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Abstract

In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on an unknown parameter.
We suppose that the process is discretely observed. We introduce an estimator based on a contrast function, which is
efficient without requiring any conditions on the rate at which the step discretization goes to zero, and where we allow the
observed process to have non summable jumps. This extends earlier results where the condition on the step discretization
was needed and where the process was supposed to have summable jumps. In general situations, our contrast function
is not explicit and one has to resort to some approximation. In the case of a finite jump activity, we propose explicit
approximations of the contrast function, such that the efficient estimation of the drift parameter is feasible. This extends
the results obtained by Kessler in the case of continuous processes.

Efficient drift estimation, ergodic properties, high frequency data, Lévy-driven SDE, thresholding methods.

1 Introduction

Diffusion processes with jumps have been widely used to describe the evolution of phenomenon arising in
various fields. In finance, jump-processes were introduced to model the dynamic of asset prices (Merton,
1976),(Kou,2002), exchange rates (Bates, 1996), or volatility processes (Barndorff-Nielsen & Shephard,
2001),(Eraker, Johannes, & N, 2003). Utilization of jump-processes in neuroscience can be found for
instance in (Ditlevsen & Greenwood, 2013).

Practical applications of these models has lead to the recent development of many statistical methods.
In this work, our aim is to estimate the drift parameter 6 from a discrete sampling of the process X°
solution to . , .
X! =x¢ +/ b(0, X%)ds +/ o(X9)dw, +/ / Y(X8 )zfu(ds, dz),
0 0 o JR\{0}

where W is a one dimensional Brownian motion and /i a compensated Poisson random measure, with a
possible infinite jump activity. We assume that the process is sampled at the times (¢}');=o,..., where the
sampling step A, :=sup,_q ., t{y1 — t7 goes to zero. Due to the presence of a Gaussian component,
we know that it is impossible to estimate the drift parameter on a finite horizon of time. Thus, we assume
that ¢, — oo and the ergodicity of the process X?.

Generally, the main difficulty while considering statistical inference of discretely observed stochastic pro-
cesses comes from the lack of explicit expression for the likelihood. Indeed, the transition density of a
jump-diffusion process is usually unknown explicitly. Several methods have been developed to circumvent
this difficulty. For instance, closed form expansions of the transition density of jump-diffusions is studied
in (ATt-Sahalia & Yu, 2006), (Li & Chen, 2016). In the context of high frequency observation, the asymp-
totic behaviour of estimating functions are studied in (Jakobsen & Sgrensen, 2017), and conditions are
given to ensure rate optimality and efficiency. Another approach, fruitful in the case of high frequency
observation, is to consider pseudo-likelihood method, for instance based on the high frequency approx-
imation of the dynamic of the process by the one of the Euler scheme. This leads to explicit contrast
functions with Gaussian structures (see e.g. (Shimizu & Yoshida, 2006),(Shimizu, 2006),(Masuda, 2013)).

The validity of the approximation by the Euler pseudo-likelihood is justified by the high frequency
assumption of the observations, and actually proving that the estimators are asymptotic normal usually
necessitates some conditions on the rate at which A,, should tend to zero. For applications, it is important
that the condition on A,, — 0 is less stringent as possible.



In the case of continuous processes, Florens-Zmirou (Florens-Zmirou, 1989) proposes estimation of drift
and diffusion parameters under the fast sampling assumption nA2 — 0. Yoshida (Yoshida, 1992) suggests
a correction of the contrast function that yields to the condition nA3 — 0. In Kessler (Kessler, 1997),
the author introduces an explicit modification of the Euler scheme contrast such that the associated
estimators are asymptotically normal, under the condition nA¥ — 0 where k& > 2 is arbitrarily large.
Hence, the result by Kessler allows for any arbitrarily slow polynomial decay to zero of the sampling step.

In the case of jump-diffusions, Shimizu (Shimizu, 2006) proposes parametric estimation of drift, diffusion
and jump coefficients. The asymptotic normality of the estimators are obtained under some explicit
conditions relating the sampling step and jump intensity of the process. These conditions on A,, are
more restrictive as the intensity of jumps near zero is high. In the situation where this jump intensity is
finite, the conditions of (Shimizu,2006) reduces to nA2 — 0. In (Gloter, Loukianova, & Mai, 2018), the
condition on the sampling step is relaxed to nA3 — 0, when one estimates the drift parameter only.

In this paper, we focus on the estimation of the drift parameter, and our aim is to weaken the conditions on
the decay of the sampling step in way comparable to Kessler’s work (Kessler, 1997), but in the framework
of jump-diffusion processes.

One of the idea in Kessler’s paper is to replace, in the Euler scheme contrast function, the contribution
of the drift by the exact value of the first conditional moment méft)“tiﬂ (z) = E[Xfi L1 X 9 = z] or some
explicit approximation with arbitrarily high order when A, — 0. In presence of jumps, the contrasts
functions in (Shimizu & Yoshida, 2006) (see also (Shimizu, 2006), (Gloter, Loukianova, & Mai, 2018))
resort to a filtering procedure in order to suppress the contribution of jumps and recover the continuous
part of the process. Based on those ideas, we introduce a contrast function (see Definition 1), whose
BIX?  o((X]  =X7)/(ti1—t:)°)|X] =]
Elp((X7, | —X7)/ (tir1—:)P)| X =]
compactly supported function and § < 1/2. The function ¢ is such that ‘p((XZH — X))/ (tiv1 — t:)P)
vanishes when the increments of the data are too large compared to the typical increments of a continuous

diffusion process, and thus can be used to filter the contribution of the jumps.

expression relies on the quantity mg, ¢,,, (7) = , where ¢ is some

The main result of our paper is that the associated estimator converges at rate v/%,, with some explicit
asymptotic variance and is efficient. Comparing to earlier results ((Shimizu & Yoshida, 2006), (Shimizu,
2006), (Gloter, Loukianova, & Mai, 2018)), the sampling step (7*);=o,...,» can be irregular, no condition
is needed on the rate at which A,, — 0 and we have suppressed the assumption that the jumps of the
process are summable. Let us stress that when the jumps activity is so high that the jumps are not
summable, we have to choose 5 < 1/3 (see Assumption Ag).

Moreover, in the case where the intensity is finite and with the specific choice of ¢ being an oscillating
function, we prove that we can approximate our contrast function by a completely explicit one, exactly as
in the paper by Kessler (Kessler, 1997). This yields to an efficient estimator under the condition nA¥ — 0,
where k is related to the oscillating properties of the function . As k can be chosen arbitrarily high, up to
a proper choice of ¢, our method allows to estimate efficiently the drift parameter, under the assumption
that the sampling step tends to zero at some polynomial rate.

We also show numerically that, when the jump activity is finite, the estimator we deduce from the explicit
approximation of the contrast function performs well, making the bias visibly reduced.

On the other side, considering the case of infinite jumps activity (taking in particular a tempered a-stable
jump process with o < 1), we implement our main results building an approximation of m (see Theorem
2 below) from which we deduce an approximation of the contrast that we minimize in order to get the
estimator of the drift coefficient. The estimator we found is a corrected version of the estimator that
would result from the choice of an Euler scheme approximation. We see numerically that our estimator
is well-performed and that the correction term we give drastically reduces the bias, especially as a gets
bigger.

The outline of the paper is the following. In Section 2 we present the assumptions on the process X.
The Section 3 contains the main results of the paper: in Section 3.1 we define the contrast function while
the consistency and asymptotic normality of the estimator are stated in Section 3.2. In Section 4 we
explain how to use in practice the contrast function and so we deal with its approximations in Section
4.1 while its explicit modification is presented in the case of finite jump activity in Section 4.2. The
Section 5 is devoted to numerical results and perspectives for practical applications. In Section 6 we state
limit theorems useful to study the asymptotic behavior of the contrast function. The proofs of the main
statistical results are given in Section 7, while the proofs of the limit theorems and some technical results
are presented in the Appendix.



2 DModel, assumptions

Let © be a compact subset of R and X? a solution to

¢ t t

X! =Xx{ +/ b(6, X%)ds +/ a(X?)dw, +/ / (X% )z(ds,dz), teER,, (1)
0 0 o Jr\{0}

where W = (W,;);>0 is a one dimensional Brownian motion, u is a Poisson random measure associated

to the Lévy process L = (L;)i>0, with L; := fg Jg zi(ds, dz) and ji = pu — [i is the compensated one, on

[0,00) x R. We denote (2, F,P) the probability space on which W and p are defined.

We suppose that the compensator has the following form: fi(dt,dz) := F(dz)dt, where conditions on the

Levy measure F' will be given later.

The initial condition X§, W and L are independent.

2.1 Assumptions

We suppose that the functions b: © xR — R, a : R — R and v : R — R satisfy the following assumptions:

ASSUMPTION 1: The functions a(x), v(x) and, for all € O, b(x,0) are globally Lipschitz. More-
over, the Lipschitz constant of b is uniformly bounded on ©.

Under Assumption 1 the equation (1) admits a unique non-explosive cadlag adapted solution possessing
the strong Markov property, cf (Applebaum, 2009) (Theorems 6.2.9. and 6.4.6.).

ASSUMPTION 2: For all 0 € © there exists a constant t > 0 such that X{ admits a density pf(z,y)
with respect to the Lebesgue measure on R; bounded in y € R and in x € K for every compact K C R.
Moreover, for every x € R and every open ball U € R, there exists a point z = z(x,U) € supp(F) such
that v(x)z € U.

The last assumption was used in (Masuda, 2007) to prove the irreducibility of the process X?. Other
sets of conditions, sufficient for irreducibility, are in (Masuda, 2007).

ASSUMPTION 3 (Ergodicity):

1. Forall ¢ >0, [, |2|7F(2)dz < cc.

2. For all § € © there exists C > 0 such that zb(z,0) < —C|z|?, if |x| — oco.

3. |v(x)|/|x] = 0 as |z| = oo.

4+ la@)|/Jz] - 0 as || - oo.

5. V0 € ©, Yq > 0 we have E|X§|? < cc.

0

)

Assumption 2 ensures, together with the Assumption 3, the existence of unique invariant distribution 7
as well as the ergodicity of the process X, as stated in the Lemma 2 below.

ASSUMPTION 4 (Jumps):
1. The jump coefficient v is bounded from below, that is infzer |7(2)| := Ymin > 0.
2. The Lévy measure F is absolutely continuous with respect to the Lebesgue measure and we denote

F(z) = £l

3. We suppose that I¢ > 0 s.t., for all z € R, F(z) < ‘Z‘ﬁ, with « € (0,2).

Assumptions 4.1 is useful to compare size of jumps of X and L.
ASSUMPTION 5 (Non-degeneracy): There exists some « > 0, such that a*(z) > « for all x € R
The Assumption 5 ensures the existence of the contrast function defined in Section 3.1.

ASSUMPTION 6 (Identifiability): For all 0 # 6',(0,0") € ©2,

[ O WO 0
R

a*(x)




We can see that this last assumption is equivalent to
Vo £ ¢, (6,0") € ©2, b(0,.) # b0, .). (2)

We also need the following technical assumption:

ASSUMPTION T7:

1. The derivatives 252t with ki + ks < 4 and ky < 3, exist and they are bounded if ky > 1. If

k1 =0, for each ky < 3 they have polynomial growth.
2. The derivatives a(k)(:v) exist and they are bounded for each 1 < k < 4.

3. The derivatives 7(¥)(z) exist and they are bounded for each 1 < k < 4.

Define the asymptotic Fisher information by

ASSUMPTION 8: For all € ©, I(6) > 0 .

Remark 1. If o < 1, using Assumption 4.3 the stochastic differential equation (1) can be rewritten as
follows:

t t t
Xt =xg+ [ b0 x0ds+ [axhaw+ [ [ R S T

where b(0, X?) = b(0, X?) — fR\{O} V(X0 )z2F(2)dz.

This expression implies that X follows diffusion equation X! = X{§ —i—fo (0, X%)ds + fo a(X2)dWy in the
interval in which no jump occurred.

From now on we denote the true parameter value by 6y, an interior point of the parameter space © that

we want to estimate. We shorten X for X%.

We will use some moment inequalities for jump diffusions, gathered in the following lemma:

Lemma 1. Let X satisfies Assumptions 1-4. Let L; := fo fR zfi(ds, dz) and let Fs = 0 {(Wy)o<u<s, (Lu)o<u<ss Xo}-
Then, for allt > s,

1) for all p > 2, E[| X, — X,|P]7 < cft — 5|7,

2) for allp > 2, p e N, E[|X; — X,|P|Fs] < clt — s|(1+ | Xs|P).

3) for allp > 2, p € N, suppepo,1) E[| Xs4alP|Fs] < (1 +[X[P).

The first two points follow from Theorem 66 of (Protter, 2005) and Proposition 3.1 in (Shimizu & Yoshida,
2006). The last point is a consequence of the second one: Vh € [0, 1],

E[|Xs+h|p|]:8] = E[|Xs+h - X5+ X8|p|]:8] < C(E[|Xs+h - X8|p|]:5] + E[|Xs|p|]:5}),

where ¢ may change value line to line. Using the second point of Lemma 1 and the measurability of X
with respect to Fy, it is upper bounded by c|h|(1 + | X;|P) + ¢|X|P. Therefore

sup E[|X1n|P|Fs] < sup c|h|(1+ | Xs|P) + | Xs|P < (14 | Xs|P).
helo0,1] helo,1]

2.2 Ergodic properties of solutions

An important role is playing by ergodic properties of solution of equation (1)

The following Lemma states that Assumptions 1—4 are sufficient for the existence of an invariant measure
7% such that an ergodic theorem holds and moments of all order exist.

Lemma 2. Under assumptions 1 to 4, for all § € ©, X% admits a unique invariant distribution 7° and
the ergodic theorem holds:

1. For every measurable function g : R — R satisfying 7% (g) < oo, we have a.s.

t

1
lim = [ g(X%)ds =n).

t—oo t 0



2. For all ¢ > 0, 7¥(|z]?) < oo.
3. For all g >0, SUpP;>q ]EHXEM < 00.

A proof is in (Gloter, Loukianova, & Mai, 2018) (Section 8 of Supplement) in the case a € (0, 1), the
proof relies on (Masuda, 2007). In order to use it also in the case o > 1 we have to show that, taken
g > 2 qeven and f*(x) = |z|9, f* satisfies the drift condition Af* = Ayf* + A.f* < —c1 f* + ca, where
¢y >0 and ¢y > 0.

Using Taylor’s formula up to second order we have

1
Auf*(@)] < e / / 122 1l | (& + 529(9)) | F (2)dsdz =

1
= C/R/O Els 17l a(g — 1)|z + s29(y) |72 F (2)dsdz = o(|z]9). o)

Concerning the generator’s continuous part, we use the second point of Assumption 3 to get
1
Acf*(@) = 50%(@)alg = a2 + (0, 2)q v 2" < of|a]") — eqla*z™* < o(|e|?) —cf*(z).  (6)

By (5) and (6), the drift condition holds.

3 Construction of the estimator and main results

We exhibit a contrast function for the estimation of a parameter in the drift coefficient. We prove that
the derived estimator is consistent and asymptotically normal.

3.1 Construction of the estimator

Let X? be the solution to (1). Suppose that we observe a finite sample
Xt(])"'7th,; O:tOStl S Stna

where X is the solution to (1) with § = 6. Every observation time point depends also on n, but to
simplify the notation we suppress this index. We will be working in a high-frequency setting, i.e.

Ap:= sup A,; —0, n—oo

i=0,...,;n—1

with An,i = (ti+1 — tz)

We assume lim,, oo t, = 00 and nA,, = O(t,) as n — oo.

We introduce a jump filtered version of the gaussian quasi-likelihood. This leads to the following contrast
function:

Definition 1. For 8 € (0,3) and k > 0, we define the contrast function Uy (6) as follows:

n—1
(Xt' — Mo, .t (Xt))2
W (0) = s AR : X, — X )1 -
v iz:; a?( Xy, )(tiv1 — ti) SDAQJ( fe ) {Ixe1<ali} (™)
where X9 N
() [ ti+1%0A§,i( tita tIXE, = 7] ®)
met;,t; 1\ L) 1= E[@Aﬁ .(Xg+1 — Xg)p(g — x}
and
Xti+1 - Xti

@Aiﬂ_(Xtin - Xti) = (P(ig)?
with ¢ a smooth version of the indicator function, such that ¢(¢) = 0 for each (, with |¢| > 2 and
©(¢) =1 for each ¢, with |¢] < 1.
The last indicator aims to avoid the possibility that | X,| is big. The constant k is positive and it will be
choosen later, related to the development of me .y, v, (x) (cf. Remark 2 below).
Moreover we define

_ E[XRens (X}, — X8)|XE = ]
mg,h(x) = 0 _ 9 0 .
E[pns (Xh X5)Xo = 7]

By the homogeneity of the equation we get that mgy, 4, , (x) depends only on the difference t;11—t; and so
Mot 1,0 () = Mo, 1, () that we may denote simply as mg(x), in order to make the notation easier.



We define an estimator én of 0y as .
0, € argl‘;%ig U,(0). (9)

The idea, with a finite intensity, is to use the size of X, , — Xy, in order to judge the existence of a jump
in an interval [t;,t;11). The increment of X with continuous transition could hardly exceed the threshold
Afm with 3 € (0, 3). Therefore we can judge a jump occurred if |X;,,, — X¢,| > A,ﬁ” We keep the idea

even when the intensity is no longer finite.
With a such defined mg(Xy,), using the true parameter value 6y, we have that

]E[(Xti+1 — Mo, ti,ti11 (th:))@Aﬁ : (th:+1 - Xti)|Xt7', = :E] = E[Xti+1 wAfi i(Xti+1 - ‘T)‘th = 93]+

E[Xti+1 @Ai i(XtH»l - Xti)lXti = .Z‘}
- ]E[SDA?L 71(‘)(157#1 - th) Xti = LU]

E[(pﬁfi.i(X““ - Xti)‘Xt'i = $] = 07

where we have just used the definition and the measurability of mg, ¢, ¢+, (X, ).
But, as the transition density is unknown, in general there is no closed expression for mg p(z), hence the
contrast is not explicit. However, in the proof of our results we will need an explicit development of (7).

In the sequel, for § > 0, we will denote R(6,A? , x) for any function R(#,A° ,,z) = R;,(0,z), where

n,i’ n,i’

Rin:©xR—R, (0,2) = R; (6, x) is such that
Je>0 |Rin(0,z)] <c(l+ |x|“)Afm (10)

uniformly in 6 and with ¢ independent of i, n.
The functions R represent the term of rest and have the following useful property, consequence of the
just given definition:

R(O, A%, x) = A°

) =n,i n,i

R(0,AY ., 2). (11)

n,t’

We point out that it does not involve the linearity of R, since the functions R on the left and on the right
side are not necessarily the same but only two functions on which the control (10) holds with Afm and
AO

n,i’

respectively.

We state asymptotic expansions for mg.a The cases a < 1 and a > 1 yield to different magni-

tude for the rest term.

nyit

Case a € (0,1):
Theorem 1. Suppose that Assumptions 1 to 4 hold and that B € (O,%) and o € (0,1) are given in
definition 1 and the third point of Assumption 4, respectively. Then

Elpas (X7, = X0)IX] = a] = 1+ RO, A7 77 o), (12)

Theorem 2. Suppose that Assumptions 1 to 4 hold and that 8 € (0,%) and o € (0,1) are given in

2
definition 1 and the third point of Assumption 4, respectively. Then

E[(X],, —)pnas (X[, — XD)X =] = A bz, 0)+ (13)
~An 27(@) [1 = pps (V(@)2)] F(2)dz + R(0,A7%, ).
R\{0} "
There exists ko > 0 such that, for |z| < A;j;o}
mo.n, () =2+ Ay b(x,0)+ (14)
A zy(x) [1 —@ps (y(2)2)] F(2)dz + R(6, Aifﬁw).
R\ {0}

Case a € [1,2):
Theorem 3. Suppose that Assumptions 1 to 4 hold and that 8 € (O,%) and a € [1,2) are given in
definition 1 and the third point of Assumption 4, respectively. Then

Elps (X0, —X0)X0 =a] =1+ R(0,A] 7" o), (15)

tit1



Theorem 4. Suppose that Assumptions 1 to 4 hold and that 3 € (O,%) and « € [1,2) are given in
definition 1 and the third point of Assumption 4, respectively. Then

E[(X7,, —2)eas (XE,, = XD)IXT = a] = An s b(x, 0)+ (16)
A 2y(@) [L— s (7(@)2)] F(2)dz + R(0, A2 ).
R\{0} "t
There exists ko > 0 such that, for |z| < A IZO,
mo.na, () =x+ A, ; b(z,0)+ (17)
—An,i o) 2y(@)[1 =g (V@)2)] F(2)dz + R(O,A577 ).
0 nyi

Remark 2. The constant k in the definition (7) of contrast function can be taken in the interval (0, ko).
In this way A% < A~* and so (14) or (17) holds for |z| = | X, 7
If it is not the case the contribution of the observation X, in the contrast function is just 0. However
we will see that suppressing the contribution of too big | Xy,| does not effect the efficiency property of our
estimator.

Remark 3. In the development (13) or (16) the term A, ; fR\{o}ZV( z)[1l— Pas (’y(m)z)] F(z)dz is

independent of 6, hence it will disappear in the difference mg(x) —mg,(x), but it is not neglzgzble compared

1
to Ap i b(z,0) since its order is Ay ; if a € (0,1) and at most A? , if a € [1,2). Indeed, by the definition
of the function ¢, we know that we can consider as support of ¢,s (0) — o5 (v(x)z) the interval

B B
c X [—”AW%, @#]‘ If a < 1, using moreover the third point of Assumption 4 we get the following
estimation:
[AY v }ZV(@ [1—pps (v(2)2)] F(2)dz| < R(o, Ay, ;5 Xe,)- (18)
R\{0 i

Otherwise, if a > 1, we have
A / 2(@) (1= ppn (7(@)2)] F(2)dz| < e Al / o AT = RO,AT ),
R\{0} MO;’MOO ‘

with B € (0,3) and o € [1,2), hence the exponent on A, ; is always more than 3.
We can therefore write in the first case

m97An,i(x) =z+ R(ev An,ia ) (0 A?I i ) (19)

and in the second
moa,. (@) =2+ RO, 707 2) = RO, A, ). (20)

Remark 4. In Theorems 1 - 3 we do not need conditions on (3 because, for each /5 € (0, %) and for each
a € (0,2) the exponent on A, ; is positive and therefore the last term of (15) is negligible compared to
1. In Theorem 4, instead, R is a negligible function if and only if 2 — 33 > 1, it means that it must be
8 < % We have taken (3 € (0, %) and so such a condition is always respected.

3.2 Main results

Let us introduce the Assumption Ag that turns out starting from Theorems 1, 2, 3 and 4:

ASSUMPTION Ag: We choose 8 € (0,%) if @ € (0,1). If on the contrary a € [1,2), then we take
g in (0, %)

The following theorems give a general consistency result and the asymptotic normality of the estimator
ém that hold without further assumptions on n and A,,.

Theorem 5. (Consistency)

Suppose that Assumptions 1 to 7 and Ag hold and let k of the definition of the contrast function (7) be

in (0, ko). Then the estimator 0, is consistent in probability:

P
0, — 6, n — oo.

Recalling that the Fisher information I is given by (3), we give the following theorem.



Theorem 6. (Asymptotic normality)
Suppose that Assumptions 1 to 8 and Ag hold, and 0 < k < kq.
Then the estimator 0, is asymptotically normal:

Vin(Bn — 00) 5 N(0,I7(60)),  n— oc.

Remark 5. Furthermore, the estimator 0, is asymptotically efficient in the sense of the Hdjek-Le Cam
convolution theorem.

The Hdjek—LeCam convolution theorem states that any regular estimator in a parametric model which
satisfies LAN property is asymptotically equivalent to a sum of two independent random variables, one
of which is normal with asymptotic variance equal to the inverse of Fisher information, and the other
having arbitrary distribution. The efficient estimators are those with the second component identically
equal to zero.

The model (1) is LAN with Fisher information 1(0) = [, (b(6,2))” 7%(dzx) (see (Gloter, Loukianova, €

a?(x)
Mai, 2018)) and thus 0, is efficient.
Remark 6. We point out that, contrary to the papers (Gloter, Loukianova, & Mai, 2018) and (Shimizu
€ Yoshida, 2006), in this case there is not any condition on the sampling, that can be irregular and with
A, that goes slowly to zero. On the other hand, our contrast function relies on the quantity me p(x)
which is not explicit in general.

4 Practical implementation of the contrast method

In order to use in practice the contrast function (7), one need to know the values of the quantities
mo,t;.6.,.(Xe,). In most cases, it seems impossible to find an explicit expression for the function meg,p
appearing in Definition 1. However, explicit or numerical approximations of this function seem available
in many situations.

4.1 Approximate contrast function

Let us assume that one has at disposal an approximation of the function mg j(x), denoted by mg p(z)
which satisfies, for |z| < h=Fo
[, () — me,n(x)| < R(0, 1", )

where the constant p > 1 assesses the quality of the approximation. We assume that the first three
derivatives of my ¢ with respect to the parameter provide approximation of the derivatives of my, g, in
the following way

8iﬁ197h(x) . 8im97h($)

- - < 1+e S

| 900 20 | < RO, x), fori=1,2, (21)
37 3

|8 nggg(:ﬂ) 9 rr(;(;g(x)| < RO.h, ), )

for all |z| < h=%° and where € > 0. Let us stress that from Proposition 8 below, we know the derivatives
with respect to 8 of the quantity myp, ¢.

Now, we consider 0, the estimator obtained from minimization of the contrast function (7) where one
has replaced mg, t,,, (X¢,) by its approximation mg a, ,(X¢,). Then, the result of Theorem 6 can be
extended as follows.

Proposition 1. Suppose that Assumptions 1 to 8 and Ag hold, with 0 < k < ko, and that \/ﬁAﬁfl/Q -0
as n — o0. B
Then, the estimator 6, is asymptotically normal:

Vi (0, — 00) 5 N(0,I71(6)), 1 — oo.

We give below several examples of approximations of mg . Let us stress that, in general, Theorem 2
(resp. Theorem 4) provides an explicit approximation of mg a, ,(x) with an error of order Ai’_fﬁ (resp.
of order Aif’ﬁ ). They can be used to construct an explicit contrast function. In the next section we
show that when the intensity is finite, it is possible to construct an explicit approximation of my , with
arbitrarily high order.



4.2 Explicit contrast in the finite intensity case.

In the case with finite intensity it is possible to make the contrast explicit, using the development of
mg A, , Proved in the next proposition. We need the following assumption:

ASSUMPTION Aj:
1. We have F(z) = AFy(2), [z Fo(z)dz =1 and F is a C* function.

2. We assume that z — a(z), z — b(z,0) and = — y(x) are C*>° functions, they have at most uniform
in 6 polynomial growth as well as their derivatives.

Let Ub deﬁne A( (x) = Ak( )(x), with g(y) = (y — x) and Ac(f) _ bf’ + 1a2f” (9 y) = b(6,y) —
flR ~v(y z)dz as in the Remark 1.

Proposition 2. Assume that Ay holds and let ¢ be a C* function that has compact support and such
that ¢ =1 on [~1,1] and Yk € {0, ..., M}, [z a*p(x)dz =0 for M > 0. Then, for |z| < An]f(’ with some
ko >0,

B(M+2)]

moa, . (x )—x+ Z AP (z (0, AP gy, (23)

n,t

In order to say that (23) holds, we have to prove the existence of a function ¢ with a compact support
such that ¢ = 1 on [-1,1] and, Vk € {0,..., M}, [, z*o(z)dr. We build it through v, a function with
compact support, C>, such that ¥|_; 1j(z) = IWM, We then define p(z) := %1/)(33).

In this way we have ¢ = 1 on [—1, 1], ¢ is C*°, with compact support and such that for each I € {0,...M},
using the integration by parts, fR zlp(x)dr = 0, as we wanted.

Remark 7. The development (23) is the same found in Kessler (Kes§ler, 1997) in the case without

jumps and it is obtained by the iteration of the continuous generator A.. Hence, it is completely ex-

plicit. Let us stress that in Kessler (Kessler, 1997) the right hand side of (23) stands for an approz-

imation of E[XZ | X§ = 2] where X is the continuous diffusion solution of dX! = b(6, X%)ds +
o(XdW,. From Proposztzon 2, the right hand side of (23) is also an approximation of mga, ,(x) =
[XA,,,JSDAEM(XAM —z)| Xo = 7]

E[‘PA§7(XZ”1 —z) | Xg = 1]

satisfying Yk € {0,..., M}, fR zFo(z)dr = 0. We emphasize that in the expansion of mo,A, ,, given in

Proposition 2, the contribution of the discontinuous part of the generator disappears only thanks to the

choice of an oscillating function .

Remark 8. In the definition of the contrast function (7) we can replace mg a, , (x) with the explicit ap-

h
prozimation ﬁl]gA ( )= x+ZZ 1 A,:‘,”A%’) (), with an error R(0, AL, x), for k < [2(M+1)8]. Using

A(Ip (x) = Ay, — e 7()2F (2)dz] and the expansions (120)-(122) we deduce that the conditions
(21) - (22) are valzd Then, by applwatzon of Proposition 1, we can see that the associated estimator is

in the case of finite activity jumps, and for a truncation kernel ¢

efficient under the assumption \/ﬁAﬁ_% — 0 forn — o0o. As M, and thus k, can be chosen arbitrarily
large, we see that the sampling step A, is allowed to converge to zero in a arbitrarily slow polynomial rate
as a function of n. It turns out that a slow sampling step necessitates to choose a truncation function
with more vanishing moments.

5 Numerical experiments

5.1 Finite jump activity

Let us consider the model

t
X = X0+/ (01X +02)d5+aWt+7// i(ds,dz), (24)
R\{O}

where the compensator of the jump measure is f(ds,dz) = AFy(z)dsdz for F, the probability density
of the law N (uy,0%) with uy € R, 05 > 0,0 >0, 6, <0, 0, € R, v >0, A > 0. Since the jump
activity is finite, we know from Section 4.2 that the function m s, g,) A, ,() can be approximated at any
order using (23). As the latter is also the asymptotic expansion of the first conditional moment for the



continuous S.D.E. X; = Xy + fot(el)‘(s + 0y — yAuy)ds + oW, , which is explicit due to the linearity of
the model, we decide to directly use the expression of the conditional moment and set

~ 0 A ,
m(el,ag),An,i (m) = (x + j _ M)eglAn,l +

YAy — 02
01 01 ’

= (25)

Following Nikolskii (Nikolskii, 1977), we construct oscillating truncation functions in the following way.
First, we choose p(®) : R — [0,1] a C>® symmetric function with support on [~2,2] such that ¢ (z) = 1
for |z| < 1. We let, for d > 1, cpgll)(x) = (dp©(z) — ¢ (x/d))/(d — 1), which is a function equal to 1
on [—1,1], vanishing on [—d,d]® and such that [ Lpl(il)(x)dx =0. Forl e N, [ > 1, and d > 1, we set
@Eil)(x) =c;' 22:1 Clk(—l)k“%gofil)(x/k), where ¢q = 22:1 CF(—1)"T11. One can check that cpfil) is
compactly supported, equal to 1 on [—1,1], and that for all k € {0,...,1}, [ a?kgo((il)(m)dx =0, for [ > 1.
With these notations, we estimate the parameter § = (61, 605) by minimization of the contrast function

n—1

~ l
Un(0) = D (Kirrs = 01,0080, (X)) 00 (Xisy — X2,), (26)
i=0 o

where [ € N and ¢ > 0 will be specified latter.

For numerical simulations, we choose T' = 2000, n = 10%, Aip =242, =1/5 6, = —0.5, 6 = 2 and
Xo = zo = 4. We estimate the bias and standard deviation of our estimators using a Monte Carlo method
based on 5000 replications. As a start, we consider a situation without jumps A = 0 , in which we remove
the truncation function ¢ in the contrast, as it is useless in absence of jumps. In Table 1, we compare the
estimator 6, which uses the Kessler exact bias correction given by (25), with an estimator based on the

Euler scheme approximation where one uses the approximation ﬁl&‘ﬂ%’;% A (x) = 24+A, i (012+63). From

Table 1 we see that the estimator #2U" based on Euler contrast exhibits some bias which is completely
removed using Kessler’s correction. Next, we set a jump intensity A = 0.1, with jumps size whose common
law is N(0,2) and set v = 1. We use the contrast function relying on (25). Results are given for three
choices of truncation function, (%), cp((f) and @&3) where d = 3. Plots of these functions are given in
Figure 1. We choose 8 = 0.49 and ¢ = 1. As the true value of the volatility is o = 0.3, this choice enables

most of the increments without jumps of X on [t;,¢;+1] to be such that @igﬁ (Xt — X)) = 1. Let us

stress that, if o is unknown, it is possible to estimate, even roughly, the local value of the volatility in
order to choose ¢ accordingly (see (Gloter, Loukianova, & Mai, 2018) for analogous discussion). Results
in Table 2 show that the estimator works well, with a reduced bias for all choices of truncation function.
Especially the bias is much smaller than the one of the Euler scheme contrast in absence of jumps. It
shows the benefit of using (25) in the contrast function, even if the truncation function is not oscillating
as is it when we consider ¢(©). We remark that by the choice of a symmetric truncation function one
has fR ucp(o)(u)du = 0 and inspecting the proof of Proposition 8 it can be seen that this conditions is
sufficient, in the expansion of mg a, ,, to suppress the largest contribution of the discrete part of the
generator.

n,i?

If the number of jumps is greater, e.g. for A = 1, we see in Table 3 that using the oscillating kernels

goff), @((13) yields to a smaller bias than using ¢(?), whereas it tends to increase the standard deviation

of the estimator. The estimator we get using <p((13) performs well in this situation, it has a negligible bias

and a standard deviation comparable to the one in the case where the process has no jump.

Mean (std) for §; = —0.5 | Mean (std) for 65 = 2
gEuler -0.4783 (0.0213) 1.9133 (0.0856)

O, -0.5021 (0.0236) 2.0084 (0.0947)

Table 1: Process without jump

Mean (std) for §; = —0.5 | Mean (std) for 0y = 2
0,, using -0.4967 (0.0106) 1.9869 (0.0430)
6, using o) -0.4990 (0.0153) 1.9959 (0.0622)
6, using o' -0.5006 (0.0196) 2.0023 (0.0798)

Table 2: Gaussian jumps with A = 0.1
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Mean (std) for §; = —0.5 | Mean (std) for 0y = 2
6,, using ¢ -0.4623 (0.0059) 1.8495 (0.0256)
6, using o -0.4886 (0.0161) 1.9549 (0.0710)
6, using ¢ -0.5033 (0.0243) 2.0136 (0.1059)

Table 3: Gaussian jumps with A =1

-4 o -2 =y [ 1 2 3 4 -10 -5 0 5 10 =20 =15 =10 -5 0 5 10 15 20
(a) o© (b) ¢ with d =3 (c) ¢ with d =3

Figure 1: Plot of the truncation functions

5.2 Infinite jumps activity

Let us consider X solution to the stochastic differential equation (24), where the compensator of the
jump measure is 7(ds, dz) = ;%l(o,m)(z)dsdz with a € (0,1). This situation corresponds to the choice
of the Levy process (f(;5 I]R\{O} zfi(ds, dz)); being a tempered a-stable jump process. In the case of infinite

jump activity, we have no result providing approximations at any arbitrary order of mg a
we can use Theorem 2 to find some useful explicit approximation.

However,

n,i"®

According to (14) and taking into account that the threshold level is cAgﬂ- for some ¢ > 0, we have

—Zz

e e

dz + R(0, A2 x)

Z(,Y

mo.a, () =2+ Ay (012 + 02) — An,m/ dz + An,ify/ o.ar (72)
0 0 n,i

conl

n,i

= BB 00,02) + ALV [ o) o+ R0, 3 ),
0

Z(X

where in the last line, following the notation of Remark 1, we have set b(z, 01, 02) = (612+602)— fooo e;: dz,
and we make the change of variable v = g; . This leads us to consider the approximation
~ 7 -« —a_ o > 1
mo.a, . (T) =2+ Ay b(x,01,02) + Ai:iﬁ(l )l ~ / w(v)v—adv, (27)
0

(2

which is such that [fig.a, ,(¢) —mo,a, ,(z)| < RO, ALT?INIHIE=) 4y

For numerical simulations, we choose 7' = 100, n = 10%, A;,, = A, = 1/100, 6; = —0.5, 65 = 2,
Xo=2p=4,v=1,0=0.3 and a € {0.1, 0.3, 0.5}. To illustrate the estimation method, we focus on
the estimation of the parameter 63 only, as the minimisation of the contrast defined by (26)—(27) yields
to the explicit estimator,

Z?;Ol (Xti+1 - th‘, - AnalXti)(pcAﬁ (XtH—l - th) /oo e ”
n— -7
An Zi:ol Penl (XtH—l - Xt,) 0

*Aﬁ“’“)cl’“v“/ p(v)—dv
0 v

dz

92,71 = S

7 uler —Q -, x > 1
=: 0;7} — APO=a)plmay / ap(v)v—adv. (28)
0

We can see that the estimator 527,1 is a corrected version of the estimator 92E"jller, that would result from

the choice of the approximation mg a, (z) & x + A,b(z,601,62) in the definition of the contrast function.
Comparing with estimators of earlier works (e.g. (Gloter, Loukianova, & Mai, 2018), (Shimizu, 2006)),
the presence of this correction term appears new. In lines 2-3 of Table 4, we compare the mean and
standard deviation of 6, and 5% for o € {0.1, 0.3, 0.5} and with the choice ¢ = 1, 3 = 0.49
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and ¢ = @ (see Figure 1). We see that the estimator 52 » performs well and the correction term
in (28) drastically reduces the bias present in QE‘ﬂer, especially when the jump activity near 0 is high,
corresponding to larger values of a. If we take a threshold level ¢ = 1.5 higher, we see in line 5 of Table
4 that the bias of the estimator 953‘#” increases, since the estimator GE‘ﬂer keeps more jumps that induce
a stronger bias. On the other hand, the bias of the estimator Ggm remains small (see line 4 of Table 4),
as the correction term in (28) increases with c.

a=0.1 a=0.3 a=0.5
c=1 ggm 1.99 (0.0315) | 1.98 (0.0340) | 1.97 (0.0367)
5;3};}“ 2.20 (0.0315) | 2.37 (0.0340) | 2.76 (0.0367)
c=1.5 ggyn 1.97 (0.0340) | 1.96 (0.0363) | 1.94 (0.0397)
ngy‘;Ller 2.28 (0.0340) | 2.48 (0.0363) | 2.90 (0.0397)

Table 4: Mean (std) for the estimation of 65 = 2

5.3 Conclusion and perspectives for practical applications

In this paper, we have shown that it is theoretically possible to estimate the drift parameter efficiently
under the sole condition of a sampling step converging to zero. However, the contrast function relies
on the quantity mp ¢(z) which is usually not explicit. For practical implementation, the question of
approximation of mp ¢(z) is crucial, and one also has face the question of choosing the threshold level,
characterized here by ¢, § and . On contrary to more conventional threshold methods, it appears here
that the estimation quality seems less sensitive to choice of the threshold level, as the quantity my, o(x)
depends by construction on this threshold level and may compensate for too large threshold. On the other
hand, the quantity my ¢(z) can be numerically very far from the approximation derived form the Euler
scheme approximation. This can be seen in the example of Section 5.2, where the correction term of the
estimator is, on this finite sample example, essentially of the same magnitude as the estimated quantity.
A perspective, in the situation of infinite jump activity, would be to numerically approximate the function
x +— my, o(z), using for instance a Monte Carlo approach, and provide more precise corrections than the
explicit correction used in Section 5.2.

In the specific situation of finite activity, we proposed an explicit approximation of my, g(x) with arbitrary
order. This approximation is the same one as Kessler’s approximation in absence of jumps, and it relies
on the choice of oscillating truncation functions. A crucial point in the proof of the expansion of my, g(x)
given in Proposition 2 is that the support of the truncation function ¢ ,s is small compared to the

typical scale where the density of the jumps law varies. However, our COIlStI:{lLCthIl of oscillating function
is such that the support of ¢ = cpfi) tends to be larger as the number of oscillations [ is larger, which
yields to restrictions for the choice of [ on finite sample. Moreover, the truncation function takes large
negative values as well, which makes the minimization of the contrast function unstable if the parameter
set is too large. Perspective for further works would be to extend Proposition 2 for a non oscillating
function . We expect that the resulting asymptotic expansion would involve additional terms related to

the quantities [ u*p(u)du.

6 Limit theorems

The asymptotic properties of estimators are deduced from the asymptotic behavior of the contrast func-
tion. We therefore prepare some limit theorems for triangular arrays of the data, that we will prove in
the Appendix.

Proposition 3. Suppose that Assumptions 1 to 4 hold, A, — 0 and t, — oco.

Moreover suppose that f is a differentiable function R x © — R such that |f(z,0)] < c(1 + |z]),
|02 (2,0)] < c(1+ |2) and |0 f (x,0)] < c(1 + |x])°.

Then, x — f(x,0) is a w-integrable function for any 6 € © and the following convergence result holds as
n — oo:

(Z) SUpee@lt n:1 Anif(Xe,, )1{\)( |<ayk} — J [ (2, 0)7(dz))| _>0
n P
E Zi:ol n77;f(Xti7 )@Ai,i(XtH'l - Xti)]'{\Xti\SA;’z} - fR (z,0)m(dz)| — 0.
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The next proposition will be used in order to prove the consistency.
First, we prepare some notations. We define

ti+1 it1
i ::/t s)dW, +/ /]R\{O} )zp(ds,dz)+ Ay 4 /R\{O} z2v(Xy,) [1*90A51i(7(Xti)2)] F(zzdz)
29

i

We now observe that using the dynamic of the process X and the development (14) of m we get

tit1
Xy —mo(Xy,) + RO, A2 X)) = ( / b(Xs, 00)ds — A, :b(Xy,,0)) + G, (30)
t

7

if @ < 1 and the same but with the different rest term R(6, Aifﬁ,Xti) if @ > 1. From the choice that
we have made on a and 8 in Theorems 2 and 4, the exponent on A,, ; in the rest function is always more
than 1. Hence, from now on, we will call it simply R(6), A:Lt‘s, X:,), with § > 0. That is the reason why
we choose such a definition for (;.

Proposition 4. Suppose that Assumptions 1 to 4 and Ag hold, A, — 0 and t,, — oo and, Vi €
{0,....n =1}, fin: Rx © — R. Moreover we suppose that 3c: |fin(z,0)] < c(1+ |z]¢) Vi, n.
Then, V0 € O,

n—1
1
? Z fi,n(th6> Cl @Ai 7:<Xti+1 - Xt1)1{|Xf1| n z} _> 0'
™ =0 '
The proof relies on the following lemma:
Lemma 3. Suppose that Assumptions 1 to 4 and Ag hold. Then
= R0, AT x 1
1. E[CﬂpAi,i(Xt”l - th)l{‘xtl‘SA,_lf:}|ft"] - R( 0> ) ti)’ (3 )
2. E[CE QDQAEH(X&+1 - th)1{|XtL|§A;’f}|‘th] = R(907 An,i7Xt13)7 (32)
and
3. E[(Xti+1 — Me, (Xti))2 wig,i(XtH—l - Xti)1{|Xti|§A;’j}|‘Ft7:] = R(‘907 An,ivXt1,)7 (33)

where (Fs)s is the filtration defined in Lemma 1 and § is positive as defined above.

We now give an asymptotic normality result:

Proposition 5. Suppose that Assumptions 1 to 4 and Ag hold, A,, — 0, t,, = oo.
Moreover suppose that f is a continuous function © x R — R that satisfies conditions in Proposition 3.
Then for all 6

\/t Z( tir1 — Moo (Xt7))f(Xt7>9) SDAEM(Xti-%—l - Xti)1{|Xt,;|§A,_Lﬁ} i) N(07 \/R fz((ﬂ,e) a2(l,) 7T(d$))

=0

7 Proof of main results

We state a proposition that will be used repeatedly in the proof of Theorems 1,2,3 and 4. This proposition
is an estimation of some expectations related to the event that increments of the process X lies where
YA, that is the smooth version of the indicator function, becomes singular for A, — 0. The proof is
postponed to Section A.3.

Proposition 6. Suppose that Assumptions 1 to 4 and Ag hold. Moreover suppose that h : R x © — R
is a function for which 3¢ > 0 : supyeg |M(x,0)] < c(1+ |z])¢. Then Vk > 1 Ye > 0, we have

k
sup  E[|A(XS,0)[1¢%) (X - Xx7)

wE[ti,ti41]

X7 =a] = R(0,A) %7, ).

with o and B given in the third point of Assumption 4 and Definition 1. We have used @Xﬂl (y) in order
ALY

n, 7

to denote cp(k)(

n i
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Proposition 6 is a consequence of the following more general proposition:

Proposition 7. Suppose that Assumption 1 to 4 and Ag hold. For ¢ > 0, we define

Zhep = {Z = (Zy)ocofamily of random variables Fj, measurable such that glelgEHZgV’\Xg =z] <ec(l+ |x|c)} .

Then Yk > 1 we have, Ve > %,

sup  E[|Zg||o) (X] — X)X = 2] < R(6, k=D z),

EZh,c,p

where R(6, h°,x) denotes any function such that 3¢ > 0: |R(0,h?, )| < c(1+ |x|*)h® uniformly in 0, with
c independent of h.

7.1 Development of mga, ,(z)

In order to study the asymptotic behavior of the contrast function we need some explicit approximation
of mg,a, ;. We study the asymptotic expansion of mg a,, , () as A, ; — 0. The main tools is the iteration
of the Dynkin’s formula that provides us the following expansion for every function f: R — R such that
f is in C2(k+1);

k i
E[f( t1+1)|X - ] - Z nzA] / / / AkJrlf Uk+1)|Xg = .73] d’U,k+1...dUQ du1
Jj=0 '
(34)
where A denotes the generator of the diffusion. A is the sum of the continuous and discrete part:
A:=A.+ Ay, with

Acf(@) = La%(@) " (@) + bla, O)f (2)
and
Auf(@) = [ (T +1(@)2) = Fla) = 22(a)  (@0) Fle)
We set A% = Id.

7.1.1 Proof of Theorem 1:
Proof. We have to show (12). Using the formula (34) in the case k = 1, we get

E[@Af (Xe

tit

—X))X{ =a] =

tit1
= AO‘PAﬁ (0) + (tix1 — A<,0AB / / QDA;? 22)|Xfi = z]|dusdu; . (35)
” t t;

We have defined ¢ as a smooth version of the indicator function, it means that in a neighborhood of 0
its value is 1 and so that ¢*)(0) = 0 for each k > 1.

We denote fi n(y) := o e (y—x) = CP(AB ), with 5 € ( 1). By the building, f; ,(z) = 1 and fi(f;) (x)=0

for each k > 1, so we get A f; n(x) =0 and Agfin( fR\{o} fin(x+~(x)2) — 1] F(2)dz.

In the sequel the constant ¢ > 0 may change from hne to line.

From the definition of f; ,, and the fact that ¢ = 1 on [—1, 1] we have that f;,(y) =1 for |y —z| < Ag’z
Thus

Aatin(@] < 2oy | [ F()ds <
milloo Jzizy(2)[24] ; }

@A = R85, ),

11—
<2os | ;s < s, )
n,i |l oo 2lz|> hn,1 n,i ||l oo

(@)

where the second inequality follows from point 3 of Assumption 4. Substituting in (35) we get

]E[(pAﬁ ‘(Xe

tit1

i1
X9)|Xf =z]=1+4+A,,;R(6, Anz T / / @A;s 32)\XZ = z]|dusduy .

(36)
In order to prove (12), we want to show that the last term is negligible.
We consider the generator’s decomposition in discrete and continuous part A = A. + Ay that yields:
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Agfi,n(y) = (Agfun)(y) + AC(Adfi,n)(y) + Ad(ACfi,n)(y) + (Aﬁfz,n)(y)

We observe that we can write (A2 f; ,)(y) as

"+ a2%b and

ZA Phi(.0)e s (=),
where @223 (y—=z) = (3)((Aﬁ )). For each j € {1,2,3,4}, h; is a function of a, b and their derivatives
up to second order: hy = i 3a 2b + bb', hgz a?(a’)? —|—1 3a” + a2V + aad’b + b%, hy = a’a
h4 = ia‘l.

Using the Proposition 6 we get that sup,,cp, 1., IE[(A2fi)(X0,)|X{ = z]| is upper bounded by

sup ZA B E[n; (X0 9)@2% (X0, — X0)|X8 =] =

ug? u2
w2 €[t;,tiy1) =1

= |ZA VRO, A0 w)| = RO, AL ),
Let us now consider AC(Adfiyn)(y). Substituting the definition of Ay f; ., we get

A(Aafin)(y) = A / g, 2)F(2)d2) (),

where

gn(y,2) = 0ar (=2 +29W) —ppn (y—2) = A F0s (y—2)(W)z

(37)

(38)

and where the notation used means that we are applying the differential operator A, with respect to the

variable represented with a dot. In order to estimate it we observe that

19y, 2)] < AT 119 | |21V,

a%gn@, O <AZPP@)  and

92 _
90 (2] < AP P (2] + [2);

where P(y) is a polynomial function in y, that may change from line to line.
Since the functions a? and b have polynomial growth, we obtain

| Aegn (-, 2) ()| < AL Py)(|2] + |2).
Using the dominated convergence theorem we get

A / on(2 D) F(2)d2) ) = / (Aegn) (- 2) ) F(2)d,

Therefore, using (42),
A / g, 2)F(2)d2) )| < ATP P(y) / (| + |2*)F(2)dz,

that is upper bounded by CA;iﬁP(y) since « is less than 1. It turns

sup  [B[(Ac(Aafin)) (X)X =2l < sup  [E[eA, ¥ P(XE,)|X] = a]]

w2 €[ti,tiy1] ug€[ti,tit1]

where, in the last equality, we have used the third point of Lemma 1.
We reason in the same way on Ag(Acfin)(y), which is equal to

/R Acfiny+ 21®)) — Acfin(y) — /() (Aefim) W) F()dz.

It is, in module, upper bounded by

C/(] /R[l(Acfzn)’(y + Z’y(y)s)| + |(Acfl,n),(y)”‘Z||’}/(y)|F(z)ds .
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0, A58

n,e

x)

(39)
(40)

(41)

(43)

(44)



We observe that, Vy', (Acfin)'(y') = (U f] , +bff + ad' I, + 302 £ ().
By the fact that \%gpAa (y)] < cA;/fj for j =1,2,3 and recalling f; ,(y) = p,5 (y — ), we get that

(Acfin) (W) < ¢ P(y)ALT (45)

n,i

where we have used that b and a? have polynomial growth. We obtain that (44) is upper bounded by

AT / / (P + 21(5)5) + Py)|2l ()| F(2)ds dz < AT / P(y)P(2)|2|F(2)dz < eAT P P(y),
0 R R

where we have used the first point of Assumptions 3 and the third of Assumption 4, with o € (0, 1), in
order to get [, P(2)|z|F(z)dz < oc.
Considering the controls (44) and (45) on (43) it yields, using again the third point of Lemma 1,

sup  [E[(Aa(Acfin))(X0,)IXY = 2| = R(0, 0,7 2).

n,? b
ug €[t ti41]

To conclude, we consider Aq(Aqfin)(y):

/R [Aafiny + 27®)) — Aafin(y) — 1) (Aafin) ()] F(2)dz. (46)
Again, (46) is, in module, upper bounded by
¢ / / ((Aafin) (v — 2 + 27 ()9)] + [(Aafin) @Ily@)| F()ds dz (47)
But
Adfinly) = / ony/, 2)F(2)dz, (45)

with g, (', 2) given in (38) Using control equation (40) and dominated convergence theorem, we get that
its derivative is upper bounded by CA;,QZ»B P(y').
Using also (46) and (47),

4] < 8,2P) [ 1)
and it turns, using third point of Lemma 1,

sup  |E[(AFfin)(X0,)IXE, = ]| = R(6, A% ).

ug€[ti,tit1]

By the decomposition of the generator in A, and Ay we get
sup  [E[A?fio(X0,) X0 = 2]l = R0, AL o) + R(0, 1,37 2) + R(0, A, 2),

n,i n,i o
U2 €[tistiv1]

with o € (0,1) and 8 € (0, 3), so it is R(6, Anf ,
compared to it.
Using (36) we get

x), since the other R functions are always negligible

A2
b=l =14+ A R0.0, 57, 2) + 7 R(0,A,7 ).

- X7)

tig1 n,t n,.

E[@Aﬁ (Xe
We deduce, using the definition of A,, ; and (11), that it is
1+ R(0,A,°%, ) + RO, A2 ) = 1+ R(9, A J*"C720) g,

as we wanted. O

7.2 Proof of Theorem 3

Proof. Let a now be in [1,2). In the sequel we skip the study of the case @ = 1 for simplicity, in order
to avoid the appearance of logarithmic functions. However, such a specific case is embedded in the case
a > 1 by taking o = 1 + € with a choice of € > 0 arbitrarily small.

Using again Dynkin formula, we have that (36) is still true. Considering the generator’s decomposition,
we act like in the case where « is less than 1 to get that

sup [E[(AZfi) (X0, XY, = a]| = RO, A5~ ). (49)

ua €[t ti1]
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Concerning A.(Aqfin)(y), we use (37) with g,, defined in (38). Using Taylor development to the second
order we get

_apl2P1(y)?
ono 20 < ol | 18020 B, (50)
oo
In the same way we get the following two estimations:
n,i|_3ﬂ 7

1,2 < [ A2 \

A
902?”_” YWY W21 + | —5— ‘ 1272 ()11 + ' (v)2],

2 LN

|87ygn

2

d _ _ _
|52 (W22 < 1Al Pl Ply) + 1 8nil 22 1P) (12 + [2?) + Al = P(y) (121> +|2*).  (51)

Since a? and b have polynomial growth, (51) provides us an estimation on |A.g, (-, 2)(y)|. Using dominated
convergence theorem, (37), the estimation of |Acgy (-, 2)(y)| obtained from (51) and the fact that [ (|z[*+
|2]3)F(2)dz < oo, we get

sup  [E[(AcAafin) (X)X = 2]] = R0, 7,27, 2)+ R0, A, % )+ R(0,A,5 2) = R(0,A, %, 2).

uz€[ti,tig1] nyi nyi o n,i nyi o

(52)
We now consider Ay(A.fin)(y). Using (43) and the development to the second order of the function
Acfi,n(y + Z’Y(y)) we obtain

Ad(Acfi ) (y)] < ¢ / / (Acfin)' (0 + 5 29 @) |22 172 ()| F(2)dsd. (53)

We observe that (Acfin)"(y) = [ flo + 26 f1 + b + (@)2fL + a(a” f1, + o' f11) + 2ad 17, +

%ani(fm(y’). By the fact that |%¢Ag ()l < cA;ij for j = 1,2,3 and recalling f; ,(y) = @5 (y — ),

we get that
[(Acfin)" ()] < cPGHALT. (54)
Using (53) and (54) it yields

sup  [E[(AaAcfin)(X0,)IX], = a]| = R0, 0,7, ). (55)

n,i
uEfti,tit1]

To conclude, we consider AgAqf; . Using (46) and the development up to the second order we get

1
Aa(Aafin) ()] < / / (Aaf)"(y + 5 29[22 () | F (2)dsdz.

We recall that (48) still holds, with g,, defined in (38). In order to estimate (Aqf)”(y) in the case where
a € [1,2) we use therefore (51) joint with dominated convergence theorem. It provides us

sup  [E[(AaAafin)(X0,)IX] = 2]l = R(0, A, 2). (56)

u2 €[t tit1] we
Using (49), (52), (55) and (56) we put the pieces together and so we obtain

sup |B[A?fin (X0,)IX0, = o)l = RO, A% 2) + R(6, A, 17, ).

n,i
uaElti,tit1]

We replace it in the Dynkin formula (36) getting

A2 aB—AB—E)A(—
E[@Ai i(Xfi+1 — thi)|X9i =z]=1+ An,iR(G,A;jﬁ,x) + %R(&A%i aB—48—e)A( 45)@).
Using the definition of A,, ; and (11) it is
1+ R(6 A(lfaﬁ)A(3—Oéﬂ—4,3—6)/\(2—45) z). (57)

Since € is arbitrarily small, for each choice of a and 8 there exists € such that 3 — af — 45 — € is greater
than 2 — 44 and (15) follows. O
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7.3 Proof of Theorem 2

Proof. We observe that

E[Xg+1¢Ag (vaﬂ — X))|Xx! = a] Elgin (X7, )| XE = ]
mo.n, () = ] 7] =+ 0 0 0 _ 1’ (58)
E[@Afﬁ, (XP,, — X0)IX] = q] E[@Ai -(thl XE)IXE = al

with gin(y) = (y —2)ps (v — ).

We have already found a development for the denominator of (58) given by (12), we use again the
Dynkin’s formula (34) for £ = 1 in order to find a development for the numerator. By the building,
gin(z) =0, g ,(x) =1 and g/, (v) = 0, so we get

Acgi,n (x) = b(x’ 9)

and

Aigin@) = [ lginle+21(2) = A@NF@ = [ @y (4(0)) - UF ()
R\{0} R\{0} "
where we have used, in the last equality, simply the definition of g; .
Substituting in the Dynkin’s formula we get

n,i

Elgin(X7,, )XY, = 2] = Api(b(x,6) +/ 2y(@)pps (27(2)) — 1F(2)dz)+
R\{0}

i1
/ / gz n u2)|Xti = l‘]dUQdul. (59)

In order to show that the last term is negligible, we have to estimate (A2g; ,)(y) using the decomposition
in continuous and discrete part of the generator, as we have already done.

Since gin(y) = (y — ) e (y — x), we have

h k h—k
K00 =3 (1) ety =) (g (0= )

k=0

with (Z) binomial coefficients. So we get, observing that the derivatives of (y — ) after the second order
are zero, the following useful control for h > 1:

h h —Bh —B(h—1
9 W) < 103 (=)A= 2l + oy Py = ATV, (60)

By the definition of ¢ as a smooth version of the indicator function, we know that it exists ¢ > 0 such
that if |y v=2l > ¢ then ¢ and its derivatives are zero when evaluated at the point (Z 2).

n i n,i

So we can say that \(pAB (y—o)|ly—zx| < c|<pAB (y — x)|A7” and consequently

n,i n,i

h h —B(h— (h— —B(h—
g @) < el (=oAL 4 el Py — w)la, S0, (61)

n,i n i

Reasoning as in the proof of Theorem 1, we start with (A2g; ,)(y) and we get that it is 2?21 h;(y, H)gz(jrz( )

where again, for each j € {1,2,3,4}, h; is a function of a, b and their derivatives up to second order.
We substitute in E[(A2g;,,)(XE)| X! = x], getting Z?:l E[h (XZ’Q,@)QHL( X9 )|X? = z]. Using the
estimation (60) we obtain

sup  [E[|A2gin(X7,)|1XY, = 2] <
w2 €[t ti41]

1 1
< sup \ZcA VRN (X0 Ol (93 (X, = X0+ 1985 P (X0, = XE)DIXE, = al.

N
u2€ltistiva] 43

We observe that we can see sup,,, e, 1., [E[[P1(X] 9)||<‘0A§ i(XSZ — XP)I|XP = ]| as R(0,A) ;,x) =

tiy1] uz?

R(6,1,x) and we use the Proposition 6 on the other terms, getting

4
mp B[ A2g:n(XO)1XE = 2] < RO, AL 2) + R(0,1,2) + Y A VIR0, A7 w) =
u2 €[ttt j=2
=R(O,A, 7% ) + R(0,1,2). (62)
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Let us now consider A.(Aqgin)(y)

Ac(Aagin)(y) = Ac(/R[gi,n(‘ +27()) = Gin(-) = 27()97 n ()| F (2)d2) ().
Let us denote
Rin (Y, 2) = Gin (Y + 27(Y)) = 9in(y) — 27(¥)gi 0 (¥)-
We observe that

88};2’” (y,2) = gi'n(y+27W) (L + 29" () + 950 (¥ + 27(¥) 27" (y)+

"

— 9 (W) — 9wz — 297, ()2 (v) — 910 (W) 27" ().

Using the estimation (61), we have
G <c ol <eA )] < A
Hence Ohin
= 8y . 2)] < |lg/nll . P@)2] + 127) < (2] + |2 Pw)A, 1,

and similarly
0?h;n

= (g 2)| < AL P2+ |27 + [2f).

Since functions a? and b have polynomial growth, we obtain
|Achin(y, 2)| < AL Py) (2] + |2 + ).

Using dominated convergence theorem we get
Ac(/ hin (- 2)F(2)d2) )| < AL Py )/(\Z|+|Zl2+ |2*)F (2)dz
R R

and so, using also the third point of Lemma 1 and (63), we get

sup |E[A6(Ad9n,¢)(X52)|Xfi =z]| = R(Q,A*Qﬂ z).

n,t
ua€lti,tit1]

We reason on the same way on Ag(Acgn,i)(y):

Ad(Acgn.i)(y) = /R [Acgn.i(y + 27(y) = Aegn.i(y) = 27()(Acgn.i)' (1) F (2)dz.

It is, in module, upper bounded by

1
¢ / / [(Acgns) (4 + 21@))] + [(Acgns) @) 12l 7 (9) | F (2)dsd.

In order to estimate it we observe that, Vy/,

1
(Acgn,i)' (y) = (ad' gy ; + 2a29${’1 + Vg, +bgn )W)

Using (67) and the polynomial growth of a, b and their derivatives, we get
[(Aegn i) (1) < e+ POA,T + PWHAT < P)AT.
It yields

¢ / / (Acgns) (9 + 21@))] + [(Acgns) @Il @) F(2)dsdz <

2y (1,2) = gin(y +27Y) = Gin(¥) + 27" W) (9i n (¥ + 27(Y) — Gin(¥) — 27 (W)l n (v),

<A;Y / / (5 + 27()s) + P2l (W) F(2)dsdz < A2 / Py)P(2)|2|F(2)dz < cA2° Ply),
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where we have used the first point of Assumptions 3 and the second of Assumption 4. Hence |A4(A4.9)(y)| <
A, P(y).
Taking the expected value and using the third point of Lemma 1, we obtain

sup  [E[Aq(Aegni)(XE)|XE = 2] = R0, A, x).

n,g
u2 €[t tiy1]

In conclusion, we consider A%(g,.;)(y)

A(gni)(y) = /R [Aagn.i(y + 27(Y)) = Aagn.i(y) — 27(Y)(Aagn.i) (V)| F (2)dz. (71)

Again it is, in module, upper bounded by

¢ / / [(Aagns) (0 + 21(0)8)] + |(Aagns) @)zl (v) | F(2)ds dz (72)
But
Aagn i) = / ni® + 29)) = gi(¥) — 215 ) ()| F(2)dz = / hin )F(2)dz,  (73)

with h; ,, defined in (64). Using control equation (68) and dominated convergence theorem, we get that
(73) is upper bounded by P(y')A;f.
It follows from (71) and (72) that

|30, ()] < AP P(y) / P(2)F(2)d>

and it turns, using again the third point of Lemma 1,

sup  |E[(Adgn:)(X0,)|X] = a]| = R0, 4,7, 2).

n,i o
U Efts,tiq1]
Pieces things together we get

sup  [E[A%g,q(X0,)|XP = ]| = R(O, AL 77 2) + R(0, 0,7, 2) + R(0,A, 1, 2) =
w2 €[t ti41]

=R(0,A %P ),

n,i
where R(6, A:L;-O‘B%*SB,:U) is negligible compared to R(6, A;ﬁﬁ,x) because, for each choice of o and f3,
we can find an e arbitrarily small such that 1 — a8 — ¢ — ( is more than 0. We substitute it in Dynkin’s
formula and we obtain

E[gn,i(XG )‘Xte, = 1‘] =

tit1
A2
= Ani(b(z,0) +/ (@)pps (27(x)) = 1]F(2)dz) + —= R(0,A,% 2). (74)
]R\{O} n,i
We use the definition of A, ; and the property (11) on R, then we substitute in (74) getting (13).
We now want to prove (14). From the expansion (13) and the property (10) of R, there exists kg > 0

such that for |z < A, Elp,s (Xf, — XP)|X{ =a] > § Vn,i < n: we are avoiding the possibility

that the denominator is in the neighborhood of 0. Using (58), (74) and (12) we have that

B i(b(,0) + feo 1o 21(@)par (27(2)) = 1UF(2)dz) + R0, A7 )

me(z) = = + 1+ RO AP (75)
Now we can use that R in the denominator is a rest function and so we obtain
! ~ 1= R(6, AUZ0DAC=30) oy (76)

1+R(0’A5L{i—aﬁ)A(2—3ﬂ)7m)

Replacing (76) in (75) we get

mg(x) = e+ [A i (b(w, 0)+ / A(@)pps (27(2))~1)F(2)d2)+R(0, A2 22 )] (1-R(0, AL 7" ),
R\{0}

The expansion (14) follows. O
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7.4 Proof of Theorem 4

Proof. Let us now consider an expansion of (58) in the case where « is in [1,2). Again, we skip the study
of a =1 to avoid the emergence of logarithmic functions; as it is embedded in the study of a > 1 with
the choice of « arbitrarily close to 1.

We start observing that (59) and (61) still hold; we want to show that even in this case the last term
of (59) is negligible compared to the others. Again, we consider its decomposition in continuous and
discrete part.

Concerning A2g; ,,, (62) is still true. Let us now consider A.(A4g;.,)(y) as written in (63). We act as in
the proof of Theorem 3, using Taylor development up to second order, on the function h; , defined in
(64). Hence we obtain the following estimation:

ety )] < ], L0
and in the same way, using also (67),
124,21 < Nl P )+ ] 1P 1+ 2 ) <
< PP A= + 180~ P)(2I +12F?), (77)
12,21 < AP P) + il PG + 1) + il PG + 1) (79)

Since a? and b have polynomial growth, (78) provides us an estimation on |A.h; (-, 2)(y)|. Using domi-
nated convergence theorem, (63), the estimation of |A.h; (-, 2)(y)| obtained from (78) and the fact that
both [.(|z]* + |2[*)F(2)dz and [;(|z]* + |2]*)F(2)dz are finite, we get

up  BlAc(Aagn ) (X0)IXE = o]l = RO, 85 0) 4 RO, A, )+ RO A, 2) = RO, A, ).
u2€|ti,tit1

(79)
We now consider Ag(Acgin)(y). Using (70) and the development to the second order of the function
Acgin(y + 27v(y)) we obtain

1
Au(Aegs ) ()] < / / (Acgin) (0 + 5 21|22 W) F (2)dsdz. (80)

We observe that (A.gin)"(y) = [b"g; ,+2b'g] —i—bg'” +(a )2g;’n+a(a”g” +a'gi’, )+2aa’gg:’n+%a2g£2](y).

Using (67), to which we add |92( (y)| < cAn ., we get
|(Acgin)" ()] < ¢ P(y)A,5 (81)
Using (80) and (81) it yields
sup  |E[(AgAcgin)(X0,)1XY = 2] = R0, A7, 2). (82)

U2 €[ty tit1]

To conclude, we consider AgAqg; . Using (71) and the development up to the second order we get

|Aa(Aagin)(y)| < C/]R/O |(Aagin)” (y + s 2|1V (W) | F (2)dsdz.

We recall that (73) still holds, with A, ,, defined in (64). In order to estimate (Aqg; )" (y) in the case
where « € [1,2) we use therefore (78) joint with dominated convergence theorem. It provides us

sup  [E[(AgAagin) (X0,)|X7, = ]| = RO, 5.7, o). (83)

ug €[t ,ti41] e
Using (62), (79), (82) and (83) we put the pieces together and so we obtain

sup  [E[A%fi o (X0)|X! = 2]l = R(0,A), 27777 2) + R(0,1,2) + R(0, A, ) = R(0, A, x).

n,g o n,i o
u2 €[t ti41]

Indeed, since € is arbitrarily small, for each choice of o and 8 we can find € such that 1 —af—38—¢ > —30.
We substitute in the Dynkin formula (59) and so we get

Elgn.i(Xt,,)1X!, = 2] =
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A2
= At + | oy N@pa (1) ~ NP + RO, A, ), (84)

n,i

We use the definition of A,, ; and the property (11) on R, then we substitute in (84) getting (16).
In order to prove (17), we observe agaln that from the expansion (16) and the property (10) of R, there
exists ko > 0 such that for |z| < An i Elpas v(Xt7+1 -X7) =1] > 1 Vn,i <n. Using (58), (84) and

(15) we have that

A i(0(@,0) + [\ 0y ZV(@")[SOAEM (29(x)) — 1]F(2)dz) + R(0, A2 )

me(z) = = + 1+ RO AP (85)
Now R in the denominator is a rest function and so
! ~1— R(9, AL—0PNE=48) Ly (36)

1+ R(0, Al 2PN g

We now replace (86) in (85) and we observe that multiplying by R we obtain negligible functions, hence
we get (17). O

Let us now prove the development of mg A, , in the particular case with finite intensity that makes
possible to approximate explicitly the contrast function.

7.5 Proof of Proposition 2

Proof. We want to use again Dynkin’s formula (34). We consider the decomposition of the generator:
A= A + Ag and by the Remark 1 and the fact that we are in the finite intensity case, we can take
Aaf(z) = [ Alf(x +~(2)2) — f(2)]Fo(2)dz, where F(z) = AFy(z) and [, Fo(z)dz = 1.

Concernlng the denominator, we denote again f; ,(y) := @5 (y— x) and, in order to calculate A* f; ,,(y)

we introduce the following set of functions:

k

p
FP:=<g(y)s.t.g(y Zgo(k) Z Z Aﬁj

k=0 7=0

where, Vk,j, VI > 0 dc such that |a‘9—yl,hk7j(y)\ < ¢(l+ |y|°) and Vk,j hy, is C°. We observe that, if
g € FP, then ¢’ € FP*1 bg and a?g are in FP and therefore if g € FP, then Ag € FP+2.
We now want to show that, for g € FP, A, acts like —AI; up to an error term. Indeed,

Aag(y) = /RA[Q(y +7(Y)2) — g(W)|Fo(2)dz = A/ 9y +v(y)z)Fo(2)dz — Ag(y). (87)

R

Let us start considering g(y) = ¢®) ((y — z)A;f)h(y), where k < p and h € C* is such that VI > 0 dc:
1
| 2eh(y)] < o1+ [yl°). Then,

/ 9y +1(v)2) Fo(2)dz = / 6P ((y + ()7 — D)ATE) h(y +1(4)2) Fo(2)dz.
R R

With the change of variable u := (y + y(y)z — ) A, it becomes equal to

n,t

A'H - (k) 8 Y B u
| x4+ ulA, ) F + —)d 88
G Je O nte s ual R S =
We define F(z,y, s) := %Fg(:(—y‘% + 3 y)) and we develop it up to the M-order, getting
M ~ 1 aM+1 M
F < 0 - (1-1)
(x y, A 7” Z 6— z,y,0 AB u)? + /0 pvEsy F(z, y,tAﬁ )T(Aiiu)MJrldt.

Replacing the development in (88) and recalling that by the definition of ¢ we have fR u? o) (u)du = 0,
we get

®) (u)F wydu ="y 0 aMHF a8 ) LD (A8 g g
R(p ( ) (1’ yv U = Z + 0 a M+1 (xvya n,ZU)T( miu) u.

(89)
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We observe that it is |%F(z,y, s)| < e(1 4 |z|¢ + |y|¢ + |s|¢). Therefore, since the support of

<p(k) is compact, we get

(k) 8 ML B (1- t)M B M+1 B \M+1 c c

Hence using (88) and (90) on | [, g(y + 7(y)2)Fo(2)dz| and the differentiation of (89) on |%l Jroly +

v(y)z)Fo(z)dz| we get that both of them are upper bounded by ¢(1 + |z|¢ + \y|C)A§ff\/I+2), where in the
second case the constant ¢ depends on [.
Turning to a general function g € FP, the estimations above become

[ o+ 1@ Fa(a)de] < 1+ faf + [51°) A28, (o1)

R

and, VI > 1,

l

(& C M
5y / 9(y +1(W)2) Fol=)dz| < en(1+ [ + [y ) A7 A, (92)

We introduce the set of functions

l

0
RP = {r(m,y,AfL’i) such that VI > 0 3¢ |@T(x7y’Ai,i)| <q(l+ |z + y|cl)Aﬁ’i} .

Hence, using (87), (91) and (92) we have proved that, Vg € F?,

Aag(y) = —Ag(y) +r(z,y, AL, (93)

We observe that if a function r is 1n RP, then both Agr and A.r are in RP. We can therefore now
calculate for f; ,(y) = ¢((y — x)A,] ) fin € F°,

Acfin(y) ifi; =c

A fin(y) = .
fin®) {Adfi,n(y) = —Afin(y) + r(ﬂc,y,AﬁfﬁM“)) if iy =d,

We want to show, by recurrence, that
Aiyy 0100 Ay, (fin)(y) = AL £ () (NN nin) (g, gy, AT 72000ty (g5
with {(41,...,in5) the number of ¢ in {i1,...,ix}. Let us consider the base case

A2finly)  ifiy=1i1=c

A=A fim (@) + (@, g, ASMT2) = “Mefin(y) +r(2,y, ALY ifiy=c iy =d
“Mefin(y) +r(@,y, AN iy = d i =

Aa(=Mfin(y) + (@, y, AV = N2 f () + (2, y, ALY iy =iy = d,

Ai0A;, fin(y) =

(96)
where in the third case we have used A.fi . € F2. So we have
Aty 0 Ai fin(y) = AL fin(p) (X710 (g, AT,
as we wanted. For the inductive step, we assume that (95) holds, now
AiN+1 © AiN ©...0 Ai1 (fz,n)(l/) =
_ JAeo AL i () (PNt ey, AT ) i iy =
(—)\)Alc(“ ’’’’’ 1N)fi’n(y)(_)\)N—l(i1, SIN) 4 (2,9, Aﬁ,iMJFQ) 2B1(i1,..., m)) if in1 = d,

where in the first case we have used that A.r(z, y,Anz) € R" Vh, and in the second case that
Adr(x,y,AfL’i) € R" and that ALY W)fi,n F2Uiin) while using (93).

It is equal to Alc(il,...,iN,iN+1)fi7n(y)(_)\)N+1fl(i1 ..... iNyiNE1) +7"($,y, Arﬁl,(iM+2)—2Bl(i1,...,iN,z'NH)) and there-
fore the recurrence is proved. We can now calculate A*f; ,(z) in the Dynkin’s formula (34) using (95):

Afin(@) = Y (Ao ody)finle) =

(i15nrin) €{c,d}*
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= Y A (@) (=Nt (g, g, AR 7Oy, (98)

(i1,eenyin ) E{c,d}*

Recalling that ALf; ,(z) =0Vl > 1, (98) becomes (—A\)* fi ,(z) + r(z, z, A,’BZSZ»M”)*QB’“).
Therefore, the principal term in the development of the denominator of mg a,, , () from Dynkin’s formula
up to order N is

N fin (@) + (@, z, AL TR,

N Ak N
AL
Ak
2 i A il Z
k=0 k=0
Let us now consider the term of rest in the Dynkin’s formula (34). Observing that

JANHLf ()] < AP 4 [y

n,i

using (95) and the definition of the function r, we get that
AN i (@)] < oA, D 4 AT 1y, (99)
Therefore

E[ AN fi (X, I, = 2] < oA 77D 4 AR =200 DY (1 4 g, (100)

Un+1

Replacing in (34) it yields

i+1
|/ / / AN+1f1 n( u,,+1)|Xti = x]duN+1...du2du1| S

< CAanl(A;iﬁ(N-‘rl) +A76L(l]\4+2) 25(N+1))(1+ |1,|c)

Since AB(M+2) 2BINFD) i negligible compared to AnQﬂ(NH), it is enough to have (N + 1)(1 — 258) >
|B(M + 2)J in order to get the following development of the denominator da,, ,(x) of mg s, ,(x):

N k
A’I’L

da, . (v) = ZT( N fin(@) +7(z, 2, Aﬁ MF+A=20ky 4 (g, 2, A (-26)(N+1)y _
k=0

BM+2)] Ak

= > N e AL,
k=0 ’

where we have also used that, by the definition of f;,, fin(z) = 1 and in the sum we have considered
only the terms up to k = |B(M + 2)| because the others are rest terms.
Let us now study the numerator na,, ,(z) of mg A, ,(x): acting like in the proof of Theorem 2 we consider

9(y) = (y —x)e((y — x)A;f) Let us introduce, in place of FP, the set F?.
~ p k .
FP=<3(y =Y " (= 2)A DA O hi (@ y)ALY)
k=0 =

where, VEk, j, VI > 0, J¢; such that |a%hk,j(x,y)| < (1 +|z|* + |y|®). We observe that, as it was for
FP,if § € FP then Aj € FP*2 and, for all § € F?,

Adi(y) = =Agly) +r(a,y, AL, (101)
It turns that the same relation as (95) holds with g in place of f; ,,. Hence we get
Akg(y) _ (Ac +Ad)k§(y) _ Z Ai(il,...,lk)g(y)(_)\)k—l(il,...,ik) +T(x)y7Agy(i]\/erQ)*Qﬁl(h,m,ik)) _

(102)
g
=3 () A alglo) + o AT,

where (i1, ..., i) is the number of ¢ in {iy, ..., i} and (ll“) are the binomial coefficients. Now, concerning
the continuous part of the generator, since it is local and g(y) = (y —x) in the neighborhood of x, we find

Alg(z) = Ag? (x), which are exactly the coefficients found in the case without jump studied by Kessler
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in (Kessler, 1997).
By (102), the principal term in the development of the numerator is therefore

AR YAN < (K k=1 4 (1) B(M+2)—28k
Z k|’Ag(:v):Z il (Z l (=N"A (@) +r(z, 2, A ) =
k=0 k=0 " 1=0
AL - (F 0 B(M+2)
D% (z)(_A)k_ZAK (2)) + r(w, 3, APMH), (103)
k=0 1=0

Changing the order of summation and introducing k' := k — [ we get that the first term of the previous
equation is equal to

N N k N 1 N-—1
Ani (k k=1 4(D) A K oo U I+ K
>3 S () enale = 3 Sl 3 Al ot ()

1=0 k=l 1=0 k'=0
N Al N—l Ak &
Ani l An z(_)‘)
=Y AR @) Y = (104)
=0 k=0 ’

where in the last equality we have used the definition of binomial coefficients. Concerning the rest term
in the Dynkin’s formula, we use again (99) and (100) with g in place of f; , and it turns again

t'H»l (758 uUN
| / / / E[AN (X)X, = 2ldun 1. dusdiy| < r(z,z, ACT2PND) - (105)
ti ti ti
Hence, using (103), (104) and (105) we have the following development:

N
NA,,; (z) = Z
=0

If (N+1)(1—-28)> B(M+2), it entails

Al 1y, = AR (=Y M N
l"“AEK)(x) > WT-FT(:U,%Agfi ) 4w,z ALV, (106)
! — !

[B(M+2)] Al o [B(M+2)] Ak’l(_)\)k’ B(M42)
n’An,i (‘T) = Z l|7 AK (I’) Z - k' + T‘(l‘,l‘, An,i )
1=0 ’ k=0 :

Acting as in the proof of the development of my given in Theorem 2 we can say that it exists kg > 0 such
that, for |z| < A% the development of me.a, () is

n,i ?

[B(M+2)] A1

na, () n,i (1) B(M+2)
T4+ ——==x+ —AY (x) Fr(z,z, A . 107
) D AR Al (107)
The expansion (23) follows after remarking that A(Ig)(x) =0. O

7.6 Contrast convergence

Before proving the contrast convergence, let us define (6, x) as the particular rest function that turns
out from the development of mg A, ;:

F(,2) = mga, (@) 2~ Auib(@,0) = As | 29(@)[1- s (@) F()dz (108)
R\{0}

We recall that (6, z) is R(6, AL z) with § > 0 as defined below equation (30).

n,i
In order to prove the consistency and asymptotic normality of the estimator, the first step is the following
Lemma:

Lemma 4. Suppose that Assumptions 1-5 and Ag are satisfied. Then

Un(0) — Un (o) g/ (b(z,0) — b(x,00))*
R

tn a?(x

m(dz) (109)
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Proof. By the definition,

nfl 2

i1 — mo(Xy,))
=3 B ey (K = Xl (x, zat)
=0 :

We want to reformulate the contrast function, in order to compensate for the terms not depending on 6
in the difference U,,(0) — U, (6p).
The dynamic of the process X is known and so we can write

tit1 tit1 it1
X =Xy, Jr/ b(XS,QO)ds+/ s)dW +/ / -)zii(ds, dz).
t t

We have proved the development (14) of myg, too. We can substitute both of them in U, (6), getting

n—1

) 1 tig1 ) ti+1 tit1
U, (0) = ; 7a2(Xt,1)An,i [ X, —l—/t b(Xs, 0)d8+/t s)dWs —l—/t / zp(ds,dz) — Xy, +

i i

8 (X, 0)+ / oy (=0az (X002 P40, X0 Py (Kris =X,
R 0 n,i n,i =

tit1
= Z CL2 Xt i / b(XS’ eo)ds - Anyi b(th79) +G+ 7"(9, Xti))zwAfhi(XtHl - Xti)]‘{|Xti|§A;”:}’
we recall the definition of ¢; := f Ta(Xg)dWs + ft w fR\{O} Y(X-)zp(ds, dz) +

+A,; fR\{O} z2y(Xy,) [1— Pas ( ( ) )] F(z)dz, as in (29); we point out that ¢; does not depend on 6.
In the same way

n—1

1 tita1
Un(eo) = Z W(/t b(XS, eo)dS—An’i b(Xti,eo)-i-Ci—H”(eo, Xti))2<pAﬁYi(Xti+1 —X )1{\Xt \<A
=0

n,i

and so
Un(0) = Un(B) _ 1 %= Pag, Ko = Xe)lfix cany 2 ’
tn - a ; (Xt )A [An,z(b(the) b(XtﬂHO) )+
tita
+ 2An,i b(Xs, eo)ds(b(th,eo) — b(Xn,H)) +A;+B; +C; + D; + Ei], (110)
t;
with

Ai = 2<1An71(b(th’ 00) - b(Xtﬂe))a Bl = QCZ(T(Qvth) - T(QO’X&));
Ci =20, (r(00, X1, )b(Xt,,00) — r(6, X1, )b(X4,,0)), D; =r(0,X;,)* — (60, X,)?,

tit1
B = 2/ b(X., 00)ds(r(0, Xo.) — (8, X2.)).
t

Our goal is to show that the contribution of A;, B;, C;, D; and E; go to zero in probability as n — oo
2
and to prove that the other terms converge to [, Wﬂ(dﬂu).

We observe that the rest function (6, z) is present in all the terms that have to converge to 0 but A;,
on which we use a different motivation to obtain the convergence:

1o (Xe, — X))l s n
1 PAB tit1 t; {\Xt,.\SA } 1

z : nL i Tt A,L:— X 7X 'LTLX)G]‘ . )
t i=0 CLQ(“H)An,i tn ;LPAEH( tita tl)f’ ( ta ) {‘Xti‘SAn,ki}C

with fi,n(Xtiv 9) = % (b(XtmGO) - b(Xtm 9))
In order to apply Proposition 4 we observe that, by the assumptions done on the coefficients, f;, has
polynomial growth. We therefore get the convergence to zero in probability, using Proposition 4.

® ﬁ (Xt —X¢;)1
—1 "Ay it1 [ X, <AL
We want to show that =377 o on )Aiz nlaui)

definition of the function  and by (11) we have that

B; L 0 and so we observe that, by the

(0, X1 x, 1<azry = RO, AR X)) = APR0,1,X,). (111)
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Hence

17 g (K = Xt}

tn i=0 (Xti)A”ﬂ o
_ 1 TSA‘; ¢ SOAEN Xti+1 - Xt’)1{|Xf7|SA;é}(R(0’ LXti) _ R(GO’ LXti))
= 0 - n,iGi aQ(Xti)

To prove the convergence, we have to show that

P
e Z |]E fzn Xtm )1{‘)( <A, ’C}CHDAL* ’(Xt1+1 7Xt7‘,) ;” - Oa (112)
1=0
and
1 n—1 P
(t )2 Z [A26zfz n(Xtm )1{|X <Ay k}C @Aﬁ _(th+1 _Xti)lfti] — 0,
ni=0
with

R(0,1,X:,) — R(6p, 1, X¢,)

a? (th) .
By the measurability of X;, with respect to F;,, by the fact that |A,, ;| < A, and that ¢, = 0(nA,,) we
get

fin(Xt,,0) =

1 n—1
; Z |]E[Afz,ifi,n(Xtm9)1{|Xti\§A;";f}Ci<pAivi(Xti+1 - th)|‘7:t1]| =

™ i=0

Z |fz n Xtu )||E[1{|X <Ay k}CzSOAf’ _(th+1 Xt1)|‘Ft7,]| <

n—1
C
< AfznA Z |f1,7L(th7G)HE[I{‘X,%‘SA;’;}CHDA?L i(Xt1,+1 - Xt1)|ftl]|
™ =0 ' '

We recall that § is positive. Using (31), we get the convergence (112) in L' and thus in probability.
In the same way,

[A26zfz n(Xt ) )1{|X <A, k}C @Aﬁ _(Xt1+1 _th') L] <

n—1
C
< A?zé n2A2 § fiz,n(XtmG)E[1{|Xti|§A;’:f}<i2<P2Aﬁ ‘(Xtiﬁ—l - Xt1,)|]:t7t]’
n =0 ’ "

that goes to zero in probability using (32).

1z Af” (Xpy — X, )1{|X <Azt o ol
tf Z (Xt )A Ci = r ZAlJ’_é'fz n(th’e)gOAﬁi(XtH»l — Xti)?
1=0 71 n i=0 5

with f; ,(Xy,,0) = (B0, 1, X, DX, (;Zo()XtR;(ﬂ 1 X Jb(Xe, ) 1{‘Xtv‘<A_k>}, where we have used (111).

In module, it is upper bounded by A< Z?;OI | fin(Xe,, 0)p s (Xepn — Xt,)l-

We observe that the exponent on A,, is positive so it goes to zero as n — oo and that |p s (Xt

Xt)

c. By the polynomial growth of f; , and the third point of Lemma 2, we get that + Z?:o | fin(Xe,,0)] is
bounded in L. It yields the convergence in probability that we were looking for.
Let us consider D;. Using triangle inequality, we can just prove the convergence of the following:

i+ <

n_l @AB (Xti+1 Xt )1{|Xt <A~k

1 (0, X,,)?| =
i Z: (X, A i)
—1 -
1% (pAﬁi<Xti+l )1 1Xe,1<A%
:I;ZA;,taa : az(xn{ - R(0,1,X,,)*| <
™ =0

)

1w
< Agfﬁ Z |fi7n(th€)¢Aﬁ,i(Xti+1 - Xti)
1=0
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2
fin(Xy,,0) = %, using also the indicator is always upper bounded by 1.

Also this time the exponent on A, is positive. We can use the boundedness of |p,s |, the polynomial
growth of f; , and third point of Lemma 2 in order to get that % Z?:_Ol [fin (X, 0)opne (Xipy, —Xe,)| i

bounded in L' . It turns

i4+1

1 n-l (pAﬁyi(XtF#l - Xti)1{|Xt1|<A7k

— =2t (9, X,)% S 0.
|tn ; a2(Xti)An,i ( tl) |

Considering F;, we use again the triangle inequality in order to prove only the convergence to zero of the
following:
| 1 nil 2<)0A£ : (Xti,+1 - XtZ)l{lthlgA;
a?( Xy, )Ani

=0

In the sequel it will be useful to substitute f::“ b(Xs, 00)ds with A, ; b(Xy,,6).

lc} tit1
i / b(X,, 00)ds (6, X, ). (113)
t;

tit1 tit1
/ b(X., 0)ds — / (X, 00) — b(X., 00)]ds + Anib(Xr., 60). (114)
t t

In order to show that the first term is negligible compared to A, ;, we consider the following expected
value:

0b
sup  B(Xi 0 00) — 0o 0017 < sup B 52| Xih - Xl <
u€[0,A, 4] u€l0,A4 4] Tl oo
<c sup EHXtri-u - thH]:tz]

w€[0,A, ;]

In the last inequality we have used that the derivative of b is supposed bounded.
Using Holder inequality we get that it is, for each p > 2, upper bounded by

c sup (E[|X,4u — Xy, p|]'—t7:])% <
UE[O,AHJ]
1
<c sup (|t +u—t](1+ X, [P)7 = R(6,AF ,, Xy,). (115)
w€[0,A, ;] ’

Where, in the last inequality, we have used the second point of Lemma 1.
1
For p = 2, E[|b(X¢,4u,00) — b(Xt,, 00)||F:,] < R(0,AZ ., X;,) and therefore

n,.?

tita tita 1
/ E[[b(X., 60) — b(Xy,, 00)||Fr.1ds < / R(0,A . X,,)ds = R(6,A
t t ’

: Xti)? (116)

n,t?

negligible compared to A,, ;, that is the order of the second term of (114).
Using (111) and (114), (113) can be reformulated as

1 n—1 QOA?L i(XtHl — Xti)1{|Xti|§A;V§}A§L,iR(9’ 1, Xt,i)

22 2(%,)

=0

(A b(Xy,, 00)+

+/ Hl[b(XS,&O) — b(X4,,00)]ds]|. (117)

7

The first term is upper bounded by

)

n—1
1
AZg z_% |f1,n(Xt179)90A§1(Xt1+1 - th)

2b(X+,,00) R(6,1,Xs,
where f; n(Xy;,0) = ( tlaQO()X,,(.) .

Again, the exponent on A,, is positive and < Z;:Ol | fin(Xt,,0)ppn (Xe

.1 —X4,)| is bounded in L' using

the boundedness of ¢, , the polynomial growth of f;, and the third point of Lemma 2.

Concerning the second term of (117), we observe it is upper bounded by

n—1 t:
1 it1
A’Ié'],n E |fi,n(‘(t“9)/ [b<;<8790) b(‘<tm90)]d8¢Aﬁ _(‘<t1+1 ‘(ti)|a
A, pard f n,i

7
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where f; ,(X¢,,0) = % The exponent on A,, is still positive and 53— ~ Yo \fl n(X3,,0) f;H [b(Xs,00)—

b(Xy,,00)lds s (Xt — Xy,)| is bounded in L'. Indeed,

n—1 t;
1 i1
A 2Bl (X0 8) [ B 00) X )l (Xry = X)) <
" =0 '

7

i

n—1 it
< nZn ;E“fi,n(Xt“e)/t [b(Xs, 00) — b(Xq,,00)]ds|] =

n—1 tit1 c n—1
= nZn ZOE[fi,n(Xti,e)E[/t [b(Xs: 00)=b(Xe, B0)lds | Fe ][] = -3 ;E[|fi7n(Xti,9) 0,7, X)),

(118)
where we have used the definition of conditional expectation and (116).
1
From (11), we can upper bound (118) by A2 1 S El fin (X, O)R(O, 1, X4, ]
The exponent of A,, is clearly positive and %Z::Ol E[| fin(Xe,,0)R(0,1, Xy,)|] is bounded using again
the polynomial growth of both f,, ; and R and the third point of Lemma 2.
We have obtained the wanted convergence.

Let us now consider the main terms of (110): we will show that they converge to [ Wﬂ'(dw).

In order to do it, we want to replace ftii“ b(Xs, 00)ds with A, ; b(Xy,,600) in (110), getting:
Ai,i[b(Xtia 0)2 - b(Xti7 00)2] + QAEL,ib(Xtia 00)[b(Xt1790) - b(Xtia 0)] = A%,z[b(Xtﬂg) - b(XtmgO)]z'

Hence, we can reformulate (110) adding and subtracting A,, ;b(X4,,6p). We obtain

Un(‘g) 90 . inil SOA” ; Xti+1 - )1{‘){ |<ak
t

. _ 2
tn . (X)) L b0 0) — X0, 000+

+

—k tL+1
- (/ [b(Xs,60) = b(Xy;, 60)]ds) [b(X,, o) — b(Xz,, 0)] + Ri,
ti

(119)
where R; represents the rest terms, for which we have already shown the convergence to 0 in probability.
The second term of (119) goes to 0 in L', in fact

n—1

EHL > f(the)@Afi,i(XtM - Xti)(/ M(b(Xs’ Oo)ds — b(X4,;,00))ds|] =

i=0

=Bl Y (X 0By (s = Xe)([ (X80 — 6K, O0))sl ]
n o0 ’ t

7

) 2(b( X+, ,00)—b( Xy, .0
With f(tha) = u tlaz(z)Xtig ’ ))1{‘Xt,i‘§A;‘,j ’

Using that ¢ s (X¢,,, — X¢,) is bounded by a constant and the estimation (116), we get that it is upper
bounded by

1 n—1 \
Bl g, 2 f (X )R AfL X)) < AR

]EHf(Xtﬂ H)R(Qv 1a th‘,)Ha

where in the last inequality we have used (11), the triangle inequality and that |A, ;] < A,. Using
the third point of Lemma 2, we obtain that X S 1| f(X,,,0)R(0,1, Xy,)| is bounded in L' and so the
convergence wanted.

To conclude, we use the second point of Proposition 3 on the first term of (119). It yields

1 n_l @Ai i(Xti+1 - Xti)l{\Xti\SA }
- An i

a az(Xti)

(b(Xs.,0p) — b(X,,,0) %/ ble. ) ”0)) r(dz).

=0

Therefore,

Un(6) = Un(bo) &, [ (b(z,0) — bl 00) -
i —>/R () (dz).
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Remark 9. We observe that the contrast function does not converge: Y0 € ©

lim Un(e)

n—oo 1,

= 0.
It happens because, in the expansion

Xy

’I’Ll7

tita

o —me(Xe) =G+ / b(Xs, 00)ds — A i b(Xy,, 0) + R(O, ALY, Xy,),
tq

C; s of the order Aé while the order of the part dependent on 0 is A,,.

That is the reason why we consider the difference between Uy, (6) and U, (0y): stressing that ¢; does not

depend on 0, we get that in the difference it does not contribute anymore.

The asymptotic behavior of (U,(0) — U,(0y)) is therefore governed by the part depending on 6.

7.7 Consistency of the estimator

In order to prove the consistency of 6,,, we need that the convergence (109) takes place in probability
uniformly in the parameter 6, we want therefore to show the uniformity of the convergence in 6.

Let S, (0) := M ; we regard this as a random element taking values in (C(©), ||.||,)- It suffices
to prove the tlghtness of thls sequence, to do it we need an explicit approximation of g ;. Such an
approximation, together with the approximation of mg j, will be also useful to study the asymptotic be-
havior of the derivatives of the contrast function. In the following proposition we study their asymptotic
expansions as A, ; =0 :

Proposition 8. Suppose that Assumptions 1 to 4 and 7 hold, with o € (0,2), « # 1 and 8 € (0, 1+a —e).
Then, for |y| < h=*0 (where ko is the same as in Theorem 2 or 4, according to o < 1 or a > 1),

g (y) = hb(y, 0) + R(0, 127D y) (120)
and ) X

g, (y) = hb(y, 0) + RO, h3" 070 y), (121)
Remark 10. It is also possible to show that

|m0,h(y)| = R(ea h, y) (122)

The proposition above will be proved in the Appendix A.1, where we will also justify (122). We can now
show the tightness of S,,(6):

Lemma 5. Suppose that Assumptions 1 - 8§ and Ag are satisfied. Then

Un(0) = Un(60)

Sn(0) = T

is a tight sequence in (C(©), ||.||.)-

Proof. In the proof we use the notation of Section 5.3 and especially of the proof of Lemma 4. Since the
sum of tight sequences is also tight, we can see S, (6) as S,1(0) + Sn2(0), where

n—1
1 LN i(Xti+1 Xi)1 |Xe, |<AE
Sua(9) i= - 3 s R AT (00X, — X B0

tit1

t;
el 1{|X <Az "}E[CZ‘PM (Xt — X)) | Fe]

a2 (-th7 )An,i

_|_

n

(An,i(b(the) - b(thHO)) + (T(Q7Xti) - T(907Xti))))
=0

n—11 k
2 {Ix,1<0.%
SnQ(a) = E i:E 7@2(Xt )A [ClgOAB (Xti+1 - th)+
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E[CiﬁpAﬁ’i(XtiJrl - Xti) LH(ATL,l(b(XtNG) - b(theO)) + (T(97 Xti) - r(907 Xti)))7

and show the tightness of the two sequences individually, using two different criteria.

In order to prove that S, is tight, we want to show that sup, E[supyee |25 Sn1(0)[] < co. As concerns
Sn2(0), according to Theorem 20 in Appendix 1 from Ibragimov and Has’ Minskii (Ibragimov & Has’
Minskii, 2013), we should verify the following: for some positive constant H independent of n, ,

E[(S.2(0))*] < H  V0eco, (123)

]E[(Snz(ol) — Sn2(02))2] < H(91 — 02)2 Vﬂl, 92 € 0. (124)

The derivative that we want to estimate is, using the expressions of C;, D; and F;,

8 1 _1 AB- XtiJrl _Xti)l{\Xf.\<A*k_ .
Tt . =207 b(Xy,, 0)b(Xy, 12
tn ; a2(Xy,)An [285,:6(Xe,, 0)b( X+, 0)+ (125)
tit1 ) .
+2An,z b(X37 Ho)ds(—b(th,G)) - 2An,l(br)(th70) - 2An7i(b’l;)(9, Xti) + 2(7"7")(9, Xt,)+

ti

+27(6, X )/tiﬂ b boyds] s 2 S e, (K — X Pl <ot
r ) i CR S T
W, : T

n

(r(avth)+A”,Zb(th79))
i i=0
Using triangle inequality, we can just estimate each term in L' norm.

Using the polynomial growth of both b and b, the fact that ¢ and the indicator function are bounded,
that a? is bigger than a constant from Assumption 5 and that |A,, ;| < A, we get the first term of (125)

is upper bounded by

n—1

1
Elsup |— 1+ X,
up 7 01+ X,

B

that is bounded by the third point of Lemma 2.

On the second term of (125) we can use that ¢ and the indicator function are bounded, that a? is bigger
than a constant from Assumption 5, that both b and b have polynomial growth, from the integral we get
a |A, ;| (using (114) and (116)) that is smaller than A, and so we have just to use the third point of
Lemma 2 in order to say that the moments of X are bounded. Hence

1 n—1 PaB .(Xti+1 — th)l{le <A~ ® tig1 '
E[sup |— n.i SRV b(Xs,00)ds(—b(Xy,,0))|] <c.
opl, 2 2B e d0)ds(-b% )

K3

Concerning the third and the fourth terms of (125), we use again that ¢ and the indicator function are
bounded, that a? is bigger than a constant from Assumption 5 and that b has polynomial growth. We
recall that

r(0, Xe)1q x, 1<azry = RO, AR X)) = AVPR(0,1,Xy,), (126)
using (111). By the definition (108) and the development (120) of 79 we get also the following estimation:
sup |7(6, )| < A, (14 |z]). (127)

0cO

We obtain in this way a |A, ;| that is always smaller than A, and so we can simplify the A,, in the
denominator. Now we use the third point of Lemma 2 and we get also this time that the expectation is
bounded.

Also on the fifth we use that ¢ and the indicator function are bounded, a? is bigger than a constant
from Assumption 5, (126) and (127) on 7. Therefore the fifth term of (125) is upper bounded by
ASE[L ST (1 X, ).

Since the exponent on A,, is positive and by the third point of Lemma 2, it is upper bounded by a
constant.

As concerns the expected value of the sixth term of (125), we use again that ¢ and the indicator function
are both bounded, a? is bigger than a constant from Assumption 5 and (127) on 7. Moreover, we get a
|A,, ;| from the integral (using (114) and (116)). The third point of Lemma 2 is sufficient to assure the
boundedness of the considered expectation.

Let us now consider

2 n_l PAB i(XtH»l - Xti)1{|X, |<ATE

E = . =il (X, 0)E[¢ X, — X,
[zgg|tn; az(Xt,;) ( tio ) [C@Aﬁ,l( tit1 tz)

]

-
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By the boundedness of ¢, the Assumption 5 on a and the polynomial growth of b, it is upper bounded by

n—1

D Elpx, <arkybivar, (Ku = Xu)
i=0 ' '

E[

L](l + |X75i

M=

oco Ny,

1+5/\§ SA
RQA 2)(1 X, 19 < cAS2
228'71 n; )+ X, 9] < cAy

where we have used (31), |A, ;| < A, and the third point of Lemma 2. Since the exponent on A, is
positive, it is bounded by a constant.

In order to conclude the proof of the S,1’s tightness, we observe that by the boundedness of both ¢ and
the indicator function, the Assumption 5 on a and (127) on 7 we get

2 2 ear (K = Xe)lyy, <t

E - (0, X;, )E[G X — Xy, 11 <
Egg'm ZZ:; (X, A (O, Xe)EGiwns (Xey — Xe)Ful] <
c n—1
<E[l 5 D Elfx, jca,4160as, (Kes = Xe) Ful(L+ X0 ),
™ =0 ' '
on which we can act exactly like above, getting the wanted boundedness.
Let us now consider Sp3. In order to prove (124), we observe that
) c nfll{le |§An§
E[(STLQ(al) - Sn2(92)) ] < ngA%E[(; QQ(Xti)An,z [CZSOA§1 (Xti+1 - th)—’_ (128)

7]E[C290Afl (XtH-l - th) J](An,l(b(Xtﬁ 92) - b(thel)) + 7”(91, th) - 7’(02, th)))2]

By the building the sum is a square integrable martingale. The Pythagoras’ theorem on a square integrable
martingale yields that (128) is equal to

IXt |<ak
n2A2 Z )A2 [Ci‘PAi'i (Xti+1 - Xti>+ (129)

_]E[CZQOA57 (Xti+1 - th) z]]Q(An,Z(b(XtNQZ) - b(Xtiﬂ 91)) + r(eh th) - T(627 th))Q}

We now observe that
(Api(b(Xy,,02) — b(Xy,,01)) + (01, Xp,) — 7(02, X,))? < AL ((b(Xy,,02) — b(Xy,,601))°+
+e(r(0r, Xe,) — r(02, X4,))? < A2 b(Xy,,00)% (01 — 02)% + c7(0u, Xe,)* (61 — 62)%,
where 0, € [01, 65]. Using (127), it is upper bounded by
O] DX, 00)% + (14X, |9)?](01 — 602)°. (130)

Replacing (130) in (129), using that the indicator function is bounded by a constant, the Assumption 5
on a and that b has polynomial growth, we get that (129) is upper bounded by

n—1

c c
anr D BlGesy (X = Xo) = ElGeons (Ko = Xe)IF])*(1+ X0 [))(6: — 62)* =
n ;=0 ’ ’

Fo [ Fe ] (141X, 19)?)(01 - 62)%, (131)

= nQAQ Z E[E Cl(pAB (Xt - X)) — [Ci@Ai,i(Xtiﬁ»l - Xt,)
by the definition of conditional expected value and the measurability of X,.
We observe that E[((ipas (Xt — Xt,) — ElGons (X, — X4,)|F,])?|F] is the conditional variance
of ¢; and so it is always smaller then E[CE(,OZB »(XtY Xy, )| Fe,] that is, using (32), R(6, Ay, i, Xt,). We
get that (131) is upper bounded by Y

i1

n—1

1 c\2 2 1
n2A2 ;E[R(97An,i?Xti)(1 + [ X1, [)7](01 — 62)" < oA

6(91 - 92)27
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where in the last inequality we have used (11) in order to say that R(0, A, ;, X;,) = A, ;R(0,1,Xy,), the
fact that |A,, ;| < A, the natural polynomial growth of the function derived from its definition (10) and
the third point of Lemma 2 in order to assure the boundedness of the expected value.

Hence, recalling that nA,, — oo, we get (124) since ﬁc(@l —6)2 < c(6; — 67)2.

Concerning (123), we act exactly like we have already done in order to prove (124), getting E[(S,2(8))?] <
(0 —0)%. © is a compact set and so ©’s diameter d := supy, g,ce |61 — 02 is < 0o. We therefore deduce
(123): ¢(f — 00)* < cd?® < c.

The tightness of S, (0) = %jj"(e”) follows. O

We are now ready to show the consistence of the estimator én = arg mingeo Uy, (0).
We want to prove that 0, LN 0o when n — oo, that is equivalent to show that V {énk} C én, = {énkj } C

{énk} such that énk]. — 0y a.s.

Let {énk} be a subsequence of {én} By the uniform convergence in probability of the contrast function

given by Lemma 4 and Lemma 5, we get the a.s. convergence along some subsequence of ny, denoted

nkj:
Un (6) - Un (90) a.s

sup | b ; b —1(0,60)] =0, ng, — oo,

0co Nk

where 1(6,0) = [, Wﬂ'(dl‘) > 0.
Now, for fixed w € (2, thanks to the compactness of ©, there exists a subsequence of ny,, that we still
denote ny,, and a 0 such that é"kj — Oso-

Since the mapping 6 — (6, 6y) is continuous, we have l(@nkj ,00) = 10, 6p).
Then, by the definition of §,, as the argmin of U, (8), we have

Unkj (é’ﬂkj) - Unkj (90)

t
nk.j

0> = 1(00,60) >0

and so (0, 0p) = 0. The Assumption 6 of identifiability leads that 0., = 6.
This implies that any convergent subsequence of 6,, tends to 6y; this means the consistency of 6,,.

7.8 Contrast’s derivatives convergence

We are now ready to show the convergence of the derivative of the contrast function through the following
lemma:

Lemma 6. Suppose that Assumptions 1 - 8§ and Ag are satisfied. Then

U\'}g@ £, N(O,4/R(b(5(’x0)0))27r(dz)).

Proof. We recall that

n—1
(Xti+1 — Moy (th))Q
Un00) = 3 A, P s = X eaty:
hence .
— (X, me, (X, ))me, (Xt,)
w(0) =2 il 0 : 0 : Xe o, — X )1 kY. 132
U ( O) ; G,Z(Xti)Anﬂ' @Aiz( tit1 tl) {‘Xti‘SAn,lz ( 3 )

It means that

Un(B) 2 = b(X4,,00)
:75 Xe o, —mg, (Xy,)) ——— Xe, — X3 )1 -
/Fn /*tn i:O( tit1 90( tz)) az(Xti) @Ai ( tita tz) {‘Xt,i‘SAn"j}+

K3

|
—

R(fp, A28 x
(Xt7-,+1 — My, (Xt,)) n,2a2(Xt‘) - SOAB v(th',+1 - Xti)l{lXtﬂSA;,)z}’ (133)

n,i

R
Vi

K2

Il
=
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where we have used the development (120) of 1 (Xy,).

We now use Proposition 5 on the first term of (133) getting that it convergeb in distribution to a Gaussian

random variable with mean 0 and variance [ a;;;“) 4 = 4 b(f(g)"

In order to get the thesis we want to show that the second term of (133) goes to zero in probability as
t, — oo. In order to do this, we we want to use Lemma 9 of (Genon Catalot & Jacod 1993)) and so we
have to prove the following:

7(dz), as we wanted.

9 n—1 R(007A%7/;(1_a6_€_ﬁ)7xti)
\/TTL ; E[(XtH_l — My, (th)) GQ(Xti) QOAQJ (Xt,;+1 - Xt’“)l{|th|§A;li}‘ft7] —0 (134)
4 n—1 R(907A27/Z-\(1_a5_6_6),Xti) )
771 lzzg E[((Xti+1 —Mmy, (Xt,)) GQ(Xti) QDA?I,-L (Xti+1 _th)l{lXtIISA;,IZ}) ‘]:tl] — 0 (135)

Using the measurability and the fact that

E[(Xti+1 — Mg, (th))(pAf7 (Xti+1 - th)

J=0 (136)

we get (134). Let us consider (135). Using the Assumption 5 on a, the measurability of R and the
expression (33) we can upper bound it with

n—1
ZR907 1/\21 aff—e—f) Xt) (QO;Anz>Xt)<A1A2(1 afB—e— [3) ZR90a17Xt)
=0

nA

that goes to zero in norm 1 by the polynomial growth of R, the third point of Lemma 2 and Ag. Therefore
it converges to zero also in probability.
It follows that

n—1 5
R(GO’ AfL,i ath‘)
f Z th+1 mQU(Xt )) a2(Xt )

P
Pan (Kes = Xl <arey =0,
as we wanted. O
Concerning the second derivative of the contrast function, we have the following convergence:

Lemma 7. Suppose that Assumptions 1 - 8 and Ag hold. Then

Un(bo) e, Q/R(b(x’%))zw(dx).

tn a(x)

Proof. Derivating twice the expression of U,, we get

77'100 (Xt,)
Za2 Xt A 90A 1(th:+1 _Xt¢)1{|Xti|§A;,’j}+

(Xt — may (Xt,))100, (Xt,)
2 Z a2(Xt7:)Ani SDAELvi(XtHl B )1{|X I< (137)

n.L

First of all we show that the second term of (137), divided by nA,,, goes to zero in probability. We use
again Lemma 9 of (Genon Catalot & Jacod 1993). Hence, our goal is to prove the following:

n—1 ..
2 2 : (Xh 1 — Mo, (Xtm))me (th)
? E + az()o(t )A : 0 SDAELJ;(XtH'l 7Xt7)1{|Xt7|§A;’li}|ftl] — 0 (138)

n—1 ..
(Xt — Moy (Xi,))1i09, (X1,) 2
ZE = GQ()O(ti)An,i - @Aﬁyi(XtiH - Xti)]‘{|Xti|§A;§}) | Ft,] =0 (139)

2

As we acted in the last proof, we use (136) in order to get (138).
Concerning (139), using Assumption 5 on a, the measurability of R, the development (121) of 7g, (X¢,)
and the expression (33) we can upper bound it with

= A2 B2(Xy,,00) + R(Bo, AL 7P X, )
C n,i t;» Y0 0>
TEAD Z[R(GO,An,ivXti) A7 1<
n =0 n,t
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n—1

c
< R(6g,1, Xt,),
= nQAn ; ( 0 tz)
where in the last inequality we have used the polynomial growth of b, the property (11) on R and that
Al < A, . Since nA, — oo and %Z?;Ol R(00,1, Xy,) is bounded in L', we get the convergence en
probability wanted.
Let us now consider the first term of (137). Using the development (120) we get

- (2-p=pa=o)
9 (A ib(Xy, 00) + R(00, AZ) X,,))?
tn Z a2(X; ) A Pas (Xt = Xe)lrx, 1<azey- (140)
i=0 i yi ] ,

)

Hence, we obtain three terms by expanding the square. Using on the first Proposition 3, we get the
convergence

el ; .

—2 An l‘bQ(Xf‘ 90) P b2(17 00)

— e X, — X))l k= —2 | ——>m(dx). 141

b Ty Pan K Xl x, <a) [y
The second term of (140) is

2 —B—Ba—e
4 — XtL790 (903A727,’/1'\(2 s )7Xti)
W > (X0 Pag, Kiuo = Xe)lix, 1<azt}
i=0 g

Using Assumption 5 on a, the fact that both ¢ and the indicator function are bounded, the polynomial
growth of both b and R and the third point of Lemma 2 we get that its L' norm is upper bounded by
Aﬁ N1=p=pa=e) Since the exponent on A, is positive, the convergence in norm L' and therefore in
probability follows.
Concerning the last term of (140), using again Assumption 5 on a, the fact that both ¢ and the indicator
function are bounded, the polynomial growth of R and the third point of Lemma 2 we get that its L'
norm is upper bounded by cAM(2 26=260=29 " Onee again, since the exponent on A,, is positive, the
convergence in norm L' and therefore in probability follows.

It yields
T b (, 6
U (60) R _2/ (I’, O)ﬂ'(dx)
tn r @*(z)
O
7.9 Asymptotic normality of the estimator
In order to show the asymptotic normality of the estimator we need the following lemma:
Lemma 8. Suppose that Assumptions 1 - 8 and Ag hold. Then
1 N . .
— sup [Un(00 + (0, — 60)) — Un(6o)] = 0, (142)
n tel0,1]
where 0,, is the estimator defined in (9).
Proof. Let us define ~ R
0,, =0y + t(@n — 90) (143)
Using (137),
Un(én) — Un(ao) 2 ity (mgn (Xti) - mgo (th))
tn T ZO PR PanEie =Xl j<a iyt
n—1 . .
2 (Xti+1 — My, (Xti))<mén (XtL) — My, (XtL))
3 (X0 A T R (P ONE O
2 = (mo, (Xi,) —mg (Xe,))ing, (Xs,)
i ; (X, ) B Pz K = Xe)lx, 1<ari) (144)
Concerning the first term of (144), we use the following estimation:
g (X,) = ring, (Xe,)| < 2lrivg, (Xs,)rig, (Xe,) (0n — 00)], (145)
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where 0, € [0,0,]. We replace the development (120) and (121) of 7 and 7. Hence the first term of
(144) is, in module, upper bounded by

2 7 1 —pPp—pPax—e 7 x—€ Y
=3 200X 00) + RO AL X)) (X, 00) + RO AL, X018, — 0] =

(146)
1 n—1 3 1 ne1 )
:ﬁZO|R(0u717Xt1) 977,_90| g EZOC(I+|XL C)‘en_90|7

where we have used Assumption 5 on a, the boundedness of both ¢ and the indicator function, the
property (11) on R that |A, ;| < A, and the definition (143) of 6,, joint with the fact that |¢t| < 1. By
the consistency of 6,, that we have already proved, we get that the first term of (144) converges to zero
in probability uniformly in ¢, since the right hand side of (146) is bounded in L' by the third point of
Lemma 2 and it does not depend on t.

On the third term of (144) we use again the Assumption 5 on a, the fact that both ¢ and the indicator
function are bounded, the development (121) of 71¢ and the following estimation: |mg, (Xti)—m@1 (X:)| <

|ring, (X¢,)||00 — 0n|, on which we can use the development (120) of 7i5. We can hence upper bound the
third term with

*Zm (X, 0u) + R(0,, A2 77757 X 0) (6(Xo,, 0) + RO, AZ2CT770079 x,)) 16 — 6] =

(147)
n—1
Z 1 A
- |R9 Xt ||9 —00|< E C(1+|Xt1|c)|9n—00|

=0

The consistency of 0, yields the convergence in probability uniformly in ¢ wanted, by the boundedness
in L' of the sum, that does not depend on ¢.

It remains to prove the convergence to zero, uniformly in ¢, for the second term of (144); it is sufficient
to prove that the following sequence S, () converges to zero uniformly with respect to 6:

2 o (Xtipy — moy (X)) (g (Xe,) — 1ing, (X4,))
. 72:; a2(Xt>)An,z (pAﬁ,i(XtHl_ )1{|X <A n,i

i

The pointwise convergence is already proved (it is enough to repeat the proof of (138) and (139) with
me(Xt,) — e, (Xe,) in place of g, (Xt,)). In order to show that the convergence takes place uniformly
in 6, we prove the tightness of S,,(), using the criterion analogues to (123) and (124).

Let us consider (124) first. We observe that

E[(Sn(01) — Sn(62))%] <

n—1 .. .
c (th — My (th))(m9 (th) — My (th)) 2
< ZAz [(; o1~ Mg a2(Xti)1An . 2 Par (KXo = Xe) by, j<azeyp)?l (148)
By the building the sum is a square integrable martingale. The Pythagoras’ theorem on a square integrable
martingale yields that (148) is equal to

th 1 — Me, (Xti))2<m91 (th) - mez (Xti))2
Z - 614(Xt.)A2 ] QOQAﬁl(Xt@*l - th)l{lxtL|§A;]f}] (149)

n2A2
i=0

We now use the following estimation:
|7, (X¢,) — 19, (X4,)| < [ifig, (X¢,)[[61 — 0. (150)

Replacing (150) in (148) and using (122) on iy, (Xt,), we can upper bound (148) with

n—1
& (Xti+1 _meo(Xti)) (91“An1’ ) 2 2
waztl2 a'(X,)AZ, Py, Ko =Xl 1eagiyllr =627 <
n—1
< BN F(X0 B)EI(Xe,,, —mo, (X0,))*P2s (X, — X1 | F )6 - 62), (151)
= TLQA% s irYu it1 o t; Ai,z tiy1 t; {lXtilgAn,i} ti 1 2)
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with f(Xt,iaeu) = %

definition of conditional expected value.

Using (33), the property (11) and that |A,, ;| < A,, , we can upper bound (151) with

ﬁ Z?;ol ]E[f(Xtm eu)R(e()v ]-7 th)](al - 92)2‘

By the Assumption 5 on a and the polynomial growth of R derived by its definition, f has polynomial
growth. Using the third point of Lemma 2 we get that the expected value is bounded. Hence, since
nA, — oo, it yields

and where we have used the property (11) of the functions R and the

n—1

1 > Bl (Xis 6u)R(00 1, Xe)] < (152)

n2A,,

therefore we obtain (124) on S,,.
Concerning (123), we can act exactly in the same way, using (152) and the compactness of ©. The
tightness of S, (6) follows. O

We are now ready to prove the asymptotic normality of the estimator. Using (142) we have that
1 /. N . P
? [Un(eo + t(ﬁn — 90)) — Un(eo)]dt — 0. (153)
n JO

We observe that

= [ 000 +100, = 00, 00) =

Un(00)
\/ZZ b

where in the last equality we have used that, on the set {én € (2)}, Un(én) = 0 since 6,, is a minimum.

- / (B0 + t(0, *90))}dt(én*90)*f( Un(0) — Un(00)) = — (154)

Hence ]
_ Un (60)
V(0 — 00) = /o (155)

= fo (80 + (6, — 00))]d

Using Lemma 6 we have the convergence in distribution of the numerator of (155) to N (0,4 [ ( b(f(ff) )27 (dx))

and, by the equation (153), the denominator converges in probability to —2 [, ( ;(gfo)) (d:lc)
4 [ (P00 )27 ()

A(f (P20) )27 (dz))

Therefore\/%, (0,,—0) converges in distribution to N (0, ),i. e. itis N(0 fR mw(dx))~

ax

as we wanted.

7.10 Proof of Proposition 1

The proof of the proposition is essentially similar to the the proof of the asymptotic normality of 0, given
in Sections 7.6-7.9 and we skip it. The main difference comes from the fact that Proposition 5 holds true
with mg, (X+,) replacing mg,(X;,) under the condition that \/ﬁAﬁfl/Q — 0.
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A  Appendix

In this section we will prove the technical lemmas that we have used in order to show the main theorems.
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A.1 Proof of expansions of the derivatives of the function my,

In order to prove the explicit approximation of 1 j and 79,5 provided in Proposition 8, the following
lemma will be useful. We point out that X¢ is X" and so the process starts in 0: X" = z.

: 0,7 . X" S0x . 0°X])"
Lemma 9. Suppose that Assumptions 1 to 4 and 7 hold. Let us define X" := —56— and X" :=

002
Then, for allp > 2 dc > 0: Vh < A, Vz,
X&,z
E[I%\p] <c(1+ [z%), (156)
X&,w
E[I%\”] <c(1+ [z[%). (157)

Proof. The dynamic of the process X is known. The same applies to the processes Xf " and Xf " (cf.
(missing citation), section 5).

h h h

Xt = / B (X0, 0) XD +b(XI",0))ds+ / a (XE)XET AW+ / / V(X0 X 2fi(dz, ds) (158)
0 0 0 JR

and

h
Xyt = / (B (X7, 0)(XD7)? 420/ (X7, 0) X% + 0/ (X7, 0) X7+ b(X]*, 6))ds+ (159)
0

h h
+ / (0 (X07)(XO)2 4 of (X07)K02)dW, + / / (7 (XP) (XO)? 4 /(X0 XO) i dz, ds).
0 0

From now on, we will drop the dependence of the starting point in order to make the notation easier.
Let us start with the proof of (156). We observe that, taking the LP norm of (158), we have the following
estimation:

h h h
E[|X{P] < cE] / (X2, 0)X0+H(X, 0))ds[P]+cE]| / o/ (XO)XOdW, P)-+cE / / o (X0 ) X0 2fi(dz, ds)|P].

(160)
Concerning the first term of (160),

h h
K] / (H/(X?,0) X0 + b(X?, 0))ds[] < ]| / B(X?,0)X0ds|?] + cE / b(X?, 0)ds]?].
0 0

Then, using Jensen inequality on the first, we obtain
h h
/ 0 1 / [4 ‘)
\/ V(X?,0)XOds|7] :E[hp\g/ B(X?,0)XPds]?) <
0

h
B[h! / XIS = bt [ B (X o) X2
0
The derivatives of b with respect to x are supposed bounded, it yields
h .
|/ V(X% 0)X%dsP) < chP~ 1/ E[|X?|P]ds. (161)
0

Let us now consider the second term of (160). Using Burkholder-Davis-Gundy and Jensen inequalities
we get

h h
E[] / (XL < B [ (@ (e X)PaslE] -

/ N X9)2ds|? ]<chr1E/ ' (X)) XOP].

Therefore N h
E[\/ o/ (XO)XOdW,|7] gch%—l/ E[| X?["]ds, (162)
0 0
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where we have used that the derivatives of a are bounded.
The third term of (160) can be estimed using Kunita inequality (cf. the Appendix of (Jacod & Protter,

2011)):
h
E| / / A (XO) X0 2ji(dz, ds) ) <

/ /\’y (XO) X |2 P i(dz, ds)] —HE|/ / (XO)X)2:27(dz, ds)| 3] <

< [ B CpIRpI [ emens 4 [ xR / 2F(2)dz)ds?) <
0 R
h . . P
<o [ BRIy CePIRIpPIas + Bl [0/ e0) X0,
0 0
where in the last two inequalities we have just used the definition of the compensated measure i and the
third point of Assumption 4.

Since the derivatives of v are supposed bounded and by the Jensen inequality we get it is upper bounded
by

h h h
/ E[|X?|?)ds + cE[h? / Iy (X9)P| X0 Pds] < c/ E[|Xf|p]ds+chg*1/ E[| X% P]ds
0 0 0
Hence N N
B [ [ (X)X apldzdo)P) < 1+ hE) [ E(XPlds, (163)
0 R 0
From (161), (162) and (163), we obtain

h
BIEP) < Bl [ 08 0)as) + e+t ) [ BRI
0
Let M, be E[|X{|P], then the equation above can be seen as
Mh<cE|/ 0)ds|?] + c(1+ h>~ +hp1/Mds

Using Gronwall lemma, it yields Mj, < cE[| foh b(X?, 9)d3|P]eCh(1+hg_l+hp71).
By the polynomial growth of b and the third point of Lemma 1,

h
B [ b0 0)dsl?) < ehr(1 4 X3
0

) = ch"(1+ [2])

Hence E[|X{[P] < ch?(1 + |z|°).
Our goal is now to prove (157). In order to do it, we take the L? norm of (159), getting the following
estimation:

h
E[IXA”] < ]EH/O (0" (X7, 0)(X2)? + 20/ (X, 0) X7 +b/'(XY,0)X] + b(XY, 6))ds|”]+

h . .. h . .
E| / (@"(XO)(XO)? + o (XO)XO)dW, [P + Ef / / (7/(XE)(XE)2 + (X0 ) X0)2i(dz, ds)P]
(164)

The first term of (164) is upper bounded by
h . . h .o h ..
E| / (b"(X?,0)(X0)2ds]?) + E / 20 (X2, 0) X0 ds|?) + / b(X?,0) X ds]?) + E| / B0, 0)ds]”] <
0 0 0

h h h
= / BXP7)ds b=t [ e, 0|2 Yds 4ot [ B1Lds B [ BOKE 0y
0 0 0

’ (165)
where we have used Jensen inequality and that the derivatives of b with respect to x are supposed
bounded.

By Holder inequality

[l (X2, 0)[P|X0[P] < (BB (X2, 0)[PP])7r (B[|X?[PP2]72 < c(hPP2)7s (1 + |a]°) = ch? (1 + [2[°),
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where in the last inequality we have used the boundedness of b’ and (156). Since b has polynomial growth
and by the third point of Lemma 1, E[| foh b(X?,0))ds|?] < ch?(1 4 |z|°). Replacing in (165) and using
also on its first term (156) we obtain it is upper bounded by

E] / (0"(X?,0)(X0)2 + 20/ (X2, 0)X? + 1/(X?,0)X0 1+ B(X,0))ds|?] < (166)

h
o(1+ [2]) (A + h2P + P) + chp_l/ E[|X?7)ds
0
Let us now consider the second term of (164). By Burkholder-Davis-Gundy and Jensen inequalities we
get
h . . h .
Bl [ (@ (X0 + (XX < B [ (@ (0K + (xRl <

h
< pit / 1" (XO) (X2 + |’ (XO)XOPds] < ch3+2(1 + |a]°) + chb~ /E[|Xf|p]ds, (167)
0

where in the last inequality we have used that the derivatives of a are supposed bounded and (156).
Concerning the last term of (164), by Kunita inequality it is upper bounded by

(M)

/ / ! (X0) (X0 4! (X XOP |2 iz, ds)] 4 / / TXO) (X2 (XO)XO)2 2 (dz, ds) F] <

h
<c / Bl (X0 (KR + 7/ (XDXIPds] + 18 [ Bl (XD + /(X)X EPds),
0 0

having used Jensen inequality and the third point of Assumption 4 in order to say that fR |z|PF(2)dz < c.
Using (156) and the boundedness of the derivatives of ~, it is upper bounded by

h h
(1 + |x|c)h2p+1+c/ E[|X§|P]ds+ch%+2p(1+|x\°‘)+ch%—1/ E[|X%|P]ds. (168)
0 0

From (166), (167) and (168) we get
h
BIAP) < e(L+ [alP(L+ 12 4 B2 4 b2 0t (b 4 hE ) [ plas
0

Using Gronwall Lemma we obtain E[|X?[P] < ¢(1+ |2|)h? (1 4h? +h? + hPT5 + hP*1) and so E[| X{|P] <
c(1 4 |x|°)hP, as we wanted. O

Remark 11. Supposing that the same assumptions as in Lemma 5 hold and acting as we have done in

order to get the estimations (156) and (157) it is possible to prove that, for allp > 2 3¢ > 0: Vh < A,, ,
Ve,

0 .1

E[ 7Xh | hp

S X0 < 1+ Jal). (169)

A.1.1 Proof of Proposition 8

Proof. As in the proof of Lemma 9, we drop the dependence on the starting point in order to make the
notation easier.
We recall the definition of mg j () :

o n(z) = E[Xfons (X — XDIXE = 2] _ E[X[ons (X] — )]
T Bl (X - XOIXT =4l Eleps (X[ - )]

Its derivative with respect to 6 is

E[X{ons (Xf, — 2)] + ELXPh P X0 5 (X — 2)]
Elpps (Xh — )]

[h Bthphﬁ(XZ _73)]
Elpns (X7 — )]

- mg,h( ) (170)
On the second and on the third term of (170) we divide and we multiply by & and then we use Proposition

7, taking 7 = hXo and Zy = Tg, respectively. We are allowed to do that because they are both
bounded in L?, vvlth p arbitrary high, since we can use (156) on Z; and Holder inequality, (156) and the
third point of Lemma 1 on Z;. For |z| < h™" we have

BIOX) -~ ) (X)) o
Epn(xf -] b )

mep(z) =2+
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where we have used that kg turns out in the proof of theorems 2 and 4, hence it has been chosen such
that, for |z| < h™* we have that E[pys(X) — z)] > 4. Moreover the expected value is bounded as a
result of the boundedness of ¢ and the third point of Lemma 1. It yields, for € > 0 arbitrary small,

]E[Xg%w (X? — x)] + R(O, h?~F=F )

mg,n = (172)
Elpons (X} — )]
Let us now consider the first term. Replacing the dynamic of the process Xﬁ, we get
h . . h .
B[ | (VX200 + XL 0)dsions (X7 — )] + BI( [ o/ (X)X LW+
0 0
/ / (XO)X2ji(dz, ds)) s (X0 — )] / b(XP,0)ds ons (X0 — )] + R(0,h,2).  (173)
In fact, using Holder inequality,
/ b(X X dS(phﬁ(X —2)]| <
1 1 h . 1
I/ b (X7, 0)X]ds|"])7 (Elpfs (X) — ) < (Chpfl/ E[|X][P]ds)7,
0

where in the last inequality we have used that ¢ is bounded and (161). By (156), it is upper bounded by
(ch?(1 + |z|¢))¥. It turns

h
IE[/ V(X2,0)X%ds 0,5 (X] — )] = R(0,h?, x). (174)
0

In the same way, from Holder inequality, (162) and the fact that ¢ is bounded, we get
|]E[ (XG)XOdWS(phﬂ(XG—I )| < ch5*1f0 [1X217) ds) Using (156), it yields

h
B[ o (XDXLAW, s (X1~ )] = R(6. 1Y), (175)
0
Using again Holder inequality, the fact that ¢ is bounded and (163) we obtain
h . 3 h g 1
B[ [ /(X0 ) X0z, ds) s (X7~ )] < (14 05T [ BNl
o Jr 0

Using (156), we obtain ]E[foh Jo V(X)X 2fi(dz, ds) pps (XP — z)] = R(0, K5, 2), where p turns out

from Holder inequality. We can choose p = 2, getting

h
IE[/O /RW’(XS—)XEZ[L(dz,dS) ons (X —2)] = R(0,h?, 2). (176)

Using (174), (175) and (176) we have (173), as we wanted.
The first term of (173) can be seen as

h . . h .
B[ (b(X2.0) — b, 6))ds s (X7 — )] + B[ | bl 0)ds s (X7~ )],
0 0

Using Holder inequality and the fact that ¢ is bounded we get
h . .
B[ (H(X2.0) — b, 0))ds s (X] — )] <
0

b

o |X§ — a|ds)”]).

< o(E|( / (b(X?.6) — b(,))ds)?]) < e(E[( /

From Jensen inequality we get it is upper bounded by c¢(h?~! fo |X6 — z[P)ds)¥ < c(hPH1(1 + |z[P))7,
where we have used the second point of Lemma 1. It yields

h
B[ / (B(X?,0) — b(z, 0))ds oo (X0 — 2)] = R(0, 5, 2).

0
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Taking p = 2, the equation (173) becomes
h . 3 3 . 3
E[ / bz, 0)ds pns (X], — 2)] + R(0, 1, 2) + R(0,h*, 2) = E[Ab(x, 0)ps (X}, — 2)] + R(0,h% ). (177)
0

Replacing in (172), we get

E[hb(xa 9)90}13 (X}(i — l‘)] + R(ov h% ) I) + R(oa h2ia57€767 CC)
Elpns (X}, — )]

R(0, h2N2—ab=c=F) ;)

= hb(z,0)+ Efpn (X7 — )]

e, n(z) =

We use the developments (12) and (15) on the denominator; in both of them the function R is neg-
ligible compared to 1 without any condition on a and 3. Hence for |x| < h~*0 we get the expression (120).

In order to prove (121), we have to compute the second derivative of mgp(z). From now on we
will write only p*) for <p( )(X9 —x), k>0.

E[X}o] +h PE[(X})*¢] hPE[X{elE[X}¢] h sE(X7)%¢'] + E[(X})*¢" Xph"] + E[X}¢' X7

g, n(x) = - +
E[y] (E[e])? Eep
R R[XE)T w(@)E[XP'] —EX)XP] 8 1.0 (2)E[X] @] + B Pmo n(@)E[(X])?@"] + mon(2)E[X] ']
(Elp])? Ef]
As for the study of (170), we want to rely on Pr0p051t10n 6 to treat each term of the form E[Z¢(®)], with
k > 1, where Z is bounded in L? and use [E[Z¢®)]| < E[|Z||¢®)|] = R(0, h1—*F~, )
Xpve XnoXiye (Xpy2 9 Xh 9 X5
We take successively the following variables as choice for Z: (52)%, S, (52)2, ( )X Xy, T,
XhXG );h’ (-’%)2 Xh

All those variable Z are bounded in LP for p > 2 by (156) - (157), the third point of Lemma 1 and Holder
inequality. We deduce

E[X{¢] + R(0, h3~P—<=F 1) E[Xﬁ(p]R(G,hQ‘aﬁ‘e‘ﬁ,x)

Tite,n(® + 178
= E[] (El])? (178)
+R(9, h3—aB—e—5, x) + R(Q, hS—ozﬁ—e—%%7 1‘) 4 R(Q, h2—aﬁ—e—ﬂ’ m) N Rw’ h4—2o¢i—e—257 x) .
Ely) (El¢])?
_R(@, h2—aB—e—,3) $>m9,h(l') + R(@7 h3_°"8_6_26, CC) + Rw’ h2—a5_5_57 3;‘)
El¢] '

We are no longer considering mg ,(x) because, by the expression (171), we can include it in the function
R.

Using (173) and (177), E[X7¢] = hb(z, 0)E[p] + R(8,h?, ).
Hence E[X? @ R(0, h2=*P=<=F x) = R(0,h3~ P~ 1)

We have already proved (120), so

, by the definition of rest function R.
R(0,h*= =78 2)ing p(z) = R(O,R3~ PP x).
Let us now consider E[X?¢]. Replacing the dynamic of X by (159), it is

h h
Blp [ X2 00ds] + Bl [ (/X0 0K 4 20(X0,0)X0 + V(XL 0)X0)dsl+
0 0

h B .o h . '
LE[p / (0 (X8)(X0)? + ' (XO)XO)dW,] + Ep / / (7 (XO)(XO)2 4+ /(X0 )XO)2i(dz, ds)] =

/ B(X?,0)ds] + R(0,h3, ). (179)

Indeed, using Holder inequality,

h
I]E[</>/ (b (X, 0)(X )P + 20 (XL, )XY + 0/ (XI,0)X])ds]| <
0

< (]E[soq])é(lE[(/oh(b”(Xf, 0)(X0)? + 2 (X2, 0) X0 + v/ (X!, 0)X0)ds)")) > <
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h
< (e(1+ [2]9)h® + (1 + || )b + chp—l/ E[| X, |P]ds)3,
0

where in the last inequality we have used that ¢ is bounded and we acted as in (166). By (157), it is
upper bounded by (ch3P + cth) »(1+ |z|¢). It turns

Elp /Oh(b”(Xf, 0)(X2)? +20'(XE,0) X7 + v/ (XE,0)X%)ds] = R(0, h*, z). (180)

In the same way, from Holder inequality, (167) and the fact that ¢ is bounded we get
[Elp /Oh(a"(Xf)(Xf) +d (XXDAWL]| < (e(1+ || YhPPHE + chs /OhEHXsl”]dS);o
Using (157), it is upper bounded by < (ch?*t% + ch”“‘g)%(l + |z|¢) and so we obtain
h
\E[SO/O (" (XO)(X0)? +d (X0)X)dW,)| = R(6, h* ). (181)
Using again Holder inequality, (168), the fact that ¢ is bounded and (157), we have
w/oh /mexg,)()eg)? 7 (X1 XD)zfi(dz, ds)]| < e(h™ ) 4 0 4 WS YRS (14 [a])

Hence, since p > 2,

h
Elp / / (VX0 )(XO)2 4+ /(X0 ) X0)2i(dz, ds)]| = RO, B ).
0 R

Since p turns out from Holder inequality and on which we have only the constraint p > 2, we can choose
p = 2, getting

/h/ MXINXO? + /(X)X 2fu(dz, ds)]| = R(G,h%7w). (182)

From (180), (181) and (182) we have (179) as we wanted.

The first term of (179) can be seen as E[p foh(B(Xf, 0) — b(z,0))ds] + E[ gpfo x,0)ds].
Using Holder inequality and the fact that ¢ is bounded we get

h . .
E| / (B(X2,0) — b, 0))ds pps (XE — )] <

(15

0 p %
DN 1xe— alasy.

h h
< o(E[( / (B(X2,0) — bz, 0)ds)"))+ < e(E( /

From Jensen inequality we get it is upper bounded by c(h?~! fo |X6 — z[P)ds)? < c(hPHY(1 + |z[P))7,
where we have used the second point of Lemma 1. It yields

h
E[(p/o (B(X?,0) — b(z,0))ds] = R(0, A ).

Therefore, considering p = 2, (179) becomes E[p X¢] = E[pb(x, 0)h] + R(0,h?, z).
Replacing in (178) and using the development (12) or (15) of the denominator we obtain, for || < h=Fo

tig.n(@) = hb(e,0) + R(0,h% @) + R0, 1>~ ) + R(0, h*~"5 <23 )¢
FR(0,17P~8 ) + RO, W20~ &) = K, 0) + R(9,h3" =295 p),

We want now to justify (122).

In the expression of iitg 5, (y), the numerator is the sum of product of terms with the following form:
E[p®) X0 XM X123 =6 where k > 1 and hy + hy + hs > k.

The only term with a different form is E[p X], that is R(0, h,y) by the boundedness of ¢ and the equation

(169).
. - . XJOXL X2 s
We observe that, using Proposition 7 defining Z = =27l mh=i we get

|E[(p(k)XZoX:1X}?2XZ3]|h76k < p—Bk+hithoths+l—af—e < h(lfﬁ)k+lfa576'

We observe that the exponent on & is more then 1 if and only if f < Hia — With k > 1. Since

1 €

€
k+a?

o Is the smallest, the Assumption f8
|m9 n(y )| = R(0,h,y), as we wanted.

1+a 1+a
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A.2 Proof of limit theorems

In this subsection we prove the theorems stated in Section 6.

A.2.1 Proof of Proposition 3
Proof. (i) follows from Lemma 4.4 in (Gloter, Loukianova, & Mai, 2018), ergodic theorem and the L!

convergence to zero of = > "7 ( + | X, )1 (1x0, [>A7% ) which is a consequence of the third point of
Lemma 2. Remark that in (Glotel, Loukianova, & Mai, 2018) the Lemma 4.4 is stated the for o € (0,1)
only. However an inspection of the proof shows that it is valid for a € (0,2).

Concerning (i), we can see — Z Apif(Xe,,)pps (Xiy — )1{‘X <k} as

n—1 n—1

1 1
. Z An,if(Xti>6>1{|Xti|§A;’z} + . Z An,if(th 9)(90Ai i(XtH»l - Xti) - 1)1{\Xti\§A;’z}' (183)
™ i=0 ' ™ =0 ’ ’

We have already showed in (7) that on the first term of (183) we have the convergence wanted and so, in
order to get the thesis, it is enough to prove the following;:

n—1

P
Zlelg I: Z An ’Lf Xt ) )(@Agl (Xti+1 - Xti) - 1)1{‘Xt1‘§A;’;}| =0 (184)

We observe that

n—1

1

=150A ZAn,if(Xtiﬂa)(SDAi7,<Xti+1_Xti)_1)|‘
™ i=0 B

|*ZAn f (X, )(SDAE7,(Xtiﬂ_Xti)_l)l{IXtilSAZi
tn =5 7

By the definition of ¢, it is different from zero only if |AX;| > Aﬁ Using Markov inequality and Lemma
1

3

P(|Xy,,, — Xe,| > AL ) < E[|Xy,,, — Xe, P]A Y <eal . (185)

It means that the left hand side of (184) converges to zero in L' and so in probability, indeed

E[sup |* Z Anif (Xt )(@Aﬁyi(XtiJrl - Xi,) - 1)1{|Xti|SAZ§}H <

fee n
n—1
<E| ST A f(Xe,, 001 o 1l ZAn iE[sup | (X, 0)]?)2E[|1 % <
- 6co nA’ﬂ =0 B v {|Xti+l_X1 >A } B [2SC] v {le +1_X‘ >An 1}

n—1

1_
Z An zP ‘Xt i1 Xt ‘ > Agﬂ)% S CA’rzL, ﬂ’

i

- nA
where we have first used Cauchy-Schwarz inequality and then the polynomial growth of |supycg fland
the third point of Lemma 2 and (185). Since the exponent on A,, ; is positive we get the thesis. O
A.2.2 Proof of Proposition 4 and Lemma 3

Proof of Proposition 4.
In order to show that - Z?:_Ol Jin(Xe,,0)Gopar (Xipy — Xti)1{|Xt.|<A_ki} converges to zero in proba-

bility, we want to use the Lemma 9 of (missing citation) and so we have to show the following:

=
7 Z fl n th CZ(PAB ,(Xti+1 - Xti)l{‘Xti‘SA;’Z}LFti} — 0, (186)
=0
1 n—1
(t )2 ZE[ zz,n(Xtﬂe)sz@iB '(Xt1+1 - Xt?‘,)]'{lXtvlgA_kj}LFtl] — 0. (187)
n i=0 n,t 7 n,t

If Lemma 3 holds we have that, using (31), the left hand side of (186) results upper bounded by
6/\2 D U fin(Xe,,0)|R(6,1,X,,), where we have used the property (11) on R and the fact that

|A il § An. Since the exponent on A, is positive and %Z?;ol fin(Xy,,0)R(0,1,X;,) is bounded in L!

using the polynomial growth of both f; , and R and the third point of Lemma 2, we get the convergence

in probability (186).

Concerning  (187), if Lemma 3 holds we can wuse (32) getting that (187) is
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R%A"E;:Ol 7n(X,,0)R(0,1, Xy,), where we have used also the property (11) on R and the fact

that |A,;| < A,. Since nA, — oo and * ZZ o Jin(Xi,,0)R(0,1,X,,) is bounded in L' by the
polynomial growth of both f;,, and R and the third point of Lemma 2, we get the convergence (187) as
we wanted.

Hence, if Lemma 3 holds, then Proposition 4 is proved. O

Proof of Lemma 3.
By the definition (29) of ¢; and the dynamic of the process X, we get

tit1

Ci = th‘+1 - Xti - / b(QO’XS)dS + Anyi Z’Y(Xti) [1 RN (V(th)z)] F(z)dz (188)
ti R\ {0} "

We write the left hand side of (31) by using the last equation and adding and subtracting me,,a,, , (X¢,):

tit1
E[(Xti+1 7m907An,i(Xti))¢Aﬁ _(Xti,+17Xti)1{‘Xtv‘<A_k?}|fti}+E[(m907An,i(Xti)iXti,7/ b(GOaXS)dS+
n,i il="n,i t;
(189)

+A7’L7i R\ }Z’Y(Xti) [1 N (’Y(th)z)] F(Z)dZ)LpAﬁ _(Xti+1 - Xti)l{\Xt.KA”?}']:ti]'
0 n,i n,i il ="n,i

By the F;,-measurability of X;,, the first term of (189) is equal to

E[(Xti+1 — Moy ,A,,; (X&))(PA31 (th+1 - th)

Hixsazty

that is zero by the definition of mg, A, ;-
On the second term of (189) we use the development (14) or (17), respectively for o < 1 and o > 1.
Hence, we obtain

tit1
E[(/ (b(907th) - b(eo, ))dS + R(e()’ An i ))QPAB ,(Xti+1 - Xti)l{\XrKA”?}']:ti]? (190)
t n,i il == n i

i

where § > 0 is defined below equation (30). Using the boundedness of both ¢ and the indicator function
and (116) on the first term of (190), we get that (190) is upper bounded by

R(00, A2, X1,) + R(0p, ALE X,) = R(fp, AL

n,, ?

27Xt')a

1

as we wanted.
Concerning the second point of Lemma 3, we use (29) in order to say that

2< ¢ o o s s, dz cA? . z 1) [1—p s 0 )2 2)dz)2.
et axaw el | /R\{O} Jilds, d>>+An,z</R\{O} A(X) 1 soAMw(ng)l])F( )d2)

i

Using this estimation in the left hand side of (32) we obtain three terms, the first is

tig1 tit1
B [ a(X)dW.)Pehs (Ku = Xi)lyx, jen,ty Pl SBie(|  alX)dWo2|7 )
t n,i il ="n,i ¢

i i

by the boundedness of both ¢ and the indicator function. Using the conditional form of Ito’s isometry it
is -
cIE[/ a*(X)ds|Fi,] = R(6o, A i, X1,), (192)
ti
by the polynomial growth of a, the third point of Lemma 1 and the definition of the function R.
We can upper bound the second term of (191) using first of all the boundedness of both ¢ and the

indicator function, and then Kunita’s inequality in the conditional form (Appendix of (Jacod & Protter,
2011)). We get the following estimation:

it1
E[C(/ / Z’)/(XS—)/jL(dS,dZ))2902A/3 ‘(Xti-#l - Xti)l{\XtYKA*k_}'fti} <
R\{0} < Jsanh

i+1 tit1
/ / Jii(ds, dz))?| F] < cE| / / 12272 (X, - Vi(ds, d=)| o] <
R\{O} R\{0}

tz+1
< cE| / (X )ds|Fi] = R0, A ss X1,), (193)
t

i
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where in the last inequality and equality we have used, respectively, the definition of the compensator

measure i and the polynomial growth of v and the third point of Lemma 1.

Concerning the third term of (191), we have already showed in Remark 3 an estimation, depending on «,
1

that is at most A? ;. Tts square is therefore at least a R(6, A, ;, X;,) function, it follows that (32) holds.
We now want to prove (33). Using (30),

tit1
(Xuay — may(X0))® < e + / D(Xa B0)ds — A (X0, 00)) + R(B0, A2 X, ). (194)
t

i

We can replace it in (33), getting three terms that are of magnitude at most A,, ;.

Indeed, on the first we can use (32).

On the second term we can use the boundedness of both ¢ and the indicator function and Jensen
inequality, getting

tit1
CE[(/t b(Xss, bo)ds — An,ib(th90))28015@(&#1 = X lx, <aziy Pl <

i

tit1
A iE] / (b(X., Bo)ds — b(X,,,00))2|Fi] <
5

i

n,i’

tit1
< B[ (X b0)ds ) + e BB (X, 00| B = R0, A2 Xe),(195)
t;

i

where in the last equality we have used the polynomial growth of b on both of the two terms and moreover
the third point of Lemma 1 on the first term.
In conclusion, we obtain

]E[(XtiJrl — Mg, (Xti))2<p2Ag i(th:+1 - Xti)1{|Xti|§A;)’Z}|}—tz:] =

= R(00, A i, X1,) + R(60, A2 ;. X4,) + R(60, A2F> Xy,) = R(6o, A i, X,).

n,i’

Hence, we have the thesis. O

A.2.3 Proof of Proposition 5.

In order to prove Proposition 5, the following lemma will be useful:

Lemma 10. Let us denote by X7 the jump part of X given by
R t
X7 = / / (X )jids dz),  t>0 (196)
0 JR\{0}

and A X7 = Xt{“ - )N(t{
Then, for each q > 2, 3¢ > 0 such that
E[AiX o (Xeyy — Xe)[IF0] = R(00, ALY X0) = R(00, ALK, X4,). (197)

n,i ’

Proof of Lemma 10.
For all n € N and ¢ € N we define the set on which all the jumps of L on the interval (¢;,¢;11] are small:

. 4AF
N:L = |ALS‘ < —: Vse€ (ti7ti+1] s (198)

Ymin

where AL, := Ls — L,—. We hence split the left hand side of (197) as

_Xti)

_Xti)

i1 i+1 ‘7:151] (199)

EHAZ’XJ(pAiJ,(Xt ql]\/:‘1 ]:tj +E[|AiXJ(pAi1i(Xt ql(le)c

We now observe that, by the definition of N7,

91 i
n
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i+1 i+1
< cE] / / o ilds, dz)|7 + | / / st Pl ) (200

We observe that the order of the second term depend on a. Acting as in Remark 3, we get that its order
is A} ;if o € (0,1) while it is Aiﬁqﬂ(l_a) it & € (1,2). Since ¢ is more than ¢+ ¢8(1 — «) if and only if
a > 1, we can say that the second term of (200) is upper bounded by cAZyAZ-(quqﬁ(l*a)). The first term of
(200) is instead upper bounded by

i1 i1
A I e e S Ry A (S eSS LR

n, “Tnyi

= Ymin T Ymin

q i+1
< ell% |/ /

tit1
/ A(Q a)’BdS)% / Aglq;a)ﬁds—i—Afm < C(AS’:F(Q*QW)Q_FA(Q a)5+1) (9 A(q a)B+1 Xt)
t

i/

tit1
g, Ve oz 317 4 B / g, Wl s 7)) <
ti z

N

" t (201)
where we have used Kunita inequality, the definition of fi and the second point of Assumption 4. Using
the consideration below equation (200) and (201) we get

|]E[|AiXJ(pAf i(th‘Jrl _Xti)|q]'N1iL ft1]| < R(907 A;q,;a)ﬁ+l7 Xti)+R(60’ A?L,Ai(q+qﬁ(1ia))ﬂ Xti) = R(eo, Ailq,;a)[ﬁrl? Xti)'
’ (202)

For a € (0,2), « # 1 and S € (0, %) the exponent on A,, ; can be seen as 1 + ¢, with € > 0.

Concerning the second term of (199), we have

EHAiXJ(PAﬁi(Xt _Xti) a

J < B[(1AXNT + [AXFDPL s (Xiipy — Xe)

n,i

)C|]:ti]> (203)

i+1

where [A;X| := [X, ., — Xy, ¢ is the increment of the continuous part of X in the interval
(ti;tiy1]. We observe that, by the definition of ¢ ,s (X,,, — Xt,), the first term in the right hand side

is different from zero only if |A; X |7 < quz Therefore

HA X|q AB (XtH»l - Xti)l(Nﬁ,V']:ti] < quzpl((erz)p) < CArBL?i+1_aﬂ‘ (204)

n,i

Indeed

. i+1
Pi((N:)9) =Pi(3s € (ti, tita] : [AL| > ) < c/ /mﬁ F(2)dzds < cA1 B (205)

Ymin

where we have used the third point of Assumption 4. Since ¢ > 2, B¢ + 1 — a3 is always more than 1.
In the same way

3 —«
E[|AXf|q@qA/i _(th‘+1 - Xti)l(N;)c 1] < CAZZA}“M B(l + |Xti 0)7 (206)
that is again more than 1. Using (199), (202), (204) and (206) we get the thesis. O
We can now prove Proposition 5.
Proof of Proposition 5.
We denote i
S? ::ﬁ(Xti+l — My, (th))f(Xtﬂe)QpAf?(thJrl - )1{\){ |<ak (207)

In order to show the asymptotic normality we have to prove that s™ is a martingale difference array such
that

n—1
> B[P S0, (208)
i=0
for a constant § > 0, and
n—1
S B PIF D [ £ 000 @), (209)
i=0 R
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c.f. Theorem A2 in the Appendix of (Shimizu & Yoshida, 2006).
We observe that s} is a martingale difference array since, Vi > 0,

P Olyix, <oz
\/E E[(Xti+1 — Mg, (Xt@))QDAf” (Xti+1 - Xt7)|ftz] =0

by the measurability of f and the indicator function and the definition of mg, (X3,).
We now want to prove (209). Using (30) and the definition of (; we have that

Elsi|Fi] =

tiy1 tit1
(Xor,, — oy (X0,))% = ( / a(X.)dW,)? + 2B, / a(X.)dW, + B2, (210)
t t

7 7
where

tit1
Bin ;:/ (b(X,,00) — b(Xy.,00))ds + R(Bg, AT, X, )+
t

n, ?

tit1
[ e ads ) A [ (XL gy ((Xe)F)dz,
ti IR\{0} R\{0} i

Replacing (210) in the definition (207) of s we get three terms. We start proving that

n—1

1 P

? Z [BZHfQ(XtH e)wiﬁ _(Xti+1 - Xti)l{\xtv\gA—kzﬂ]:ti] = 0. (211)
g i i n,i

Indeed,

it )

BB, (Xo T B[ B0 ) b b))

tit1
+ R(6o, AZT? X)) / /R o Vi(ds, dz))?+ (212)

+(An,i R\( }ZW(XS*)[l NG (V(th)z)]F(Z)dZF](pQA/; _(Xti+1 - th)
0 n.i n,i

< R(6y, A2, X,,) + R(00, A25%, X)) + R(fo, AP0 X, (213)

)

<

where we have used (195) on the first term of (212), (197) of the previous lemma on the third and
Remark 3 on the fourth. Indeed, in Remark 3, we found that the last term in less than R(f, A2 ;, X,)

if & <1 and less than R(6, Aiﬁw(l a), Xi,) if @ > 1; in both cases the exponent on A, ; is always more

than 1, hence we can write it as 1 + €.

We can upper  bound  with  (213) the left hand side of (211)  getting
= Z ' 12(X,,, 0)R(6o, A}ff, Xti)l{lXtiISA;.’Z}’ that converges to 0 in norm L! by the polyno-
mlal growth of both f and R and the third point of Lemma 2 and using that |A, ;| < A,. We obtain
therefore the convergence in probability (211) wanted.

Let us now consider the contribution of the first term of (210) for the proof of (209). We can see it as

n—1 tit1
S PEOE[ T aX)ARIEL i, cay (214)
™ =0 b '

n—1 tit1
S X O / A(X)AW) (s (Xiroy = Xe) = DI, jeat
" =0 o

i

On the first term of (214) we use Ito’s isometry, getting

tl 1
J— Z f2 Xtu / (XS)stlfti]1{|Xti|SA;}§} -

n,i

=
- 7 Z tha n i@ (Xt ) +R(003An Z7Xt ))1{\)(1 ‘<A (215)
1=0

where we have used (116) with a? in place of b. Using the first point of Proposition 1 we get that
1 n—1 P
by 2 I (X )80 () 22y | w0 @), (216)
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while i Z?;Ol f2(Xy,,0)R(6o, A; i Xti)l{‘Xti <a;k) 8Oes to zero in norm L! and therefore in probability.

Let us now consider the second term of (214). Using Cauchy- Schwarz inequality we get it is upper
bounded by

1 n—1 tit1

— > (X, 0F i) (X )dW, " F P E92s (X, — Xo) — 1P1F,)7 <
" =0 o
i+1 1 1
B nA Zf tha |/ dS| |ft }QE[1{|XH+1_X%‘>A }|ft }2

where we have used Burkholder Davis Gundy inequality and the fact that, by the definition of ¢, it is
different from 0 only if | X, , — 571. Using Jensen inequality and (185) in the conditional form
we can upper bound it with

n—1
1 9 9 1

n,i

tit1
/ a2 (X, )dsP|F B P(1 X0, — Xo| > A2 |} <
t

i

tit1

i, Zf (X OB A [ o' (XdslF R (00,0777 X0) <
t

< Zf (i )AL [Ania (X0) + R0, AL, X )BRO0, AL X)), 17)

where we have also used (116) with a* in place of b. We observe that (217) goes to 0 in L! and therefore
in probability, indeed its L' norm is upper bounded by

3m\>~

<A ;; (X O)R(Bo. 1, X (03(X0) + R0, A X0,

that goes to 0 by the polynomial growth of f, R and a and the third point of Lemma 1 and since § < %
Let us now consider the second term of (210) for the proof of (209). Using Cauchy-Schwarz inequality,
(213) and Ito’s isometry we get

n—1 t;
) it+1
7 E fQ(XtNG)E[Bi,n/t a(XG)d”sQOzAB _(Xti+1 7th>1{‘Xt1‘§A;’:}|ftJ <
n ,L':O n,t ) v

i

c n—1 1 - 1
= nly, ZfQ(Xt”e) (907A”Z » Xt )EE[/t a(X,)%ds|F; )2 <

i

E*ZfQ (X0, 6)R(00. 1, X,,) (a*(X,,) + R(00, AL, X)), (218)

n
where in the last inequality we have used the property (11) of R and (215) with the trivial estimation
|A, il < A,. By the polynomial growth of both a, f and R and the fact that the exponent on A, is
positive we have that (218) converges to 0 en norm L!'. Hence it converges to 0 in probability, (209)

follows.
Our goal is now to prove (208). Using (210) we have that

n—1

Y EllspPIF] <
=0

n—1 ts
1 it1
< c(nA )1+% Z f2+T(Xti7 9)(]E[B2ZT902AJ;T (Xti+1 - Xti) L] + E[(/ a(XS)dWS)2+T|‘Fti])' (219)
n i=0 b

We act as we have already done in the proof of (209) on the first term of (219): using (197) we get it is
upper bounded by

n—1 n—1

c T € 1 T
AT > (X, 0)R(60, ALK, Xo,) < Ani(m T > P(X, 0)R (6o, 1, X4,),
n i=0 n i=0
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that converges to 0 in norm L' (and therefore in probability) since € > 0 and nA,, — oo for n — oo.
Concerning the second term of (219), using Burkholder-Davis-Gundy inequality and (215) we have

]E[(/tti+1 a(X) AW )7 |F]) < R(00, A%, Xo,). (220)

n,g

i

Using (220) we get that the second term of (219) is wupper bounded by

< 1 ?:_01 [2(Xy,,0)R(09,1, X;,), that converges to 0 in norm L! and hence in probability

na n
since n? — co. We deduce (208) and therefore the wanted asymptotic normality. (]

A.3 Proof of Propositions 6 and 7.

Since Proposition 6 is a consequence of Proposition 7, let us start with the proof of Proposition 7. To
lighten the notation we forget the dependence on 6 of X? and Z.

Proof of Proposition 7.

Using X{ defined in (196), we introduce the event

- t 1
Ep =X ::/ / (X, )ji(ds,dz) € [=hP,4RP] 5 . (221)
o JR\{0} 2
We have that
k k k
E[|Zo®) (X5, — 2)]] = E[| 26 (X5 — 2)|18,] + E[| 205 (Xh — 2)[15¢]. (222)

We observe that, by its definition, Lpgf} (Xj, — ) is different from 0 only if |X;, — x| € [h®,2h°]. But
ApX = |Xp — 2| = |X§ — 2 + Xj| hence on Ef, where X; ¢ [3h7,4h7], from |X), — x| € [h?,2h°] we
deduce that it must be | Xf — x| > %hﬁ. Using this observation and Holder inequality we have that the
second term on the right hand side of (222) is upper bounded by

1

1 k 1 c 1 1 r(l_
(BIZIP)? (Ellehs (Xn = o) 1557 < c(PXS — 2| = 5h7)T < chiz™?)

=

Vr > 1, where we have also used that Z is bounded in LP and Remark 2 in (Gloter, Loukianova, & Mai,
2018).

In order to estimate the first term on the right hand side of (222) we need the following lemma that we
will prove at the end of the section:

Lemma 11. Let us consider Ey, the set defined in (221). We have

P(Ey) < R(0,h} =P, z). (223)

If Z € 2, ., then using Holder inequality, the estimation (223) and the boundedness of Z in LP we get
E[|Zy? (Xn — 0)|15,] < (B Z))Ellgys (Xn —2)|"15,])7 <
BB h E,] = Prs h— X En S

< cR(0,h P 2)i = cR(O,h" 7, x),
with % + % = 1. Hence, we get the Proposition 7. O

Proposition 6 is a consequence of Proposition 7, observing that (h(Xy,0))sco € Zi,, ., —t,cp, for
u € [t;,t;+1], and the Markov property.

In conclusion, we prove Lemma 11.

Proof of Lemma 11.
We use again the set N defined in (198). We have

P(Ey) = P(E, N NL) +P(E, N (NL)©). (224)
On the second term of (224) we use (205), getting

B(E, N (N})°) < B((N)°) < ch' =" (225)

51



Concerning the set Ej, N N}, we use Markov inequality and we obtain, Vr > 1,
P(E, N N}) < B[ X} ["1yi |hP" < ch™Prptthlr=e) = cpl=be (226)

where in the last inequality we used (202).
Using (224), (225) and (226) we get the Lemma 11. O
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