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Abstract

Background: Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and
degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The
CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify
enzymes acting on hydrolysis of polysaccharides or glycans.

Results: This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes
were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology.
CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from
recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs
arsenal was also studied in bioprocess conditions using rumen derived microbiota.

Conclusions: The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs.
It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new
efficient candidates for enzymatic conversions from various ecosystems.

Keywords: CAZymes detection, Glycoside hydrolase, Microarray, Microbial functional diversity, Plant cell wall
degradation, Transcriptomic analysis

Background
The degradation of polysaccharides such as cellulose,
chitin, starch and glycogen is an essential feature of car-
bon cycle in the biosphere, a process that requires the
contribution of various microorganisms that together
deploy an arsenal of carbohydrate-degrading enzymes.
Plant cell walls (PCWs) are composed of a composite
network of macromolecules, including polysaccharides
and lignin. The major polysaccharide in most plant cell
walls is cellulose, which is composed of β-1,4 linked

glucose polymers that interconnect through strong
hydrogen bonds, forming crystalline microfibrils that are
very stable. Cellulose is further embedded in a 3 D
matrix composed of hemicelluloses, pectin and lignin
[14] resistant to degradation. Compared to cellulose,
hemicelluloses are heteropolymers that are variable in
both chemical composition and structure, with heteroxy-
lans and mannans being the two major categories of
hemicelluloses in PCWs [4]. The exact compositional
and structural features of hemicelluloses are dependent
on a number of determinants, including the botanical
origin of the plant, and also the pedoclimatic conditions
prevailing at the time of growth [13, 14, 62]. Therefore,
microorganisms that are responsible for biomass degrad-
ation are faced with a formidable task, which they
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achieve through the deployment of complex arsenals of
enzymes [62].
Among the key PCW-degrading enzymes that are pro-

duced by microorganisms, the glycoside hydrolases (GH)
and the carbohydrate esterases (CE) belong to a wide
class of enzymes that modify, synthesize or hydrolyze
carbohydrates: Carbohydrate Active enZymes, or
CAZymes (ref CAZy). The CAZymes are prominent and
highly diverse and have been identified in all taxa, repre-
senting typically 1–5 % of the predicted coding se-
quences in their genomes [39]. These proteins are
expressed by microorganisms inhabiting almost all eco-
logical niches (e.g., soil, marine environment and digest-
ive tracts), where they participate in carbon cycling. The
strategies of carbohydrate-degradation are often different
at both the level of the microbial community and of in-
dividual microorganisms [30].
GH and CE can be encoded by multigenic operon-like

clusters [45], such as Sus system [15, 51], that have been
designated as Polysaccharide Utilization Loci in Bacter-
oidetes species [41, 44]. Evidence so far reveals that the
proteins produced by such clusters display functional
interplay with CAZyme components, displaying synergy
on complex substrates [1, 48, 53]. In some anaerobic
biomass-degrading bacteria, CAZymes, such as cellu-
lases and hemicellulases, are arranged on cellulosomes,
which are extracellular, cell-bound multi-enzyme com-
plexes. In cellulosomes, the enzyme components are
brought into close physical proximity, thus optimizing
their synergistic actions and enhancing their biomass-
degrading ability [3, 20].
GH and CE, and particularly those that are active on

PCWs, are sought after for a wide range of industrial ap-
plications, including biorefining. In this field, the enzymes
that are of particular interest include those active on cellu-
lose (e.g., endoglucanases, EC 3.2.1.4, exoglucanases, EC
3.2.1.91 and EC 3.2.1.176) and on heteroxylans (e.g.,
endoxylanases, EC 3.2.1.8, β-D-xylosidases, EC 3.2.1.37
and α-L-arabinofuranosidases, EC; 3.2.1.55). Cellulose and
hemicellulose yield monomeric sugars readily fermentable
to produce alcohols, organic acids, or alkenes. The explor-
ation of glycoside hydrolase (GH) diversity, and to a lesser
extent CE can provide efficient biocatalysts and new
insight into the different enzyme mechanisms that are
used by microorganisms in biomass degradation. GHs
have been used in many industries such as in paper pro-
duction, textiles, detergents, feed and food [4, 33] as well
as to promote healthy human nutrition and prevent dis-
eases [17]. In the last decade, cellulases and more recently
hemicellulases have been considered for biorefining
[23, 30]. The discovery of GHs has been considerably ac-
celerated with the metagenomic and metatranscriptomic
approaches, which allow the identification of new enzymes
in an unprecedented manner.

GH exploration is largely facilitated by the existence of
the CAZy database (CAZy; www.cazy.org). This database
describes the families of enzymes that catalyze the break-
down, biosynthesis or modification of carbohydrates and
glycoconjugates. In the CAZy database, GHs are classified
into families based on amino acid sequence similarities
and others conserved features [7, 25, 26, 39]. GH- are
classified in 135 families and represent approximately
47 % of the entire database. (April 2016) [7]. The vast ma-
jority of currently known GH are from bacterial origin.
DNA microarrays are widely used to profile gene ex-

pression and represent a relevant tool to study expres-
sion of key enzymes and monitor physiological changes
of pure cultures or microbial communities [12, 18, 28,
42, 46, 50, 68]. This approach can also be useful to link
microbial diversity to ecosystem processes and functions
[22, 29, 67].
In this study, we developed the first microarray tool,

termed CAZyChip, to quickly and accurately explore, at
transcriptomic level, the GH composition of environ-
mental samples. The CAZyChip provides snapshot views
of the enzymes expressed by a single microorganism or
more interestingly by microbial consortia derived from
complex and various ecosystems. The biochip gives an
opportunity to highlight enzyme cooperation along with
the plant biomass degradation pathway. The present
study demonstrates that the CazyChip represents a
unique, robust and yet generic tool to dynamically
analyze the expression of a large variety of GHs in paral-
lel. The current version of this biochip allows the detec-
tion of 55,220 bacterial annotated GHs and contains the
signatures of all bacterial GH in all families available to
date in the CAZy database in addition to 53 CE se-
quences. The CAZy chip was validated using character-
ized enzymes from gut metagenomic libraries of
different species, which were chosen for their known
abilities to degrade plant cell walls. The encoding se-
quences of the enzymes of interest were recovered from
microbiome of worm (Pontoscolex corethrurus), human,
rumen, and termites these latter include fungus-growing
(Pseudacanthotermes militaris), wood-feeding (Nasuti-
termes corniger), or soil-wood feeding (Termes hispanio-
lae). Furthermore, the developed biochip was tested to
highlight the GH functional diversity of complex ligno-
cellulolytic microbial communities, using a cow rumen-
derived microbial consortium. The resulting biochip is
able to test the GH functional diversity of complex mi-
crobial communities that present high metabolic and
taxonomic diversity.

Methods
Custom microarray design
The design of oligonucleotides for the microarray was
performed using either the Agilent e-Array online portal
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(https://earray.chem.agilent.com/earray/) or, when se-
quences were rejected by eArray, the ROSO software
[16, 52]. When the design of 60-mers were impossible, a
40-mer or a pair of 25-mers associated with inert
nucleotidic linkers was generated. For each targeted
CAZyme gene (GH and CEs), three different 60-mer
probes were designed and for each probe. The Agilent
probe design algorithm assigned a BC score, which re-
flects uniqueness, secondary structure considerations,
GC content and thermodynamic parameters, that pre-
dicts hybridization quality on the basis of their nucleoti-
dic composition [19]. Five grades of BC scores were
defined and indicated the quality of the designed probes.
These different scores were, from the best to the worst:
BC_1, BC_2, BC_3, BC_4 and BC_Poor. A total of
180,000 probes, including 4848 Agilent internal positive
or negative control probes, were selected and synthe-
sized in situ, on a glass slide using Agilent SurePrint
technology to obtain a high-density DNA microarray
tool on 4x180 K format (Agilent Technologies, Massy,
France) [32]. The full description of the CAZyChip
microarray has been deposited in the Gene Expression
Omnibus (GEO) public database (GSE80173 study is at:
http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE80173).

Strains and growth conditions
Different GH cloned in plasmid or fosmid (pDest vector)
were expressed by recombinant E. coli strains as previ-
ously described, [1, 2, 10, 34, 57, 59, 66]. Briefly, cultures
were stopped at OD600nm between 0.4 and 0.6, and
cells were harvested by centrifugation for 10 min at
5000 rpm at 4 °C. The supernatant was then discarded
and the bacterial pellet immediately frozen at −80 °C be-
fore RNA extraction.
Microbial consortia analysis were performed on an an-

aerobic rumen-derived consortium RWS, which effi-
ciently degrades lignocellulose, as reported by Lazuka et
al. [36].

Availability of materials section
The GH gene sequences used in this study were deposited
under the GenBank accession number: TxAbf CAA76421;
THSAbf ABZ10760; CfXyn AEA30147; TM1225 AAD
36300.1; Abn43a and Pm08 CCO20984.1; Abn43b
CCO20993.1; Abf51b CCO20994.1; Pm06 HF548274; Pm13
CCO21046.1, Pm14 CCO21057.1, Pm15 CCO21059.1;
Pm21 CCO21105.1; Pm25 CCO21110.1; Pm31 CCO
21136.1; Pm41 CCO21355.1; Pm43 CCO21392.1;Pm55
CCO21443.1; Pm65 CCO21487.1; Pm66 CCO21489.1;
Pm69 CCO21492.1; Pm80 CCO21560.1; Pm81 CCO
21564.1; Pm83 CCO21640.1; Pm85 CCO21658.1; and Pm87
CCO21793.1.

RNA extraction
Bacterial pellets were lysed with 1 mg/ml lysozyme
(Sigma-Aldrich, Isle d’Abeau Chesnes, France) for 5 min
at 25 °C, followed by Total RNA extraction using the
RNeasy Mini Kit (Qiagen, Courtaboeuf, France) according
to the manufacturer’s recommendations. RNA concentra-
tion and purity was evaluated by measuring the absorb-
ance ratio at 260/280 nm and 260/230 nm using a
Nanodrop spectrophotometer (Labtech, Palaiseau,
France). The Ratio Integrity Number (RIN) was evaluated
using 2100 Bioanalyzer® (Agilent Technologies, Massy,
France) and only samples with a RIN greater than 8 were
hybridized on the microarray.
Total RNA of rumen derived consortium was extracted

in two steps from nitrogen frozen samples using the
PowerMicrobiome RNA isolation kit (MoBio Laborator-
ies, Carlsbad, CA, USA) [36]. RNA purification was per-
formed using AllPrep DNA/RNA minikit (Qiagen),
according to the manufacturer’s recommendations.

Labelling and amplification of total mRNA
The One-Color Low Input Quick Amp WT Labeling Kit™
(Agilent Technologies, Massy, France) was used to amplify
and label 100 ng of RNA according to the manufacturer’s
recommendations. The labelling efficiency was checked
using a NanoDrop spectrophotometer operating at
260 nm to quantify cRNA and at 550 or 660 nm to meas-
ure cyanine 3 (Cy3) and cyanine 5 (Cy5) dye incorpor-
ation, respectively. Labeling efficiency was calculated as
indicated by the manufacturer’s protocol (ratio cyanine
quantity / amount of RNA) and was above 6.

Microarray hybridization, washing and scanning
For each sample, 1650 ng of labeled and amplified cRNA
was used for hybridization. The hybridization master
mix was prepared according to manufacturer’s protocol
(Agilent Technologies, Massy, France) and 100 μl were
deposited onto a gasket slide, according to the Agilent
Microarray Hybridization Chamber User Guide. Next,
the active side of the microarray slide was placed on top
of the gasket to form a properly aligned “sandwich slide
pair”. The microarray slides were inserted into an Agi-
lent Technology hybridization chamber then placed at
65 °C for 17 h with rotation at 10 rpm. After
hybridization, the microarray was washed over a 1-min
period, first using Gene Expression Wash Buffer 1 and
then Gene Expression Wash Buffer 2 (Agilent Technolo-
gies, Massy, France) pre-warmed at 37 °C. After wash-
ing, the arrays were immediately scanned using an
MS200 scanner (NimbleGen Roche Diagnostics, Meylan,
France) with NimbleGen MS200 software v1.2 at 2 mi-
cron resolution.
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Data processing
The median signal of each spot in the hybridized arrays
were determined and quantified using Feature Extraction
software v11.5.1.1. The data from all the microarrays
were normalized using the “limma” package function
“normalizeQuantiles” and the “quantile” method [5, 56].
Normalization and statistical analyses of the data were
performed using the Bioconductor packages (http://
www.bioconductor.org) and R software v3.1.3. For each
sample, the normalized fluorescence intensities of the
three experimental replicates were analyzed and the
mean values, standard deviations and correlation coeffi-
cients (%CV) were calculated. To determine whether
probes were specific and target genes present, limma
one way ANOVA test was carried out with False Discov-
ery Rate adjusted p value < 0.05. Limma t test using
“limma” package, was conducted to know in which com-
parison(s) this gene is differentially expressed (DE).

Analysis of mRNA levels by qRT-PCR
One microgram of RNA was used as template to gener-
ate cDNA using the High Capacity cDNA reverse tran-
scriptase kit (Applied Biosystems, Life Technologies,
Saint Aubin, France). The reverse transcription reaction
(20 μl final volume) was performed for 10 min at 25 °C,
and then 2 h at 37 °C. Quantitative real-time PCR (qRT-
PCR) assays were performed using SsoFast EvaGreen
Supermix (Bio-Rad, Marnes-La-Coquette, France) on the
StepOne instrument (Applied Biosystems, Life Tech-
nologies, Saint Aubin, France). Primers were validated
by testing qRT-PCR efficiency using standard curves
(95 % efficiency 105 %) as described previously [47].
Gene expression was quantified using the comparative
Ct (threshold cycle) method. The RNA polymerase
sigma S (rpoS) gene encoding the sigma factor sigma-38
was used as a reference to normalize the expression level
of the targeted genes. Gene-specific primers sequences
are described in Additional file 1: Table S1.

Results
Probe design
To design a generic microarray for the high-throughput
detection of bacterial CAZymes mainly composed of
GH’s, all of the bacterial GH protein sequences refer-
enced in the CAZy database (www.cazy.org) up to Janu-
ary 2015 (133 families), were selected and their
nucleotide sequences downloaded from the National
Center for Biotechnology Information database
(www.ncbi.nlm.nih.gov). We also selected sequences of
interest obtained from human or termite guts and cow
rumen metagenomic libraries created in our laboratory
[2, 10]. The initial dataset used for probe design con-
tained a total of 55,220 sequences and for each gene we
designed three non-overlapping probes, with the aim to

validate at least one probe per GH for use in a future
prototype. With the e-array software, probe design has
been possible on 55,012 sequences with a BC score attri-
bution. This score reflects several criteria including the
predicted hybridization quality, GC content and steric
hindrances (Additional file 2: Table S2). A total of 56 %
of probes displayed a BC_score of BC_1, 22 % of BC_2
reflecting the highest quality of predicted hybridization
and a stable and consistent duplex with their targets.
Only a small fraction of the probes were scored as BC_3
(11 %), BC_4 (11 %) and no BC_Poor were detected.
Using the ROSO software we designed probes for the
208 of the remaining sequences.
The final CAZyChip was constructed using 180,000

probes, targeting 55,220 GHs able to detect 117 GH
families on the 133 available in the CAZy database
(www.cazy.org). We included 4848 positive and negative
control probes. Non-bacterial families and GH7, 22 and
133, for which thermodynamical parameters did not pro-
vide specific probes, were not represented on the
CAZyChip.
Regarding the high score of BC_1 and BC_2, we con-

sidered our CAZyChip as a promising high-density
oligo-DNA microarray, which allows high throughput
exploration of bacterial GHs.

Validation of the CAZyChip
The specificity of the CAZychip probes was first evalu-
ated using a set of plasmid bearing GH-encoding se-
quences, some of which encode well-characterized
enzymes [1, 2, 10, 34, 57, 59]. To achieve this, 26 RNA
samples from plasmid-bearing bacteria were labeled and
hybridized with the probes on the CAZyChip. Figure 1
shows the heatmap (relative signal intensities) for this
experiment and illustrates the fact that the vast majority
of the samples hybridized quite specifically to the probes
on the chip. Pm83 specific probes 2 and 3 not only hy-
bridized with their target RNA, but also to a lesser ex-
tent with RNA from Pm85. This cross-hybridization can
be easily explained by the fact that both Pm83 and 85
belong to GH8 family and share 81 % nucleotide se-
quence identity. Regarding probes specific for Pm65
(probe 2), Pm06 (probes 2 and 3), CfXyn (probes 1 and 2),
and Pm15 (probe 3), these mostly failed to properly detect
their target RNA in the test set (weak signals or no signal).
Nevertheless, for each of these targets at least one probe
proved to be adequate to properly hybridize to the target
RNA and provide unambiguous detection.
To further validate the CAZyChip, RNA from 23

metagenomic clones derived from different gut microbial
communities were used ([1, 2, 59, 61]; Table 1). These
clones are all characterized by the fact that they bear
more than one GH-encoding sequence, with at least one
metagenomic clone containing up to 9 GH-encoding
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sequences (Additional file 3: Table S3). Upon
hybridization with the CAZychip, the 23 metagenomic
clones resulted in 69 positive signals (Fig. 2), which cor-
responds to a high detection rate. Most of the GH-
encoding sequences were detected by at least one probe,
but in some cases by two or three specific probes
(Table 1). All genes were expressed in Rum33M21, or
Cor367 whereas in Cor28 or Hum5 only a few genes
were expressed (sequences GH3- and GH95- from the
metagenomic clones Hum5 and Cor28 respectively were
not detected), allowing identification of the gene respon-
sible for the activity of each clone (Table 1 and Fig. 2a
and b).
Validation of the CAZyChip using individual GH-

encoding sequences borne on multi-copy plasmids pro-
vided large amounts of RNA that procured strong, satu-
rated hybridization signals for most of the specific
probes. However, in the case of fosmid born sequences
(metagenomics clones) the intensity of the different
hybridization signals was variable, allowing us to deter-
mine an accurate minimal detection threshold. This
threshold is defined as the minimum signal necessary to
differentiate between positive and negative hits in a sig-
nificant way. As in standard DNA Chip protocols, our
samples were labeled with either Cy3 or Cy5. The min-
imal detection threshold was 8.00 (log 2 of intensity) for
Cy3-labelled RNA and 6.70 (log base 2 of intensity) for
Cy5-labeled samples. Calculation of the median of vari-
ation coefficients (CV) for all experimental probes

revealed that this value lies in a narrow range from 1.43
and 4.75 % (Additional file 4: Figure S1), underlining the
robustness of the CAZyChip. In addition, 14 GH-
encoding sequences cloned either in plasmids
(Uhbg_MP, TM1225, XylB, CfXyn and TxXyn) or in fos-
mids (Cor428 and Hum10), were randomly chosen to be
analyzed by qRT-PCR. The results of this analysis were
consistent with those obtained using the CAZyChip
(Additional file 5: Figure S2).

Exploration of GH diversity evolution in microbial
consortium from cow rumen
The CAZyChip was used to investigate the dynamic evo-
lution of stable rumen-derived microbial community dis-
playing good wheat straw degrading ability and a
reduced complexity when compared to the parental in-
oculum [36]. Culture of this stable rumen-derived mi-
crobial community presented a 3-phase dynamic
behavior over a 15 day period. The initial lag phase was
characterized by stable, low-level enzyme activity and
very little biomass degradation. The second phase (day 3
to 7), was characterized by an exponential burst of en-
zyme activities and the third phase was characterized by
a stabilized level of enzyme activity [36]. The CAZyChip
was used to compare two points that characterize the
second phase of the culture, in order to highlight and
identify what enzymes are the key players of the wheat
straw degradation. The first point corresponded to the
beginning of phase 2 (day 3), the second point was in

Fig. 1 Heatmaps of log base 2 intensity signal of targeted probes for GHs cloned in plasmids samples. Each horizontal line represents a probe,
and each vertical line represents an individual sample. Genes that were overexpressed are in red, whereas genes weakly expressed are in green.
The color intensity indicates the degree of variation in expression
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the middle of the phase 2 (day 5), where enzymatic ac-
tivities were high (Fig. 3).
A limma t test revealed that 2567 GHs were expressed

in the two time points: day 3 and day 5 (Additional file 6:
Table S4). Both samples displayed a common group of
257 expressed GHs. The two sample points also displayed
GH expression unique to the specific time point, with the
day 3 sample containing the expression of an additional
GH belonging to the GH66 family (accession number
AFH61494), and the day 5 sample containing expression
of 2309 additional GH’s. Among the total 2566 GHs that
were expressed at day 5, only 2 were down-regulated on
day 5 compared to day 3 (Additional file 6: Table S4).
The weighted differentially expressed genes, and those
present at day 5, belong to 96 GH families and are
displayed on Fig. 3.

Most of the differentially expressed genes encoding
GHs are found in families that are correlated with either
cellulose (e.g., GH1, GH3, GH5, and GH8) or hemicellu-
lose (notably heteroxylan) hydrolysis (e.g., GH5, GH10,
GH30, GH39, GH43, GH51) (in green Fig. 3b), is con-
sistent with the known chemical composition of wheat
straw [21, 35, 54]. CAZyChip analysis also revealed that
GH arsenal deployed by the microorganisms in the
rumen-derived microbial community contains an exten-
sive range of GH families, including those related to
starch hydrolysis (e.g., GH13) and others related to bac-
terial cell wall degradation (e.g., GH23; Fig. 3b), enzyme
activities that are known to be highly represented in all
kingdoms.
Using CAZyChip, we are able to explore expression of

specific GH families implicated in the targeted functions

Table 1 List of metagenomic fosmid and their enzymatic activities highlighted by functional screening. GH’s listed have been
included in the chip and the bold GH’s were detected on the CAZyChip

Name Ecosystems Structure of the carbohydrate compounds used
for screening

GHs present on the CAZyCHip

Cor428 Termite gut N. corniger Arabinofuranosidase GH88, GH2

Cor435 Termite gut N. corniger Arabinofuranosidase GH51

Cor438 Termite gut N. corniger Cellobiohydrolase GH94

Cor1 Termite gut N. corniger Arabinanase and Xylanase GH5(1), GH5(2), GH30, GH74(1), GH74(2)

Cor29 Termite gut N. corniger Cellulase and Mannanase GH11

Cor357 Termite gut N. corniger Xyloglucanase and Cellulase GH5, GH94

Cor2 Termite gut N. corniger Arabinanase GH30, GH5

Cor28 Termite gut N. corniger Mannanase GH31, GH74, GH43, GH95, GH42

Cor367 Termite gut N. corniger Xylosidase GH43, CE1(1), GH120, CE1(2)

Pon12_1 Earth worm gut P.
corethruru

Cellobiohydrolase GHHyp

Pon12_2 Earth worm gut P.
corethruru

β-glucanase GH37

MiliH4 Termite gut P. militaris Xylanase GH13

Pon13_1 Earth worm gut P.
corethruru

Xylosidase GH10, GH3(1), GH115, GH67, GH3(2)

His28 Termite gut
T.hispaniolae

Arabinofuranosidase, Cellulase, Xyloglucanase, β-
glucanase

GH1, GH51(1), GH127, GH51(2)

His52 Termite gut
T.hispaniolae

Cellulase GH27, GH9

His101 Termite gut
T.hispaniolae

Xylosidase GH23

His124 Termite gut
T.hispaniolae

Xylosidase, Cellulase GH112, GH29

Hum4 Human feces β-glucanase GH5, GH19

Hum5 Human feces β-glucanase GHHyp, GH16, GH3(1), GH3(2), GH3(3), GH97

Hum10 Human feces β-glucanase GH3(1), GH3(2), GH5(1), GH5(2), GH8, GH94, GH97

Hum15 Human feces Xylanase CE15-GH8, CE6-GH95, GH10, GH115, GH31, GH43(1), GH43(2),
GH43-CE1, GH97

Rum14O19 Cow rumen Mannanase GH26, GH28, GH63, GH43, GH4

Rum33M21 Cow rumen β-glucanase GH5, GH42

Bold data correspond to GHs detected with the cazychip
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of plant cell wall polysaccharide degradation. While fo-
cusing on GH families involved in enzymatic activities
necessary to reach 25 % of wheat straw degradation [36],
we observed an increase of the genes differentially
expressed between day 3 and day 5, from GH families
containing cellulase, xylanase, exoglucanase and beta-
glucosidase activities in accordance with [36] (Table 2).
We observed an enhanced expression of GH1, GH3 and
GH5, which according to CAZy, some members of these
families are beta-glucosidases and exoglucanases (for

GH1 and GH3) or cellulases (for GH5) (Table 2). How-
ever, Lazuka et al. have previously shown enhanced cel-
lulase and exoglucanase activities with a constant beta-
glucanase activity [36]. Our results strongly suggest that
enhanced GH5’s were implicated in efficient cellulase ac-
tivity and that GH1 and GH3 explained the increased of
exoglucanase activity. Our tool allows evaluation of the
genetic potential of microbial consortium and highlights
complementarity between GHs to contribute to these
mechanisms of degradation of plant cell walls.

Fig. 2 Heatmaps of log base 2 intensity signal of targeted probes for GHs cloned in fosmids a samples from termite microbiota labeled with
cyanine 3 (left panel) or labeled with cyanine 5 (right panel), b samples from human microbiota and c samples from cattle rumen microbiota.
Each horizontal line represents a probe, and each vertical line represents an individual sample. Genes that were overexpressed are in red, whereas
genes weakly expressed are in green. The color intensity indicates the degree of variation in expression
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Discussion
DNA microarray is one of the most popular technologies
for gene expression profiling used in the past 15 years
[28, 42, 46, 50, 68]. In this study we presented the devel-
opment and the validation of the microarray CAZyChip
dedicated to analyze the bacterial glycoside hydrolase ex-
pression. This is the first high throughput tool, based on
DNA microarray technology, allowing the rapid
characterization and exploration of the GHs arsenal of
complex microbiota at the transcriptomic level. For de-
sign purposes, we first collected all sequences of bacter-
ial GHs available in the CAZy data base, belonging to
cultivated species, as well as some metagenomic se-
quences issued from uncultivated species. We then per-
formed a probe bioinformatic design using eArray and
ROSO softwares, which took into account the thermody-
namics and specificity regardless of the secondary struc-
tures that probes can adopt. We validated probe
specificity and the robustness of the biochip with differ-
ent RNAs obtained from well characterized GHs cloned
in plasmids and expressed in E. coli. For each GH, we
validated at least one specific probe on the three de-
signed per gene. For the great majority of GHs tested,
the three probes gave a positive and specific
hybridization signal, meaning that our probe design was
highly effective.
Following this first validation step with unique GH

overexpressed in bacteria, we studied the hybridization
behavior of a series of metagenomic clones obtained
from different metagenomic libraries. Metagenomic
clones were selected for their enzymatic activity and can
express up to 9 identified GHs. The CAZyChip allowed
for the identification of genes responsible for the activity
detected in each metagenomic clone. The multi-genic
hybridization step allowed us to validate probes to iden-
tify 69 GHs. As an example, His28, which showed arabi-
nofuranosidase activity, encodes two GH51 typical
arabinofuranosidases, F but only one was expressed.
96 % of tested GHs had at least one validated probe.
Previous studies have demonstrated that the use of

multiple probes per target sequence is not essential for
in situ synthesized 60mer oligonucleotides in bacterial
Agilent’s arrays [37]. Our results demonstrate the ro-
bustness of the CAZyChip for GHs detection at tran-
scriptomic level with experimental reproducibility.
Among naturally-occurring biomass-degrading sys-

tems, cow rumen represents a natural bioreactor. It is
colonized by large communities of symbiotic microor-
ganisms that produce an impressive arsenal of
biomass-degrading enzymes, usually including cellu-
lases and hemicellulases. With the CAZyChip, GH ex-
pression profiles at two different time points (day 3
and day 5) characterized by an exponential burst of
enzyme activities were analyzed. At day 5, we identi-
fied overexpression of the GH families associated with
cellulase (GH5, GH6, GH8, GH9 and GH48), xylanase
(GH8, GH10), and exoglucanase (GH1, GH3) activ-
ities, which is in agreement with previous results [36].
The most common activities of GH3 include glucosidases,
arabinofuranosidases, xylosidases and glucosaminidases
and GH43 shows xylosidase, arabinofuranosidase, arabina-
nase, xylanase and galactosidase activities. Thus, these two
families are implicated in degradation of arabinoxylan, the
most abundant hemicellulose component in wheat straw
[35] which explains the great number of genes overex-
pressed at day 5 in these GH families. An over representa-
tion of members of family GH13 and GH23 was seen, as
they are implicated in common bacterial physiological
processes and known to possess one of the broadest distri-
butions among the gut microbiota [8, 17, 18]. It is the first
time that such a generic tool is developed for GH detec-
tion from complex microbial ecosystems, although a cus-
tom microarray has been previously developed by El
Kaoutari et al., to explore partial CAZome of specific hu-
man microbiota [17, 18]. This microarray contained
probes targeting approximately 7000 genes encoding
glycoside hydrolases and selected from 174 reference ge-
nomes from specific bacteria present in the human feces.
Our new CAZyChip tool allows the identification of

an unprecedented amount of bacterial GHs (55,220) and

Fig. 3 Expressed GH family known to be implicated in plant cell wall (PCW) degradation in day 3 and 5. For details see Additional file 6: Table S4
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few CEs, offering opportunities to study expression of a
variety of GHs and combinations of enzymes in non-
cultivable microorganisms found in any environment.
The CAZychip provides an efficient method to explore
complex environments, to analyze enriched niches for
lignocellulose degradation, and to perform comparative
studies. This transcriptomic screening approach (micro-
arrays), reveals the genes that are being actively
expressed by lignocellulolytic communities. This in turn
allows us to consider the stability and/or performance of

target enzymes, enabling the design of new enzyme
cocktails and engineering microbial mixed cultures for
an optimized lignocellulose bioconversion. Technologies
for the rapid screening of GH’s activities are currently in
development for high throughput analysis [6, 11, 38,
65]. Functional metagenomic has been proven to be use-
ful tool to achieve this screening of GH’s activities (see
review [27, 58]). However, like any screening related
technology they face the paradigm “you get what you
screened for”. In this context, the CAZyChip allows the

Table 2 Families of differentially expressed GH between in day 3 and 5 known to be implicated in plant cell wall (PCW) degradation
and their enzymatic activities referenced in CAZy

Family Number of DE
genes

Enzymatic activities referenced in CAZy

GH3 236 ß-glucosidase; xylan 1,4-ß-xylosidase; ß-glucosylceramidase; ß-N-acetylhexosaminidase; a-L-arabinofuranosidase; glucan 1,3-
ß-glucosidase; glucan 1,4-ß-glucosidase; isoprimeverose-producing oligoxyloglucan hydrolase; coniferin ß-glucosidase;
exo-1,3-1,4-glucanase; ß-N-acetylglucosaminide phosphorylases

GH43 98 ß-xylosidase; a-L-arabinofuranosidase; arabinanase; xylanase; galactan 1,3-ß-galactosidase; a-1,2-L-arabinofuranosidase; exo-
a-1,5-L-arabinofuranosidase; [inverting] exo-a-1,5-L-arabinanase; ß-1,3-xylosidase

GH5 81 endo-ß-1,4-glucanase / cellulase; endo-ß-1,4-xylanase; ß-glucosidase; ß-mannosidase; ß-glucosylceramidase; glucan ß-1,3-
glucosidase; licheninase; exo-ß-1,4-glucanase / cellodextrinase; glucan endo-1,6-ß-glucosidase; mannan endo-ß-1,4-manno-
sidase; cellulose ß-1,4-cellobiosidase; steryl ß-glucosidase; endoglycoceramidase; chitosanase; ß-primeverosidase; xyloglu-
can-specific endo-ß-1,4-glucanase; endo-ß-1,6-galactanase; hesperidin 6-O-a-L-rhamnosyl-ß-glucosidase; ß-1,3-
mannanase; arabinoxylan-specific endo-ß-1,4-xylanase; mannan transglycosylase

GH1 47 ß-glucosidase; ß-galactosidase; ß-mannosidase; ß-glucuronidase; ß-xylosidase; ß-D-fucosidase; phlorizin hydrolase; exo-ß-
1,4-glucanase; 6-phospho-ß-galactosidase; 6-phospho-ß-glucosidase; strictosidine ß-glucosidase; amygdalin ß-glucosidase;
prunasin ß-glucosidase; vicianin hydrolase; raucaffricine ß-glucosidase; thioglucosidase; ß-primeverosidase; isoflavonoid 7-
O-ß-apiosyl-ß-glucosidase; ABA-specific ß-glucosidase; DIMBOA ß-glucosidase; ß-glycosidase; hydroxyisourate hydrolase

GH10 44 endo-1,4-ß-xylanase; endo-1,3-ß-xylanase; tomatinase; xylan endotransglycosylase

GH39 34 a-L-iduronidase; ß-xylosidase

GH8 31 chitosanase; cellulase; licheninase; endo-1,4-ß-xylanase; reducing-end-xylose releasing exo-oligoxylanase

GH51 26 endoglucanase; endo-ß-1,4-xylanase; ß-xylosidase; a-L-arabinofuranosidase

GH6 22 endoglucanase; cellobiohydrolase

GH30 13 endo-ß-1,4-xylanase; ß-glucosidase; ß-glucuronidase; ß-xylosidase; ß-fucosidase; glucosylceramidase; ß-1,6-glucanase;
glucuronoarabinoxylan endo-ß-1,4-xylanase; endo-ß-1,6-galactanase; [reducing end] ß-xylosidase

GH9 9 endoglucanase; endo-ß-1,3(4)-glucanase / lichenase-laminarinase; ß-glucosidase; lichenase / endo-ß-1,3-1,4-glucanase; exo-
ß-1,4-glucanase / cellodextrinase; cellobiohydrolase; xyloglucan-specific endo-ß-1,4-glucanase / endo-xyloglucanase; exo-ß-
glucosaminidase

GH74 8 endoglucanase; oligoxyloglucan reducing end-specific cellobiohydrolase; xyloglucanase

GH12 7 endoglucanase; xyloglucan hydrolase; ß-1,3-1,4-glucanase; xyloglucan endotransglycosylase

GH54 6 a-L-arabinofuranosidase; ß-xylosidase

GH11 5 endo-ß-1,4-xylanase; endo-ß-1,3-xylanase

GH62 5 a-L-arabinofuranosidase

GH48 4 reducing end-acting cellobiohydrolase; endo-ß-1,4-glucanase; chitinase

GH64 4 ß-1,3-glucanase

GH63 3 processing a-glucosidase; a-1,3-glucosidase; a-glucosidase; mannosylglycerate a-mannosidase / mannosylglycerate
hydrolase

GH44 2 endoglucanase; xyloglucanase

GH55 2 exo-ß-1,3-glucanase; endo-ß-1,3-glucanase

GH45 1 endoglucanase

GH52 1 β-xylosidase

GH116 1 ß-glucosidase; ß-xylosidase; acid ß-glucosidase/ß-glucosylceramidase; ß-N-acetylglucosaminidase
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observation of the enzymatic arsenal developed by mi-
crobial consortia on complex substrate, and could repre-
sent a decisive support before choosing a sample for
further analysis.
As few CE sequences were included in the CAZyChip,

in the near future, others CAZymes (i. e. glycosyltrans-
ferases, polysaccharide lyases, or auxiliary activities)
could be detectable on the CAZyChip with the same ap-
proach. Thanks to its flexible design, this biochip will be
able to accommodate additional probes [9] and could be
upgradable, taking into account the regular updates of
the CAZy database. Minty et al. have previously proven
that fungal-bacterial consortia are efficient for the bio-
synthesis of valuable products from lignocellulosic feed-
stocks [43]. Probes for detection of this kind of
CAZymes could easily be added on the CAZyChip, in
order to highlight a large number of enzymes that work
synergistically for cellulose and hemicelluloses break-
down [31, 40]. Understanding the biological process
used by bacteria for carbohydrates depolymerization and
metabolization is a considerable biotechnological inter-
est not only for biorefineries but also to appreciate car-
bon flow in the environment, or to promote healthy
human nutrition and prevent diseases [17, 18, 40]. The
CAZyChip has been developed in a context of lignocel-
lulosic biomass degradation but this biochip represents
an excellent tool for other applications in the field of
health and nutrition and more widely in any field inter-
ested in carbohydrate metabolism. Indeed, GHs are
widely characterized in many biological systems such as
human intestinal microbiota [17, 18] and the GHs pro-
file are modified depending on eating habits and evolu-
tionary plasticity of the human gut microbiome, playing
a major role in nutrition and maintaining human health
[24]. Modifications of their expression induce a number
of diseases like colon cancer, Crohn’s disease, lactose
malabsorption, food allergies, metabolic syndrome, type
II diabetes, mucopolysaccharidoses [49, 55, 60, 64]. Thus
applications referred for diagnostic or preventive health
and nutrition could be explored, if considering GHs as
biomarkers. Following glycosyltranferase expression
could be also of great interest as they play an important
role in the human antigenic system [63].

Conclusion
In conclusion, the CAZychip developed in this study is a
user-friendly, high-throughput, and reliable method to
quickly explore GHs expression from complex environ-
mental samples. It can be used to explore functional and
ecological dynamics of the enzymatic machinery used by
microbes for carbohydrate degradation. This approach
can enhance the understanding of how the microbes
metabolize polysaccharides and optimize polysaccharide
or glycan deconstruction. The CAZyChip could guide

the design of enzyme cocktails or the engineering of mi-
crobial mixed cultures for many applications.
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