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US 1106, Unité INFOSOL, Orleans, France, 3 Agroécologie-Plateforme GenoSol, Dijon, France, 4 CEA /

Institut de Génomique / Génoscope, Evry, France, 5 ADEME, Service Agriculture et Forêt, Angers, France

☯ These authors contributed equally to this work.

* lionel.ranjard@inra.fr

Abstract

Although numerous studies have demonstrated the key role of bacterial diversity in soil func-

tions and ecosystem services, little is known about the variations and determinants of such

diversity on a nationwide scale. The overall objectives of this study were i) to describe the

bacterial taxonomic richness variations across France, ii) to identify the ecological pro-

cesses (i.e. selection by the environment and dispersal limitation) influencing this distribu-

tion, and iii) to develop a statistical predictive model of soil bacterial richness. We used the

French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173

sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S

rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land

use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution,

structured into patches of about 111km, where the main drivers were the soil physico-chemi-

cal properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and

1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%).

Based on these drivers, a predictive model was developed, which allows a good prediction

of the bacterial richness (R2
adj of 0.56) and provides a reference value for a given pedocli-

matic condition.

Introduction

Numerous studies performed over the last two decades in the field of microbial ecology have

focused on variations of the soil microbial diversity under different environmental conditions

to better understand its regulation and predict the impact of perturbations [1–4]. These works

were justified by the lack of knowledge about the determinants of microbial diversity in space

and time, but also by the growing awareness of the key role of soil microbial diversity in soil

functions (C and N recycling, pathogen management, bioremediation. . .) [1,5–8] and the sup-

ply of ecosystem services. In this context, we have therefore accumulated a huge number of

PLOS ONE | https://doi.org/10.1371/journal.pone.0186766 October 23, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Terrat S, Horrigue W, Dequietd S, Saby

NPA, Lelièvre M, Nowak V, et al. (2017) Mapping

and predictive variations of soil bacterial richness

across France. PLoS ONE 12(10): e0186766.

https://doi.org/10.1371/journal.pone.0186766

Editor: Xiangzhen Li, Chengdu Institute of Biology,

CHINA

Received: June 21, 2017

Accepted: October 7, 2017

Published: October 23, 2017

Copyright: © 2017 Terrat et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All raw data sets are

publicly available in the EBI database system (in the

Short Read Archive) under project accession no

PRJEB21351.

Funding: This study was granted by ADEME

(French Environment and Energy Management

Agency) and by “France Génomique” through

involvement of the technical facilities of Genoscope

(project number ANR-10-INBS-09-08). In addition,

due to the involvement of technical facilities at the

GenoSol platform of the infrastructure ANAEE

France, it also received a grant from the French

https://doi.org/10.1371/journal.pone.0186766
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186766&domain=pdf&date_stamp=2017-10-23
https://doi.org/10.1371/journal.pone.0186766
http://creativecommons.org/licenses/by/4.0/


studies dealing with precise perturbations on a plot scale (e.g. [1]). Soil microbial community

as a whole and how it varies has already been examined over regional (e.g. [9]), territorial (e.g.

[10]) or continental scales (e.g. [4,11]) by several studies. One of the main pioneer works was

performed by Fierer & Jackson (2006) who described soil bacterial diversity on a continental

scale by applying DNA fingerprinting to 98 soils sampled along an environmental transect

from the north to the south of America [12]. They demonstrated that bacterial diversity was

closely related to soil characteristics and especially the pH, as recently confirmed in other stud-

ies [10,13]. But, more recently, other studies [9,11,14] have demonstrated the prevalence of

other parameters (like climate, geomorphology or land use) on bacterial distributions across

regional or global scales. For example, Maestre et al., (2015) highlighted that aridity indirectly

impacted the diversity and abundance of soil bacteria and fungi by strongly affecting soil pH,

soil organic C content, and total plant cover using data from 80 dryland sites across the globe

[11]. Another study, based on a European soil transect (72 sites showed that soil pH was the

main driver of soil bacterial community structure), and established a predictive model of soil

bacterial community structure allowing to draw a map at the European scale based solely on

this soil parameter [15]. In the same way, two recent studies have developed statistical models

to build global spatially explicit predictions of soil microbial biomass [16,17].

However, most of the studies that compared soil microbial diversity and composition were

conducted in very different types of ecosystems and soils (generally chosen with a priori),
which could have facilitated community discrimination and exacerbated the relationship with

contrasting environmental filters (soil characteristics, climatic conditions, land cover etc.). In

addition, reducing the number of environmental parameters examined and/or their range of

variation can lead to contradictory results concerning, for example, the influence of climatic

conditions on soil bacterial diversity [12,18]. Drawing a robust conclusion, as to the ecological

processes involved (deterministic vs neutral processes) or the hierarchy of environmental fil-

ters driving soil microbial diversity on a nationwide scale, currently seems impossible from

these studies. However, more recently some studies using large soil sampling on a regional

scale started to decipher the ecological processes (deterministic vs neutral processes) driving

soil microbial diversity. Recently, a study showed that habitat turnover was the primary driver

of bacterial community turnover, but its importance decreased with increasing isolation [19].

These studies paved the way for the importance of conducting new extensive studies on a

nationwide scale with high resolution sampling and without a priori to improve the robustness

and general applicability of the conclusions and then the understanding of soil microbial com-

munity regulation.

In France, the French Soil Quality Monitoring Network (Réseau de Mesures de la Qualité

des Sols = RMQS) represents the most extensive and without a priori soil sampling survey

available to date and fulfils most of the above-cited requirements [20]. It consists of a system-

atic sampling grid (16 x 16 km) extending over the whole of France with 2,173 sites covering

an area of�5.3 x 105 km2 with a huge diversity of soil physico-chemical characteristics, plant

cover, land use, geomorphology and climatic conditions and coupled with an extensive collec-

tion of corresponding environmental data (Fig 1) [21]. In previous studies, by applying molec-

ular tools to characterize the microbial communities in all RMQS samples, we demonstrated

that soil molecular microbial biomass was heterogeneously distributed on the scale of France

with biogeographical patterns of about 160 km radius, mostly driven by the soil texture, the

pH, the organic carbon content of the soil and by the land use with a negative impact of agri-

cultural land use conversely to natural or semi natural land use [22,23]. Based on these drivers

we developed an original predictive polynomial model that provides a reference value for

microbial biomass for a given pedoclimatic condition, which can then be compared with the

corresponding measured value to provide a robust diagnosis of soil microbiological status

Soil bacterial richness on a nationwide scale
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[17]. By applying a DNA-fingerprinting approach, we also proved a heterogeneous distribu-

tion of soil bacterial community structure, which was independent of soil microbial biomass

distribution but driven by soil physico-chemical properties and land use [22]. By comparing

estimates of the taxa-area relationship with habitat heterogeneity, we demonstrated that the

turnover rate of bacterial diversity in soils on a nationwide scale was (i) highly significant and

strongly correlated with the turnover rate of soil habitat [24], and (ii) driven by dispersal limi-

tation as well as environmental selection, this latter including soil and land use properties [13].

Since all these studies were based on quantitative and community structure characterization of

bacterial communities, they did not provide information about bacterial diversity in terms of

richness, evenness and taxonomic composition.

The aim of the present study was to use the RMQS monitoring network to evaluate the vari-

ations and to decipher the spatial patterns of bacterial richness in soils across French national

territory. More precisely, our study focused on bacterial taxonomic richness (in terms of num-

ber of Operational Taxonomic Units or OTUs at 95% of sequence similarity, corresponding

roughly to the genus level) [1,6]. Bacterial richness was determined in all 2,173 soils samples of

the RMQS by using a pyrosequencing of bacterial 16S rRNA genes directly amplified from soil

DNA. Geostatistics was applied to these data to provide the first comprehensive map of soil

bacterial richness variation along the environmental gradients encountered in France. The

ecological processes structuring the variation of bacterial richness were identified and ranked

by variance partitioning analysis. Finally, a statistical predictive model was developed accord-

ing to the environmental filters identified. This model represents an operational tool highly

complementary with the predictive model of soil molecular microbial biomass developed pre-

viously [16,17] to establish a comprehensive diagnosis of the soil microbiological status (in

terms of abundance and diversity of soil microorganisms).

Materials and methods

Soil sampling strategy

Soil samples were obtained from the French Soil Quality Monitoring Network (“Réseau de

Mesures de la Qualité des Sols” = RMQS) which is a soil monitoring network based on a 16

km regular grid across the 550,000 km2 French territory [25]. The RMQS includes 2,173

Fig 1. Locations, land uses and texture of sampling sites from the French Soil Quality Monitoring

Network (RMQS). (A) Location of sampling sites in the systematic sampling grid of the French Soil Quality

Monitoring Network (RMQS) criss-crossing the whole French territory. Colour legend indicates the various

types of land use encountered in France on this scale. “Others” land use corresponds to sites impossible to

sample which corresponded to inaccessible sites (mountain, sea, etc.) or sites without natural soils (urban

zone, rocky zone. . .). (B) Distribution of the RMQS soils in the USDA soil texture triangle. Colour legend from

yellow to blue represents the soil pH of each RMQS soil.

https://doi.org/10.1371/journal.pone.0186766.g001
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monitoring sites, collected between 2000 and 2009, each located at the centre of a 16 x 16 km

cell (Fig 1). All sites have been geo-positioned with a precision <0.5m and the soil profile,

site environment, climatic factors, vegetation and land use described (see Table 1). In the

middle of each 16 x 16 km square, 25 individual core samples were taken from the topsoil

(0–30 cm) using an unaligned sampling design within an area of 20 x 20 m. The core samples

were bulked to obtain a composite sample for each RMQS site. The soil samples were gently

air-dried, sieved to 2mm and then stored at -40˚C before analysis [23]. Physico-chemical

parameters were measured for each composite soil, e.g. particle-size distribution, pH water,

organic C, N, C/N ratio, soluble P contents, calcareous, cation exchange capacity (CEC) or

exchangeable cations (Ca, Mg). Physical and chemical analyses are available for 2,131 soils

and were performed by the Soil Analysis Laboratory of INRA (Arras, France, http://www.

lille.inra.fr/las). Available climatic data for the RMQS were annual rain, evapotranspiration

and temperature. These data were obtained for each node of a 12 x 12 km grid defined by

Meteo-France, obtained by interpolating observational data using the SAFRAN model [26].

Obtained measures for the period 1992–2004 were then averaged, to integrate all transitory

effects into one value corresponding to a global effect of climate on soil microbial communi-

ties. Finally, the RMQS site-specific data were linked to the climatic data by finding for each

RMQS site on the grid of 16 x 16 km the closest node within the 12 x 12 km climatic grid.

Land use was recorded according to the coarse level of the CORINE Land Cover classification

(http://land.copernicus.eu/pan-european/corine-land-cover), which consists of a rough

descriptive classification into five classes: forests, croplands, grasslands, others and perennial

crops (corresponding to vineyards and orchards). All these data were available in the DONE-

SOL database [21].

Table 1. Statistical description of environmental parameters for RMQS soil samples. These values are based on the 1,798 sites analyzed. CEC: cat-

ion-exchange capacity; ETP: evapotranspiration.

Soil properties (unit) Minimum First Quartile Median Mean Third Quartile Maximum

pH water 3.70 5.40 6.23 6.42 7.80 8.90

Organic Carbon (g.kg-1) 2.57 13.60 19.80 26.08 30.70 243.00

Total Nitrogen (g.kg-1) 0.11 1.180 1.75 2.20 2.71 16.00

C:N 6.26 9.67 10.56 12.10 13.27 52.72

Total Calcium Carbonate (g.kg-1) 0.50 0.50 0.50 56.19 12.38 866.00

Available phosphorous (g.kg-1) 0.001 0.014 0.036 0.053 0.077 1.110

CEC (Cmol + kg-1) 0.25 5.84 10.30 14.32 20.30 70.10

Clay (g.kg-1) 5.0 154.0 213.0 248.9 325.8 819.0

Silt (g.kg-1) 2.0 280.0 406.5 410.6 540.8 819.0

Sand (g.kg-1) 7.0 152.0 287.0 340.4 502.0 985.0

Total Cd (g.100g-1) 0.01 0.12 0.20 0.30 0.35 4.10

Total Cu (g.100g-1) 0.50 8.77 13.90 19.93 22.10 491.00

Total Ni (g.100g-1) 0.50 11.72 19.70 25.20 31.50 1,530.00

Total Pb (g.100g-1) 3.06 21.40 28.20 32.97 38.00 624.00

Total Zn (g.100g-1) 2.50 43.83 64.32 74.55 90.20 1,080.00

Total K (g.100g-1) 0.02 1.06 1.44 1.60 2.01 5.40

Elevation (m) -3.0 106.0 194.5 331.1 388.8 2,540.0

Mean Annual ETP (mm) 43.38 50.45 54.31 55.67 58.61 96.11

Mean Annual Rain (mm) 45.78 62.66 71.89 76.77 84.11 183.71

Mean Annual Temperature (˚C) -2.32 9.93 10.72 10.66 11.73 15.49

https://doi.org/10.1371/journal.pone.0186766.t001
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Molecular characterization of bacterial community diversity

Soil DNA extraction and purification. Microbial DNA was extracted and purified from

1g of the 2,173 composite soils (composed of a bulk of 25 individual core soils) sampled in

each RMQS site, using the GnS-GII procedure as described previously [27]. Crude DNA

extracts were quantified by agarose gel electrophoresis stained with ethidium bromide and

using calf thymus DNA as standard curve [23]. Crude DNA was then purified using a MinE-

lute gel extraction kit (Qiagen, France) and quantified using a QuantiFluor staining kit (Pro-

mega, USA), prior to further investigations.

PCR amplification and pyrosequencing of 16S rRNA gene sequences. A 16S rRNA

gene fragment targeting the V3-V4 regions to characterize bacterial diversity was amplified

using the primers F479 (5’-CAGCMGCYGCNGTAANAC-3’) and R888 (5’-CCGYCAATTCMT
TTRAGT-3’) [27]. 2,132 soil samples were successfully amplified from the 2,173 DNA soil

samples. The 16S PCR products were then purified using a MinElute PCR purification kit

(Qiagen, Courtaboeuf, France) and quantified using the QuantiFluor staining kit (Promega,

USA). A second PCR of 7 cycles was then duplicated for each sample under similar PCR con-

ditions, with purified PCR products as matrix (7.5ng of DNA were used for a 25μl mix of

PCR) and dedicated fusion primers (‘F479/AdaptorB’, ‘R888/MID/AdaptorA’) integrating

needed adaptors, keys and multiplex identifiers at 5’ extremities. All duplicated PCR products

were then pooled, purified using a MinElute PCR purification kit (Qiagen, Courtaboeuf,

France), and quantified using the QuantiFluor staining kit (Promega, USA). For all libraries,

equal amounts from 30 samples were pooled, and then cleaned to remove excess nucleotides,

salts and enzymes using the Agencourt AMPure XP system (Beckman Coulter Genomics).

100μl of TE buffer (Roche) was used for the elution. Pyrosequencing was then carried out on a

GS FLX Titanium (Roche 454 Sequencing System) by Genoscope (Evry, France).

Bioinformatics sequence analysis. Bioinformatic analyses were done using the GnS-PIPE

developed by the GenoSol platform (INRA, Dijon, France) [28]. Chosen parameters for each

step can be found in S1 Table and the details of all steps have been already described previously

[27]. Regarding the filtering step, it was then carried out to check all single-singletons (reads

detected only once and not clustered) were checked in order to eliminate PCR chimeras and

large sequencing errors produced by the PCR and the pyrosequencing, based on the quality

of their taxonomic assignments. More precisely, each single-singleton was compared with a

dedicated reference database from the Silva curated database using similarity approaches

(USEARCH), with sequences longer than 500 nucleotides, and kept only if their identity was

higher than the defined threshold (S1 Table). Finally, the number of high-quality reads for

each sample was normalized (i.e. 10,000 high-quality reads for each sample) by random selec-

tion to allow efficient comparison of the data sets and avoid biased community comparisons

(see S1 File). A total of 1,798 soil samples were finally kept for subsequent analyses.

A post-processing filtering was then applied to this global dataset to account for potentially

artefactual data. First all the homogenized high-quality reads from all samples (encompassing

a total of 17,980,000 reads) were merged and aligned. Then, as the analysis of microbial com-

munity richness relies on the construction of similarity clusters (called OTUs), we chose here

to use OTUs to examine the distribution of 16S rRNA gene sequences in our datasets. How-

ever, there is no single best definition of ‘species’, ‘genus’ when this approach is used, because

of controversy about thresholds of similarity allowing clear differentiation of taxonomic units

[29]. Moreover, a recent study regarding the diversity of bacterial genomes demonstrated that

when the standard threshold of 97% is used, some species can fall to different OTUs due to

intragenomic or intraspecific differences [30]. So, we decided to apply the 95% threshold of

sequence similarity, usually considered as the ‘genus’ level. This clustering was realized with a

Soil bacterial richness on a nationwide scale
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PERL program that groups rare reads to abundant ones, and does not count differences in

homopolymer lengths. A post-processing step was then applied to remove all singleton OTUs

that occurred only once in the overall dataset, and comprised only a singleton (reads detected

only once after the dereplication step and not clustered) [27]. This post-processing step

reduced the number of total OTUs from 205,590 to 92,571 (loss of 50%), but the number of

reads only from 17,980,000 to 17,866,981 (loss of less than 1%). For each sample, the number

of deleted reads with this step was 62 ± 60 on average (minimum: 10, maximum: 1,093).

Finally, contingency tables of OTUs were obtained with the samples in lines and OTUs in col-

umns, indicating the number of reads in each OTU for all samples. The retained high-quality

reads were then used to determine OTU richness and rarefaction curves (see S2 File) [31]. All

raw data sets are publicly available in the EBI database system (in the Short Read Archive)

under project accession PRJEB21351.

Metadata analysis

Mapping using geostatistic. The geostatistical method of kriging was used to map

microbial richness and to characterize their spatial variations [32]. More precisely, as the stud-

ied variable followed a normal distribution (Kolmogorov-Smirnov test, p-value = 0.2703 for

Richness), no transformation was considered prior to modelling the spatial correlations

(S1 Fig). In conventional geostatistical analysis, an estimate of a variogram model is computed

based on the observations, which describe the spatial variation of the property of interest. This

model is then used to predict the property at unsampled locations using kriging [32]. A com-

mon method for variogram estimation is first to calculate the empirical (so called experimen-

tal) variogram by the method of moments [33], and then to fit a model to the empirical

variogram by (weighted) nonlinear least squares. We tried to fit several models and retained

the one that minimized the objective function [34]. The validity of the best fitted geostatistical

model was then assessed in terms of the standardized squared prediction errors (SSPE) using

the results of a leave one out cross validation. If the fitted model was a valid representation of

the spatial variation of the microbial property, then these errors would have a χ2 distribution

with a mean of 1 and median of 0.455 [35]. The mean and median values of the SSPE were also

calculated for 1,000 simulations of the fitted model to determine the 95% confidence limits.

The ‘gstat’ package of R software (version 3.2.2) was used for geostatistical analysis and kriging

[36].

Variance partitioning. The relative contributions of soil physicochemical parameters,

land use (forests: 492 sites, croplands: 740 sites, grasslands: 464 sites, perennial crops, corre-

sponding to vineyards and orchards: 36 sites, and others: 36 sites), climatic conditions, geo-

morphology and space in shaping the patterns of soil bacterial richness and evenness were

estimated by variance partitioning. The Principal Coordinates of a Neighbour Matrix

approach (PCNM) was used to describe and identify the scales of spatial relationship between

samples [37]. This PCNM method was applied to the geographic coordinates and only

PCNMs with a significant Moran’s index were selected for the variance partitioning analysis

(P<0.001). The spatial neighbourhood described by each PCNM was determined by the range

of a Gaussian variogram models [38]. All quantitative (response and explanatory) data were

standardized (centered and scaled) in order to have an approximated Gaussian and homoske-

dastic residual distribution. A two steps procedure was used to determine the environmental

parameters significantly shaping bacterial richness and to limit over fitting and to exclude co-

linear variables [39]. The first step consisted of a coarse selection of explanatory variables

included in models minimizing the Bayesian Information Criterion (BIC) and maximizing the

adjusted R2 using the regsubset function (“leaps” package) [40]. In the second step, a forward

Soil bacterial richness on a nationwide scale
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selection procedure was applied to the subset of explanatory variables to identify the model

maximizing the adjusted R2 [39]. Spatial descriptors were then selected from the model residu-

als [41] using the forward selection step only since all PCNM are linearly independent. The

respective amounts of variance (i.e., marginal and shared) for bacterial richness, were deter-

mined by canonical variation partitioning and the adjusted R2 with Redundancy Analysis [39].

The statistical significance of the marginal effects was assessed from 1,000 permutations of the

reduced model. All these analyses were performed with R (http://www.r-project.org/) using

the vegan package.

Predictive modelling strategy. Three steps were assessed in order to find the best explan-

atory and most parsimonious model that explained the bacterial richness (response variable)

as a function of soil physico-chemical characteristics and geographical coordinates (climatic

data were not retained since they are rarely available, expensive to obtain, and limit the use of

the model in a diagnostic approach [17]) (explanatory variables), i) selection of the significant

explanatory variables, ii) selection of the best model form based on its predictive capacity and

cross validation, and iii) sensitivity analyses of the model. For the first step, two tools were

used to assess colinearity between the explanatory variables, namely correlation coefficients

and variance inflation factors (VIF). Only those with a correlation coefficient ranging from

-0.7 to 0.7 and with a VIF� 4 were considered in the modeling steps. The VIF values were

calculated using the vif function in the car R package [42]. This selection step allowed the

exclusion of highly collinear variables and defined a reduced explanatory dataset more com-

prehensive and of easier use for the following steps. Since the number of explanatory variables

was large (less than 50), the best explanatory variables were selected by applying the exhaustive

search method described by Miller, 2002 [43]. This approach involved using the regsubsets
function in the leaps package in R [40]. The selection criteria were the Bayesian Information

Criterion (BIC) and the adjusted coefficient of determination (R2
adj) by minimizing the first

and maximizing the second.

For the second step, the bacterial richness dataset was randomly divided into a modeling

dataset (90% of the data, 1,618 soil samples) and a cross-validation dataset (about 10% of the

data, 180 soil samples), selected by applying the KennardStone algorithm. The kenStone func-

tion of the “prospectr” package was used to determine the distribution of the modeling and

cross-validation datasets. Different polynomial linear models were then compared, with differ-

ent numbers and types of explanatory variables as well as different degrees. Model selection

was therefore based on maximizing R2
adj, while minimizing BIC and by cross-validating the

model on the cross-validation dataset.

Since the basis of the model was linear regression, standardized regression coefficients

(SRC) were used as sensitivity index, as classically reported in the literature [44]. The regres-

sion coefficients denoted by b̂ were determined by ordinary least-squares regressions and pro-

vided information about the sensitivity of the model response to the various input-factors, and

their combinations. SRC is equal to ðsXi=sYÞ�b̂, where σXi and σY are the standard deviation of

inputs and output variables, respectively. The SRC values were determined using the “sensitiv-

ity” package in R [45]. With this approach, the sensitivity of the model to a given variable is

high when the absolute value of SRC is high.

Results and discussion

This study provides an extensive compilation of bacterial richness from the soil environment

i) to draw the first map of bacterial richness across France with over 1,700 geo-located samples,

ii) to decipher the ecological processes (selection vs dispersal limitations) involved in such dis-

tribution and also iii) to elaborate an operational predictive model of bacterial richness

Soil bacterial richness on a nationwide scale
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according to soil parameters. By applying pyrosequencing technology to soil DNA from all the

composite soil samples in the French monitoring network, we were able to generate more than

17,980,000 16S rRNA sequences and to describe 92,571 different OTUs.

Soil bacterial richness variation and distribution across French national

territory

Bacterial richness recovered from the 1,798 RMQS soils, ranged from 555 to 2,007 detected

OTUs with an average value of 1,288 (± 207) OTUs and half of the RMQS soils harboured

between 1,170 and 1,424 OTUs (S1 Fig). These results are in the same order of magnitude as

those classically obtained in different soil environments, using comparable sequencing tech-

nology and sequencing depth [46,47]. Such a great variation might result from our extensive

sampling strategy, which enabled various types of soil and land uses to be compared. Another

consequence of this huge variability of soils and environmental parameters was that the cumu-

lative number of different OTUs detected did not reach the saturation even when all the 1,798

RMQS soils studied were considered (S2 Fig).

In this study we provide the first national map of soil bacterial richness with its experimen-

tal and fitted variogram (Fig 2). The results of the 10-fold cross-validation gave a mean value

of the SPPEs that is 1.021 and very close to the expected value, and a median value of 0.3922,

both values falling within the 95% confidence interval. As indicated by the parameters of the

Matérn function of the variogram, the observed (nugget / (nugget + sill)) ratio was high

(= 0.73), suggesting that a large proportion of the variance was unexplained. Despite the rigor-

ous standardisation of our molecular tools from soil DNA extraction to sequencing technology

[27], the unexplained variance might be partly due to methodological variability. It might also

be due to the large scale of the sampling scheme, which is unsuitable for detecting rough spatial

process at small distance as previously suggested [48].

The map obtained revealed a heterogeneous distribution of bacterial richness, which was to

a large extent spatially structured in geographical patterns defining more or less wider regions

with hot- or cold-spots (Fig 2). The fitted model gave an effective range of 111.6 km revealing

a large autocorrelation distance but smaller than those observed for molecular microbial

Fig 2. Mapping and robust variograms of soil bacterial richness on the scale of France. The colors

indicate the extrapolated values expressed as OTU per soil sample. The L and H zones visually observed on

the map correspond to Low and High bacterial richness zones on a regional scale, respectively. In the graph,

points represent the experimental variogram, and continuous lines the Matérn models fitted by maximum

likelihood method.

https://doi.org/10.1371/journal.pone.0186766.g002
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biomass (160km) [23]. This difference confirmed that the abundance and diversity of soil

microorganisms are not driven by the same filters as demonstrated at another spatial scale

[49].

The scale of spatial variations of bacterial richness did not correspond to the French cli-

matic distribution (Soil Atlas of Europe, climate p. 122) or to the presence of large natural bar-

riers (mountain, sea. . .; Soil Atlas of Europe, elevation p. 121) [50]. On the other hand, the

observed geographical patterns of bacterial diversity could be matched with large pedological

patterns. The distribution of French soil types in terms of physico-chemical characteristics

(http://gissol.orleans.inra.fr/programme/bdgsf/carte.php) corresponded to certain richness

hot- or cold-spots, suggesting that these soil physico-chemical characteristics had a strong

influence. For example, the cold-spots of OTUs located in North-East and in South-West

(L-zone 1, and a part of L-zone 3, respectively, Fig 2) correspond closely to the most acidic

soils in France (http://www.gissol.fr/donnees/cartes). In addition, distribution of bacterial

richness patterns could correspond to the coarse level of land cover distribution described for

France (Fig 1; http://www.statistiques.developpement-durable.gouv.fr/clc/fichiers/; Soil Atlas

of Europe, land cover p. 123) [50]. The low number of bacterial OTUs recorded in Landes,

Centre and North-East (L-zones 1, 2 and 3, respectively, Fig 2) could be related to the distribu-

tion of particular land covers, notably forest and grasslands, in these regions (Fig 1). In con-

trast, hot spots of bacterial richness seemed mainly to correspond to regions under crop

systems, such as the Brittany, the North and the South around the Mediterranean (H-zones 1,

2 and 4, respectively). These observations imply that the autocorrelation distance might be

partly driven by the influence of large patterns of soil types and coarse level of land cover dis-

tribution on bacterial diversity.

Ecological processes driving soil bacterial richness

Total variance was partitioned between five types of explanatory sets of environmental param-

eters: soil properties, land management, climate, spatial descriptors and interactions. Soil

parameters, land management, climate and their interactions are linked with ecological pro-

cesses derived from the deterministic theory and based on selection by the environment [51]

whereas spatial descriptors can be partly related to variations in unmeasured environmental

parameters [52] and/or linked with neutral processes such as dispersal limitation [53]. The var-

iance partitioning approach revealed that the total amount of explained variance of bacterial

richness was 48.2%, which is significantly lower than those observed at the landscape scale

[49]. This difference might be due to the smaller variation in soil characteristics, climate and

geomorphology on a landscape scale than on the scale of France. Variance partitioning indi-

cated a significant influence (P<0.01) of soil characteristics (18% of explained variance), spa-

tial descriptors (8.2%), land use (1.4%), climatic conditions (0.4%), but not of geomorphology

(Fig 3A). Interactions between soil characteristics, land use and climate represented also a

large proportion of the explained variance (20.4%). These observations are congruent with

recent studies evidencing the major effect of soil characteristics on bacterial richness, and con-

sequently the high impact of selection processes (due to the influence of specific environmental

parameters) shaping bacterial richness [4,46]. On the other hand, the influence of space might

be partly related to variations in unmeasured environmental characteristics [52] but also sug-

gests that dispersal limitation may be non negligible in shaping bacterial richness [13,54].

For each filter, within the sets of environmental and spatial descriptors, the marginal effect

accounted for relatively small, but significant, proportions of the total variance (from 0.4% to

11%) due to the large number of parameters involved (Fig 3B). Regarding soil characteristics,

the pH (11%) and the clay content (5.8%) were the main drivers of bacterial richness, with pH
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having a positive effect (indicated by a positive sign for the standardized coefficient) conversely

to the other parameters (Fig 3B). These results confirmed the overriding effect of pH as a

stimulating factor of bacterial community diversity at various spatial scales [15,49,55]. The sig-

nificant but negative effect of clay content might be partly explained by the decrease in hetero-

geneity at a microscale with increasing clay content, leading to a lower diversity of microbial

habitats and thus to a smaller hosting capacity for various indigenous bacterial species [56]. In

addition, the C:N ratio as well as total Potassium content had a weak (0.5%) but significant

negative effect on bacterial richness distribution, (Fig 3B). This was consistent with several

reports highlighting that soils with a high C:N ratio, corresponding to a high recalcitrance of

soil organic matter to degradation by microbes harboured a lower richness of microorganisms

[57,58]. The weak (0.4%) but positive influence of climate (temperature in˚C) and geomor-

phology on bacterial richness was in agreement with other reports observing that these distal

filters were little involved in microbial abundance and diversity distribution [12,23]. On the

other hand, at larger scales, like continental or global scales with wider ranges of parameters

(e.g. range: 2.5 to 25.7˚C for mean annual temperature for Zhou et al., (2016)), the temperature

can influence microbial diversity distribution (directly, or indirectly by impacting plant

cover), or the distribution of specific groups like the Cyanobacteria [14]. Altogether, these

results modulate the hypothesis that the main filters driving the biodiversity of macro- and

micro-organisms are different [24,51,59].

Independently of the other environmental variables, on this scale land use accounted for a

small proportion (1.4%) of the explained variance, in agreement with previous reports that

bacterial richness is generally poorly impacted by land use [2,60]. Even if both soil properties

and land use have discriminating effects on soil bacterial diversity, cross-effects may have

occurred, since soil pH and organic carbon content, for example, could also be dependent on

land use and especially on agricultural practices (liming and tillage, respectively; [49]). On the

other hand, less fertile soils (acidic, sandy) have been historically dedicated to forests [23]. In

addition, by comparing the signs and values of the standardized estimated coefficients of land

use categories, we demonstrated that bacterial richness was negatively impacted by natural or

semi natural land uses i.e. forests and grasslands, and positively by perennial (vineyards-

Fig 3. Variance partitioning, contribution and effect of model parameters for the distribution of

bacterial richness on the scale of France. (A) Variance partitioning of bacterial richness. The amount of

explained variance corresponds to the adjusted R2 values of the contextual groups using partial redundancy

analysis. The significance level of the contribution of the sets of variables is at least P < 0.01. (B) Model

parameters for the distribution of bacterial richness on the scale of France. Each parameter is presented with

its estimated model coefficients and its marginal effect assessed by a permutation test. P<0.01: **, P<0.001:

***. Missing values indicate that the variable was not retained in the model. Sand was removed prior to model

evaluation since it was represented by the opposite of the sum of silt and clay contents.

https://doi.org/10.1371/journal.pone.0186766.g003
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orchards) or annual crop systems (Fig 3B). This observation supported a positive relationship

between bacterial richness and soil disturbance due to cropping intensity, with Vineyards-

Orchards> Crops > Grasslands > Forests, combining different types of agricultural practices

(tillage, crop protection, fertilization, crop rotation; [61]). According to the “humped-back”

model describing the response of the diversity of a community to environmental stress [62], a

decrease in apparent diversity may occur (i) in a highly stressed environment due to domi-

nance of particularly competitive species through selection, and (ii) in a notably unstressed

environment, due to the dominance of particularly adapted species through competitive exclu-

sion [63]. Contrastingly, moderate stress may increase apparent diversity, due to a diminution

in competitive niche exclusion and in selection mechanisms. Our results showed that soils

under annual (croplands) or perennial crop systems (vineyards/orchards) would correspond

to these conditions, as they harboured highest richness levels compared to forests and grass-

lands (considered as unstressed environments) [3,61].

The spatial descriptors of the studied area, illustrating neighbourhood relationships

between samples, corresponded to 26 significant (Principal Coordinates of a Neighbour

Matrix), each representing different spatial scales (coarse: 110 to 250km, medium: 60 to

110km and fine: 30 to 60km, Table 2). The whole variance of bacterial richness explained by

spatial descriptors was 8.2% and ranged from 0.19% to 0.74% according to PCNM. This scale

dependency may reflect the effect of unmeasured spatial gradients [52], but may also be related

to dispersal limitation of bacterial communities in regards of the large number of explanatory

variables introduced in the analysis [54,64]. The influence of the scale was ranked by compar-

ing the signs of the standardized coefficients and by cumulating the explained variance for

each scale. A larger number of PCNMs (17) describing the fine scale were involved in explain-

ing bacterial richness, with 5.25% of the cumulated explained variance, whereas those repre-

senting the coarse and medium scales were fewer (2 and 7 PCNMs with 1.02% and 1.89% of

the cumulated explained variance, respectively). At fine and medium scales, the influence of

spatial descriptors might be partly related to variations in unmeasured soil characteristics and

land use, whereas at coarse scale it might results from geomorphology or the distribution of

overall land cover (forest, grassland, mountains, sea). Our observation suggests that landscape

configuration would be a significant driver of soil bacterial richness as also demonstrated on

biodiversity turnover [24]. In addition, our analysis revealed numerous negative effects of spa-

tial descriptors on bacterial richness at medium and fine scales, thus confirming that landscape

configuration would be a significant driver and might partly affect bacterial richness by limit-

ing bacterial dispersal as also demonstrated previously [24]. Altogether, our results showed

that biogeographical patterns of bacterial richness can be explained by both selection (i.e. envi-

ronmental filters like pH or C:N) and neutral processes (i.e. dispersal limitation), each being

non-exclusive.

Predictive model of soil bacterial richness

Based on the RMQS dataset of bacterial richness and environmental parameters we have devel-

oped a predictive statistical model to provide a reference value of bacterial richness for a given

pedoclimatic condition. The linear models with the smallest BIC (-700) and the largest R2
adj

(0.34) highlighted eight environmental parameters as significant explanatory variables of the

bacterial richness, which were ranked as follows: pH > Clay content > C:N ratio > X (longi-

tude)> elevation > Corg content > Y (latitude) > Silt content (Fig 4). This observation con-

firmed and refined the hierarchy of the environmental filters obtained with variance

partitioning (Fig 3). At this step, climate data are not retained despite their significant role,

since they are rarely available and expensive to obtain, limiting the use of this model to
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compare predicted and measured values in a context of soil biological diagnosis for and by soil

users [17]. Alternatively, climatic conditions were replaced in the model by longitude, which

in France is integrative of climate and soil moisture and did not reduce the R2 of the model

and therefore its robustness [25].

First, we developed a linear polynomial regression model based only on pH as explanatory

variable, as previously described [12]. By testing the increasing complexity (from simple linear

and up to the fifth degree) of the polynomial model, we found that the model degree four gave

the best R2 (0.34) since at higher degree the R2 remained virtually unchanged (Fig 5). Never-

theless, in their study based on 100 soils, Fierer & Jackson, 2006 obtained a higher R2 (0.58)

with a degree 2. This difference might be partly explained by our deeper sampling effort, but

mostly by the genotyping technics used by these authors (T-RFLP), which could limit the vari-

ability of the estimated richness (several tens of populations) by comparison with pyrosequen-

cing technology (several tens of thousands of OTU in our case), as previously shown [4]. To

improve the model in terms of higher R2
adj and to get closer to the normality hypotheses and

to improve the variance homogeneity of the residuals [65], we tested for its ability to include

interactions between explanatory variables identified [17,65,66]. In addition to pH, we selected

Table 2. Model parameters of spatial descriptors for the distribution of bacterial richness on the scale of France. Considering that the major part of

the environmental selection was measured by the previous explanatory variables (soil properties, land-use, etc.), we investigated the effect of dispersal on the

residuals of the variance partitioning models. To do that, the neighbourhood between sites at various classes of distance was evaluated, using a Principal

Coordinates of Neighbour Matrix approach (PCNM). Each spatial descriptor is presented with its estimated model coefficients and its marginal effect assessed

by a permutation test (P<0.05). Missing values indicate that the variable was not retained in the model. Spatial components were summarized according to

the spatial scale considered: coarse, medium or fine.

Scale Spatial descriptors (PCNM) Explained variance (%) Model coefficient

Coarse [110km; 250km] PCNM13 0.28 0.19

PCNM29 0.74 -0.29

Medium [60km; 110km] PCNM58 0.30 0.19

PCNM75 0.28 -0.19

PCNM113 0.25 -0.18

PCNM120 0.23 -0.17

PCNM126 0.38 0.21

PCNM128 0.19 0.16

PCNM142 0.26 0.18

Fine [30km; 60km] PCNM188 0.47 -0.23

PCNM211 0.25 0.18

PCNM216 0.29 -0.19

PCNM264 0.56 -0.25

PCNM275 0.33 -0.20

PCNM281 0.19 0.16

PCNM296 0.22 -0.17

PCNM305 0.26 -0.18

PCNM316 0.27 -0.18

PCNM319 0.43 -0.23

PCNM327 0.46 -0.23

PCNM359 0.23 -0.17

PCNM387 0.20 0.16

PCNM426 0.19 -0.16

PCNM427 0.26 0.18

PCNM436 0.35 -0.21

PCNM466 0.29 0.19

https://doi.org/10.1371/journal.pone.0186766.t002
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only three main explanatory variables to be included in the model: Clay content, C:N ratio and

longitude (X), since the R2 of the model based only on pH was not significantly improved by

integrating additional variables (data not shown). Finally, the model developed has a R2 = 0.56

and a R2
adj = 0.58 and the following mathematical form (all parameters of the models are given

Fig 4. Hierarchy of the linear models of soil bacterial richness involving soil physicochemical,

geographical coordinates and climatic variables. The hierarchy of the linear models implying

environmental variables is given according to the R2
adj criterion (A) and the BIC criterion (B) with the

exhaustive method. Each row in this graph represents a specific model. The variables included in a given

model are represented by means of shaded rectangles. The intensity of the shading represents the ordering

of the BIC and R2
adj values according to the absolute value.

https://doi.org/10.1371/journal.pone.0186766.g004

Fig 5. Polynomial regression between the bacterial richness and soil pH for different level of

increasing complexity (from simple linear and up to the fifth degree) of the model. (A) Grey line, simple

linear model, bacterial richness = 66.48*pH + 855.43; R2 = 0.15. (B) Dotted black curve, quadratic model,

bacterial richness = -58.55*pH2 + 818.8*pH—1460.6; R2 = 0.29. (C) Dotted black curve, cubic model,

bacterial richness = 25.458*pH3–537.9*pH2 + 3751.5*pH—7287.4; R2 = 0.32. (D) Black line, model degree

four, bacterial richness = 13.06*pH4–302.64*pH3 + 2499.2*pH2–8510.8*pH + 10919; R2 = 0.34. (E) Dotted

grey curve, model degree five, bacterial richness = 2.63*pH5–69.59*pH4 + 720.07*pH3–3731.7*pH2 +

10171pH—11127; R2 = 0.34.

https://doi.org/10.1371/journal.pone.0186766.g005
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in the S2 Table):

Richness ¼ 1044þ 3:305 � pH4 � 0:0457 � Clay2 þ 0:0597þ 0:00298 � Clay2 � C

: N � 1:54 � 10� 6 � Clay3 � C : N þ 2:336 � 10� 5 � ðC : NÞ2 � X:

To validate the model, we evidenced the normality distribution of model residuals, which

was confirmed by the Shapiro-Wilk test of normality (P = 0.149), as well as a good homogene-

ity of the residuals tested by the Breush-Pagan test of homogeneity (P = 0.5469). In addition,

plotting the measured richness against the predicted richness using the cross-validation dataset

revealed an important scatter of the points around the y = x line (S3 Fig), which validated the

high predictive ability of the developed polynomial model. Finally, the sensitivity of the model

to measurement errors on each explanatory variable was evaluated by a sensitivity index [17].

This analysis demonstrated that the model was highly sensitive to variations in pH, clay con-

tent and C:N ratio, together with their interactions and cubic effects, which was in agreement

with the above discussion concerning the variance partitioning analysis (S3 Table). However,

one limitation of our model is the absence of variations in bacterial richness between different

years (or between seasons during one year) that can result from modifications of climatic con-

ditions, plant cover or agricultural practices. In complement to our study, it will be relevant to

validate the robustness of this model on a sampling strategy that integrates such temporal

variation.

Altogether, our study provides the first French national atlas of soil bacterial richness using

an extensive sampling survey of about 1,800 samples, and confirms the relevance of investigat-

ing microbial community on a nationwide scale to better understand the ecological processes

involved in regulating microbial richness. We showed that the distribution of bacterial rich-

ness at this scale was heterogeneous and spatially structured, mainly driven by proximal filters

such as soil characteristics and land use (both supporting a selection process) but also signifi-

cantly influenced by spatial descriptors (potentially supporting dispersal limitation in micro-

bial populations, derived from neutral theory, or the influence of unmeasured soil properties).

This nationwide spatial scale was also shown to be relevant for evaluating overall land use in

the context of a sustainable use of soil resources. Based on the referential dataset, the predictive

model developed in this study complements the one developed for molecular microbial bio-

mass [17], as both present innovative and operational mathematical tools for assessing a com-

prehensive soil microbiological status in the French pedoclimatic context. Comparison of

predicted and measured values provides a robust diagnosis of soil microbial abundance and

diversity and their evolution under environmental pressures such as agricultural practices,

industrial pollutions or more global changes. Altogether, mapping and a predictive model of

bacterial richness involving over 1,700 geo-located samples covering the French territory

could help policy makers to produce conservation policies based on soil biodiversity. Based on

this primary analysis of bacterial richness other aspects of soil bacterial beta-diversity such as

evenness, community structure, taxa-area relationships and variations in the core bacterial

taxa across France need to be investigated to have a comprehensive overview of the biogeogra-

phy of microorganisms.
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S1 Fig. Distribution of detected bacterial OTU numbers in French soils. The curves corre-

spond to simulation of normal distributions (dotted line with estimated parameters: average:

1288.53 ± 207.39 for OTU number) and log normal distributions (black line with estimated

parameters: average: 7.1471 ± 0.1719 for OTU number). Normal and log normal distributions
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were obtained using Maximum Likelihood estimations.
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S2 Fig. Cumulative curve of different detected OTUs according to the number of studied

soils. The thickness of the curve represents the standard deviation obtained from 1,000 cumu-

lative curves with a random selection of soils.
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S3 Fig. Relationship between the measured and the predicted values of bacterial richness

by applying the polynomial model of degree four on the cross validation dataset (180 soil

samples). The black line represents the 1:1 line (y = x).
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S1 Table. Bioinformatic parameters and databases used in the analysis of 16S rRNA gene

sequences.
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S2 Table. Summary of model coefficients and significance. This table describes the Coeffi-

cients b̂ of the fourth degree polynomial model for each of its components. The standard error

of each coefficient and its significance is also provided (P< 0.05).

(DOCX)

S3 Table. Overview of the model sensitivity analysis. The Standardized Regression Coeffi-

cients (SRC) of the variables to which the model is most sensitive are presented here. The vari-

ables are organized according to the absolute value of their associated SRC from the highest to

the lowest.
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S1 File. Influence of the normalization step on RMQS sample representativeness. 100 repli-

cates of the normalization step were done on each of the 200 randomly selected samples (10%

of the samples). For each replicate, high-quality-reads were clustered, and obtained OTUs ana-

lyzed to determine the impact of the normalization step on OTUs. Four groups of OTUs were

considered: Major (composed of more than 1% of reads), Medium (1–0.1% of reads), Low

(0.01–0.1% of reads) and Rare (less than 0.01% of reads), showing no impact of the normaliza-

tion step.
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S2 File. Rarefaction curves of RMQS samples computed after normalization step.
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48. Saby NPA, Thioulouse J, Jolivet CC, Ratié C, Boulonne L, Bispo A, et al. Multivariate analysis of the

spatial patterns of 8 trace elements using the French soil monitoring network data. Sci Total Environ.

Elsevier B.V.; 2009; 407: 5644–5652.

49. Constancias F, Terrat S, Saby NPA, Horrigue W, Villerd J, Guillemin J-P, et al. Mapping and determin-

ism of soil microbial community distribution across an agricultural landscape. Microbiologyopen. 2015;

4: 505–517. https://doi.org/10.1002/mbo3.255 PMID: 25833770

50. Commission E. Soil atlas of Europe. European C. Luxembourg; 2005.

51. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman J a, Green JL, et al. Microbial biogeogra-

phy: putting microorganisms on the map. Nat Rev Microbiol. 2006; 4: 102–112. https://doi.org/10.1038/

nrmicro1341 PMID: 16415926

52. Hanson C, Fuhrman J, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes

shaping the microbial landscape. Nat Rev Microbiol. Nature Publishing Group; 2012; 10: 497–506.

53. Hubbell SP, Unified T, Theory N. MacArthur and Wilson ‘ s Radical Theory. 2001.

Soil bacterial richness on a nationwide scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0186766 October 23, 2017 18 / 19

https://doi.org/10.1111/j.1751-7915.2011.00307.x
http://www.ncbi.nlm.nih.gov/pubmed/21989224
https://doi.org/10.1128/AEM.02810-10
http://www.ncbi.nlm.nih.gov/pubmed/21421784
https://doi.org/10.1038/ismej.2013.10
http://www.ncbi.nlm.nih.gov/pubmed/23407313
https://doi.org/10.1111/j.1574-6941.2007.00375.x
https://doi.org/10.1111/j.1574-6941.2007.00375.x
http://www.ncbi.nlm.nih.gov/pubmed/17892477
https://doi.org/10.1002/mbo3.255
http://www.ncbi.nlm.nih.gov/pubmed/25833770
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1038/nrmicro1341
http://www.ncbi.nlm.nih.gov/pubmed/16415926
https://doi.org/10.1371/journal.pone.0186766


54. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-devine MC. Drivers of bacterial β -diversity depend

on spatial scale. Proc Natl Acad Sci U S A. 2011; 108: 7850–7854. https://doi.org/10.1073/pnas.

1016308108 PMID: 21518859

55. Green J, Bohannan BJM. Spatial scaling of microbial biodiversity. Trends Ecol Evol. 2006; 21: 501–7.

https://doi.org/10.1016/j.tree.2006.06.012 PMID: 16815589

56. Chau JF, Bagtzoglou AC, Willig MR. The Effect of Soil Texture on Richness and Diversity of Bacterial

Communities. Environ Forensics. Taylor & Francis; 2011; 12: 333–341.

57. de Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacte-

rial niche development. FEMS Microbiol Rev. Blackwell Publishing Ltd; 2005; 29: 795–811.

58. Delgado-Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and cli-

mate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016; 86: 373–380.

59. MacArthur RH, Wilson EO. The Theory of Island Biogeography. Princeton University Press, editor.

Princeton University Press; 2001.

60. Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA. Soil characteristics more

strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 2012; 79: 12–

24. https://doi.org/10.1111/j.1574-6941.2011.01192.x PMID: 22066695
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