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Abstract

Background: Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in
recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages
other than English. Recent studies are summarized to offer insights and outline opportunities in this area.

Main Body: We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other
languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and
(3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP
techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than
English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or
components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another
language, and (iii) studies focusing on a particular clinical application.

Conclusion: We show the advantages and drawbacks of each method, and highlight the appropriate application
context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice
and public health studies in a context that encompasses English as well as other languages.

Keywords: Natural Language Processing, Clinical Decision-Making, Languages other than English

Background
Clinical research in a global context
Healthcare is a top priority for every country. The
goal of clinical research is to address diseases with
efforts matching the relative burden [1]. Compu-
tational methods enable clinical research and have
shown great success in advancing clinical research in
areas such as drug repositioning [2]. Much clinica
l information is currently contained in the free text of sci-
entific publications and clinical records. For this reason,
Natural Language Processing (NLP) has been increasingly
impacting biomedical research [3–5]. Prime clinical appli-
cations for NLP include assisting healthcare professionals
with retrospective studies and clinical decision making
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[6, 7]. There have been a number of success stories in
various biomedical NLP applications in English [8–19].
The ability to analyze clinical text in languages other than
English opens access to important medical data concern-
ing cohorts of patients who are treated in countries where
English is not the official language, or in generating global
cohorts especially for rare diseases. One such example
is the Phelan-McDermid Syndrome Foundation (PMSF),
which is leading a Patient Powered Research Network
project (part of the Patient Centered Outcome Research
Institute, PCORI [20] on a very rare disease. PMSF par-
ents, together with researchers and advisors, launched an
international patient registry, the PMSIR, that is directed,
governed, and implemented by patient families. There are
a total of 900 cases of this rare disease in the entire world.
Each patient contributed their EHR and genomics data
to enable phenotype/genotype studies. Recently, Kohane
et al. have shown that methods allowing an aggregated
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exploitation of clinical data from multiple healthcare cen-
ters could contribute to make headway in the understand-
ing of autism spectrum disorders [21]. Cross-lingual text
mining of newswires in thirteen languages was shown
to be helpful for automated health surveillance of dis-
ease outbreaks, and was routinely implemented in the
BioCaster portal [22].
In this context, data extracted from clinical text and clin-

ically relevant texts in languages other than English adds
another dimension to data aggregation. TheWorld Health
Organization (WHO) is taking advantage of this oppor-
tunity with the development of IRIS [23], a free software
tool for interactively coding causes of death from clini-
cal documents in seven languages. The system comprises
language-dependent modules for processing death certifi-
cates in each of the supported languages. The result of
language processing is standardized coding of causes of
death in the form of ICD10 codes, independent of the
languages and countries of origin.

Objective and Scope
This paper follows-up on a panel discussion at the 2014
American Medical Informatics Association (AMIA) Fall
Symposium [24]. Following the definition of the Interna-
tional Medical Informatics Association (IMIA) Yearbook
[25, 26], clinical NLP is a sub-field of NLP applied to clini-
cal texts or aimed at a clinical outcome. This encompasses
NLP applied to texts in Electronic Health Records (EHRs),
but also extends to the development of resources for
clinical NLP systems, and to clinically relevant research
addressing biomedical information retrieval or the analy-
sis of patient-authored text for public health or diagnostic
purposes. We survey studies conducted over the past
decade and seek to provide insight on the major develop-
ments in the clinical NLP field for languages other than
English. We outline efforts describing (i) building new
NLP systems or components from scratch, (ii) adapting
NLP architectures developed for English to another lan-
guage, and (iii) applying NLP approaches to clinical use
cases in a language other than English.
Finally, we identify major NLP challenges and opportu-

nities with impact on clinical practice and public health
studies accounting for language diversity.

Main Text
Reviewmethod and selection criteria
Conducting a comprehensive survey of clinical NLP work
for languages other than English is not a straightforward
task because relevant studies are scattered across the lit-
erature of multiple fields, including medical informatics,
NLP and computer science. In addition, the language
addressed in these studies is not always listed in the title
or abstract of articles, making it difficult to build search
queries with high sensitivity and specificity.

In order to approximate the publication trends in the
field, we used very broad queries. A Pubmed query for
“Natural Language Processing” returns 4,486 results (as of
January 13, 2017). Table 1 shows an overview of clinical
NLP publications on languages other than English, which
amount to almost 10% of the total.
We are showing the results of this query as an imperfect

proxy for estimating the scale of the biomedical literature
relevant to NLP research, as some publications addressing
clinical NLP may not appear in PubMed, and some publi-
cations referenced in PubMedmay bemissed by the query.
As described below, our selection of studies reviewed
herein extends to articles not retrieved by the query.
Figure 1 shows the evolution of the number of NLP

publications in PubMed for the top five languages other
than English over the past decade. We can see that French
benefits from a historical but sustained and steady inter-
est. Chinese and Spanish have recently attracted sustained
efforts. Japanese and German seem to receive plateauing
attention.
This work is not a systematic review of the clinical NLP

literature, but rather aims at presenting a selection of
studies covering a representative (albeit not exhaustive)
number of languages, topics and methods. We browsed
the results of broad queries for clinical NLP in MEDLINE
and ACL anthology [26], as well as the table of contents
of the recent issues of key journals. We also leveraged our
own knowledge of the literature in clinical NLP in lan-
guages other than English. Finally, we solicited additional
references from colleagues currently working in the field.
Our selection criteria were based on the IMIA defi-

nition of clinical NLP [25, 26]. For instance, the broad
queries employed in MEDLINE resulted in a number of
publications reporting work on speech or neurobiology,
not on clinical text processing, which we excluded. More-
over, with the increased volume of publications in this area
in the last decade, we prioritized the inclusion of studies
from the past decade. In total, 114 publications across a
wide range of languages fulfilled these criteria (Table 1).

Clinical NLP in languages other than English
This section reviews the topics covered by recently pub-
lished research on clinical NLP which addresses languages
other than English. We organize the section by the type
of strategies used in the specific studies. Table 2 presents
a classification of the studies cross-referenced by NLP
method and language.

Building new systems and resources
New NLP systems or components Some of the work in
languages other than English addresses core NLP tasks
that have been widely studied for English, such as sen-
tence boundary detection [27], part of speech tagging
[28–30], parsing [31, 32], or sequence segmentation [30].
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Table 1 Number of publications returned by a PubMed search for “Natural Language Processing AND *language* [tiab]” where
*language* is instantiated with a specific language name, on January 13, 2017 along with references cited in this review for each
language. The last row (bolded) presents overall information for all languages studied in this review

Language (ISO 639-1 language code) PubMed Count Cited in this review

French (FR) 111 [31, 77]*[71, 160, 161]*[158]*[65]*[78]*[66, 79, 94]

[156]* [50, 67, 89, 109, 120]* [54]* [154]* [159]*

[140] [138]* [7, 56, 59, 60, 90, 116, 117] [163]*

[112] [70]* [126, 152, 153] [55]*

German (DE) 69 [31]*[115] [72]*[156]* [154]*[141] [109]*[118] [138]*

[84] [163]* [27, 53, 88] [70]* [80, 124] [36, 106]

Chinese (ZH) 54 [155]* [68, 73, 96] [154]* [42, 43, 69, 99] [103, 122]

Spanish (ES) 39 [161]*[158]*[155]*[156]*[54]*[154]*[138]

*[30, 98, 107, 119] [70]*[58] [34, 108], [55, 157]*

Japanese (JA) 30 [158]*[33, 37] [154]* [49, 127, 149, 151],

Dutch (DU) 20 [114] [139] [138]*[110] [70]*

Swedish (SV) 15 [57, 104] [74]*[92] [109]* [48, 61, 105]

[35, 93, 113, 123]

Portuguese (PT) 14 [28, 83], [55]*

Greek (EL) 14 [52]

Italian (IT) 12 [46, 47, 97]

Korean (KO) 11 [155]*[91]

Arabic (AR) 9 [158]*[162]

Finnish (FI) 9 [38, 40] [74]*[32, 85, 121]

Czech (CS), Russian (RU) 7 [155]*, [163]*

Polish (PL) 6 [29, 82], [156]*

Hebrew (HE) 5 [41, 44]

Danish (DA) 4 [86, 87] [45]

Turkish (TR) 3 [156]*

Bulgarian (BG) 2 [62, 64, 95, 100–102]

Basque (EU) 1 [51]

Georgian (KA) 1 [125]

Hungarian (HU) 0 [156]*

Overall 435 114

Note that some included articles are not indexed in MEDLINE but in other publication venues such as ACL. A star indicates work that addresses several languages

Word segmentation issues are more obviously visible
in languages which do not mark word boundaries with
clear separators such as white spaces. This is the case,
for instance, in Chinese, Japanese, Vietnamese and Thai.
A study of automatic word segmentation in Japanese
addressed the lack of spacing between words in this
language [33]. The authors implemented a probabilistic
model of word segmentation using dictionaries. Abbre-
viations are common in clinical text in many languages
and require term identification and normalization strate-
gies. These have been studied for Spanish [34], Swedish
[35], German [27, 36] and Japanese [37]. More complex

semantic parsing tasks have been addressed in Finnish
[38] through the addition of a PropBank layer [39] to
clinical Finnish text parsed by a dependency parser [40].
Core NLP tasks are sometimes evaluated as part of

more complex tasks. For instance, a study on Hebrew
medical text shows that segmentation methods account-
ing for transliterated words yield up to 29% perfor-
mance improvement in medical term extraction [41].
Word segmentation was also shown to outperform char-
acter segmentation for named entity recognition in
Chinese clinical text. In addition, performing segmenta-
tion and named entity recognition jointly yielded a 1%
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Fig. 1 Growth of bio-clinical NLP publications in MEDLINE over the
past decade, for the top 5 studied languages other than English

improvement for both. The overall performance of named
entity recognition using these special features was above
0.90 F1-measure for four entity types, a performance com-
parable to English state-of-the-art [42, 43]. Conversely,
in an effort addressing the expansion of English abbre-
viations in Japanese text [37] a study on eight short
forms associated to two or more long forms found that
character (vs. word) segmentation performed better for
the task. However, it can be argued that in the context
of code-switching and transliteration (English abbrevia-
tions appeared verbatim in Japanese text, accompanied
by an expanded form of the acronym in Japanese), the
distribution of words and characters made the text suffi-
ciently different from standard Japanese to warrant spe-
cific processing. Cohen et al. [44] studied the impact
of the high frequency of transliterated terms in Hebrew
clinical narratives. They report that the use of a semi-
automatically acquired medical dictionary of transliter-
ated terms improves the performance of information
extraction. The effect of spelling correction and negation
detection on an ICD10 coding system was studied for
Danish and both features were found to yield improved
performance [45].

Lexicons, terminologies and annotated corpora While
the lack of language specific resources is sometimes
addressed by investigating unsupervised methods
[46, 47], many clinical NLP methods rely on language-
specific resources. As a result, the creation of resources
such as synonym or abbreviation lexicons [27, 36, 48]
receives a lot of effort, as it serves as the basis for more
advanced NLP and text mining work.
Distributional semantics was used to create a semantic

space of Japanese patient blogs, seed terms from the cat-
egories Medical Finding, Pharmaceutical Drug and Body
Part were used to expand the vocabularies with promising
results [49].

There is sustained interest in terminology development
and the integration of terminologies and ontologies in
the UMLS [50], or SNOMED-CT for languages such as
Basque [51]. In other cases, full resource suites includ-
ing terminologies, NLP modules, and corpora have been
developed, such as for Greek [52] and German [53].
The development of reference corpora is also key

for both method development and evaluation. Recently,
researchers produced annotated corpora for tasks such as
machine translation [54, 55], de-identification in French
[56] and Swedish [57], drug-drug interaction in Spanish
[58], named entity recognition and normalization for
French [59], and also for linguistic elements such as verbal
propositions and arguments for Finnish [38]. The study of
annotation methods and optimal uses of annotated cor-
pora has been growing increasingly with the growth of
statistical NLP methods [7, 60, 61].
For some languages, a mixture of Latin and English ter-

minology in addition to the local language is routinely
used in clinical practice. This adds a layer of complexity
to the task of building resources and exploiting them for
downstream applications such as information extraction.
For instance, in Bulgarian EHRs medical terminology
appears in Cyrillic (Bulgarian terms) and Latin (Latin and
English terms). This situation calls for the development of
specific resources including corpora annotated for abbre-
viations and translations of terms in Latin-Bulgarian-
English [62]. The use of terminology originating from
Latin and Greek can also influence the local language use
in clinical text, such as affix patterns [63].
Multilingual corpora are used for terminological

resource construction [64] with parallel [65–67] or com-
parable [68, 69] corpora, as a contribution to bridg-
ing the gap between the scope of resources available
in English vs. other languages. More generally, parallel
corpora also make possible the transfer of annotations
from English to other languages, with applications for ter-
minology development as well as clinical named entity
recognition and normalization [70]. They can also be
used for comparative evaluation of methods in different
languages [71].
A notable use of multilingual corpora is the study of

clinical, cultural and linguistic differences across coun-
tries. A study of forum corpora showed that breast cancer
information supplied to patients differs in Germany vs.
the United Kingdom [72]. Furthermore, a study of clini-
cal documents in English and Chinese evidenced a lower
density of treatment concepts in Chinese documents [73]
which was interpreted as a reflection of cultural differ-
ences between clinical narrative styles and suggests that
this needs to be accounted for when designing clinical
NLP systems for Chinese.
Conversely, a comparative study of intensive care nurs-

ing notes in Finnish vs. Swedish hospitals showed that
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Table 2 List of studies presented in this review categorized by NLP method used and language(s) addressed

Method/Task Language/reference cited in this review

Core NLP

- Morphology FR [78] PL [29]

- Part of Speech tagging PT [28] ES [30]

- Parsing FI [32, 38, 40] FR [31, 77] GR [52] JA [33, 37]

- Segmentation DE [27] HE [41]

Resource development

- Lexicons BG [62] EL [52] EU [51] FR [50, 65–67] HE [44] JA [49] SV[48] ZH [68, 69]

- Corpora and annotation EL [52] EN-{FR,ES} [54] EN-{ES,FR,PT} [55]

ES [58] FR [59, 117]

- Models, methods DE [53] FR [60]

De-identification FR [56, 79, 89, 90] KO [91] SV [57, 92]

Information extraction

- Medical Concepts BG [62, 64] ZH [42, 43] DE [80, 84, 115, 124] DU [114] ES [34]

IT [46, 47, 97] PL [82] SV [61]

- Findings/Symptoms DE [118], SV [61, 93] ZH [96]

- Drugs/Adverse events BG [95, 102] DA [87] ES [98] FR [94, 116] SV [61]

- Specific characteristics EN-{ZH,FR,DE,JA,ES} [154] FR [120] ZH [99] DU [114]

- Relations BG [64] DE [84, 115] IT [46, 47]

Classification

- Phenotyping from EHR text BG [100] ES [119] FI [121] FR [7, 126] KA [125] PT [83]

SV [123] ZH [122]

- Indexing and coding EN-FR [71] FI [85] FR [153] JA [149, 151]

- Patient-authored text JA [127]

- Cohort stratification DA [86] DE [88]

Context Analysis DU [110]

- Negation detection BG [101] DA [45] DE [106] DU [110] ES [107, 108]

FR,DE,SV [109] SV [104, 105]

- Uncertainty/Assertion SV [105] ZH [103]

- Temporality FR [112] SV [113]

- Abbreviation DE [36] SV [35]

- Experiencer DU [110]

Multilingual tasks

- Translation EN-ES [157] EN-FR [159] EN-{KO,RU,ES,ZH} [155]

EN-{FR,DE,HU,PL,ES,TU} [156], FR-DE [158]

- Information Retrieval AR [162] FR [160], EN-{CZ,DE,FR} [163] EN-{ES,FR} [161]

- Cultural analysis DE [72], EN-ZH [73], FI-SV [74]

Shared tasks

- CLEF-ER2013 DE,DU,FR,ES- [138]

- CLEF eHealth 2015, 2016 FR [152, 153]

- NTCIR 2014, 2016 JA [149, 151]

The two letter language codes are introduced in Table 1. When multiples languages are addressed in one paper we provide a comma separated list; dashes mark language
pairs in multilingual work
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there are essentially linguistic differences while the con-
tent and style of the documents is similar [74].

Adapting NLP architectures developed for English
Studying sublanguages, Harris [75] observed that “The
structure of each science language is found to conform to
the information in that science rather than to the grammar
of the whole language.” Sager’s LSP system [76], devel-
oped for the syntactic analysis of medical English, was
adapted to French [77]. Deléger et al. [78] also describe
how a knowledge-based morphosemantic parser could be
ported from French to English.
This shows that adapting systems that work well for

English to another language could be a promising path.
In practice, it has been carried out with varying levels
of success depending on the task, language and sys-
tem design. The importance of system design was evi-
denced in a study attempting to adapt a rule-based
de-identification method for clinical narratives in English
to French [79]. Language-specific rules were encoded
together with de-identification rules. As a result, sep-
arating language-specific rules and task-specific rules
amounted to re-designing an entirely new system for
the new language. This experience suggests that a sys-
tem that is designed to be as modular as possible,
may be more easily adapted to new languages. As a
modular system, cTAKES raises interest for adaptation
to languages other than English. Initial experiments in
Spanish for sentence boundary detection, part-of-speech
tagging and chunking yielded promising results [30].
Some recent work combining machine translation and
language-specific UMLS resources to use cTAKES for
clinical concept extraction from German clinical narra-
tive showed moderate performance [80]. More generally,
the use of word clusters as features for machine learning
has been proven robust for a number of languages across
families [81].
Similarly to work in English, the methods for Named

Entity Recognition (NER) and Information Extraction
for other languages are rule-based [82, 83], statisti-
cal, or a combination of both [84]. With access to
large datasets, studies using unsupervised learning meth-
ods can be performed irrespective of language, as in
Moen et al. [85] where such methods were applied
for information retrieval of care episodes in Finnish
clinical text. Knowledge-based methods can be applied
when terminologies are available, e.g. extending informa-
tion contained in structured data fields with informa-
tion from Danish clinical free-text with dictionary-based
approaches for the study of disease correlations [86] or
adverse events [87]. For German, extracting information
from clinical narratives for cohort building using simple
rules was successful [88].

NER essentially focuses on two types of entities: per-
sonal health identifiers in the context of clinical document
de-identification [56, 57, 79, 79, 89–92] and clinical enti-
ties such as diseases, signs/symptoms [93], procedures
or medications [61, 94–100], as well as their context
of occurrence: negation [101], assertions [102, 103] and
experiencer (i.e. whether the entities are relevant to the
patient or a third party such as a family member or
organ donor).
Systems addressing a task such as negation may be eas-

ily adapted between languages of the same family that
express negation using similar syntactic structures as is
the case for English and Swedish [104, 105], English and
German [106], English and Spanish [107, 108], or even
English, French, German and Swedish [109]. However,
it can be difficult to pinpoint the reason for differences
in success for similar approaches in seemingly close lan-
guages such as English and Dutch [110].
Another important contextual property of clinical text is

temporality. Heideltime is a rule-based system developed
for multiple languages to extract time expressions [111].
It has been adapted for clinical text in French [112] and
Swedish [113].
Global concept extraction systems for languages other

than English are currently still in the making (e.g. for
Dutch [114], German [115] or French [116, 117]).
The entities extracted can then be used for inferring

information at the sentence level [118] or record level,
such as smoking status [119], thromboembolic disease
status [7], thromboembolic risk [120], patient acuity [121],
diabetes status [100], and cardiovascular risk [122].

Applications
There are a number of studies describing applications
relying on some NLP preprocessing. Jacobson et al. [123]
use deep learning to detect healthcare associated infec-
tions in Swedish patient records. Lopprich et al [124]
describe a system using NLP methods for German to
classify the diagnoses of Multiple Myeloma patients at
Heidelberg University Hospital. The high average F1-
scores demonstrate the suitability of the investigated
methods. However, it was also shown that there is no
best practice for an automatic classification of data ele-
ments from free-text diagnostic reports. A study on Geor-
gian medical records, where documents were classified
into types (Ultrasonography, X-ray and Endoscopy) and
clinical categories (e.g. Thyroid, Biliary system) showed
promising results, and highlights early work in an under-
studied, highly agglutinative language [125].
Metzger et al. [126] show how the development of

machine learning-based classifiers using free-text data
can be used to identify suicide attempts in a French Emer-
gency Department with promising results (70.4-95.3% F1),
demonstrating that the quality of epidemiological
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indicators can be improved by these types of approaches
as opposed to manually coded information. Grouin
et al. [120] show that information extraction from clinical
records can sucessfully be used to automatically compute
a cardio-vascular alert score on par with experts. Similarly,
Takano et al. [127] use NLP to analyze Japanese patients
cue-recalled memories to automatically determine mem-
ory specificity, an important indicator in the diagnosis
of memory dysfunctions. NLP-based systems have been
integrated into a clinical workflow for assisting clinical
decision making or contributing to the construction of
large health information system such as data warehouses.
For instance, the Bulgarian system BITool is used for
the construction of the register of diabetic patients in
Bulgaria, which contains over 100 million de-identified
reimbursement requests from all general practitioners
and specialists in the country for a 3 year period [100].

Discussion
As we enter an era where big data is pervasive and
EHRs are adopted in many countries, there is an oppor-
tunity for clinical NLP to thrive beyond English, serving a
global role.

How to develop a clinical NLP application in a language other
than English?
Research on the use of NLP for targeted information
extraction from, and document classification of, EHR text
shows that some degree of success can be achieved with
basic text processing techniques. It can be argued that
a very shallow method such as lexicon matching/regular
expressions to a customized lexicon/terminology is suffi-
cient for some applications [128]. For tasks where a clean
separation of the language-dependent features is possible,
porting systems from English to structurally close lan-
guages can be fairly straightforward. On the other hand,
for more complex tasks that rely on a deeper linguistic
analysis of text, adaptation is more difficult.
In summary, the level of difficulty to build a clinical

NLP application depends on various factors including the
difficulty of the task itself and constraints linked to soft-
ware design. Legacy systems can be difficult to adapt if
they were not originally designed with a multi-language
purpose.

Where are the best opportunities?
Clinical NLP in any language relies on methods and
resources available for general NLP in that language, as
well as resources that are specific to the biomedical or
clinical domain.
In this respect, English is by far the most resource-

rich language, with advanced tools dedicated to the
biomedical domain such as part-of-speech taggers (e.g.
MedPOST [129]), parsers (e.g. GATE [130], Charniak-

McClosky [131], enju [132]), biomedical concept extrac-
tors (e.g. MetaMap [133], cTAKES [134, 135], NCBO
[136]). For other languages, data and resources are
sometimes scarce.
The UMLS (Unified Medical Language System [137])

aggregates more than 100 biomedical terminologies and
ontologies. In its 2016AA release, the UMLS Metathe-
saurus comprises 9.1 million terms in English followed
by 1.3 million terms in Spanish. For all other languages,
such as Japanese, Dutch or French, the number of terms
amounts to less than 5% of what is available for English.
Additional resources may be available for these languages
outside the UMLS distribution. Details on terminology
resources for some European languages were presented at
the CLEF-ER evaluation lab in 2013 [138] for Dutch [139],
French [140] and German [141].
Medical ethics, translated into privacy rules and reg-

ulations, restrict the access to and sharing of clinical
corpora. Some datasets of biomedical documents anno-
tated with entities of clinical interest may be useful
for clinical NLP [59]. However, there are currently no
sharable clinical datasets comparable to the i2b2 datasets
[142, 143], the ShARe corpus [144], the THYME corpus
[145, 146] or the MIMIC corpus [147] in languages other
than English except the Turku Clinical TreeBank and
PropBank [32, 38, 148] in Finnish and the small subset of
100 patient pseudonymized records in the Stockholm EPR
PHI Pseudo Corpus [92] in Swedish, and the examinations
clinical texts of theMedNLPDoc corpus in Japanese [149],
albeit only with document-level annotation.
Past experience with shared tasks in English has shown

international community efforts were a useful and effi-
cient channel to benchmark and improve the state-of-the-
art [150]. The NTCIR-11MedNLP-2 [151] and NTCIR-12
MedNLPDoc [149] tasks focused on information extrac-
tion from Japanese clinical narratives to extract dis-
ease names and assign ICD10 codes to a given medical
record. The CLEF-ER 2013 evaluation lab [138] was the
first multi-lingual forum to offer a shared task across
languages. It resulted in a small multi-lingual manually-
validated reference dataset [70] and prompted the devel-
opment of a large gold-standard annotated corpus of
clinical entities for French [59], currently in use in a clin-
ical named entity recognition and normalization task in
the CLEF eHealth evaluation lab [152, 153]. Our hope
is that this effort will be the first in a series of clin-
ical NLP shared tasks involving languages other than
English. The establishment of the health NLP Center as
a data repository for health-related language resources
(www.center.healthnlp.org) will enable such efforts.
In summary, there is a sharp difference in the availabil-

ity of language resources for English on one hand, and
other languages on the other hand. Corpus and terminol-
ogy development are a key area of research for languages

www.center.healthnlp.org


Névéol et al. Journal of Biomedical Semantics  (2018) 9:12 Page 8 of 13

other than English as these resources are crucial to make
headway in clinical NLP.

How dowe best leverage existing data and tasks?
Leveraging resources for English. The resource avail-
ability for English has prompted the use of machine
translation as a way to address resource sparsity in other
languages. Off-the-shelf automatic translators, e.g. Google
translate, were found to have the potential to reduce
language bias in the preparation of randomized clini-
cal trials reports language pairs [154]. However, it was
shown to be of little help to render medical record con-
tent more comprehensible to patients [155]. A system-
atic evaluation of machine translation tools showed that
off-the-shelf tools were outperformed by customized sys-
tems [156]; however, this was not confirmed when using
a smaller in-domain corpus [157]. Encouragingly, med-
ical speech translation was shown to be feasible in a
real clinical setting, if the system focused on narrowly-
defined patient-clinician interactions [158]. Further work
focused on acquiring and evaluating targeted resources
[54, 55, 159].
Machine translation is used for cross-lingual Informa-

tion Retrieval to improve access to clinical data for non-
native English speakers. Successful query translation (for a
limited set of query terms) was achieved for French using
a knowledge-based method [160]. Query translation rely-
ing on statistical machine translation was also shown to
be useful for information retrieval through MEDLINE for
queries in French, Spanish [161] or Arabic [162]. More
recently, custom statistical machine translation of queries
was shown to outperform off-the-shelf translation tools
using queries in French, Czech and German on the CLEF
eHealth 2013 dataset [163]. Interestingly, while the over-
all cross-lingual retrieval performance was satisfactory,
the authors found that better query translation did not
necessarily yield improved retrieval performance.
More recently, machine translation was also attempted

to adapt and evaluate cTAKES concept extraction to
German [80], with very moderate success. Making use of
multilingual resources for analysing a specific language
seems to be a more fruitful approach [152, 153, 164]. It
also yielded improved performance for word sense disam-
biguation in English [165].

Learning from other languages. The common clinical
NLP research topics across languages prompt a reflexion
on clinical NLP in a more global context.
Recent work on negation detection in English clinical

text [166] suggests that the ability to successfully address
a particular clinical NLP task on a particular corpus does
not necessarily imply that the results can be generalized
without significant adaptation effort. This may hold true
for adaptations across languages as well, and suggests

a direction for future work in the study of language-
adaptive, domain-adaptive and task-adaptive methods for
clinical NLP. The LORELEI [167] initiative aims to create
NLP technologies for languages with low resources.While
not specific to the clinical domain, this work may create
useful resources for clinical NLP.
Interestingly, segmentation with lack of spacing in

Japanese [33] could be successfully applied to English
text where spacing between words was removed such
as in Character Recognition (OCR) where word spacing
is often not captured properly. Duque et al. [165] show
that multilingual ressources can be useful for processing
English text: for a word sense disambiguation task, multi-
lingual resources yield a 7% improvement in performance,
compared to monolingual resources.

Conclusion
In summary, we find a steady interest in clinical NLP
for a large spectrum of languages other than English
that cover Indo-European languages such as French,
Swedish or Dutch as well as Sino-Tibetan (Chinese),
Semitic (Hebrew) or Altaic (Japanese, Korean) languages.
Our review of recent studies shows that (1) the field is
maturing, (2) researchers in the community have access
to datasets, which enables them to develop powerful
methods to address clinical NLP tasks of interest such
as EHR de-identification, clinical entity recognition, nor-
malization and contextualization. We identified the need
for shared tasks and datasets enabling the comparison of
approaches within- and across- languages. Furthermore,
the challenges in systematically identifying relevant litera-
ture for a comprehensive survey of this field lead us to also
encourage more structured publication guidelines that
incorporate information about language and task.We sug-
gest that efforts in analyzing the specificity of languages
and tasks could contribute to methodological advances in
adaptive methods for clinical NLP.
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