to extend the approach is use contextual confusion models: in
theory, extending the phonemic context is a simple matter of us-
ing a more complex confusion automaton; it remains to be seen
how this increased complexity impacts the training and decod-
ing times.
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