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Abstract

Many computational approaches exist to estimate heating and cooling energy

demand of buildings at city scale, but few existing models can explicitly

consider every buildings of an urban area, and even less can address hourly

-or less- energy demand. However, both aspects are critical for urban energy

supply designers. Therefore, this paper gives an overview of city energy

simulation models from the point of view of short energy dynamics, and

reviews the related modeling techniques, which generally involve detailed

approaches. Analysis highlights computational costs of such simulations as

key issue to overcome towards reliable microsimulation of the power demand

of urban areas. Relevant physical and mathematical simplifications as well

as efficient numerical and computational techniques based on uncertainties

analysis and error quantification should thus be implemented.
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1. Introduction

1.1. General context

The study of urban energy consumption is becoming more and more im-

portant because of three main facts:

(1) Urban population is increasing: in 1950, 30% of the world population

lived in cities, and 54% in 2014, and this ratio will reach 66% in 2050,

that being around 6.5 billion of persons, i.e. 2.6 billion persons more

than nowadays [1]. Therefore, urban development is a crucial issue, in

particular from an energy point of view as urban energy consumption

per capita is also increasing (+32% in the last 40 years [2]).

(2) The energy paradigm changes: the need of dramatically reducing green-

house gas emissions as well as fossil energy issues favor the use of renew-

able energies, which are often decentralized and intermittent. Related

3
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polices currently ongoing in many countries worldwide [3] change the

previous centralized energy management scheme, which requires a better

understanding and forecasting of power demand and power production,

in particular in cities, where the network in dense.

(3) Urban heat stress during hot seasons due to the urban heat island (UHI)

effect may further intensify effects of probable more frequent heat waves

in the context of climate change [4]. This can lead to dramatic public

health problems as well as energy issues due to the multiplication of

active cooling devices, which would also contribute to increase urban air

temperatures [5].

Therefore, urban energy consumption have been a critical research prob-

lem for the last 30 years years (Keirstead et al. [6] referenced 219 papers

concerning only urban energy models), and will certainly still remains a ma-

jor issue for the following years.

1.2. Scope

This paper focuses on the building sector, which is responsible of the

main part of the global energy consumption (40% of total final energy in the

European Union [7]), and in particular on space conditioning (heating and

cooling), which currently represents about 75% of the energy consumed by

European residential buildings in 2014 [8]. The building sector is identified

to have a “great potential” to improve energy efficiency [7] and to reduce

greenhouse gas emission, thanks to refurbishment, including insulation and

replacement of low-efficient energy technologies.

Moreover, renewable energy may relevantly be produced and used in

buildings (e.g. solar panel and combined heat and power). But such a change

4
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implies to focus on power demand because of district network balance man-

agement problems (storage, sharing, etc.), and no more only on long term

consumption.

Hence, this paper addresses building energy modeling at city scale, as

integrated tools are needed for urban energy suppliers to manage energy

networks and for city decision-makers to plan strategies in a context of urban

growth and energy transition (point (2) of Sec. 1.1).

1.3. Modeling issues

The energy demand represents the energy used by energy systems, con-

sidering their efficiency and their behavior, to provide the energy needs. The

energy consumption refers to the assessment (the sum) of the energy demand

over a period, assuming that the energy demanded was supplied, whereas the

power demand represents the instantaneous energy demand. Hourly energy

demand is commonly used in building energy simulations (BESs) as the min-

imal temporal resolution required to estimate the power demand.

Simulating urban building power demand is more complex at the city

scale than at building scale, mainly because of three reasons:

• A huge amount of information about built structures (geometry, phys-

ical properties of components, etc.) is needed because of the large size

of the domain studied, whereas they are often unknown and difficult

to obtain accurately [6, 9]. Their determination needs expensive and

time-consuming surveys and measurements;

• The behavior of the occupants (direct actions and use of systems) has

a major impact on building energy demand [10–13] while at the distrit

5
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scale or lager, the temporal variability of occupants’ behaviors makes

the maximal total power demand different from the sum of the individ-

ual maximal power demands. This diversity requires specific models

themselves based on extensive surveys [14];

• Because of the urban environment, buildings cannot be assumed standing-

alone as it is usually supposed in building energy models (BEMs). Ef-

fects of the urban environment on building energy needs have to be ac-

counted for [15–22], while external loads, such as meteorological loads,

cannot be estimated generically as they are particular for each building.

More precisely regarding this last point, meteorological loads of urban

buildings and subsequently their energy behavior depend on (see Figure 1):

• Obstructions caused by surrounding constructions, which decrease the

sky view factor, and consequently reduce solar gains (increase of the

heating needs in winter and decrease of the cooling needs in summer)

and the radiative cooling to the sky (reverse effect on the space condi-

tioning needs) [15–19, 21, 23];

• Surrounding surfaces, which reflect solar radiations and emit and reflect

longwave radiations, impact on the surface energy balance of urban

buildings (e.g. a north-oriented surface may receive solar radiations

from a south-facing opposite surface, therefore its thermal losses may

be reduced) [17, 19];

• Urban morphology, which modifies airflows around buildings, and, con-

sequently, impacts convective heat exchanges [18, 20, 21] and the po-

6
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tential of natural ventilation of urban buildings, including infiltration

[24];

• The general UHI effect, which means that air temperature within a city

is often higher than in rural areas (decrease of the heating needs but

increase of the cooling one [15, 20, 25–28]). According to Oke [29], the

UHI results from the combination of the above mentioned phenomena,

which generally increase urban surfaces temperatures, in addition to

the high thermal absorbance of urban materials, the lack of vegetation

(evaporative cooling), and the anthropogenic heat sources.

1.4. Objective

The aim of this paper is not to give an exhaustive review of studies ad-

dressing the simulation of building energy demand at the urban scale, but to

identify the approaches and the models developed in the literature in order to

simulate building heating and cooling power demand, from the building scale

to the urban scale, taking into account the urban environment and possible

changes in building characteristics. For this purpose, the paper is structured

as follows: a first part (Sec. 2) presents the main approaches and method-

ologies used to estimate urban building energy consumption and particularly

power demand at district or city scale; then a second part (Sec. 3) details the

specific models used in these approaches in order to tackle modeling issues in

the urban context; finally, the last part (Sec. 4) closes the paper and specifies

outlooks.

7
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2. Overview of urban energy models

At the city scale, numerous phenomena of various scales interact, ur-

ban geometry is very complex and heterogeneous, and materials are diverse.

Therefore, explicit simulation of urban energy demand requires huge amount

of data, which are difficult to gather, and high computational capacities,

which are currently not available for usual use [6, 9]. Consequently, simpli-

fied approaches have been mostly developed.

2.1. Top-down and bottom-up approaches

Two approaches addressing urban energy issues were commonly defined:

top-down and bottom-up. According to the review of Swan and Ugursal [30]

about modeling techniques of energy consumption in the residential sector:

“Top-down models utilize the estimate of total residential sector

energy consumption and other pertinent variables to attribute

the energy consumption to characteristics of the entire housing

sector. In contrast, bottom-up models calculate the energy con-

sumption of individual or groups of houses and then extrapolate

these results to represent the region or nation.”

In other words, top-down models study city as an entity, according to

its general characteristics. As the components of the city are not consid-

ered explicitly, top-down approaches are not able to consider explicitly the

energy demand of each individual urban building. The total urban energy

consumption is related to macroeconomic parameters, such as energy price

and income, and to other parameters related to the city, such as population

8
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density and urban morphology. They are generally designed to give informa-

tion for policy-makers, for whom monthly or annual energy consumption and

aggregate information are sufficient. On the other hand, bottom-up models

reconstitute the behavior of a city from the behaviors of its components, i.e.

the buildings. Therefore, the urban energy demand is calculated as the sum

of the energy demand of each building.

Bottom-up approaches enable each end-use consumption and the con-

sumption of each building to be distinguished using statistical and engi-

neering methods [30]. Statistical methods rely on huge amounts of various

data originating from field measurements, energy supplier recordings, gov-

ernment publications or surveys, for instance. These historical data are used

in regression analysis to establish relations between energy consumption and

other parameters related to the building considered. In contrast, engineering

methods calculate the energy demand of each energy system of buildings,

using engineering-based models. These methods require an important col-

lection of data about the physical properties of buildings components and

characteristics of systems.

Hence, only engineering methods are able to simulate the consequences

of important changes, as technology break, massive refurbishment or change

of occupant behaviors, thanks to their high level of detail and their physical

models, on the contrary to statistical approach based on historical data [14,

30, 31]. However, deterministic approaches used in engineering models are

not able to properly consider diversity [14, 30, 32] and statistical models are

necessary to relevantly include occupants’ behaviors. Statistical tools can

also simplify the determination of the huge amount of inputs of engineering

9
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models [31] (as for buildings stock dataset [32]).

2.2. Toward micro-simulation

In contrast to top-down and large scale bottom-up models, which consider

aggregated and averaged quantities due to their large spatial and temporal

resolutions, it is necessary to explicitly simulate each building of a city in

order to accurately account for the distribution of the power demand at

urban scale. This category of simulation (and, by extension the tool and the

model associated) is called micro-simulation [9]. The micro scale refers to

the building scale, and by extension, the meso scale to the district scale and

the macro scale to the city scale. According to the classification of Swan and

Ugursal [30], this type of model belongs to “sample engineering bottom-up

models”, but with the sample size equal to the domain size of the study (also

called “urban building energy models” by Reinhart et al. [33]). Therefore,

such models could be called full detailed sample engineering models, because

each building belonging to the domain is explicitly considered. As the micro-

simulation exhaustively considers each building of the city, it is the strictest

bottom-up approach.

Micro-simulation is needed by energy system and energy supply network

designers, in order to simulate the power demand of each individual building

within a district and for “spatially localized decision support” [9].

Nonetheless, most of micro-simulation models were validated with annual

or monthly aggregated energy consumption measurements. Such a valida-

tion may be insufficient when models are further applied to assess power

demand of individual urban buildings. As individual power demand of ur-

ban buildings depends on the diversity of occupant behaviors, rapid micro-

10
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meteorological phenomena and specific building characteristics, specific val-

idation should be performed albeit it is made difficult by privacy issues and

the lack of suited validation data.

Hence, to identify modeling approaches suited for urban power micro-

simulation, this part reviews existing approaches used to explicitly simulate

urban building energy demand.

2.2.1. Building energy simulation

BES estimates heat transfers in the different building’s elements and pre-

dict the behavior of energy systems, in order to provide detailed building en-

ergy assessment. The scales of the BESs are the followings: the micro-scale

refers to components of the buildings (systems, elements of facade, etc.) and

the macro-scale to the building (see Figure 2). BEMs can be also used to

characterize archetype buildings of engineering-based bottom-up approaches

[31, 34, 35]. In these cases, BEMs are solely used because it is unnecessary

to precisely consider the local urban effects.

Towards urban micro-climate, the use of BES programs may be extended

to evaluate effects of urban environments on building energy behavior. In

particular, [25–27, 36, 37] performed BESs parameterized with local mea-

sured or generated weather data (see Sec. 3.2.3) for a generic building. The

aim was to convert an increase of temperature due to an UHI into a varia-

tion of space conditioning energy consumption, considering building thermal

behavior, rather than considering real urban building with its specific urban

environment. Extending this approach, BEMs were coupled with an urban

canopy model (see Sec. 3.2.1) in order to study the interactions between

urban building energy demand and the urban climate [28, 38–40]. In this ap-

11
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proach, BESs are neither run for a specific building, but for a representative

one, in order to determine its general impacts on the urban climate and the

feedback on its energy needs.

More specific studies were also recently carried out. Especially, Ref. [17,

19] respectively used EnergyPlus [41] and ApacheCalc coupled with Daysim

in order to determine the lighting electrical and space conditioning demands

of a test room depending on the shading and reflection of solar radiation

induced by different surrounding built structures (building heights, street

widths, orientation, etc.).

Accounting for more physical phenomena and using the BES tool Ener-

gyPlus, Yang et al. [21] evaluated the effects of urban environments on build-

ing energy needs by modifying the BEM boundary conditions and modeling

of external solications based on microclimatic simulations performed using

ENVI-met [42]. With this coupling, effects of urban environments in terms

of short and long wave radiative heat transfers and local air temperature on

building energy behavior were estimated. Also, Allegrini et al. [20, 43] used

the BES tool TRNSYS [44] to simulate a street canyon in order to analyze

the impact of its aspect ratio and its orientation on building energy needs

considering both radiative and airflow-induced effects. More precisely, the

street canyon was modeled as a large open atrium so that the indoor radia-

tion model using Gebhart factors can apply to evaluate outdoor reflections

of short and long wave radiations effects, and CFD-based specific external

convective heat transfer coefficients were used to evaluate convective heat

losses.

Hence, although BEMs are able to model the behavior of building com-

12
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ponents and are thus the bases of explicit urban power modeling, usual BES

are not suited to perform district or urban scale simulations. As BEMs are

originally designed for stand-alone buildings, they need improvements or cou-

plings to integrate urban effects on urban building energy demand. According

to the above-mentioned examples, BES were mainly used to simulate the en-

ergy demand of one, often theoretical, building in an urban context in order

to identify general trends, not to study a real case. Surrounding buildings

are often only assumed as obstructions, without explicit modeling of their

thermal behaviors. As BESs tools are not designed to simulate numerous

buildings while considering accurately the interactions between each others,

performing BES at urban scale would require an important computational

effort because of the consecutive calculations and the coupling processes [45].

This is all the more true if building interactions through microclimate is ex-

plicitly simulated using computational fluid dynamics (CFD) simulations.

2.2.2. Urban building energy simulation

Noticing that BES are originally designed for a stand-alone building,

some tools were developed in order to model the interactions between urban

structures and urban climatic conditions as well as building energy behavior.

These tools are often thermo-radiative tools initially designed for urban light-

ing or pedestrian comfort studies, which were improved in order to evaluate

building energy needs. They sometimes also include microclimate models. In

the present paper, this category of combined models is called urban building

energy model (UBEM) and the simulation associated urban building energy

simulation (UBES).

13
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For example, He et al. [16] designed a “simulation tool for predicting the

effect of outdoor thermal environment on building thermal performance in

an urban block”. They modeled geometrically the urban block and defined

a uniform Cartesian mesh grid with a spatial resolution of 0.2 m for exte-

rior surfaces, and split indoor volumes into thermal zones (one per story).

Thermo-physical properties were attributed to each cell of the grid. Then the

program solved heat balance equations for each cell every 15 minutes, giving

the surface temperature of each cell, the indoor temperature and the power

demand of the zones of a specific building. This simulation was based on a

tool initially designed to predict outdoor thermal comfort [46] and improved

to predict building energy needs.

Similarly, Bouyer et al. [18] added a building energy model to the thermo-

radiative model SOLENE and coupled it with the CFD program Fluent [47],

in order to simulate the hourly energy needs of a building located in an

urban block. SOLENE was first designed to model precisely solar lumi-

nance distribution within an urban area, and was then improved to com-

pute thermo-radiative transfers and radiation-energy budgets [48], based on

surface finite-elements of around 1 meter square. SOLENE was further cou-

pled with Code Saturne [49] to form the software suite SOLENE-microclimat

[50, 51].

To recapitulate, UBEMs are improved urban thermo-radiative models

able to predict building energy needs. They can be coupled with a CFD

program in order to account for local wind and air temperature. They rely

on a relatively fine temporal and spatial resolution for the accuracy of the

thermo-radiative model. This particularity makes the simulation computa-
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tionally expensive. as the duration of the calculation substantially increases

with the number of cells [46, 52]. Therefore, their adaptation to simulate the

energy behavior of numerous buildings would require substantial computa-

tional capacities (or time) or simplifications, especially when a CFD coupling

is implemented (the simulation lasts 164 hours in Ref. [18] for two weeks).

2.2.3. City energy simulation

In order to overcome inherent limitations of BEM and UBEM for the

calculation of the energy demand of numerous urban buildings, specific city

energy models (CEMs) were developed. For instance, the platform called

CitySim [53], the successor of SUNtool [54], was specifically designed for

urban problems, to help urban decisions in a perspective of sustainable de-

velopment, focusing on urban energy uses and various resource flows: energy,

waste, water, etc. Compared to UBEMs, CitySim relies on a specific sim-

plified radiation model [55, 56] and involves lower spatial resolution. It is

therefore possible to explicitly simulate whole neighborhoods or districts to

predict individually the energy demand of buildings over a year, as done in

Ref. [57], where a neighborhood of 100 buildings is simulated. With this ap-

proach, urban surface temperatures are thus not finely determined, but the

model mainly focuses on energy demand.

Other CES recently developed, or under development, are briefly recap

in the Table 1. All of them can be used for city energy micro-simulation,

but focus on different aspects (grid management, energy production, urban

environment assessment, etc.).

Some adapted UBES performed on large urban areas and providing infor-

mation about the energy demand of several buildings may be also included

15
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into CESs. In particular, Kawai et al. [22] used the same UBEM as He et

al. [16] (see Sec. 2.2.1) for simulating the energy demand of a neighborhood

but only for some days. Also, Gros et al. [58, 59] coupled SOLENE with a

zonal-empirical microclimate model based on QUIC-URB [60], for airflows,

coupled with zonal energy balance model [61], for external air thermal behav-

ior. The resulting CES tool called EnviBatE, aims thus to assess the energy

demand of neighborhoods taking into account microclimatic conditions while

substantially reducing computational costs compared to e.g. SOLENE mi-

croclimat. In Ref. [58], a six months calculation of a neighborhood lasts 48

hours. Hence, the extension of UBES to CES is made possible using simpli-

fications of the building energy and / or environmental model, by reducing

the simulated period or model resolution or by increasing computational ca-

pacities.

Alternatively, several tools and platforms have been developed in order

to calculate the energy demand of each building of a city directly from Geo-

graphical Information System (GIS), as in the Energy Atlas Berlin initiative

[62], in EIFER works [63], with the SimStadt platform [64, 65], in the En-

erCity project [66] and in the Li et al.’s methodology [67].1 These approaches,

called GIS-based simulations in Figure 3, can be considered as the successors

of the Ratti et al.’s approach which estimated the building energy demand by

analyzing digital elevation models [69]. Energy demand is roughly estimated

based on geometrical data extracted from the GIS and building characteris-

1The majority of the models use the CityGML format (http://www.citygml.org/) for

more interoperability and standardization. Furthermore, an application domain extension

have been specifically developed to store and exchange energy simulation results [68].
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tics defined by typologies or by the users, using monthly quasi-steady-state

simple energy models. Some GIS-based simulations include electrical de-

vices and domestic hot water energy calculations but effects of the urban

environment and the occupant behaviors are generally neglected or coarsely

considered. Results are sometimes validated with measured annual aggre-

gated energy consumption. Hence, these models represent an alternative to

classical bottom-up approaches in order to calculate the annual energy de-

mand, with the advantage of considering explicitly, but roughly, each urban

building. Nonetheless, they are not able to consider accurately the dynamics

of the building energy demand. To overcome this limitation and calculate

hourly energy demand for each building rather than only monthly demand,

Tian et al. [70] applied an EnergyPlus model to each building extracted from

GIS. Using a computing cluster to parallelize the different simulations, only

4 hours of simulation were necessary to simulate about 10,000 buildings over

a year. Nonetheless, given that each model is independent from the others,

no interaction is considered. A similar method was used by Reinhart et al.

[71] on a lower scale.

2.3. Summary and discussion

Simulating the energy demand of each building of an urban area at a

district or city scale requires to explicitly model each building; this is micro-

simulation. In such an approach, it is essential to consider the impact of

the urban environment on the energy needs of the simulated buildings. As

shown in Figure 2, different types of models referring to different scales may

be used to estimate building energy demand in an urban context.

More precisely, Figure 3 positions the different urban energy models with
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respect to their domain size and temporal resolution, i.e. the shortest time

step which could be considered. Some of the above-mentioned studies are

also plotted on the graph with respect to their spatial resolution, i.e. the

level of detail for the calculation of the incident radiations modified by the

urban environment, and simulated period. As Figure 3 shows:

• UBEMs are designed to account in detail for the effects of urban sur-

roundings on building energy needs. They also calculate surface tem-

perature field. UBESs are mainly performed on restricted domains be-

cause the objective is to determine precisely the thermal behavior (high

resolution) of a building in its urban environment (small domain). Fur-

thermore, the simulation is generally too computationally expensive to

simulate numerous buildings;

• Top-down and “implicit” bottom-up approaches are efficient for de-

termining annual or, at least, monthly total building energy demand

(or consumption) of a city (large domain), but it is impossible to ac-

cess to the power demand of a particular building in the city (low

resolution) as all buildings are not explicitly modeled on contrary to

micro-simulations (UBES and CES);

• CEMs aim simulating the energy demand (notably GIS-based mod-

els), and sometimes the power demand, of numerous buildings while

relatively simply considering effects of the urban context. Due to sim-

plifications and lower resolution the computational cost of CESs are

reduced compared to UBESs. But validity of simulation results at

short time step is expected to be further analysed and confirmed.

18



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Hence, because of computational limitations, detailed models are used

for small domain sizes and short periods, i.e. at building scale during a few

days or weeks. Larger domains need simpler models, which generally imply

lower spatial and / or temporal resolution in order to neglect some transient

phenomena. As can be seen in Figure 3, developing simulations able to

calculate the power demand (at least, hourly energy demand) at the district

of city scale is complex as this requires using high resolution models on large

domains. This objective may be achieved by:

(1) increasing computational capacities and / or use efficient numerical tech-

niques and computational strategies (in particular optimized algorithms

or parallelization);

(2) implementing computationally efficient modeling techniques and simpli-

fications, which minimally impact on the accuracy of the urban energy

model. This implies handling the induced uncertainties by performing

sensitivity analyses.

In order to identify the main modeling techniques which are, or could

be, used for city energy micro-simulation, and which ones appear the most

suited for this purpose, next section gives an overview of the main models

used in BES, UBES and CES potentially usable in micro-simulation.

3. Overview of sub-models used in building and urban energy sim-

ulations

As introduced in Sec. 1.3, urban environment affects the energy needs of

urban buildings by conditioning their boundary conditions in terms of short-

wave and longwave radiations, airflows and local air temperature. There-
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fore, estimating external loads of urban buildings requires specific models

(currently referred as sub-models) and couplings to assess microclimatic con-

ditions as well as their effects on the building energy behavior especially

through the envelope. In addition, towards detailed and integrated micro-

simulation of urban energy, diversity in behavior of occupants and equip-

ments use at city scale should also be modeled using stochastic models and

agents-based models [12, 53, 63, 72–74], Nonetheless, as BESs generally in-

volve deterministic scenarios and this review focuses on physical models,

these models are not further detailed.

Hence, the following gives an overview of the different existing methods

used to estimate radiative exchanges and microclimatic conditions in urban

areas as well as heat transfers through building envelopes.

3.1. Radiations models

3.1.1. Solar radiations

Alterations (shadowing and reflections) of solar (shortwave) radiations are

identified as one of the loads which affect the most needs of urban buildings

compared to stand-alone ones, in particular for low-energy building designed

to maximize solar gains in winter [75].

Solar radiations are generally split into two categories: direct and diffuse

radiations. Direct radiation comes directly from the sun, following its direc-

tion. It is generally provided in meteorological weather input data of BES.

In urban environment, an important part of solar rays may be obstructed.

This part can be estimated thanks to ray-tracing [17, 19, 46] or to projections

methods [48, 56, 76] at each simulation time-step, or can be calculated for

some days and regressed for the others to save computational time. Diffuse
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radiation corresponds to solar radiation diffused by the atmosphere. Dif-

fuse flux can be provided by weather data or estimated using isotropic or

anisotropic sky models [77]. Although BESs often assume diffuse radiation

as isotropic and direclty derive it from weather input data, this simplifica-

tion lead to substantial deviation in the estimated annual solar irradiance

compared to more detailed anisotropic sky models [55], which, on the other

hand, need more detailed parameterization. In addition, in urban areas, dif-

fuse radiation is also often obstructed by surrounding constructions. The

effective diffuse flux received by urban surfaces (assumed isotropic) is thus

generally estimated based on the sky view factor of surfaces. This factor can

be estimated by ray-tracing or projection methods as for direct radiation,

but it is time-invariant on contrary to the shading factor of direct radiations.

In addition to shadowing, urban environments reflect solar radiations.

It is generally accepted that urban environment reflects solar radiations

isotropically following the Lambertian law. This assumption is acceptable

for opaque materials and enables the radiosity method or simplified asso-

ciated methods to be used [56, 61]. The radiosity method is based on an

analytic formulation of the problem on a finite number of surfaces, which

leads to a matrix problem whose size depends on the model spatial resolu-

tion. In theory, infinite reflections should be considered when resolving this

matrix problem by inversion, but in practice, the matrix problem is often

solved iteratively, i.e. considering only a finite number of reflections.

3.1.2. Longwave radiations

Longwave radiations impacts on building energy needs are smaller than

solar radiations effects [21], but urban infrared exchanges may still have
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substantial effects [18, 50].

Calculations of longwave radiations exchanges are similar to procedures

used for diffuse solar radiations (radiosity and ray-tracing methods), excepted

that transfers occur between both urban surfaces and with the sky. Nonethe-

less, it is often considered that urban materials are black-bodies [46, 58], be-

cause their emissivity is generally close to 1, so that reflections are not con-

sidered. Moreover, longwave radiations emitted by urban surfaces depend on

their respective temperatures. This coupling implies to iterate the thermal

model and the radiative model until convergence, which can be very time

consuming. Therefore, surrounding surface temperatures are often roughly

estimated as equal to the air temperature [41], to the temperatures given by

the radiative model without any converging iteration [21], or to the temper-

ature estimated the previous time-step [53].

3.1.3. Summary and discussion

Radiosity and ray tracing methods are generally used to compute ra-

diative transfers in urban areas. Simulation are computationally expensive

because of the numerous calculations needed to estimate the incoming radi-

ations for each surface considering the interactions with all the others. Com-

putational time can be saved by reducing the number of surfaces considered

(approximated formulation or decrease of the resolution) or to a reduction

of the number of reflections considered.2 As simplifications can substantially

alter the accuracy of predictions, sensitivity studies should be performed to

2It is also possible to accelerate ray tracing computations by using parallelization on

graphics processing units (GPU).
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determine the best compromise between results accuracy and computational

time and so the best level of modeling.

3.2. Urban climate models

It was observed for a long time that cities alter local climate. Indeed,

temperature, wind features and species concentrations (such as humidity)

are modified compared to rural areas, which impacts on the building energy

needs (see Section 1.3). However, the modeling of urban microclimates is very

complex because of cities’ geometric complexity and heterogeneity as well as

the wide range of spatial and temporal scales characterizing atmospheric

phenomena [78]. In addition, governing equation of fluid dynamics are non-

linear and strong interactions between buildings and microclimate require

the use of coupled approaches. Therefore, different modeling strategies were

developed in UBES or CES to model urban microclimatic conditions and the

induced boundary conditions. They are reviewed hereafter.

3.2.1. Urban canopy models

During the last decades, meteorologists developed models of urban ar-

eas to determine their impacts on mesoscale processes (see Ref. [79] for

more information about urban boundary layer modeling and Ref. [80] for

a complete review of such models). Such models are called urban canopy

model (UCM). While first models simply parameterized urban surfaces using

equivalent albedo, roughness, and others surface parameters [81], more re-

cent models consider homogeneous cities with simple geometry. These simple

geometries are generally 1D [82] or 2D [83] array of parallelepiped buildings,

or street canyons [84]). Rasheed et al. [85] proposed a method to find an
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equivalent geometry of UCM, which fits as best as possible for real geometry

of the city.

Urban canopy models estimate energy exchanges between horizontal and

vertical surfaces of the representative urban element and the atmosphere, and

representative values of air temperature and wind speed within the urban

canopy are deduced. The thermal behavior of buildings is generally modeled

with basic BEM.

3.2.2. Microclimatic models

To estimate temperature and wind distribution within the urban canopy

layer in detail, CFD should generally be used, as done in Ref. [86] for CES

and in Ref. [18, 21] for (U)BES. However, these studies stressed the high

computational cost of CFD, while the microclimatic model has theoretically

to be coupled with BEM using an iterative process to determine accurately

surface temperatures.

Otherwise, to enlarge the domain and energy demand simulation from

a single urban building during some days to a neighborhood during several

months, fluid dynamic modeling can be simplified by applying energy balance

to large control volumes, which corresponds to a zonal approach [15, 61]. This

method, coupled with the empirical-based wind field model QUIC-URB [60],

is used by Gros et al. [58, 59] to simulate the microclimate in EnviBatE

(Figure 3). Although the generalization of such models is not assured because

of the empirical law describing some phenomena, such an approach requires

less input parameters than CFD, and involves significantly less computational

cost.

Another promising alternative to usual CFD simulations based on the
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Navier-Stokes equations as it does not alter model accuracy is to use the

lattice Boltzmann method (LBM) for urban aeraulic simulation [87]. Due

to its local and explicit formulation, this method is inherently parallel and

allows a very cost effective implementation on GPUs [88] thus substantially

reducing computational time compared to usual CFD methods.

3.2.3. Measured and generated weather data

Local measured data can also be specified as inputs for the urban building

energy model [25, 27]. However, collecting suited measurements necessitate

expensive and extensive experimental field campaigns, which are necessarily

spatially and temporally limited, and which could only be set to existing

place. To overcome this limitation, it is possible to extend measured weather

data from one place (e.g. synoptic meteorological station usually located in

airports) to another places thanks to extrapolation techniques or to weather

generators [36, 37]. These approaches do not necessitate additional calcu-

lations (only pre-process) and provide similar forms of input data as usual

BES input data. However, they are not able to predict the effects of UHI-

countermeasures on urban microclimate, except if the weather generation is

launched again, with modified properties.

3.2.4. Summary and discussion

Ideally, CEMs have to be coupled with microclimate models, themselves

coupled with a mesoclimate model, as suggested in Ref. [89]. But, to the

best knowledge of the authors, this has still not been achieved because of

computational and methodological limitations.

Nowadays, climatologists couple mesoscale models with urban canopy
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models, which replace in a simple way microclimate and city energy mod-

els. By contrast, urban energy engineers couple their micro-simulations of

city with urban climate models, but generally with many simplifications.

Nevertheless, because of the complexity and computational costs of such

coupled approaches compared to the expected accuracy improvement, CES

often neglect microclimate (the white crosses in Figure 3 indicate the refer-

ences that model microclimate). Indeed, SUNtool developers evaluated the

determination of velocity, temperature and pressure fields via CFD as “not

computationally tractable”, and explained that error induced by simplified

models are “similar or larger than errors due to ignoring urban-rural tem-

perature differences” [54]. However, since then and as shown in Table 2,

semi-empirical models have been improved and CFD have become more ac-

cessible for urban simulation thanks to increase in computational capacities

and the development of efficient computational approaches such as the LBM,

which makes microclimatic models more suitable for use in CES.

To conclude, on both sides (urban climatology and urban energy engineer-

ing), models become more and more sophisticated thanks to the continual

improvements of computer capacities, and it is probable that, in the future,

urban canopy models would be urban energy micro-simulation with real ex-

plicit representation of the city. But, for the moment, detailed simulation

tools were mostly used for simple geometrical cases or relatively small ur-

ban areas. Reciprocally, simplified models were applied on more complex

configurations and large urban areas.
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3.3. Envelope models

Being the interface between indoors and outdoors, which mainly con-

ditions heating and cooling energy needs, the envelop modeling is critical

for micro-simulation. This part presents the main envelope models used in

(U)BES and CES. Soil models are not developed in this paper, but the mod-

els used are quite similar to envelope models.

3.3.1. Resistance-Capacitance analogy method

The most common envelope model is based on electrical analogy obtained

by discretization of the wall in layers (usually one, two or three) characterized

by specific thermal resistance and capacitance (R-C) [18, 53, 72, 74, 90, 91].

The determination of the R-C values can be law-driven (white-box), or data-

driven (grey-box).3 In the first case, value are deduced from a discrete form

of the heat equation, according to material properties. In the second case,

training stages are necessary in order to determine optimal values. This

method is easy to implement, and to adapt to any type of wall, but the

choice of the width of the layer—and so the thermal capacitance—is not

generic as it depends on the thermal depth penetration, which itself depends

on the solicitation frequency [93]. Indeed, Berthou [94] showed that the

optimal R-C values which match measurements have to be modified every

month for a better accuracy.

Usual R-C methods are well suited for calculation of energy demand over

a long period because rapid thermal dynamics become negligible. However,

these models become too inaccurate when considering short dynamics, as

3It also exists black-box models [92] using regressions not based on physical model
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required to assess power demand. To increase the accuracy, it is possible to

increase the number of layers (i.e. finite difference method, as in [16]), but

this also increases the computational cost.

3.3.2. Spatially-analytical method

Because the accuracy of discrete numerical methods (as finite difference)

is limited by the number of layers considered, especially at the boundaries,

Wang et al. [95] proposed a spatially-analytical scheme for building envelope

in urban canopy model. This approach accurately reproduced the thermal

behavior of the walls (without discontinuity, allowing considering thin lay-

ers), was unconditionally stable and computationally efficient. Nonetheless,

applying analytic methods to heterogeneous (multilayered) envelopes adds

continuity equations and thus increases computational cost. Furthermore,

the analytic formulation is composed of an infinite series of terms, and even

if these terms tend to zero, their truncation order depends on the fabric con-

sidered.

3.3.3. Response factors method

In Gros et al.’s building model [58] the conductive heat transfer is com-

puted using the response factor method, an external representation method

similar to the coefficient transfer function method used in EnergyPlus default

method [41] and TRNSYS [44]. These external representation methods di-

rectly express the conductive heat fluxes at the inside and outside wall faces

as a linear function of the historical values of surfaces temperatures. Their

time series values are obtained by discrete convolution of the external loads
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(heat flux or temperature) and the pre-calculated weighted factors. These

factors, pre-calculated with usual analytical or numerical methods, corre-

spond to the time series values of the wall surface temperatures exposed to

unitary external loads. Thus, on contrary to implicit finite discretisation

methods, the response factors method, after pre-calculation, avoids consid-

ering all internal nodes temperature and to inverse a matrix problem. This

is particularly interesting when considering high discretization of the wall to

improve the model accuracy (especially when numerous internal nodes are

considered). Nonetheless, the shorter the time step is, the higher the number

of factors is.

3.3.4. Reduction methods

The objective of the reduction methods is to characterize as accurately

as possible a detailed model with a minimal number of parameters. These

parameters are determined with mathematical methods by diagonalizing the

matrix problem in a specific base.

For example, a second order reduction model called Grey-box [96] was

used in SUNtool [54]. This model estimated energy need of a building with

two parameters (one for the static and the second for the transient behavior)

via transfer functions. These parameters are defined according to the typol-

ogy of the building. However, this method is only valid for the cases from

which the transfer functions have been beforehand defined, and the physical

meaning of these parameters is lost.

Alternatively, Kim et al. [97] proposed a reduced model for an urban

building envelope. In this case, a reduction technique was applied to the

thermal model of the building envelope. With this technique, only 7 equa-
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tions were required to characterize accurately the thermal dynamics of the

buildings, instead of the 194 initial equations. Compared to the detailed

model, the computational cost of the reduced model was strongly decreased

without compromising accuracy. Hence, reduction method allows to con-

sider high level of wall discretization and hence to estimate accurately the

conductive heat flux while using low computational resources.

3.3.5. Summary and discussion

Simple R-C models are often used to simulate the thermal behavior of

envelopes, mainly because they are relatively cost effective compared to de-

tailed models. However, such approaches only give rough estimations of the

dynamics of building energy demand. On the other hand, other approaches

as weighted factor or reduction methods enable building envelope to be con-

sidered with a high level of detail without leading to prohibitive calculation

time. Therefore, these methods appear promising for urban energy simula-

tions.

The drawback of these last methods is that the model parameterization is

assumed constant during the whole simulated period. This assumption can

be strong, in particular for natural ventilation which is very variable and can

strongly affects the building energy need. In order to consider these changes,

it is necessary to compute again the external representation or reduced mod-

els. These additional steps increase computational cost and reduce the in-

terest of such approaches. Alternatives may be found in non-linear systems

methods.
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4. Conclusions and outlooks

Many approaches to simulate city energy demand exist, but only micro-

simulation is adapted to calculate individually the power demand of all build-

ings within an urban area. To the best knowledge of the authors, there is

still no entirely validated tool able to simulate accurately and explicitly the

power demand of urban buildings at the city scale, which can be explained,

at least partly, by the substantial computational cost required.

Indeed, urban energy micro-simulations rely on a high level of detail for

large domains. As a consequence, simulations are computationally expensive,

especially when they include microclimatic modeling. In order to reduce

computational costs, physical and model simplifications and computationally

efficient urban environmental and climatic approaches are needed. With

respect to simplification, some models were developed, but studies are still

to be carried out to assess the level of simplification suited for use in urban

energy micro-simulation and to validate them, especially at short time-step.

With respect to computationally efficient approaches, problem formulation

and numerical technics suited for massive parallelization will certainly play

an important role in the decrease of the computational costs.

Nonetheless, although simplifications required by urban scale energy micro-

simulation may increase results uncertainties to some extent, it is worth

mentioning that the uncertainty of input parameters may induce larger un-

certainties than uncertainties involved by model simplifications. Therefore,

their determination is also a crucial issue for urban energy micro-simulation,

and their uncertainties have to be integrated during the modeling process.
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énergétique et d’effacement, Ph.D. thesis, Ecole Nationale Supérieure

des Mines de Paris (2013).

[95] Z.-H. Wang, E. Bou-Zeid, J. A. Smith, A Spatially-Analytical Scheme

for Surface Temperatures and Conductive Heat Fluxes in Urban Canopy

Models, Boundary-Layer Meteorology 138 (2) (2011) 171–193.
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‘

Name & Reference Short presentation
Smart-E [72] Simulation environment for study on the potentiality of flexibility in the building thermal and electrical

demand, focusing on power demand.
DIMOSIM [73] Simulation platform for optimization of the global district energy system included energy system, ther-

mal network, energy production and storage; implemented in Matlab
Virtual PULSE
[86]

Web-based urban scale modeling platform for quantitative assessments of the influence of urban neigh-
borhoods on building energy consumption (building energy and air flow).

AMBASSADOR
Project [92]

Simulation platform for grid management optimization for energy at building and city scale, based on
Matlab Simulink environment.

OpenIDEAS [74] Open framework for integrated district energy simulations including simultaneous transient simulation of
thermal, control and electric systems at building and neighborhood level, building models and stochastic
model of occupant behaviors; based on Modelica libraries and Python scripts.

[91]’s tool chain Tool chain for complex city district modeling and simulation from GIS and database, developed with
Modelica and Python interfaces

Table 1: Brief presentation of some CES
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‘

Method Results Main application Maximum domain
size

Spatial resolution Temporal
resolution

Computational
cost

Urban canopy
models*

Global and aver-
aged temperature
and wind at city
scale

Urban climate City 1-10 m Hour Medium

Microclimate
(Micro-scale
CFD* + thermo-
radiative model)

High resolution
fields of temper-
atures and wind
velocity

Urban microcli-
mate, pedestrian
comfort

District 0.1-10 m Second Very high for
LES (lower with
LBM-LES), high
for RANS

Zonal and empiri-
cal models

Low resolution
fields of temper-
atures and wind
velocity

Urban microcli-
mate, building
energy simulation

City 1-10 m Hour Medium

Weather genera-
tor

Global or local in-
formation

Urban (micro)-
climate, building
energy simulation

City 0.1 m-1 km Hour Preprocessed (Very
high if climate
model; Low if
regression)

Full-scale mea-
surements

Local information Local climate,
building energy
simulation

City 1 m-1 km Second -

* See Table 1 in [98] for more details

Table 2: General characteristics of urban climate models.
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(a) Stand-alone building (b) Urban building

Figure 1: Modification of the energy balance of an urban building compared to a stand-
alone one
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Figure 2: Scales of the different categories of simulation.
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Figure 3: Comparison of the domains of availability of the different categories of energy
simulation of urban buildings.
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Figure 4: Nesting of the urban climate scales and related modeling approaches.
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