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Explicit Inductive Bias for Transfer Learning with Convolutional Networks

Xuhong LI 1 Yves GRANDVALET 1 Franck DAVOINE 1

Abstract
In inductive transfer learning, fine-tuning pre-
trained convolutional networks substantially out-
performs training from scratch. When using fine-
tuning, the underlying assumption is that the pre-
trained model extracts generic features, which
are at least partially relevant for solving the tar-
get task, but would be difficult to extract from
the limited amount of data available on the target
task. However, besides the initialization with the
pre-trained model and the early stopping, there
is no mechanism in fine-tuning for retaining the
features learned on the source task. In this pa-
per, we investigate several regularization schemes
that explicitly promote the similarity of the final
solution with the initial model. We show the ben-
efit of having an explicit inductive bias towards
the initial model, and we eventually recommend
a simple L2 penalty with the pre-trained model
being a reference as the baseline of penalty for
transfer learning tasks.

1. Introduction
It is now well known that modern convolutional neural net-
works (e.g. Krizhevsky et al. 2012, Simonyan & Zisserman
2015, He et al. 2016, Szegedy et al. 2016) can achieve re-
markable performance on large-scale image databases, e.g.
ImageNet (Deng et al. 2009) and Places 365 (Zhou et al.
2017), but it is really dissatisfying to see the vast amounts
of data, computing time and power consumption that are
necessary to train deep networks. Fortunately, such convo-
lutional networks, once trained on a large database, can be
refined to solve related but different visual tasks by means
of transfer learning, using fine-tuning (Yosinski et al. 2014,
Simonyan & Zisserman 2015).

Some form of knowledge is believed to be extracted by
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learning from the large-scale database of the source task
and this knowledge is then transferred to the target task
by initializing the network with the pre-trained parameters.
However, we will show in the experimental section that
some parameters may be driven far away from their initial
values during fine-tuning. This leads to important losses of
the initial knowledge that is assumed to be relevant for the
targeted problem.

In order to help preserve the knowledge embedded in the
initial network, we consider a series of other parameter reg-
ularization methods during fine-tuning. We argue that the
standard L2 regularization, which drives the parameters to-
wards the origin, is not adequate in the framework of transfer
learning, where the initial values provide a more sensible
reference point than the origin. This simple modification
keeps the original control of overfitting, by constraining the
effective search space around the initial solution, while en-
couraging committing to the acquired knowledge. We show
that it has noticeable effects in inductive transfer learning
scenarios.

This paper copes with the inconsistency that still prevails in
transfer learning scenarios, where the model is initialized
with some parameters, while the abuse of L2 regularization
encourages departing from these initial values. We thus
advocate for a coherent parameter regularization approach,
where the pre-trained model is both used as the starting
point of the optimization process and as the reference in the
penalty that encodes an explicit inductive bias. This type
of penalty will be designated with SP to recall that they en-
courage similarity with the starting point of the fine-tuning
process. We evaluate regularizers based on the L2, Lasso
and Group-Lasso penalties, which can freeze some individ-
ual parameters, or groups of parameters, to the pre-trained
parameters. Fisher information is also taken into account
when we test L2-SP and Group-Lasso-SP approaches. Our
experiments indicate that all tested parameter regularization
methods using the pre-trained parameters as a reference get
an edge over the standard L2 weight decay approach. We
eventually recommend using L2-SP as the standard baseline
for solving transfer learning tasks and benchmarking new
algorithms.
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2. Related Work
In this section, we recall the approaches to inductive transfer
learning in convolutional networks. We focus on approaches
that also encourage similarity (of features or parameters) on
different models. Our proposal departs either by the goal
pursued or by the type of model used.

2.1. Shrinking Toward Chosen Parameters

Regularization has been a means to build shrinkage estima-
tors for decades. Shrinking towards zero is the most com-
mon form of shrinkage, but shrinking towards adaptively
chosen targets has been around for some time, starting with
Stein shrinkage (see e.g. Lehmann & Casella 1998, chap-
ter 5), where it can be related to empirical Bayes arguments.
In transfer learning, it has been used in maximum entropy
models (Chelba & Acero 2006) or SVM (Yang et al. 2007,
Aytar & Zisserman 2011, Tommasi et al. 2014). These
approaches were shown to outperform standard L2 regular-
ization with limited labeled data in the target task (Aytar &
Zisserman 2011, Tommasi et al. 2014).

These relatives differ from the application to deep networks
in several respects, the more important one being that they
consider a fixed representation, where transfer learning aims
at producing similar classification parameters in that space,
that is, similar classification rules. For deep networks, trans-
fer usually aims at learning similar representations upon
which classification parameters will be learned from scratch.
Hence, even though the techniques we discuss here are very
similar regarding the analytical form of the regularizers,
they operate on parameters having a very different role.

2.2. Transfer Learning for Deep Networks

Regarding transfer learning, we follow here the nomencla-
ture of Pan & Yang (2010), who categorized several types
of transfer learning according to domain and task settings
during the transfer. A domain corresponds to the feature
space and its distribution, whereas a task corresponds to
the label space and its conditional distribution with respect
to features. The initial learning problem is defined on the
source domain and source task, whereas the new learning
problem is defined on the target domain and the target task.

In the typology of Pan & Yang, we consider the inductive
transfer learning setting, where the target domain is identical
to the source domain, and the target task is different from the
source task. We furthermore focus on the case where a vast
amount of data was available for training on the source prob-
lem, and some limited amount of labeled data is available
for solving the target problem. Under this setting, we aim at
improving the performance on the target problem through
parameter regularization methods that explicitly encourage
the similarity of the solutions to the target and source prob-

lems. Note that, though we refer here to problems that were
formalized or popularized after (Pan & Yang 2010), such as
lifelong learning, Pan & Yang’s typology remains valid.

2.2.1. REPRESENTATION TRANSFER

Donahue et al. (2014) repurposed features extracted from
different layers of the pre-trained AlexNet of Krizhevsky
et al. (2012) and plugged them into an SVM or a logistic
regression classifier. This approach outperformed the state
of the art of that time on the Caltech-101 database (Fei-Fei
et al. 2006). Later, Yosinski et al. (2014) showed that fine-
tuning the whole AlexNet resulted in better performance
than using the network as a static feature extractor. Fine-
tuning pre-trained VGG (Simonyan & Zisserman 2015) on
the image classification task of VOC-2012 (Everingham
et al. 2010) and Caltech 256 (Griffin et al. 2007) achieved
the best results of that time.

Ge & Yu (2017) proposed a scheme for selecting a subset
of images from the source problem that have similar local
features to those in the target problem and then jointly fine-
tuned a pre-trained convolutional network. Besides image
classification, many procedures for object detection (Gir-
shick et al. 2014, Redmon et al. 2016, Ren et al. 2015) and
image segmentation (Long et al. 2015a, Chen et al. 2017,
Zhao et al. 2017) have been proposed relying on fine-tuning
to improve over training from scratch. These approaches
showed promising results in a challenging transfer learning
setup, as going from classification to object detection or
image segmentation requires rather heavy modifications of
the architecture of the network.

The success of transfer learning with convolutional networks
relies on the generality of the learned representations that
have been constructed from a large database like ImageNet.
Yosinski et al. (2014) also quantified the transferability of
these pieces of information in different layers, e.g. the first
layers learn general features, the middle layers learn high-
level semantic features and the last layers learn the features
that are very specific to a particular task. That can be also
noticed by the visualization of features (Zeiler & Fergus
2014). Overall, the learned representations can be conveyed
to related but different domains and the parameters in the
network are reusable for different tasks.

2.2.2. REGULARIZERS IN RELATED LEARNING SETUPS

In lifelong learning (Thrun & Mitchell 1995, Pentina &
Lampert 2015), where a series of tasks is learned sequen-
tially by a single model, the knowledge extracted from the
previous tasks may be lost as new tasks are learned, result-
ing in what is known as catastrophic forgetting. In order
to achieve a good performance on all tasks, Li & Hoiem
(2017) proposed to use the outputs of the target examples,
computed by the original network on the source task, to de-



Explicit Inductive Bias for Transfer Learning with Convolutional Networks

fine a learning scheme preserving the memory of the source
tasks when training on the target task. They also tried to
preserve the pre-trained parameters instead of the outputs
of examples but they did not obtain interesting results.

Kirkpatrick et al. (2017) developed a similar approach with
success. They get sensible improvements by measuring the
sensitivity of the parameters of the network learned on the
source data thanks to the Fisher information. The Fisher
information matrix defines a metric in parameter space that
is used in their regularizer to preserve the representation
learned on the source data, thereby retaining the knowledge
acquired on the previous tasks. This scheme, named elastic
weight consolidation, was shown to avoid forgetting, but
fine-tuning with plain stochastic gradient descent was more
effective than elastic weight consolidation for learning new
tasks. Hence, elastic weight consolidation may be thought as
being inadequate for transfer learning, where performance
is only measured on the target task. We will show that this
conclusion is not appropriate in typical transfer learning
scenarios with few target examples.

In domain adaptation (Long et al. 2015b), where the target
domain differs from the source domain whereas the target
task is identical to the source task and no (or few) target
examples are labeled, most approaches are searching for a
common representation space for source and target domains
to reduce domain shift. Rozantsev et al. (2016) proposed a
parameter regularization scheme for encouraging the sim-
ilarity of the representations of the source and the target
domains. Their regularizer encourages similar source and
target parameters, up to a linear transformation. Still in
domain adaptation, besides vision, encouraging similar pa-
rameters in deep networks has been proposed in speaker
adaptation problems (Liao 2013, Ochiai et al. 2014) and
neural machine translation (Barone et al. 2017), where it
proved to be helpful.

The L2-SP regularizer was used independently by Grachten
& Chacón (2017) for transfer in vision application, but
where they used a random reinitialization of parameters.
For convex optimization problems, this is equivalent to fine-
tuning with L2-SP, but we are obviously not in that situation.
Grachten & Chacón (2017) conclude that their strategy be-
haves similarly to learning from scratch. We will show that
using the starting point as an initialization of the fine-tuning
process and as the reference in the regularizer improves
results consistently upon the standard fine-tuning process.

3. Regularizers for Fine-Tuning
In this section, we detail the penalties we consider for fine-
tuning. Parameter regularization is critical when learning
from small databases. When learning from scratch, regu-
larization is aimed at facilitating optimization and avoiding

overfitting, by implicitly restricting the capacity of the net-
work, that is, the effective size of the search space. In
transfer learning, the role of regularization is similar, but the
starting point of the fine-tuning process conveys informa-
tion that pertains to the source problem (domain and task).
Hence, the network capacity has not to be restricted blindly:
the pre-trained model sets a reference that can be used to
define the functional space effectively explored during fine-
tuning.

Since we are using early stopping, fine-tuning a pre-trained
model is an implicit form of inductive bias towards the
initial solution. We explore here how a coherent explicit
inductive bias, encoded by a regularization term, affects the
training process. Section 4 shows that all such schemes
get an edge over the standard approaches that either use
weight decay or freeze part of the network for preserving
the low-level representations that are built in the first layers
of the network.

Let w ∈ Rn be the parameter vector containing all the
network parameters that are to be adapted to the target task.
The regularized objective function J̃ that is to be optimized
is the sum of the standard objective function J and the
regularizer Ω(w). In our experiments, J is the negative
log-likelihood, so that the criterion J̃ could be interpreted
in terms of maximum a posteriori estimation, where the
regularizer Ω(w) would act as the log prior of w. More
generally, the minimizer of J̃ is a trade-off between the
data-fitting term and the regularization term.

L2 penalty The current baseline penalty for transfer learn-
ing is the usual L2 penalty, also known as weight decay,
since it drives the weights of the network to zero:

Ω(w) =
α

2
‖w‖22 , (1)

where α is the regularization parameter setting the strength
of the penalty and ‖·‖p is the p-norm of a vector.

L2-SP Let w0 be the parameter vector of the model pre-
trained on the source problem, acting as the starting point
(-SP) in fine-tuning. Using this initial vector as the reference
in the L2 penalty, we get:

Ω(w) =
α

2

∥∥w −w0
∥∥2

2
. (2)

Typically, the transfer to a target task requires some mod-
ifications of the network architecture used for the source
task, such as on the last layer used for predicting the out-
puts. Then, there is no one-to-one mapping between w and
w0, and we use two penalties: one for the part of the target
network that shares the architecture of the source network,
denoted wS , the other one for the novel part, denoted wS̄ .
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The compound penalty then becomes:

Ω(w) =
α

2

∥∥wS −w0
S
∥∥2

2
+
β

2
‖wS̄‖

2
2 . (3)

L2-SP-Fisher Elastic weight consolidation (Kirkpatrick
et al. 2017) was proposed to avoid catastrophic forgetting
in the setup of lifelong learning, where several tasks should
be learned sequentially. In addition to preserving the ini-
tial parameter vector w0, it consists in using the estimated
Fisher information to define the distance between wS and
w0
S . More precisely, it relies on the diagonal of the Fisher

information matrix, resulting in the following penalty:

Ω(w) =
α

2

∑
j∈S

F̂jj
(
wj − w0

j

)2
+
β

2
‖wS̄‖

2
2 , (4)

where F̂jj is the estimate of the jth diagonal element of the
Fisher information matrix. It is computed as the average of
the squared Fisher’s score on the source problem, using the
inputs of the source data:

F̂jj =
1

m

m∑
i=1

K∑
k=1

fk(x(i);w0)

(
∂

∂wj
log fk(x(i);w0)

)2

,

where the outer average estimates the expectation with re-
spect to inputs x and the inner weighted sum is the estimate
of the conditional expectation of outputs given input x(i),
with outputs drawn from a categorical distribution of param-
eters (f1(x(i);w), . . . , fk(x(i);w), . . . , fK(x(i);w)).

L1-SP We also experiment the L1 variant of L2-SP:

Ω(w) = α
∥∥wS −w0

S
∥∥

1
+
β

2
‖wS̄‖

2
2 . (5)

The usual L1 penalty encourages sparsity; here, by using
w0
S as a reference in the penalty, L1-SP encourages some

components of the parameter vector to be frozen, equal
to the pre-trained initial values. The penalty can thus be
thought as intermediate between L2-SP (3) and the strate-
gies consisting in freezing a part of the initial network. We
explore below other ways of doing so.

Group-Lasso-SP (GL-SP) Instead of freezing some indi-
vidual parameters, we may encourage freezing some groups
of parameters corresponding to channels of convolution
kernels. Formally, we endow the set of parameters with a
group structure, defined by a fixed partition of the index set
I = {1, . . . , p}, that is, I =

⋃G
g=0 Gg, with Gg ∩ Gh =

∅ for g 6= h. In our setup, G0 = S̄, and for g > 0, Gg is
the set of fan-in parameters of channel g. Let pg denote
the cardinality of group g, and wGg ∈ Rpg be the vector
(wj)j∈Gg . Then, the GL-SP penalty is:

Ω(w) = α

G∑
g=1

sg

∥∥∥wGg −w0
Gg

∥∥∥
2

+
β

2
‖wS̄‖

2
2 , (6)

where w0
G0 = w0

S̄
4
= 0, and, for g > 0, sg is a predefined

constant that may be used to balance the different cardinali-
ties of groups. In our experiments, we used sg = p

1/2
g .

Our implementation of Group-Lasso-SP can freeze feature
extractors at any depth of the convolutional network, to
preserve the pre-trained feature extractors as a whole in-
stead of isolated pre-trained parameters. The group Gg of
size pg = hg × wg × dg gathers all the parameters of a
convolution kernel of height hg, width wg, and depth dg.
This grouping is done at each layer of the network, for each
output channel, so that the group index g corresponds to
two indexes in the network architecture: the layer index l
and the output channel index at layer l. If we have cl such
channels at layer l, we have a total of G =

∑
l cl groups.

Group-Lasso-SP-Fisher (GL-SP-Fisher) Following the
idea of L2-SP-Fisher, the Fisher version of GL-SP is:

Ω(w) = α

G∑
g=1

sg

( ∑
j∈Gg

F̂jj
(
wj − w0

j

)2 )1/2

+
β

2
‖wG0‖

2
2 .

4. Experiments
We evaluate the aforementioned parameter regularizers on
several pairs of source and target tasks. We use ResNet
(He et al. 2016) as our base network, since it has proven its
wide applicability on transfer learning tasks. Conventionally,
if the target task is also a classification task, the training
process starts by replacing the last layer with a new one,
randomly generated, whose size depends on the number of
classes in the target task.

4.1. Source and Target Databases

For comparing the effect of similarity between the source
problem and the target problem on transfer learning, we
chose two source databases: ImageNet (Deng et al. 2009) for
generic object recognition and Places 365 (Zhou et al. 2017)
for scene classification. Likewise, we have three different
databases related to three target problems: Caltech 256
(Griffin et al. 2007) contains different objects for generic
object recognition; MIT Indoors 67 (Quattoni & Torralba
2009) consists of 67 indoor scene categories; Stanford Dogs
120 (Khosla et al. 2011) contains images of 120 breeds of
dogs; Each target database is split into training and testing
sets following the suggestion of their creators (see Table 1
for details). In addition, we consider two configurations for
Caltech 256: 30 or 60 examples randomly drawn from each
category for training, and 20 remaining examples for test.
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Table 1. Characteristics of the target databases: name and type, numbers of training and test images per class, and number of classes.
Database task category # training # test # classes

MIT Indoors 67 scene classification 80 20 67
Stanford Dogs 120 specific object recog. 100 ∼ 72 120
Caltech 256 – 30 generic object recog. 30 20 257
Caltech 256 – 60 generic object recog. 60 20 257
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79

81

83

85

β

ac
cu

ra
cy

α = 0

α = 10−3

α = 10−2

α = 10−1
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Figure 1. Classification accuracy (in %) on Stanford Dogs 120 for L2-SP, according to the two regularization hyperparameters α and β
respectively applied to the layers inherited from the source task and the last classification layer (see Equation 3).

4.2. Training Details

Most images in those databases are color images. If not,
we create a three-channel image by duplicating the gray-
scale data. All images are pre-processed: we resize images
to 256×256 and subtract the mean activity computed over
the training set from each channel, then we adopt random
blur, random mirror and random crop to 224×224 for data
augmentation. The network parameters are regularized as
described in Section 3. Cross validation is used for searching
the best regularization hyperparameters α and β: α differs
across experiments, and β = 0.01 is consistently picked
by cross-validation for regularizing the last layer. Figure 1
illustrates that the test accuracy varies smoothly according
to the regularization strength, and that there is a sensible
benefit in penalizing the last layer (that is, β ≥ 0) for the
best α values. When applicable, the Fisher information
matrix is estimated on the source database. The two source
databases (ImageNet or Places 365) yield different estimates.
Regarding testing, we use central crops as inputs to compute
the classification accuracy.

Stochastic gradient descent with momentum 0.9 is used for
optimization. We run 9000 iterations and divide the learning
rate by 10 after 6000 iterations. The initial learning rates are
0.005, 0.01 or 0.02, depending on the tasks. Batch size is 64.
Then, under the best configuration, we repeat five times the
learning process to obtain an average classification accuracy
and standard deviation. All the experiments are performed
with Tensorflow (Abadi et al. 2015).

4.3. Results

4.3.1. FINE-TUNING FROM A SIMILAR SOURCE

Table 2 displays the results of fine-tuning with L2-SP and
L2-SP-Fisher, which are compared to the current baseline
of fine-tuning with L2. We report the average accuracies
and their standard deviations on 5 different runs. Since
we use the same data and the same starting point, runs
differ only due to the randomness of stochastic gradient
descent and to the weight initialization of the last layer. We
can observe that L2-SP and L2-SP-Fisher always improve
over L2, and that when less training data are available for
the target problem, the improvement of L2-SP and L2-SP-
Fisher compared to L2 are more important. Meanwhile,
no large difference is observed between L2-SP and L2-SP-
Fisher.

We can boost the performance and outperform the state of
the art (Ge & Yu 2017) in some cases by exploiting more
training techniques and post-processing methods, which are
described in the supplementary material.

4.3.2. BEHAVIOR ACROSS PENALTIES, SOURCE AND
TARGET DATABASES

A comprehensive view of our experimental results is given
in Figure 2. Each plot corresponds to one of the four target
databases listed in Table 1. The light red points mark the
accuracies of transfer learning when using Places 365 as the
source database, whereas the dark blue points correspond to
the results obtained with ImageNet. As expected, the results
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Table 2. Average classification accuracies (in %) of L2, L2-SP and L2-SP-Fisher on 5 different runs. The source database is Places 365
for MIT Indoors 67 and ImageNet for Stanford Dogs 120 and Caltech 256.

MIT Indoors 67 Stanford Dogs 120 Caltech 256 – 30 Caltech 256 – 60
L2 79.6±0.5 81.4±0.2 81.5±0.2 85.3±0.2

L2-SP 84.2±0.3 85.1±0.2 83.5±0.1 86.4±0.2
L2-SP-Fisher 84.0±0.4 85.1±0.2 83.3±0.1 86.0±0.1
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Figure 2. Classification accuracies (in %) of the tested fine-tuning
approaches on the four target databases, using ImageNet (dark
blue dots) or Places 365 (light red dots) as source databases. MIT
Indoor 67 is more similar to Places 365 than to ImageNet; Stanford
Dogs 120 and Caltech 256 are more similar to ImageNet than to
Places 365.

of transfer learning are much better when source and target
are alike: the scene classification target task MIT Indoor 67
(top left) is better transferred from the scene classification
source task Places 365, whereas the object recognition target
tasks benefit more from the object recognition source task
ImageNet. It is however interesting to note that the trends
are similar for the two source databases: all the fine-tuning
strategies based on penalties using the starting point -SP as
a reference perform consistently better than standard fine-
tuning (L2). There is thus a benefit in having an explicit
bias towards the starting point, even when the target task is
not too similar to the source task.

This benefit is comparable for L2-SP and L2-SP-Fisher
penalties; the strategies based on L1 and Group-Lasso penal-
ties behave rather poorly in comparison. They are even less
accurate than the plain L2 strategy on Caltech 256 – 60
when the source problem is Places 365. Stochastic gradient

Table 3. Classification accuracy drops (in %) on the source tasks
due to fine-tuning based on L2, L2-SP and L2-SP-Fisher regular-
izers. The source database is Places 365 for MIT Indoors 67 and
ImageNet for Stanford Dogs 120 and Caltech 256. The classifica-
tion accuracies of the pre-trained models are 54.7% and 76.7% on
Places 365 and ImageNet respectively.

L2 L2-SP L2-SP-Fisher
MIT Indoors 67 -24.1 -5.3 -4.9

Stanford Dogs 120 -14.1 -4.7 -4.2
Caltech 256 – 30 -15.4 -4.2 -3.6
Caltech 256 – 60 -16.9 -3.6 -3.2

descent does not handle well these penalties whose gradient
is discontinuous at the starting point where the optimization
starts. The stochastic forward-backward splitting algorithm
of Duchi & Singer (2009), which is related to proximal
methods, leads to substandard results, presumably due to
the absence of a momentum term. In the end, we used plain
stochastic gradient descent on a smoothed version of the
penalties eliminating the discontinuities of their gradients,
but some instability remains.

Finally, the variants using the Fisher information matrix
behave like the simpler variants using a Euclidean metric
on parameters. We believe that this is due to the fact that,
contrary to lifelong learning, our objective does not favor
solutions that retain accuracy on the source task. The metric
defined by the Fisher information matrix may thus be less
relevant for our actual objective that only relates to the
target task. Table 3 confirms that L2-SP-Fisher is indeed a
better approach in the situation of lifelong learning, where
accuracies on the source tasks matter. It reports the drop in
performance when the fine-tuned models are applied on the
source task, without any retraining, simply using the original
classification layer instead of the classification layer learned
for the target task. The performance drop is smaller for L2-
SP-Fisher than for L2-SP. In comparison, L2 fine-tuning
results in catastrophic forgetting: the performance on the
source task is considerably affected by fine-tuning.

4.3.3. FINE-TUNING vs. FREEZING THE NETWORK

Freezing the first layers of a network during transfer learn-
ing is another way to ensure a very strong inductive bias,
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Figure 3. Classification accuracies (in %) of fine-tuning with L2

and L2-SP on Stanford Dogs 120 (top) and Caltech 256–30 (bot-
tom) when freezing the first layers of ResNet-101. The dashed
lines represent the accuracies reported in Table 2, where no layers
are frozen. ResNet-101 begins with one convolutional layer, then
stacks 3-layer blocks. The three layers in one block are either
frozen or trained altogether.

letting less degrees of freedom to transfer learning. Figure 3
shows that this strategy, which is costly to implement if
one looks for the optimal number of layers to be frozen, can
improve L2 fine-tuning considerably, but that it is a rather in-
efficient strategy for L2-SP fine-tuning. Among all possible
choices, L2 fine-tuning with partial freezing is dominated
by the plain L2-SP fine-tuning. Note that L2-SP-Fisher (not
displayed) behaves similarly to L2-SP.

4.4. Analysis and Discussion

Among all -SP methods, L2-SP and L2-SP-Fisher always
reach a better accuracy on the target task. We expected L2-
SP-Fisher to outperform L2-SP, since Fisher information
helps in lifelong learning, but there is no significant differ-
ence between the two options. Since L2-SP is simpler than
L2-SP-Fisher, we recommend the former, and we focus on
the analysis of L2-SP, although most of the analysis and the
discussion would also apply to L2-SP-Fisher.

4.4.1. COMPUTATIONAL EFFICIENCY

The -SP penalties introduce no extra parameters, and they
only increase slightly the computational burden. L2-SP
increases the number of floating point operations required
for a learning step of ResNet-101 by less than 1%. Hence,
at a negligible computational cost, we can obtain significant
improvements in classification accuracy, and no additional
cost is experienced at test time.

4.4.2. THEORETICAL INSIGHTS

Analytical results are very difficult to obtain in the deep
learning framework. Under some (highly) simplifying as-
sumptions, we show in supplementary material that the
optimum of the regularized objective function with L2-SP
is a compromise between the optimum of the unregular-
ized objective function and the pre-trained parameter vector,
precisely an affine combination along the directions of eigen-
vectors of the Hessian matrix of the unregularized objective
function. This contrasts with L2 that leads to a compro-
mise between the optimum of the unregularized objective
function and the origin. Clearly, searching for a solution
in the vicinity of the pre-trained parameters is intuitively
much more appealing, since it is the actual motivation for
using the pre-trained parameters as the starting point of the
fine-tuning process.

Using L2-SP instead of L2 can also be motivated by an
analogy with shrinkage estimation (see e.g. Lehmann &
Casella 1998, chapter 5). Although it is known that shrink-
ing toward any reference is better than raw fitting, it is also
known that shrinking towards a value that is close to the
“true parameters” is more effective. The notion of “true pa-
rameters” is not readily applicable to deep networks, but the
connection with Stein shrinking effect may be inspiring by
surveying the literature considering shrinkage towards other
references, such as linear subspaces. In particular, it is likely
that manifolds of parameters defined from the pre-trained
network would provide a more relevant reference than the
single parameter value provided by the pre-trained network.

4.4.3. LAYER-WISE ANALYSIS

We complement our experimental results by an analysis rely-
ing on the activations of the hidden units of the network, to
provide another view on the differences between L2 and L2-
SP fine-tuning. Activation similarities are easier to interpret
than parameter similarities, and they provide a view of the
network that is closer to the functional perspective we are
actually pursuing. Matching individual activations makes
sense, provided that the networks slightly differ before and
after tuning so that few roles are switched between units or
feature maps.

The dependency between the pre-trained and the fine-tuned
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Figure 4. R2 coefficients of determination with L2 and L2-SP regularizations for Stanford Dogs 120. Each boxplot summarizes the
distribution of the R2 coefficients of the activations after fine-tuning with respect to the activations of the pre-trained network, for all the
units in one layer. ResNet-101 begins with one convolutional layer, then stacks 3-layer blocks. For legibility, we only display here the R2

at the first layer and at the outputs of some 3-layer blocks.

activations throughout the network is displayed in Figure 4,
with boxplots of the R2 coefficients, gathered layer-wise,
of the fine-tuned activations with respect to the original
activations. This figure shows that, indeed, the roles of units
or feature maps have not changed much after L2-SP and L2-
SP-Fisher fine-tuning. The R2 coefficients are very close
to 1 on the first layers, and smoothly decrease throughout
the network, staying quite high, around 0.6, for L2-SP and
L2-SP-Fisher at the greatest depth. In contrast, for L2

regularization, some important changes are already visible
in the first layers, and the R2 coefficients eventually reach
quite low values at the greatest depth. This illustrates in
details how the roles of the network units is remarkably
retained with L2-SP and L2-SP-Fisher fine-tuning, not only
for the first layers of the networks, but also for the last
high-level representations before classification.

5. Conclusion
We described and tested simple regularization techniques
for inductive transfer learning. They all encode an explicit
bias towards the solution learned on the source task, result-
ing in a compromise with the pre-trained parameter that is
coherent with the original motivation for fine-tuning. All
the regularizers evaluated here have been already used for
other purposes or in other contexts, but we demonstrated
their relevance for inductive transfer learning with deep
convolutional networks.

We show that a simple L2 penalty using the starting point as
a reference, L2-SP, is useful, even if early stopping is used.
This penalty is much more effective than the standard L2

penalty that is commonly used in fine-tuning. It is also more
effective and simpler to implement than the strategy con-
sisting in freezing the first layers of a network. We provide

theoretical hints and strong experimental evidence showing
that L2-SP retains the memory of the features learned on
the source database. We thus believe that this simple L2-SP
scheme should be considered as the standard baseline in
inductive transfer learning, and that future improvements of
transfer learning should rely on this baseline.

Besides, we tested the effect of more elaborate penalties,
based on L1 or Group-L1 norms, or based on Fisher infor-
mation. None of the L1 or Group-L1 options seem to be
valuable in the context of inductive transfer learning that we
considered here, and using the Fisher information with L2-
SP does not improve accuracy on the target task. Different
approaches, which implement an implicit bias at the func-
tional level, alike Li & Hoiem (2017), remain to be tested:
being based on a different principle, their value should be
assessed in the framework of inductive transfer learning.
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A. Effect of L2-SP Regularization on
Optimization

The effect of L2 regularization can be analyzed by doing a
quadratic approximation of the objective function around the
optimum (see, e.g. Goodfellow et al. 2017, Section 7.1.1).
This analysis shows that L2 regularization rescales the pa-
rameters along the directions defined by the eigenvectors of
the Hessian matrix. This scaling is equal to λi

λi+α
for the

i-th eigenvector of eigenvalue λi. A similar analysis can be
used for the L2-SP regularization.

We recall that J(w) is the unregularized objective func-
tion, and J̃(w) = J(w) + α

∥∥w −w0
∥∥2

2
is the regular-

ized objective function. Let w∗ = argminwJ(w) and
w̃ = argminwJ̃ be their respective minima. The quadratic
approximation of J(w∗) gives

H(w̃ −w∗) + α(w̃ −w0) = 0 , (7)

where H is the Hessian matrix of J w.r.t. w, evaluated at
w∗. Since H is positive semidefinite, it can be decomposed
as H = QΛQT . Applying the decomposition to Equation
(7), we obtain the following relationship between w̃ and
w∗:

QT w̃ = (Λ + αI)−1ΛQTw∗ + α(Λ + αI)−1QTw0 .
(8)

We can see that with L2-SP regularization, in the direction
defined by the i-th eigenvector of H, w̃ is a convex combi-
nation of w∗ and w0 in that direction since λi

λi+α
and α

λi+α
sum to 1.

B. Matching the State of the Art in Image
Classification

The main objective of this paper is to demonstrate that -SP
regularization in general, and L2-SP in particular, provides
a baseline for transfer learning that is significantly superior
to the standard fine-tuning technique. We do not aim at
reaching the state of the art solely with this simple technique.
However, as shown here, with some training tricks and post-
processing methods, which have been proposed elsewhere
but were not used in the paper, we can reach or even exceed
the state of the art performances, simply by changing the
regularizer to L2-SP.

Aspect Ratio. During training, respecting or ignoring the
aspect ratio of images will give different results, and usually
it would be better to keep the original aspect ratio. In the
paper, the classification experiments are all under the pre-
processing of resizing all images to 256×256, i.e. ignoring
the aspect ratio. Here we perform an ablation study to

analyze the difference between keeping and ignoring the
ratio. For simplicity, we use the same hyperparameters as
before except that the aspect ratio is kept and images are
resized with the shorter edge being 256.

Post-Processing for Image Classification. A common
post-processing method for image classification is 10-crop
testing (averaging the predictions of 10 cropped patches,
the four corner patches and the center patch as well as their
horizontal reflections).

We apply the aspect ratio and 10-crop testing techniques
to improve our results, but we believe the performance can
be improved but using additional tricks, such as random
rotation or scaling during training, more crops, multi scales
for test, etc. Table 4 shows our results. Caltech 256 - 30
outperforms the state of the art; our results in MIT Indoors
67 and Stanford Dogs 120 are very close to the state of
the art, noting that the best performing approach (Ge & Yu
2017) used many training examples from source domain to
improve performance. On our side, we did not use any other
examples and simply changed the regularization approach
from L2 to L2-SP.

We add Foods 101 (Bossard et al. 2014) to supplement our
experiments. Foods 101 is a database that collects photos
of 101 food categories and is a much larger database than
the three we already presented, yet rough in terms of image
quality and class labels in the training set.

C. Application of L2-SP to Semantic Image
Segmentation

The paper compares different regularization approaches for
transfer in image classification. In this section, we examine
the versatility of L2-SP by applying it to image segmenta-
tion. Although the image segmentation target task, which
aims at labeling each pixel of an image with the category of
the object it belongs to, differs from the image classification
source task, it still benefits from fine-tuning.

We evaluate the effect of fine-tuning with L2-SP on
Cityscapes (Cordts et al. 2016), a dataset with an evalu-
ation benchmark for pixel-wise segmentation of real-world
urban street scenes. It consists of 5000 images with high
quality pixel-wise labeling, which are split into a training
set (2975 images), a validation set (500 images) and a test
set (1525 images), all with resolution 2048×1024 pixels.
ImageNet (Deng et al. 2009) is used as source.

As for the networks, we consider two architectures of con-
volutional networks: the standard ResNet (He et al. 2016),
which can be used for image segmentation by removing the
global pooling layer, and DeepLab-V2 (Chen et al. 2017),
which stayed top-ranked for some time on the Cityscapes
benchmark and is one of the most favored structures. We
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Table 4. Average classification accuracies (in %) for L2 and L2-SP using the training tricks presented in Section B. The source database is
Places 365 for MIT Indoors 67 and ImageNet for Caltech 256, Stanford Dogs and Foods. References for the state of the art are taken from
Ge & Yu (2017), except for Foods-101 where it is taken from Martinel et al. (2016).

Caltech 256 - 30 Caltech 256 - 60 MIT Indoors 67 Stanford Dogs 120 Foods 101
L2 82.7±0.2 86.5±0.4 80.7±0.9 83.1±0.2 86.7±0.2

L2-SP 84.9±0.1 87.9±0.2 85.2±0.3 89.8±0.2 87.1±0.1
Reference 83.8±0.5 89.1±0.2 85.8 90.3 90.3

Table 5. Mean IoU scores on Cityscapes validation set. Fine-
tuning with L2, Chen et al. (2017) obtained 66.6 and 70.4 for
ResNet-101 and DeepLab respectively.

Method L2 L2-SP
ResNet-101 68.1 68.7
DeepLab 72.0 73.2

reproduce them with L2 and L2-SP on Cityscapes under the
same setting.

Most of the training tricks used for classification apply to
segmentation, and we precise here the difference. Images
are randomly cropped to 800×800, 2 examples are used in
a batch, and batch normalization layers are frozen to keep
pre-trained statistics. We use the polynomial learning rate
policy as in Chen et al. (2017) and the base learning rate is
set to 0.0005. For testing, we use the whole image.

Table 5 reports the results on Cityscapes validation set. We
reproduce the experiments of ResNet and DeepLab that use
the standard L2 fine-tuning, and compare with L2-SP fine-
tuning, all other setup parameters being unchanged. We
readily observe that fine-tuning with L2-SP in place of L2

consistently improves the performance in mean IoU score,
for both networks.


