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Introduction

We first present the binormal flow framework and the obtained results. Then in §1.2 we describe the 1-D cubic nonlinear Schrödinger equation results.

1.1. Evolution of polygonal lines through the binormal flow and intermittency. Vortex filaments in 3-D fluids appear when vorticity is large and concentrated in a thin tube around a curve in R 3 . The binormal (curvature) flow, that we refer hereafter as BF, is the classical model for one vortex filament dynamics. It was derived by Da Rios 1906 in his PhD advised by Levi-Civita by using a truncated Biot-Savart law and a renormalization in time ( [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF]). The evolution of a R 3 -curve χ(t) parametrized by arclength x by the binormal flow is [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF] χ t = χ x ∧ χ xx .

Keeping in mind the Frenet's system for the frames of 3-D curves composed by tangent, normal, and binormal vectors (T, n, b)

  T n b   x =   0 c 0 -c 0 τ 0 -τ 0     T n b   ,
where c, τ are the curvature and torsion, the binormal flow can be rewritten as

χ t = c b.
BF was also derived as formal asymptotics in [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF], and in [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] by using the technique of matched asymptotics in the Navier-Stokes equations (i.e. to balance the cross-section of the tube with the Reynolds number). In the recent paper [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF], and still under some hypothesis on the persistence of concentration of vorticity in the tube, BF is rigorously derived; moreover the considered curves are not necessarily smooth. This is based on the existence of a correspondence between the two Hamilton-Poisson structures that give rise to Euler and to BF.

Existence results were given for curves with curvature and torsion in Sobolev spaces of high order ( [START_REF] Hasimoto | A soliton in a vortex filament[END_REF], [START_REF] Nishiyama | Solvability of the localized induction equation for vortex motion[END_REF], [START_REF] Fukumoto | Three dimensional distorsions at a vortex filament with axial velocity[END_REF], [START_REF] Koiso | Vortex filament equation and semilinear Schrödinger equation[END_REF]), and more generally existence results for currents in the framework of a weak formulation of the binormal flow ( [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF]). Recently, the Cauchy problem was shown to be well-posed for curves with a corner and curvature in weighted space ( [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF]).

An important feature of BF is that the tangent vector of a solution χ(t) solves the Schrödinger map onto S 2 :

T t = T ∧ T xx . Furthermore, Hasimoto remarked in [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] that the function, that he calls the filament function, u(t, x) = c(t, x)e i x 0 τ (t,s)ds , satisfies a focusing 1-D cubic nonlinear Schrödinger equation (NLS) 1 . Hasimoto's transform can be viewed as an inverse Madelung transform sending Gross-Pitaesvskii equation to compressible Euler equation with quantum pressure. It is known that in order to avoid issues related to vanishing curvature, Bishop parallel frames ( [START_REF] Bishop | There is more than one way to frame a curve[END_REF], [START_REF] Koiso | Vortex filament equation and semilinear Schrödinger equation[END_REF]) can be used as explained in §4. [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF].

Several examples of evolutions of curves through the binormal flow were given finding first particular solutions of the 1-D cubic NLS and then solving the corresponding Frenet equations. Some of these example are consistent at the qualitative level with classical vortex filament dynamics as the line, the ring, the helix and travelling wave type vortices. A special case are the self-similar solutions of the binormal flow. They are constructed from the solutions [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] u α (t, x) = α e i x 2 4t √ 4πit = αe it∆ δ 0 (x) of the 1-D cubic NLS equation, renormalized in a sense specified in §1.2, with a Dirac mass αδ 0 at initial time. These BF solutions are of the type χ(t, x) = √ tG( x √ t ), and form a a 1-parameter family {χ α , α ≥ 0}, with χ α (t) characterized by its curvature c α (t, x) = α √ t and its torsion τ α (t, x) = x 2t . These solutions were known and used for quite a while in the 80's ( [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF], [START_REF] Lakshmanan | On the the dynamics of a continuum spin system[END_REF], [START_REF] Buttke | A numerical study of superfluid turbulence in the Self Induction Approximation[END_REF], [START_REF] Schwarz | Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions[END_REF]). The existence of a trace at time t = 0 was proved rigorously in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF], and in particular it was shown that χ α (0) is a broken line with one corner having an angle θ satisfying [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] sin θ 2 = e -a 2 2 .

In particular the Dirac mass at the NLS level corresponds to the formation of a corner on the curve, but the trace αδ 0 of the filament function is not the filament function θδ 0 of χ α (0). This turns out to have relevant consequences regarding the lack of continuity of some norms at the time when the corner is created. In [START_REF] Banica | Singularity formation for the 1-D cubic NLS and the Schrödinger map on S 2[END_REF] it is proved the T x ( •, t) ∞ is 1 The defocusing 1-D cubic Schrödinger equation is achieved if the target of the Schrödinger map equation is the hyperbolic plane H 2 instead of the sphere S 2 .

discontinuous at that time. The same proof works if instead of this norm it is used the following one sup j 4π(j+1) 4πj

| T x (x, t)| 2 dx, that fits better within the framework of Theorem 1.4, because due to the Frenet equations T x it is at the same level of regularity as the corresponding filament functions that solve NLS.

We shall now turn our attention precisely to the evolution of curves that can generate corners in finite time. The case of the formation and instantaneous disappearance of one corner is now well understood thanks to the characterization of the family the self-similar solutions, and the study in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] of the evolution of non-closed curves with one corner and with curvature in weighted L 2 based spaces. On the other hand, a planar regular polygon with M sides is expected to evolve through the binormal flow to skew polygons with M q sides at times t p,q = p 2πq for odd q , see the numerical simulations in [START_REF] Grinstein | Dynamics of coherent structures and transition to turbulence in free square jets[END_REF], [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF], and [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] where the integration of the Frenet equations at the rational times t p,q is also done.

In the present paper we place ourselves in the framework of initial data being polygonal lines. The results presented are an important step forward to fill the gap between the case of one corner and the much more delicate issue of closed polygons.

Theorem 1.1. (Evolution of polygonal lines through the binormal flow) Let χ 0 be an arclength parametrized polygonal line with corners located at x ∈ Z, with the sequence of angles θ n ∈ (0, π) such that the sequence defined by (cf. (3))

(4) - 2 π log sin θ n 2 ,
belongs to l 2,3 . Then there exists χ(t), smooth solution of the binormal flow (1) on t = 0 and solution of (1) in the weak sense on R, with

|χ(t, x) -χ 0 (x)| ≤ C √ t, ∀x ∈ R, |t| ≤ 1.
Remark 1.2. Under suitable conditions on the initial data χ 0 , the evolution can have an intermittent behaviour: Proposition 3.2 insures that at times t p,q = 1 2π p q the curvature of χ(t) displays concentrations near the locations x such that x ∈ 1 q Z, and χ(t) is almost a straight segment in between.

Remark 1.3.

There is a striking difference with respect to the case of a polygonal line with just one corner in the following sense. The trajectory in time of the corner located at (t, x) = (0, 0) of a self-similar solution, χ α (t, 0), is given by a straight line for t > 0, as the Frenet frame of χ α (t) is constant at x = 0. In §4.11 we show that for the evolution of a polygonal line with several corners the trajectory of each corner, as t goes to 0, is a logarithmic spiral. Therefore, the presence of another corner on a nonclosed curve immediately creates a modification of the trajectory.

The proof goes as follows. In view of (3) and Hasimoto's transform we consider an appropriate 1-D cubic NLS equation with initial data k∈Z α k δ k , with α k complex numbers defined in a precise way from the curvature and torsion angles of χ 0 . Theorem 1.4 gives us a solution u(t) on t > 0. From this smooth solution on ]0, ∞[ we construct a smooth solution χ(t) of the binormal flow on ]0, ∞[, that we prove it has a limit χ(0) at t = 0. Then the goal is to show that modulo a translation and a rotation χ(0) is χ 0 . This is done in several steps. First we show that the tangent vector has a limit at t = 0. Secondly we show that this limit is piecewise constant, so χ(0) is a segment for x ∈]n, n + 1[, ∀n ∈ Z. Then we prove, by analyzing the frame of the curve through paths of self-similar variables, that χ(0) presents corners at the same locations as χ 0 , of same angles as χ 0 . We recover the torsion angles of χ 0 by using also a similar analysis for modulated normal vectors Ñ (t, x) = e i j =x |α j | 2 log x-j √ t N (t, x). Therefore we recover χ 0 modulo a translation and a rotation. This translation and rotation applied to χ(t) give us the desired solution of the binormal flow for t > 0 with limit χ 0 at t = 0. Uniqueness holds in the class of curves having filament functions of type [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF]. Using the above recipe to construct the evolution of a polygonal line for t > 0 we can extend χ(t) to negative times by using the time reversibility of the equation.

1.2.

The cubic NLS on R with initial data given by several Dirac masses. We consider the cubic nonlinear Schrödinger equation on R (5)

i∂ t u + ∆u ± 1 2 |u| 2 u = 0.
We first recall the known local well-posedness results, starting with what is known in the framework of Sobolev spaces. The equation is well-posed in H s , for any s ≥ 0 ( [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF], [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF]). On the other hand, for s < 0 the Cauchy problem is ill-posed: in [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] uniqueness was proved to be lost by using the Galilean transformation, and in [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] norm-inflation phenomena were displayed. We note that the threshold obtained with respect of the scaling invariance λu(λ 2 t, λx) is Ḣ- 1 2 . For s ≤ -1 2 the presence of norm inflating phenomena with loss of regularity was pointed out in [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF], [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF], and also norm inflating around any data was proved in [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF]. Finally growth control of Sobolev norms of Schwartz solutions for -1 2 < s < 0 on the line or the circle was shown in [START_REF] Killip | Low regularity conservation laws for integrable PDE[END_REF] and [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF].

On the other hand well-posedness holds for data with Fourier transform in L p spaces, p < +∞ ( [START_REF] Vargas | Global wellposedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF], [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF], [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation[END_REF]). A natural choice would be to consider initial data with Fourier transform in L ∞ , as this space F(L ∞ ) it is also invariant under rescaling.

We shall now focus on the case of initial data of Dirac mass type. Note that the Dirac mass is borderline for Ḣ- 1 2 and that it belongs to F(L ∞ ). For an initial datum given by one Dirac mass, u(0) = αδ 0 , the equation is ill-posed. More precisely, it is showed in [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] by using the Galilean invariance that if there exists a unique solution, it should be for positive times

α e ∓i |α| 2 4π log √ t+i x 2 4t √ 4πit ,
and then the initial datum is not recovered. We note here that this issue can be avoided by a simple change of phase that leads to the equation

i∂ t u + ∆u ± 1 2 |u| 2 -A(t) u = 0, u(0) = αδ 0 , with A(t) = α 2
4πt . With this choice the equation has as a solution precisely the fundamental solution of the linear equation u α (t, x) introduced in ( 2). Adding a real potential A(t) is a very natural geometric normalization as the BF solution constructed from a NLS solution u(t, x) is the same as the one constructed from e iφ(t) u(t, x), see §4.3. This type of Wick renormalization has been used in the periodic setting in previous works as in [START_REF] Bourgain | Invariant measures for the 2D-focusing nonlinear Schrödinger equation[END_REF], [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation[END_REF], [START_REF] Oh | On the one-dimensional cubic nonlinear Schrödinger equation below L 2[END_REF] and [START_REF] Oh | Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces[END_REF], although the motivation in these cases came just from the need of avoiding some resonant terms that become infinite.

However, even with this geometric renormalization the problem is still ill-posed, in the sense that small regular perturbations of u α (t) at time t = 1 were proved in [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] to behave near t = 0 as u α (t) + e i log t f (x) for some f ∈ H 1 . Therefore there is a loss of phase as t goes to zero.

This loss of phase is a usual phenomena in the setting of the nonlinear Schrödinger equations when singularities are formed, and it is of course a consequence of the gauge invariance of the equation. How to continue the solution after the singularity has been formed is therefore an important issue that appears recurrently in the literature, see for example [START_REF] Merle | On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass[END_REF], [START_REF] Merle | Limit behavior of saturated approximations of nonlinear Schrödinger equation[END_REF], [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF], [START_REF] Merle | The instability of Bourgain-Wang solutions for the L2 critical NLS[END_REF].

In [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] we found a natural geometric way to continue the BF solution after the singularity, in the shape of a corner, is created. As BF is time reversible, to uniquely continue a solution for negative times requires to get a curve trace χ(0) at t = 0 and to construct a unique solution for positive times, having as limit at t = 0 the inverse oriented curve χ(0, -s). Note that using just continuity arguments and the characterization result of the self-similar solutions that was proved in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] one can construct in an artificial way the continuation of a self-similar solution. A more delicate issue is how to determine the curve trace and its Frenet frame at time t = 0 for small regular perturbations of BF self-similar solutions at some positive time, and we based our analysis in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] on the characterization result of the self-similar solutions that was proved in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]; in particular the small regular perturbations of BF self-similar solutions at some positive time do not break the self-similar symmetry of the singularity created at t = 0.

In Theorem 1.1 we prove that this procedure can be extended, not without difficulties, to the case of a polygonal line, that can be viewed as a rough perturbation of broken line with one corner. There is no need for the line to be planar and infinitely many corners are permitted. In this case new problems concerning the phase loss appear at the NLS and frame level and again the characterization of the self-similar solutions plays a crucial role.

For these reasons in this article we consider as initial data a combination of Dirac masses, ( 6)

u(0) = k∈Z α k δ k ,
with coefficients in weighted summation spaces :

{α k } l p,s < ∞, where {α k } l p,s := k∈Z (1 + |k|) ps |α k | p .
This choice of initial data has its own interest from the point of view of the Schrödinger equation, because as far as we know and for the cubic nonlinearity in one dimension the only results at the critical level of regularity are the ones in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] mentioned above and that deals with just one Dirac mass. The case of a periodic array of Dirac deltas of the same precise amplitude, was studied in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] where a candidate for a solution is proposed. The case of a combination of Dirac masses as initial data for the Schrödinger equation |u| p-1 u with subcritical nonlinearity p < 3 was considered in [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF]. It was showed that it admits a unique solution, of the form

(7) u(t, x) = k∈Z A k (t)e it∆ δ k (x),
where

{A k } ∈ C([0, T ]; l 2,1 ) ∩ C 1 (]0, T ]; l 2,1
). As the nonlinear power approaches the critical cubic power, things look more singular. In this paper we prove that the same type of ansatz is valid for a naturally renormalized cubic equation. Let us notice that the initial data (6) has the property

(8) u(0)(ξ) = k∈Z α k e -ikξ ,
and in particular u(0) is 2π-periodic. Moreover, the condition {α k } ∈ l 2,s translates into u(0) ∈ H s (0, 2π). Conversely, every 2π-periodic function can be decomposed as in [START_REF] Bourgain | Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations[END_REF] and so it represents the Fourier transform on R of a combination of Dirac masses as [START_REF] Bishop | There is more than one way to frame a curve[END_REF]. We denote and u H s pF = û H s (0,2π) . Our first result concerns the existence of solutions for initial data in H s pF . Theorem 1.4. (Solutions of 1-D cubic NLS linked to several Diracs masses as initial data) Let s > 1 2 , 0 < γ < 1 and {α k } ∈ l 2,s . We consider the 1-D cubic NLS equation:

H s pF := {u ∈ S (R), û(ξ+2π) = û(ξ), û ∈ H s (0, 2π)} ⊂ {u ∈ S (R), { û H s (2πj,2π(j+1)) } j ∈ l ∞ },
(9) i∂ t u + ∆u ± 1 2 |u| 2 -M 2πt u = 0, with M = k∈Z |α k | 2 .
There exists T > 0 and a unique solution on (0, T ) of the form

(10) u(t, x) = k∈Z e ∓i |α k | 2 4π log √ t (α k + R k (t))e it∆ δ k (x), with (11) 
sup 0<t<T t -γ {R k (t)} l 2,s + t {∂ t R k (t)} l 2,s < C.
Moreover, considering as initial data a finite sum of N Dirac masses

u(0) = k∈Z α k δ k ,
with coefficients of equal modulus

(12) |α k | = a,
and equation ( 9) renormalized with M = (N -1 2 )a 2 , we have a unique solution

u(t) = e it∆ u(0) ± ie it∆ t 0 e -iτ ∆ |u(τ )| 2 - M 2πτ u(τ ) dτ 2 ,
such that e -it∆ u(t) ∈ C 1 ((-T, T ), H s (0, 2π)) with e -it∆ u(t) -u(0) H s pF ≤ Ct γ , ∀t ∈ (-T, T ). Moreover, if s ≥ 1 then the solution is global in time.

Remark 1.5. Note that any α j such that [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] does not hold will imply that the corresponding initial value problem is ill posed, similarly at what was proved in [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] and [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] in the case of just one Dirac mass and that we mentioned above.

Remark 1.6. It is worth noting that performing the (reversible) pseudo-conformal transform to the solution u of (9)

u(t, x) = e i x 2 4t √ 4πit v( 1 t , x t ), t > 0 we obtain a solution v of (13) i∂ t v + ∆v ± 1 8πt |v| 2 -2M v = 0.
This was the procedure we used in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF].

To impose the ansatz (7) on u is equivalent to

(14) v(t, x) = k∈Z A k ( 1 t )e -i tk 2 4 +i xk 2 .
Therefore after pseudo-conformal transform our problem reduces to solve (13) in the periodic setting with period [0, 4π]. Note that from [START_REF] Bishop | There is more than one way to frame a curve[END_REF] we have that | u(t)(ξ)| is 2π periodic.

The proof of the theorem goes as follows. Plugging the general ansatz (7) into equation ( 9) leads to a discrete system on {A k (t)}, by using the fact that for fixed t the family

e it∆ δ k (x) = e i (x-k) 2 4t √
4πit is an orthonormal family of L 2 (0, 4πt). We solve the discrete system on {A k (t)} by a fixed point argument with [START_REF] Buttke | A numerical study of superfluid turbulence in the Self Induction Approximation[END_REF]. In the case of initial data a finite sum of N Dirac masses with coefficients of equal modulus and equation ( 9) renormalized with M = (N -1

R k (t) = e -i |α k | 2 4π log √ t A k (t) -α k satisfying
2 )a 2 , we are led to solve the same fixed point for R k (t) = A k (t) -α k .

Remark 1.7. The resonant part of the discrete system of {A k (t)} is

i∂a k (t) = 1 8πt a k (t)(2 j |a j (t)| 2 -|a k (t)| 2 -2M ).
It is a non-autonomous singular time-dependent coefficient version of the resonant system of standard 1-D cubic NLS. Indeed, usually for questions concerning the long-time behavior of cubic NLS, one introduces v(t) = e -it∆ u(t).

In the 1-D periodic case the Fourier coefficients of v(t) satisfy the system

i∂ t v k (t) = k-j 1 +j 2 -j 3 =0 e -it(k 2 -j 2 1 +j 2 2 -j 3 3 ) v j 1 (t)v j 2 (t)v j 3 (t),
so that the resonant system is:

i∂a k (t) = a k (t)(2 j |a j (t)| 2 -|a k (t)| 2 ).
Of course, for 1-D periodic NLS with data in H s , s > 1 2 (that corresponds to {v n (0)} ∈ l 2,s ⊂ l 1 ) there is no issue for obtaining directly the local existence.

Remark 1.8. The regularity of {α j } might be weakened to l p spaces only (p < ∞), see Remark 2.2. It is evident from (13) that formally

(15) ∂ t j |A j (t)| 2 = 0,
and therefore the l 2 norm is preserved 2 . As a matter of fact this says that the selfsimilar solutions have finite mass for the 1-D cubic NLS when the mass is appropriately defined. This has nothing to do with the complete integrability of the system because still works in the subcritical cases studied in [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF].

Note that to solve (13) for t ≥ T 0 > 0 is quite straightforward making use of the available Strichartz estimates in the periodic setting -see [START_REF] Bourgain | Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations[END_REF] and also [START_REF] Moyua | Bounds for the maximal function associated to periodic solutions of onedimensional dispersive equations[END_REF] for a slight modification. However, these methods do not give the behavior of the solution v when time approaches infinity which is absolutely crucial for proving Theorem 1.1. As a consequence we are led

2 equivalently 4π 0 |v(t, x)| 2 dx = constant
to make a more refined analysis. In view of Theorem 1.1 we consider weighted l 2,s spaces; this in particular will allow us to rigorusly prove that (15) holds.

The paper is structured as follows. In the next section we prove Theorem 1.4, and also the extension Theorem 2.3 concerning some cases of Dirac masses not necessary located at integer numbers. Section 3 contains the proof of a Talbot effect for some solutions given by Theorem 1.4. In the last section we prove Theorem 1.1.
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The 1-D cubic NLS with initial data given by several Dirac masses

In this section we give the proof of Theorem 1.4.

2.1.

The fixed point framework. We denote N (u) = |u| 2 u 2 . By plugging the ansatz (7) into equation [START_REF] Bourgain | Invariant measures for the 2D-focusing nonlinear Schrödinger equation[END_REF] we get [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] 

k∈Z i∂ t A k (t)e it∆ δ k = N (u) - M 4πt u = N ( j∈Z A j (t)e it∆ δ j ) - M 4πt ( k∈Z A k (t)e it∆ δ k ).
We have chosen here for simplicity the sign -in (9); the sign + can be treated the same.

The family

e it∆ δ k (x) = e i (x-k) 2 4t √
4πit is an orthonormal family of L 2 (0, 4πt) so by taking the scalar product of L 2 (0, 4πt) with e it∆ δ k we obtain

i∂ t A k (t) = 4πt 4πt 0 N ( j∈Z A j (t) e i (x-j) 2 4t √ 4πit ) -e i (x-k) 2 4t √ 4πit dx - M 4πt A k (t).
Note that as s > 1 2 we have {A j } ∈ l 2,s ⊂ l 1 and we can develop the cubic power to get

(17) i∂ t A k (t) = 1 8πt k-j 1 +j 2 -j 3 =0 e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t) - M 4πt A k (t).
We note already that for a sequence of real numbers a(k) we have:

(18) ∂ t k a(k)|A k (t)| 2 = 1 4πt k-j 1 +j 2 -j 3 =0 a(k)e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t)A k (t) = 1 8πti   k-j 1 +j 2 -j 3 =0 a(k)e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t)A k (t) - j 3 -j 2 +j 1 -k=0 a(k)e -i j 2 3 -j 2 2 +j 2 1 -k 2 4t A j 2 (t)A j 1 (t)A k (t)A j 3 (t)   = 1 8πti k-j 1 +j 2 -j 3 =0 (a(k) -a(j 3 ))e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t)A k (t) = 1 16πti k-j 1 +j 2 -j 3 =0 (a(k) -a(j 1 ) + a(j 2 ) -a(j 3 ))e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t
A j 1 (t)A j 2 (t)A j 3 (t)A k (t).

Therefore the system conserves the "mass" :

(19) k |A k (t)| 2 = k |A k (0)| 2 ,
and the momentum ( 20)

k k|A k (t)| 2 = k k|A k (0)| 2 .
We split the summation indices of ( 17) into the following two sets:

N R k = {(j 1 , j 2 , j 3 ) ∈ Z 3 , k -j 1 + j 2 -j 3 = 0, k 2 -j 2 1 + j 2 2 -j 2 3 = 0}, Res k = {(j 1 , j 2 , j 3 ) ∈ Z 3 , k -j 1 + j 2 -j 3 = 0, k 2 -j 2 1 + j 2 2 -j 2 3 = 0}.
As we are in one dimension, the second set is simply

Res k = {(k, j, j), (j, j, k), j ∈ Z}, as for k -j 1 + j 2 -j 3 = 0 we have k 2 -j 2 1 + j 2 2 -j 3 3 = 2(k -j 1 )(j 1 -j 2 ). In particular we get k-j 1 +j 2 -j 3 =0 e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t) = j 1 ,j 2 ∈Z e -i 2(k-j 1 )(j 1 -j 2 ) 4t A j 1 (t)A j 2 (t)A k-j 1 +j 2 (t) = j 1 =k j 2 =j 1 e -i 2(k-j 1 )(j 1 -j 2 ) 4t A j 1 (t)A j 2 (t)A k-j 1 +j 2 (t)+ j 1 =k A j 1 (t)A j 1 (t)A k (t)+ j 2 ∈Z A k (t)A j 2 (t)A j 2 (t).
Therefore the system ( 16) writes ( 21)

i∂ t A k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t A j 1 (t)A j 2 (t)A j 3 (t) + 1 8πt A k (t)(2 j |A j (t)| 2 -|A k (t)| 2 -2M ).
As we have already noticed, this system conserves the "mass" j |A j (t)| 2 , so since M = j |α j | 2 , finding a solution for t > 0 satisfying [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF] lim

t→0 |A j (t)| = |α j |,
is equivalent to finding a solution for t > 0 satisfying also [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF], for the following also "mass"-conserving system:

(23) i∂ t A k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t A j 1 (t)A j 2 (t)A j 3 (t) - 1 8πt |A k (t)| 2 A k (t).
By doing a change of phase

A k (t) = e i |α k | 2 4π log √ t
Ãk (t) we get as a system ( 24)

i∂ t Ãk (t) = f k (t) - 1 8πt (| Ãk (t)| 2 -|α k | 2 ) Ãk (t), where (25) 
f k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t e -i |α k | 2 -|α j 1 | 2 +|α j 2 | 2 -|α j 3 | 2 4π log √ t Ãj 1 (t) Ãj 2 (t) Ãj 3 (t).
Now we note that a solution of ( 24) satisfies ( 26)

∂ t |A k (t)| 2 = 2 (f k (t) Ãk (t)),
so obtaining a solution of ( 24) for t > 0 with

(27) lim t→0 | Ãk (t)| = |α k |,
is equivalent to obtaining a solution for t > 0 also satisfying [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF], for the following system, that also enjoys ( 26):

(28) i∂ t Ãk (t) = f k (t) - 1 8πt t 0 2 (f k (τ ) Ãk (τ ))dτ Ãk (t).
We recall that we expect solutions behaving as

A k (t) = e i |α k | 2 4π log √ t (α k + R k (t)), with {R k } in the space: (29) X γ := {{f k } ∈ C 1 ((0, T ), l 2,s ), {t -γ f k (t)} L ∞ (0,T )l 2,s + {t ∂ t f k (t)} L ∞ (0,T )l 2,s < ∞},
with T to be specified later. We also denote

{f k } X γ = {t -γ f k (t)} L ∞ (0,T )l 2,s + {t ∂ t f k (t)} L ∞ (0,T )l 2,s .
To prove the theorem we shall show that we have a contraction on a suitable chosen ball of size δ of X γ for the operator Φ sending

{R k } into Φ({R k }) = {Φ k ({R j })}, with Φ k ({R j })(t) = i t 0 g k (τ )dτ -i t 0 τ 0 (g k (s)(α k + R k (s))ds (α k + R k (τ )) dτ 4πτ ,
where

g k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t e -iω k,j 1 ,j 2 ,j 3 log √ t (α j 1 +R j 1 (t))(α j 2 + R j 2 (t))(α j 3 +R j 3 (t)),
and

ω k,j 1 ,j 2 ,j 3 = |α k | 2 -|α j 1 | 2 +|α j 2 | 2 -|α j 3 | 2 4π
. Finally we note that in the case if N Dirac masses with coefficients |α k | = a and equation if we consider [START_REF] Bourgain | Invariant measures for the 2D-focusing nonlinear Schrödinger equation[END_REF] with M = (N -1

2 )a 2 , we get instead of ( 23) the equation ( 30)

i∂ t A k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t A j 1 (t)A j 2 (t)A j 3 (t) - 1 8πt (|A k (t)| 2 -|α k | 2 )A k (t).
Hence we can write A k (t) = α k + R k (t) and the same fixed point argument works for {R k }.

2.2.

The fixed point argument estimates.

Lemma 2.1. For {R k } ∈ X γ with {R k } X γ ≤ δ we have the following estimates:

(31) {g k (t)} l 2,s ≤ C t ( {α k } 3 l 2,s + t 3γ δ 3 ), (32) 
{ t 0 g k (τ )dτ } l 2,s ≤ Ct( {α j } 3 l 2,s + {α j } 5 l 2,s +t 3γ (1+ {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ +t 2γ δ 3 ), ( 33 
) { t 0 g k (τ )(α k + R k (τ ))dτ } l 2,s ≤ Ct( {α k } l 2,s + t γ δ) ×( {α j } 3 l 2,s + {α j } 5 l 2,s + t 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + t 2γ δ 3 ). Proof. We note first that {M j } {N j } {P j }(k) = (j 1 ,j 2 ,j 3 )∈N R k ∪Res k M j 1 N j 2 P j 3 , so in particular (34) (j 1 ,j 2 ,j 3 )∈N R k M j 1 N j 2 P j 3 ≤ {|M j |} {|N j |} {|P j |}(k).
We shall frequently use the following inequality:

(35) {M j } {N j } {P j } l ∞ + {M j } {N j } {P j } l 2,s ≤ C {M j } l 2,s {N j } l 2,s {P j } l 2,s .
The first part follows from l 2,s ⊂ l 1 and the second part follows using also the weighted Young argument on two series:

{M j } {N j } l 2,s ≤ C {M j } {(1 + |j|) s N j } l 2 + C {(1 + |j|) s M j } {N j } l 2 ≤ C {M j } l 1 {(1 + |j|) s N j } l 2 + C {(1 + |j|) s M j } l 2 {N j } l 1 ≤ C {M j } l 2,s {N j } l 2,s .
Therefore by [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] we have

|g k (t)| ≤ C t (j 1 ,j 2 ,j 3 )∈N R k (|α j 1 | + |R j 1 (t)|)(|α j 2 | + |R j 2 (t)|)(|α j 3 | + |R j 3 (t)|) ≤ C t {|α j | + |R j (t)|} {|α j | + |R j (t)|} {|α j | + |R j (t)|}(k),
and by [START_REF] Lafortune | Stability of solitons on vortex filaments[END_REF] we get [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF]. To estimate t 0 g k (τ )dτ we perform an integration by parts to get advantage of the nonresonant phase and to obtain integrability in time: [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF] 

i t 0 g k (τ )dτ = t (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t e -iω k,j 1 ,j 2 ,j 3 log √ t π(k 2 -j 2 1 + j 2 2 -j 2 3 ) (α j 1 +R j 1 (t))(α j 2 + R j 2 (t))(α j 3 +R j 3 (t)) - t 0 (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 2 3 4τ π(k 2 -j 2 1 + j 2 2 -j 2 3 ) ×∂ τ (τ e -iω k,j 1 ,j 2 ,j 3 log √ τ (α j 1 + R j 1 (τ ))(α j 2 + R j 2 (τ ))(α j 3 + R j 3 (τ ))) dτ.
Indeed, for fixed t, this computation is justified by considering, for 0 < η < t, the quantity I η k (t) defined as Φ 1 k ({R j })(t) but with the integral in time from η instead of 0. More precisely, I η k (t) is well defined as the integrand can be upper-bounded using ( 34) and ( 35) by the function C

{α j } 3 l 2,s + {R j (τ )} 3 l 2,s τ
which is integrable on (η, t). In particular the discrete summation commutes with the integration in time. Performing then integrations by parts on I η k (t) as above, we obtain for I η k (t) an expression that yields as η → 0 the above expression for t 0 g k (τ )dτ . We obtain, in view of [START_REF] Lafortune | Stability of solitons on vortex filaments[END_REF], and on the fact that on the resonant set

|k 2 -j 2 1 + j 2 2 -j 2 3 | ≥ 1, | t 0 g k (τ )dτ | ≤ Ct{|α j | + |R j (t)|} {|α j | + |R j (t)|} {|α j | + |R j (t)|}(k) +C(1 + {α k } 2 l ∞ ) t 0 {|α j | + |R j (τ )|} {|α j | + |R j (τ )|} {|α j | + |R j (τ )|}(k) dτ +C t 0 {|τ ∂ τ R j (τ )|} {|α j | + |R j (τ )|} {|α j | + |R j (τ )|}(k) dτ.
We perform Cauchy-Schwarz in the integral terms to get the squares for the discrete variable and we sum using [START_REF] Lafortune | Stability of solitons on vortex filaments[END_REF]:

{ t 0 g k (τ )dτ } 2 l 2,s ≤ Ct 2 {α j + R j (t)} 6 l 2,s + C(1 + {α k } 4 l 2,s ) t t 0 {α j + R j (τ )} 6 l 2,s dτ +Ct t 0 {α j + R j (τ )} 4 l 2,s {τ ∂ τ R j (τ )} 2 l 2,s dτ.
Therefore we get (32): [START_REF] Koiso | Vortex filament equation and semilinear Schrödinger equation[END_REF] is obtained the same way as [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF], by adding in the computations the extra-term α k + R k (τ ) and by upper-bounding it in modulus by {α k } l 2,s + τ γ δ.

{ t 0 g k (τ )dτ } l 2,s ≤ Ct( {α j } 3 l 2,s + {R j (t)} 3 l 2,s + {α j } 5 l 2,s ) +C(1 + {α k } 2 l 2,s )t 1+3γ {τ -γ R j (τ )} 3 L ∞ (0,T ),l 2,s +Ct {α j } 2 l 2,s {τ ∂ τ R j (τ )} L ∞ (0,T ),l 2,s +Ct 1+2γ {τ -γ R j (τ )} 2 L ∞ (0,T ),l 2,s {τ ∂ τ R j (τ )} L ∞ (0,T ),l 2,s ≤ Ct( {α j } 3 l 2,s + {α j } 5 l 2,s ) + Ct 1+3γ (1 + {α k } 2 l 2,s )δ 3 + Ct {α j } 2 l 2,s δ + Ct 1+2γ δ 3 . The last estimate
We now use [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF] and [START_REF] Koiso | Vortex filament equation and semilinear Schrödinger equation[END_REF] to get

{∂ t Φ k ({R j })(t)} l 2,s ≤ {g k (t)dτ } l 2,s + { t 0 (g k (s)(α k + R k (s))ds (α k + R k (t))} l 2,s C t ≤ C t ( {α k } 3 l 2,s + t 3γ δ 3 ) + C( {α k } l 2,s + t γ δ) 2 ×( {α j } 3 l 2,s + {α j } 5 l 2,s + t 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + t 2γ δ 3 ). On the other hand, |{Φ k ({R j })(t)}| ≤ t 0 g k (τ )dτ + t 0 τ 0 (g k (s)(α k + R k (s))ds (α k + R k (τ )) dτ 4πτ , so by Cauchy-Schwarz |{Φ k ({R j })(t)}| 2 ≤ C t 0 g k (τ )dτ 2 +C √ t t 0 τ 0 (g k (s)(α k + R k (s))ds 2 (|α k | 2 +|R k (τ )| 2 ) dτ τ 3 2
. Now we use [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF] and [START_REF] Koiso | Vortex filament equation and semilinear Schrödinger equation[END_REF] to get

{Φ k ({R j })(t)} l 2,s ≤ Ct( {α j } 3 l 2,s + {α j } 5 l 2,s +t 3γ (1+ {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ+t 2γ δ 3 ) +Ct( {α k } l 2,s + t γ δ) 2 ×( {α j } 3 l 2,s + {α j } 5 l 2,s + t 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + t 2γ δ 3 ). Summarizing, we have obtained (37) {Φ({R k })} X γ ≤ C( {α k } 3 l 2,s + T 3γ δ 3 ) + CT ( {α k } l 2,s + T γ δ) 2 ×( {α j } 3 l 2,s + {α j } 5 l 2,s + T 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + T 2γ δ 3 ) +CT 1-γ ( {α j } 3 l 2,s + {α j } 5 l 2,s + T 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + T 2γ δ 3 ) +CT 1-γ ( {α k } l 2,s + T γ δ) 2 ×( {α j } 3 l 2,s + {α j } 5 l 2,s + T 3γ (1 + {α k } 2 l 2,s )δ 3 + {α j } 2 l 2,s δ + T 2γ δ 3
). In view of (37), we can choose δ in terms of {α j } l 2,s , and T small with respect {α j } l 2,s and γ, to obtain the stability estimate

{Φ({R k })} X γ < δ.
The contraction estimate is obtained in the same way as the stability one. As a conclusion the fixed point argument is closed and this settles the local in time existence of the solutions of Theorem 1.4. Remark 2.2. We notice that in [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF] we just upper-bounded the inverse of the non-resonant phase by 1. We can actually exploit this decay in the discrete summations to relax the assumptions on the initial data. More precisely, for 1 ≤ p < ∞ we can use:

(j 1 ,j 2 ,j 3 )∈N R k M j 1 N j 2 P j 3 k 2 -j 2 1 + j 2 2 -j 2 3 p l p = k   j 1 ,j 2 ;j 1 / ∈{k,j 2 } M j 1 N j 2 P k-j 1 +j 2 |j 1 -j 2 ||k -j 1 |   p ≤ C k   j 1 ,j 2 |M j 1 | p |M j 2 | p |M k-j 1 +j 2 | p     j 1 ,j 2 1 (1 + |j 1 -j 2 |) q (1 + |k -j 1 |) p   p q
, where q is the conjugate exponent of p. As 1 ≤ p < ∞ we have q > 1 so

(j 1 ,j 2 ,j 3 )∈N R k M j 1 N j 2 P j 3 k 2 -j 2 1 + j 2 2 -j 2 3 l p ≤ {M j } l p {N j } l p {P j } l p .
One can use this estimate to get a fixed point in the space

X γ p := {{f k } ∈ C 1 ((0, T ); l 1 ), {t -γ f k (t)} L ∞ (0,T )l 1 < ∞},
or, under smallness assumption on the data, for any p ∈ (1, ∞), in

X γ p := {{f k } ∈ C 1 ([0, T ); l p ), {t -γ f k (t)} L ∞ (0,T )l p , {t ∂ t f k (t)} L ∞ (0,T )l q < ∞}.
More precisely, to avoid the smallness assumption, the integration by parts must be performed, besides on the free term, also on the linear terms. Then the fixed point argument will involve ∂ t R j (t), and including {t ∂ t f k (t)} L r [0,T )l p < ∞ in the fixed point space will require to get estimates for 1 8πt

(j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t e -iω k,j 1 ,j 2 ,j 3 log √ t α j 1 α j 2 α j 3 ,
that is having l p estimates on

{|α j |} {|α j |} {|α j |}(k),
which is possible for p = 1.

2.3.

Global in time extension. We consider the local in time solution constructed previously. In the case s = 1 we shall prove that the growth of {α j + R j (t)} L ∞ (0,T )l 2,1 is controlled, so we can extend the solution globally in time. Global existence for s > 1 is obtained by considing the l 2,1 global solution and proving the persistency of the regularity l 2,s . We shall use [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF] with a(k) = k 2 to get a control of the "energy":

∂ t k k 2 |A k (t)| 2 = ∓ 1 16πt k-j 1 +j 2 -j 3 =0 (k 2 -j 2 1 +j 2 2 -j 2 3 )e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t)A k (t) = ± it 4π k-j 1 +j 2 -j 3 =0 ∂ t e -i k 2 -j 2 1 +j 2 2 -j 2 3 4t A j 1 (t)A j 2 (t)A j 3 (t)A k (t).
By integrating from 0 to t and then using integrations by parts we get

k k 2 |A k (t)| 2 ≤ k k 2 |A k (0)| 2 + Ct k-j 1 +j 2 -j 3 =0 |A j 1 (t)A j 2 (t)A j 3 (t)A k (t)| +C t 0 k-j 1 +j 2 -j 3 =0 |∂ τ (τ A j 1 (τ )A j 2 (τ )A j 3 (τ )A k (τ ))|dτ ≤ {α j } 2 l 2,1 +Ct k (|A j (t)| |A j (t)| |A j (t)|)(k)|A k (t)|+ t 0 k (|A j (τ )| |A j (τ )| |A j (τ )|)(k)|A k (τ )|dτ + t 0 k (∂ τ |A j (τ )| |A j (τ )| |A j (τ )|)(k)|A k (τ )|τ dτ + t 0 k (|A j (τ )| |A j (τ )| |A j (τ )|)(k)∂ τ |A k (τ )|τ dτ.
We shall use now the following estimate, based on Cauchy-Schwartz inequality, Young and Hölder estimates for weak l p spaces, and the fact that {j

-1 2 } ∈ l 2 w : | k {M j } {N j } {P j }(k)R k | ≤ {M j } {N j } {P j } l 2 R j l 2 ≤ C {M j } l 1 w {N j } l 1 w {P j } l 2 R j l 2 ≤ C {M j j 1 2 } l 2 w {N j j 1 2 } l 2 w {P j } l 2 R j l 2 ≤ C {M j } 1 2 l 2 {M j } 1 2 l 2,1 {N j } 1 2 l 2 {N j } 1 2 l 2,1 {P j } l 2 R j l 2 to obtain {A j (t)} 2 l 2,1 ≤ {α j } 2 l 2,1 + Ct {A j (t)} 3 l 2 {A j (t)} l 2,1 + t 0 {A j (τ )} 3 l 2 {A j (τ )} l 2,1 dτ + t 0 {∂ τ A j (τ )} l 2 {A j (τ )} 2 l 2 {A j (τ )} l 2,1 τ dτ.
Now we notice that for system [START_REF] Chousionis | Fractal solutions of linear and nonlinear dispersive partial differential equations[END_REF] we get

{∂ τ A j (t)} l 2 ≤ C t ( {A j (t)} {A j (t)} {A j (t)} l 2 + {A j (t)} l 2 ) ≤ C t ( {A j (t)} l 2,1 {A j (t)} 2 l 2 + {A j (t)} l 2 )
. By using also the conservation of "mass" [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] we finally obtain

{A j (t)} 2 l 2,1 ≤ {α j } 2 l 2,1 + Ct {α j } 3 l 2 {A j (t)} l 2,1 + t 0 {α j } 3 l 2 {A j (τ )} l 2,1 dτ + t 0 {α j } 4 l 2 {A j (τ )} 2 l 2,1 dτ.
We thus obtain by Grönwall's inequality a control of the growth of A j (t) l 2,1 , so the local solution can be extended globally and the proof of Theorem (1.4) is finished.

2.4. Cases of Dirac masses not necessary located at integer numbers. Some cases of Dirac masses, not necessary located at integer numbers, were treated in [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF] and can be extended here to the cubic case. We denote for doubly indexed sequences

{α k, k} 2 l 2,s := k, k∈Z (1 + |k| + | k|) 2s |α k, k| 2 .
We note that a distribution f = k∈Z α k, kδ ak+b k satisfies

f (ξ) = k∈Z α k, kδ ak+b k(ξ) = k∈Z α k, ke -iξ(ak+b k) ,
that can be seen as the restriction to

ξ 1 = ξ 2 = ξ of k∈Z α k, ke -iξ 1 ak-iξ 2 b k,
which is the Fourier transform of

E(f ) := k∈Z α k, kδ (ak,b k) .
We denote

H s pF ;a,b := {u ∈ S (R 2 ), û(ξ 1 + 2π a , ξ 2 ) = û(ξ 1 , ξ 2 + 2π b ) = û(ξ 1 , ξ 2 ), û ∈ H s ((0, 2π a )×(0, 2π b ))}, and f H s,diag pF ;a,b = E(f ) H s ((0, 2π a )×(0, 2π b )) . Theorem 2.3. Let s > 1 2 , T > 0 and 1 2 < γ < 1. Let a, b ∈ R * such that a b / ∈ Q. We consider the 1-D cubic NLS equation: (38) i∂ t u + ∆u ± 1 2 (|u| 2 - M 2πt )u = 0. with M = k, k∈Z |α k, k| 2 and #{(k, k), α k, k = 0} < ∞.
There exists 0 > 0 such that if {α k, k} l 2,s ≤ 0 then we have T > 0 and a unique solution on (0, T ) of the form

(39) u(t) = k, k∈Z e ∓i |α k, k | 2 4π log √ t (α k, k + R k, k(t))e it∆ δ ak+b k,
with the decay

(40) sup 0<t<T t -γ {R k, k(t)} l 2,s + t {∂ t R k, k(t)} l 2,s < C.
Moreover, considering an initial data a finite sum of N Dirac masses

u(0) = k∈Z α k, kδ ak+b k,
with coefficients of same modulus |α k, k| = a and equation [START_REF] Merle | On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass[END_REF] normalized with M = (N -1 2 )a 2 , we have a unique solution on (-T, T )

u(t) = e it∆ u(0) ± ie it∆ t 0 e -iτ ∆ |u(τ )| 2 - M 2πτ u(τ ) dτ 2 , such that E(e -it∆ u(t)) ∈ C 1 ((-T, T ), H s ((0, 2π a ) × (0, 2π b ))) with e -it∆ u(t) -u(0) H s,diag pF ;a,b ≤ Ct γ , ∀t ∈ (-T, T ).
The new phenomenon here is that if for instance the initial data is the sum of three Dirac masses located at 0, a and b then we see small effects on the dense subset on R given by the group aZ + bZ. Another difference with respect to the previous case is that the non-resonant phases can approach zero so we shall perform integration by parts from the phase only on the free term. Due to this small divisor problem we impose on one hand only a finite number of Dirac masses at time t = 0, and on the other hand a smallness condition on the data.

The proof of Theorem 2.3 goes similarly to the one of Theorem 1.4, by plugging the ansatz (39) into equation [START_REF] Merle | On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass[END_REF] to get by using the orthogonality of the family

{ e i (x-ak-b k) 2 4t √ 4πit } the associated system i∂ t A k, k(t) = ∓ 1 8πt ((j 1 , j1 ),(j 2 , j2 ),(j 3 , j3 ))∈N R k, k e -i (ka+ kb) 2 -(j 1 a+ j1 b) 2 +(j 2 a+ j2 b) 2 -(j 3 a+ j3 b) 2 4t A j 1 , j1 (t)A j 2 , j2 (t)A j 3 , j3 (t) ± 1 8πt A k, k(t)(2 j, j |A j, j (t)| 2 -|A k, k(t)| 2 -2M )
, where N R k, k is the set of indices such that the phase does not vanish i.e. such that

k -j 1 + j 2 -j 3 = 0, k -j1 + j2 -j3 = 0, k 2 -j 2
1 + j 2 2 -j 2 3 = 0, and k -j1 + j2 -j3 = 0. We have to solve the equivalent "mass"-conserving system:

i∂ t A k, k(t) (41) = ∓ 1 8πt ((j 1 , j1 ),(j 2 , j2 ),(j 3 , j3 ))∈N R k, k e -i (ka+ kb) 2 -(j 1 a+ j1 b) 2 +(j 2 a+ j2 b) 2 -(j 3 a+ j3 b) 2 4t A j 1 , j1 (t)A j 2 , j2 (t)A j 3 , j3 (t) ∓ 1 8πt |A k, k(t)| 2 A k, k(t).
We look for solutions of the form

A k, k(t) = e ∓i |α k, k | 2 4π log √ t (α k, k +R k, k(t)), with {R k, k} ∈ Y γ : (42) Y γ := {{f k, k} ∈ C((0, T ); l 2,s )}.
As for Theorem 1.4, we make a fixed point argument in a ball of Y γ of size depending on {α k, k} l 2,s for the operator Φ sending {R k, k} into

Φ({R k, k}) = {Φ k, k({R j, j })}, with Φ k, k({R j, j }(t)) = ∓i t 0 f k, k(τ ) dτ ±i t 0 τ 0 (f k, k(s)(α k, k + R k, k(s))ds(α k, k+R k, k(τ )) dτ 4πt ,
where

f k, k(t) = ((j 1 , j1 ),(j 2 , j2 ),(j 3 , j3 ))∈N R k, k e -i (ka+ kb) 2 -(j 1 a+ j1 b) 2 +(j 2 a+ j2 b) 2 -(j 3 a+ j3 b) 2 4t 8πt ×e -i |α k, k | 2 -|α j 1 , j1 | 2 +|α j 2 , j2 | 2 -|α j 3 , j3 | 2 4π log t (α j 1 , j1 +R j 1 , j1 (t))(α j 2 , j2 + R j 2 , j2 (t))(α j 3 , j3 +R j 3 , j3 (t)).
To avoid issues related to having the non-resonant phase approaching zero, we perform integrations by parts only in the free term involving a finite number of terms, as #{(k, k), α k, k = 0} < ∞. All the remaining terms contain powers of R j, j (τ ) so we get integrability in time by using the Young inequalities [START_REF] Lafortune | Stability of solitons on vortex filaments[END_REF] for double indexed sequences. However, due to the presence of terms linear in R j, j (τ ) we need to impose a smallness condition on the initial data {α j, j } l 2,s . Moreover, from the cubic terms treated without integrations by parts as previously, we need to impose γ > 1 2 . The control of {t∂ t R k, k(t)} L ∞ (0,T )l 2,s is easily obtained a-posteriori, once a solution is constructed in Y γ .

The Talbot effect

The Talbot effect for the linear and nonlinear Schrödinger equations on the torus with initial data given by functions with bounded variation has been largely studied ( [START_REF] Berry | Quantum fractals in boxes[END_REF], [START_REF] Oskolkov | A class of I.M. Vinogradov's series and its applications in harmonic analysis[END_REF], [START_REF] Rodnianski | Fractal solutions of the Schrödinger equation[END_REF], [START_REF] Taylor | The Schrödinger equation on spheres[END_REF], [START_REF] Erdogan | Talbot effect for the cubic non-linear Schrödinger equation on the torus[END_REF], [START_REF] Chousionis | Fractal solutions of linear and nonlinear dispersive partial differential equations[END_REF]). Here we place ourselves in a more singular setting on R, and get closer to the Talbot effect observed in optics (see for example [START_REF] Berry | Integer, fractional and fractal Talbot effects[END_REF]) which is typically modeled with Dirac combs as we consider in this paper.

As a consequence of Theorem 1.4 the solution u(t) of equation ( 9) with initial data

u(0) = k∈Z α k δ k ,
with |α k | = a behaves for small times like e it∆ u 0 . We compute first the linear evolution e it∆ u 0 which display a Talbot effect.

Proposition 3.1. (Talbot effect for linear evolutions) Let p ∈ N and u 0 with û0 2π-periodic. For all t p,q = 1 2π p q with q odd and for all x ∈ R we have

(43) e itp,q∆ u 0 (x) = 1 √ q 2π 0 û0 (ξ)e -itp,qξ 2 +ixξ l∈Z q-1 m=0 e iθm,p,q δ(x -2t p,q ξ -l - m q ) dξ,
for some θ m,p,q ∈ R. We suppose now that moreover û0 is located modulo 2π only in a neighborhood of zero of radius less than η π p with 0 < η < 1. For a given x ∈ R we define

ξ x := πq p dist x, 1 q Z ∈ [0, π p ).
Then there exists θ x,p,q ∈ R such that (44) e itp,q∆ u 0 (x) = 1 √ q û0 (ξ x ) e -itp,q ξ 2 x +ix ξx+iθx,p,q .

In particular |e itp,q∆ u 0 (l + m q )| = |e itp,q∆ u 0 (0)| and if x is at distance larger than η q from 1 q Z then e itp,q∆ u 0 (x) vanishes. Moreover, the solution can concentrate near 1 q Z in the sense that there is a family of initial data

u λ 0 = k∈Z α λ k δ k and C > 0 such that (45) e itp,q∆ u 0 (0) e itp,q∆ α λ 0 δ 0 (0) = C q λ λ→∞ -→ ∞.
We note here that the data u 0 = k∈Z δ k enter the above setting of the 2π-periodicity in Fourier and localization in Fourier, as û0 = u 0 = k∈Z δ k (see last section where Poisson summation formula is recalled). Therefore e it∆ u 0 (x) = 0 for x / ∈ 1 q Z, and is a Dirac mass otherwise, which is the classical Talbot effect. However, due to the non-summation of its coefficients, this kind of data does not enter our nonlinear theorem framework.

Proposition 3.1 insures the persistence of a Talbot effect at the nonlinear level.

Proposition 3.2. (Talbot effect for nonlinear evolutions) Let p ∈ N and u 0 be such that û0 is a 2π-periodic, located modulo 2π only in a neighborhood of zero of radius less than η π p with 0 < η < 1 and having Fourier coefficients such that {α k } l 2,s = 1 for some s > 1 2 . Let u(t, x) be the solution of (9) with initial data u(0) obtained in Theorem 1.4. Then for all t p,q = 1 2π p q with 1 ≤ q ≤ q odd and for all x at distance larger than η q from 1 q Z the function u(t, x) almost vanishes in the sense:

(46) |u(t p,q , x)| ≤ C q γ-1 2 {α k } l 2,s + C √ q log q {α k } 3 l 2,s .
Here q is the largest q such that 2 √ q log q 1; in particular q →0 -→ +∞. Nevertheless, the solution can concentrate near 1 q Z in the sense that there is a family of initial data u λ 0 = k∈Z α λ k δ k such that (47) u λ (t p,q , 0) e itp,q∆ α λ 0 δ 0 (0)

≤ C q λ + C q γ λ s+ 1 2 + C log qλ ( 3 2 +s) -λ→∞ -→ ∞.
3.1. Proof of Propositions 3.1-3.2. We start by recalling the Poisson summation formula k∈Z f k = k∈Z f (2πk) for the Dirac comb:

( k∈Z δ k )(x) = k∈Z δ(x -k) = k∈Z e i2πkx , as δ(x -•)(2πk) = ∞ -∞ e -i2πky δ(x -y) dy = e -i2πkx .
The computation of the free evolution with periodic Dirac data is

(48) e it∆ ( k∈Z δ k )(x) = k∈Z e -it(2πk) 2 +i2πkx .
For t = 1 2π p q we have (choosing M = 2π in formulas (37) combined with (42) from [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF])

(49) e it∆ ( k∈Z δ k )(x) = 1 q l∈Z q-1 m=0 G(-p, m, q)δ(x -l - m q ),
which describes the linear Talbot effect in the periodic setting. Here G(-p, m, q) stands for the Gauss sum

G(-p, m, q) = q-1 l=0 e 2πi -pl 2 +ml q .
Now we want to compute the free evolution of data u 0 = k∈Z α k δ k . As u 0 (ξ) = k∈Z e -ikξ is 2π-periodic we have:

e it∆ u 0 (x) = 1 2π ∞ -∞ e ixξ e -itξ 2 û0 (ξ) dξ = 1 2π k∈Z 2π(k+1) 2πk e ixξ-itξ 2 û0 (ξ) dξ = 1 2π 2π 0 û0 (ξ) k∈Z e ix(2πk+ξ)-it(2πk+ξ) 2 dξ = 1 2π 2π 0 û0 (ξ)e ixξ-itξ 2 k∈Z e -it (2πk) 2 +i2πk(x-2tξ) dξ.
Therefore, for t p,q = 1 2π p q we get e itp,q∆ u 0 (x) = 1 q 2π 0 û0 (ξ)e -itp,qξ 2 +ixξ l∈Z q-1 m=0 G(-p, m, q)δ(x -2t p,q ξ -l -m q ) dξ.

For q odd G(-p, m, q) = √ qe iθm for some θ m,p,q ∈ R so we get for t p,q = 1 2π p q e itp,q∆ u 0 (x) = 1 √ q 2π 0 û0 (ξ)e -itp,qξ 2 +ixξ l∈Z q-1 m=0 e iθm,p,q δ(x -2t p,q ξ -l -m q ) dξ.

We note that for 0 ≤ ξ < 2π we have 0 ≤ 2tξ < 2p q . For a given x ∈ R there exists a unique l x ∈ Z and a unique 0 ≤ m x < q such that

x -l x - m x q ∈ [0, 1 q ).
We denote

ξ x := πq p (x -l x - m x q ) = πq p d(x, 1 q Z) ∈ [0, π p ).
In particular if û0 is located modulo 2π only in a neighborhood of zero of radius less than π p then e itp,q∆ u 0 (x) = 1 √ q û0 (ξ x ) e -itp,q ξ 2 x +ix ξx+iθm,p,q , for some θ x,p,q ∈ R. If moreover û0 is located modulo 2π only in a neighborhood of zero of radius less than η π p with 0 < η < 1, then the above expression vanishes for x at distance larger than η q from 1 q Z. We are left with proving the concentration effect (45) of Proposition 3.1. We consider ψ a real bounded function with support in [- 1 2 , 1 2 ] and ψ(0) = 1. We define

f λ (ξ) = λ β ψ(λξ), ∀ξ ∈ [-π, π],
with β ∈ R. Thus we can decompose

f λ (ξ) = k∈Z α λ k e ikξ ,
and consider

u λ 0 = k∈Z α λ k δ k .
In particular, on [-π, π], we have u λ 0 = f λ . Given t p,q = 1 2π p q , for λ > p, the restriction of u λ 0 to [-π, π] has support included in a neighborhood of zero of radius less than η π p for a η ∈]0, 1[. We then get by ( 44)

e itp,q∆ u λ 0 (0) = 1 √ q u λ 0 (0) e -itp,q ξ 2 x +ix ξx+iθm x , so |e itp,q∆ u λ 0 (0)| = 1 √ q |f λ (0)| = 1 √ q λ β ψ(0) = 1 √ q λ β .
On the other hand, at t p,q = 1 2π p q we have

|e itp,q∆ α λ 0 δ 0 (0)| = 4q p |α λ 0 | = 4q p 1 2π π -π f λ (ξ)dξ = C(ψ) q p λ β-1 Therefore e itp,q∆ u λ 0 (0) e itp,q∆ α λ 0 δ 0 (0) = √ p C(ψ)q λ λ→∞ -→ ∞,
and the proof of Proposition 3.1 is complete.

Finally, for the first part of Proposition 3.2, as the data

u λ 0 = k∈Z α λ k δ k enters the framework of Theorem 1.4, u(t p,q , x) = k∈Z e ∓i |α k | 2 4π log √ tp,q (α k + R k (t p,q ))e itp,q∆ δ k (x) = k∈Z e itp,q∆ α k δ k (x)+ k∈Z (1-e ∓i |α k | 2 4π log √ tp,q )α k e itp,q∆ δ k (x)+ k∈Z e ∓i |α k | 2 4π log
√ tp,q R k (t p,q )e itp,q∆ δ k (x).

From Proposition 3.1, if x is at distance larger than η q from 1 q Z then e itp,q∆ u 0 (x) vanishes, so we get

|u(t p,q , x)| ≤ k∈Z |1 -e i ∓|α k | 2 4π log √ tp,q ||α k | C √ t p,q + C {α λ k } l 2,s t γ-1 2 p,q .
If q is the largest q such that 2 √ q log q 1 then we get

|u(t p,q , x)| ≤ C √ q k∈Z |α k | 3 + C q γ-1 2 {α λ k } l 2,s ,
and therefore [START_REF] Oskolkov | A class of I.M. Vinogradov's series and its applications in harmonic analysis[END_REF] follows.

For the last part of Proposition 3.2 we suppose also that ψ ∈ H s (R) with s > 1 2 , and take β < 1 2 -s. Then the condition ψ ∈ H s (R) insures us that {α λ k } ∈ l 2,s , and moreover {α λ k } l 2,s = C(ψ)λ β+s-1 2 λ→+∞ -→ 0. Therefore, by using the same estimates as above

|u λ (t, 0)| -e itp,q∆ u λ 0 (0)| ≤ C q γ-1 2 {α k } l 2,s + C √ q log q {α k } 3 l 2,s ≤ 1 √ q λ β + C q γ-1 2 λ β+s-1 2 + C √ q log qλ 3β+3s-3 2 ,
thus [START_REF] Ricca | Rediscovery of Da Rios equations[END_REF] follows by choosing β = ( 1 2 -s) -.

Evolution of polygonal lines through the binormal flow

In this section we prove Theorem 1.1.

4.1.

Plan of the proof. We consider equation ( 9) with initial data

u(0) = k∈Z α k δ k ,
where the coefficients α k will be defined in §4.2 in a specific way involving geometric quantities characterizing the polygonal line χ 0 . Then Theorem 1.4 gives us a solution u(t, x) on t > 0. From this smooth solution on ]0, ∞[ we construct in §4.3 a smooth solution χ(t) of the binormal flow on ]0, , ∞[, that has a limit χ(0) at t = 0. Now the goal is to prove that the curve χ(0) is the curve χ 0 modulo a translation and a rotation. This is done in several steps. First we show in §4.4 that the tangent vector has a limit at t = 0. Secondly we show in §4.5 that χ(0) is a segment for x ∈]n, n + 1[, ∀n ∈ Z. Then we prove in §4.7, by analyzing the frame of the curve through self-similar variables paths, that at points x = k ∈ Z the curve χ(0) presents a corner of same angle as χ 0 . In §4.9 we recover the torsion of χ 0 by using also a similar analysis for modulated normal vectors in §4.8. Therefore we conclude in §4.10 that we recover χ(0) and χ 0 coincide modulo a translation and a rotation. By considering the corresponding translated and rotated χ(t) we obtain the desired binormal flow solution with limit χ 0 at t = 0. The extension to negative times is done by using time reversibility. Uniqueness holds in the class of curves having filament functions of type [START_REF] Bishop | There is more than one way to frame a curve[END_REF]. In §4.11 we describe some properties of the binormal flow solution given by the Theorem 1.1.

4.2.

Designing the coefficients of the Dirac masses in geometric terms. Let χ 0 (x) be a polygonal line paramatrized by archlength, having at least two consecutive corners, located at x = x 0 and x = x 1 . We denote by {x n , n ∈ L} ⊂ R, the locations of all its corners ordered incresingly: x n < x n+1 . Here L stand for a finite or infinite set of consecutive integers starting at n = 0. We can characterize such a curve by the location of its corners {x n , n ∈ L} ⊂ R and by a triple sequence {θ n , τ n , δ n } n∈L where θ n ∈]0, π[, τ n ∈ [0, π] and δ n ∈ {-, +}, τ 0 = 0, δ 0 = +, in the following way. Let us first denote by T n ∈ S 2 the tangent vector of χ 0 (x) for x ∈]x n , x n+1 [. For n ∈ L we define θ n ∈]0, π[ to be the (curvature) angle between T n-1 and T n . We note that given only T n-1 and θ n we have a [0, 2π[-parameter of possibilities to choose T n . We define τ 0 = 0, δ 0 = + and for n > 0 we define a (torsion) angle τ n ∈ [0, π] at the corner located at x n to be such that [START_REF] Schwarz | Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions[END_REF] cos

(τ n ) = T n-1 ∧ T n |T n-1 ∧ T n | . T n ∧ T n+1 |T n ∧ T n+1 | .
We note now that given only T n-1 , T n , θ n and τ n we have two possibilities to choose T n+1 . Indeed, T n+1 is determined by the position of T n ∧ T n+1 in the plane Π n orthogonal to T n , given by the oriented frame T n-1 ∧ T n and T n ∧ (T n-1 ∧ T n ). Therefore we have two possibilities by orienting it with respect to T n-1 ∧ T n : by θ n or by -θ n . We define

δ n = + if (T n-1 ∧ T n ) ∧ (T n ∧ T n+1
) points in the same direction as T n , and δ n = -if it points out in the opposite direction. For n < 0 we define similarly (torsion) angles τ n ∈ [0, π[ at the corner located at x n . Conversely, given L a set of consecutive integers containing 0 and 1, given an increasing sequence {x n , n ∈ L} ⊂ R, and given a triple sequence {θ n , τ n , δ n } n∈L where θ n ∈]0, π[, τ n ∈ [0, π] and δ n ∈ {-, +}, such that τ 0 = 0, δ 0 = +, we can determine a polygonal line χ 0 , unique up to rotations and translation, in the following way. We construct first the tangent vectors, then χ 0 is obtained by setting χ 0 (x) = T n on x ∈]x n , x n+1 [. We pick a unit vector and denote it T -1 . Then we pick a unit vector having an angle θ 0 with T -1 , and we call it T 0 . Then we consider all unit vectors v having an angle θ 1 with T 0 . Among them, we choose the two of them such that T 0 ∧ v, that lives in the plane Π 0 orthogonal to T 0 , have an angle τ 1 with T -1 ∧ T 0 . Eventually, we choose T 1 to be the one of the two such that if δ 0 = + the vector (T -1 ∧ T 0 ) ∧ (T 0 ∧ v) points in the same direction as T 0 , and such that if δ 0 = + the vector (T -1 ∧ T 0 ) ∧ (T 0 ∧ v) points in the opposite direction of T 0 . We iterate this process to construct χ 0 (x) on x > x 0 , and similarly to construct χ 0 (x) on x < x 0 .

Given χ 0 the polygonal line of the statement, we define {x n , n ∈ L} the ordered set of its integer corner locations and the corresponding sequence {θ n , τ n , δ n } n∈L where θ n ∈]0, π[, τ n ∈ [0, π] and δ n ∈ {-, +}, τ 0 = 0, δ 0 = +. Then we define α k = 0 if k / ∈ {x n , n ∈ L} and if k = x n for some n ∈ L we define α k ∈ C in the following way. First we set [START_REF] Talbot | Facts related to optical science[END_REF] |α

k | = - 2 π log sin θn 2 .
Then we set Arg(α x 0 ) = 0 and we define Arg(α k ) ∈ [0, 2π) to be determined by ( 52)

cos(τ n ) = -cos(φ |αx n | -φ |αx n+1 | + β n + Arg(α xn ) -Arg(α x n+1 )), δ n = -sgn(sin(φ |αx n | -φ |αx n+1 | + β n + Arg(α xn ) -Arg(α x n+1 ))),
where {φ |αx n | } are defined in Lemma 4.8 and depend only on |α xn |, and

β n = (|α xn | 2 -|α x n+1 | 2 ) log |x n -x n+1 |.
We consider the solution u(t, x) given by Theorem (1.4) for the sequence √ 4πiα k and

1 2 < γ < 1, that solves (53) i∂ t u + ∆u + 1 2 |u| 2 -2M t u = 0, with M = k∈Z |α k | 2
, and can be written as

(54) u(t, x) = k∈Z e -i|α k | 2 log √ t (α k + R k (t)) e i |x-k| 2 4t √ t , with sup 0<t<T t -γ {R k (t)} l 2,s + t {∂ t R k (t)} l 2,s < C.

4.3.

Construction of a solution of the binormal flow for t > 0. Given an orthonormal basis (v 1 , v 2 , v 3 ) of R 3 , a point P ∈ R 3 and a time t 0 > 0 we construct a frame at all points x ∈ R and times t > 0 by imposing 3 (T, e 1 , e 2 )(t

0 , 0) = (v 1 , v 2 , v 3 ),   T e 1 e 2   t (t, x) =    0 -u x u x u x 0 -|u| 2 2 + M 2t -u x |u| 2 2 -M 2t 0      T e 1 e 2   (t, x),
3 Actually we should work in the definition of the evolution in time and in space laws for the frame with v(t, x) = e iM log √ t u(t, x) instead of u(t, x). Indeed, this construction leads, by identifying Ttx = Txt, e1tx = e1xt, e2tx = e2xt to the NLS equation ( 53) with nonlinearity 1 2 |v| 2 -M t v. However, for simplicity of the presentation we shall use u(t, x) as the space-independent change of phase does not change the BF constructed curve. Indeed, it is easy to see that if (T, N ) is constructed by ( 55)-(58), then (T, e -iφ(t) N ) is constructed by the same evolution laws with v(t, x) = e iφ(t) u(t, x) instead of u(t, x) and so the constructed tangent vector is the same.

and

  T e 1 e 2   x (t, x) =   0 u u -u 0 0 -u 0 0     T e 1 e 2   (t, x).
We can already notice that T (t, x) satisfies the Schrödinger map:

T t = T ∧ T xx .
We define now for all points x ∈ R and times t > 0:

χ(t, x) = P + t 0 t (T ∧ T x )(τ, 0)dτ + x 0 T (t, s)ds.
As T (t, x) satisfies the Schrödinger map we have T t = (T ∧ T x ) x , so we can easily compute that χ(t, x) satisfies the binormal flow:

χ t = T ∧ T x = χ x ∧ χ xx .
We note that there are two degrees of freedom in this construction -the choice of the orthonormal basis (v 1 , v 2 , v 3 ) of R 3 and the choice of the point P ∈ R 3 . Changing these parameters is equivalent to rotate and translate respectively the solution χ(t). The resulting evolution of curves is still a solution of the binormal flow, with the same laws of evolution in time and space for the frame.

We introduce now the complex valued normal vector

N (t, x) = e 1 (t, x) + ie 2 (t, x).
With this vector we can write in a simpler way the laws of evolution in time and space for the frame, that will be useful in the rest of the proof:

(55) T x = u e 1 + u e 2 = (u N ), ( 56)

N x = e 1x + ie 2x = -u T -i u T = -u T, (57) 
T t = -u x e 1 + u x e 2 = (u x N ), ( 58 
)
N t = u x T + - |u| 2 2 + M 2t e 2 -i u x T + i |u| 2 2 - M 2t e 1 = -iu x T + i |u| 2 2 - M 2t N, ( 59 
) χ t = T ∧ T x = T ∧ (u N ) = (u N ).
In particular from (54) and (59) we have for 0 < t 1 < t 2 < 1:

|χ(t 2 , x) -χ(t 1 , x)| = t 2 t 1 χ t (t, x)dt ≤ t 2 t 1 |u(t, x)|dt ≤ t 2 t 1 j |α j + R j (t)| dt √ t ≤ C √ t 2 ( {α j } l 1 + {R j } L ∞ (0,1)l 1 ).
This implies the existence of a limit curve at t = 0 for all x ∈ R:

∃ lim t→0 χ(t, x) =: χ(0, x).
Moreover, χ(0) is a continuous curve.

4.4.

Existence of a trace at t = 0 for the tangent vector. For further purposes we shall need to show that the tangent vector T (t, x) has a limit T (0, x) at t = 0, and moreover we shall need to get a convergence decay of selfsimilar type √ t d(x,Z) for x close to Z. This is insured by the following lemma.

Lemma 4.1. Let 0 < t 1 < t 2 < 1. If x ∈ R\ 1 2 Z then (60) |T (t 2 , x) -T (t 1 , x)| ≤ C(1 + |x|) √ t 2 1 d(x, 1 2 Z) + 1 d(x, Z) , while if x ∈ 1 2 Z then (61) |T (t 2 , x) -T (t 1 , x)| ≤ C(1 + |x|) √ t 2 .
In particular for any x ∈ R there exists a trace for the tangent vector at t = 0:

(62) ∃ lim t→0 T (t, x) =: T (0, x).
Proof. In view of ( 57) and (54) we have

T (t 2 , x) -T (t 1 , x) = t 2 t 1 (u x N (t, x)) dt = t 2 t 1 j e i|α j | 2 log √ t (α j + R j (t)) e -i (x-j) 2 4t √ t (-i) (x -j) 2t N (t, x) dt.
In case j = x the integrant vanishes so we get the left-hand-side of (61) null.

For j = x we perform an integration by parts that exploits the oscillatory phase to get integrability in time:

T (t 2 , x)-T (t 1 , x) =   j =x e i|α j | 2 log √ t (α j + R j (t)) e -i (x-j) 2 4t √ t (-i) 4t 2 (x -j) 2 (-i) (x -j) 2t N (t, x)   t 2 t 1 +2 t 2 t 1 j =x e -i (x-j) 2 4t x -j ( √ t e i|α j | 2 log √ t (α j + R j (t))N (t, x)) t dt =: I 0 + I 1 + I 2 + I 3 + I 4 ,
where we have denoted by I 0 the boundary term and by I 1 , I 2 , I 3 , I 4 the terms obtained after the differentiation in time of the quadruple product in the integral part. We consider first the boundary term

|I 0 | ≤ C √ t 2 j =x |α j + R j (t 2 )| 1 |x -j| + C √ t 1 j =x |α j + R j (t 1 )| 1 |x -j| .
If x ∈ Z then we have

|I 0 | ≤ C √ t 2 ( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ), while if x / ∈ Z |I 0 | ≤ C √ t 2 d(x, Z) ( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ).
Therefore the contribution of I 0 fits with the estimates in the statement of the Lemma. The terms I 1 and I 2 can be treated the same, as

t 2 t 1 ( √ te -i|α k | 2 log √ t ) t dt ≤ C √ t 2 .
Also the term I 3 can be treated similarly, as |∂ t R j (t))| ≤ C t on (0, 1). We are left with the I 4 term, which contains in view of (58) the expression

N t = -iu x T + i |u| 2 2 -M 2t N : I 4 = 2 t 2 t 1 j =x e -i (x-j) 2 4t x -j √ t e i|α j | 2 log √ t (α j + R j (t)) ×   -i k e -i|α k | 2 log √ t (α k + R k (t)) e i (x-k) 2 4t √ t i (x -k) 2t T (t, x) +i   r,r e -i(|αr| 2 -|α r | 2 ) log √ t (α r + R r (t))(α r + R r(t))e i (x-r) 2 -(x-r) 2 4t 2t - M 2t   N (t, x)   dt.
We notice that the second term can be upper-bounded as I 0 . We are thus left with the first term:

I 4,1 = t 2 t 1 j,k =x e -i (j-k)(j+k-2x) 4t x -k x -j e i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t))T (t, x) dt t ,
for which we still have an obstruction for the integrability in time. The terms in the sum for which j = k have null contribution as they are real numbers. Also, in case 2x ∈ Z, the terms in the sum for which j + k -2x = 0 give

- t 2 t 1 k =x e i(|α -k+2x | 2 -|α k | 2 ) log √ t (α -k+2x + R -k+2x (t))(α k + R k (t))T (t, x) dt t = - t 2 t 1 j =x e i(|α j | 2 -|α -j+2x | 2 ) log √ t (α j + R j (t))(α -j+2x + R -j+2x (t))T (t, x) dt t = t 2 t 1 j =x e i(-|α j | 2 +|α -j+2x | 2 ) log √ t (α j + R j (t))(α -j+2x + R -j+2x (t))T (t, x) dt t = t 2 t 1 k =x e i(|α -k+2x | 2 -|α k | 2 ) log √ t (α -k+2x + R -k+2x (t))(α k + R k (t))T (t, x) dt t ,
so their contribution is null. Therefore we have, for all x ∈ R,

I 4,1 = t 2 t 1 j,k =x; j =k; j+k =2x e -i (j-k)(j+k-2x) 4t x -k x -j ×e i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t))T (t, x) dt t .
We perform an integration by parts:

I 4,1 =   j,k =x; j =k; j+k =2x e -i (j-k)(j+k-2x) 4t (-i)4t 2 (j -k)(j + k -2x) x -k x -j ×e i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t)) T (t, x) t t 2 t 1 +4 t 2 t 1 j,k =x; j =k; j+k =2x e -i (j-k)(j+k-2x) 4t 1 (j -k)(j + k -2x) x -k x -j ×(te i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t))T (t, x)) t dt =: I 0 4,1 + I 1 4,1 + I 2 4,1 + I 3 4,1 + I 4 4,1 + I 5 4,1
, where I 0 4,1 stands for the boundary term and I 1 4,1 , I 2 4,1 , I 3 4,1 , I 4 4,1 and I 5 4,1 are the terms after differentiating in time the quintuple product in the integral. For the boundary term we have

|I 0 4,1 | ≤ 4t 2 j,k =x; j =k; j+k =2x |x -k| |j -k||j + k -2x||x -j| |α j + R j (t 2 )||α k + R k (t 2 )| +4t 1 j,k =x; j =k; j+k =2x |x -k| |j -k||j + k -2x||x -j| |α j + R j (t 1 )||α k + R k (t 1 )|. As for j = k (63) |x -k| |j -k||j + k -2x||x -j| ≤ |x -j| + |j + k -2x| |j -k||j + k -2x||x -j| ≤ 1 |j + k -2x| + 1 |x -j| , we have for x ∈ 1 2 Z |I 0 4,1 | ≤ Ct 2 ( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ) 2 .
while for x / ∈ 1 2 Z we obtain

|I 0 4,1 | ≤ Ct 2 1 d(x, 1 2 Z) + 1 d(x, Z) ( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ) 2 .
The terms I 1 4,1 , I 2 4,1 , I 3 4,1 and I 4 4,1 can be upper-bounded as I 0 4,1 by using moreover for I 3 4,1

and I 4 4,1 the bound ∂ t R j (t)) ≤ C t on (0, 1). The last term I 5 4,1 involves, in view of (57),

T t (t, x) = (u x N )(t, x) = r e i|αr| 2 log √ t (α r + R r (t)) e -i (x-r) 2 4t √ t (-i) (x -r) 2t N (t, x) so I 5 4,1 = - 1 2 t 2 t 1 j,k =x; j =k; j+k =2x e -i (j-k)(j+k-2x) 4t 1 (j -k)(j + k -2x) x -k x -j ×e i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k +R k (t)) r e i|αr| 2 log √ t (α r + R r (t))e -i (x-r) 2 4t (x-r)N (t, x) dt √ t ,
and in particular

|I 5 4,1 | ≤ C t 2 t 1 j,k =x; j =k; j+k =2x |x -k| |j -k||j + k -2x||x -j| ×|α j + R j (t)||α k + R k (t)| r |α r + R r (t)||x -r| dt √ t .
We can write

r |α r + R r (t)||x -r| ≤ C(1 + |x|)( {α j } l 2, 3 2 + + {R j } L ∞ (0,t 2 )l 2, 3 2 
+ ), so by using (63) we get for x ∈ 1 2 Z:

|I 5 4,1 | ≤ C(1 + |x|) √ t 2 ( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ) 2 ( {α j } l 2, 3 2 + + {R j } L ∞ (0,t 2 )l 2, 3 2 
+ ),
while for x / ∈ 1 2 Z we obtain:

|I 5 4,1 | ≤ C √ t 2 (1 + |x|) 1 d(x, 1 2 Z) + 1 d(x, Z) ×( {α j } l 1 + {R j } L ∞ (0,t 2 )l 1 ) 2 ( {α j } l 2, 3 2 + + {R j } L ∞ (0,t 2 )l 2, 3 2 + ).
Therefore the proof of the Lemma is completed. 4.5. Segments of the limit curve at t = 0. Lemma 4.2. Let n ∈ Z and x 1 , x 2 ∈ (n, n + 1). Then T (0, x 1 ) = T (0, x 2 ).

In particular, we recover that χ(0) is a polygonal line, and might have corners only at integer locations.

Proof. From Lemma 4.1 we have ( 64)

T (0, x 1 ) -T (0, x 2 ) = lim t→0 (T (t, x 1 ) -T (t, x 2 )).
In view of (55) we compute

T (t, x 1 ) -T (t, x 2 ) = x 2 x 1 (uN (t, x)) dx = x 2 x 1 j e i|α j | 2 log √ t (α j + R j (t)) e -i (x-j) 2 4t √ t N (t, x) dx.
In this case the integral is well defined, but we need decay in time. For this purpose we perform an integration by parts, that is allowed on (x 1 , x 2 ) ⊂ (n, n + 1):

T (t, x 1 ) -T (t, x 2 ) =   j e i|α j | 2 log √ t (α j + R j (t)) e -i (x-j) 2 4t √ t i 2t x -j N (t, x)   x 2 x 1 +2 √ t x 2 x 1 j e i|α j | 2 log √ t (α j + R j (t))e -i (x-j) 2 4t 1 x -j N (t, x) x dx = o(t) + 2 √ t x 2 x 1 j e i|α j | 2 log √ t (α j + R j (t))e -i (x-j) 2 4t 1 x -j N x (t, x) dx.
As by (56) we have N x = -uT ,

T (t, x 1 ) -T (t, x 2 ) = O( √ t) -2 j,k e i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t)) x 2 x 1 e -i (x-j) 2 -(x-k) 2 4t
x -j T (t, x) dx.

The summation holds only for j = k, as for j = k the contribution is null. Moreover, from [START_REF] Buttke | A numerical study of superfluid turbulence in the Self Induction Approximation[END_REF] we have

{R j (t)} l 1 = O(t γ ), γ > 1/2, so T (t, x 1 ) -T (t, x 2 ) = O( √ t) -2 j =k e i(|α j | 2 -|α k | 2 ) log √ t α j α k e i j 2 -k 2 4t x 2
x 1 e i (j-k)x 2t

x -j T (t, x) dx.

To get decay in time we need to perform again an integration by parts:

T (t, x 1 )-T (t, x 2 ) = O( √ t)-   2 j =k e i(|α j | 2 -|α k | 2 ) log √ t α j α k e i j 2 -k 2 4t e i (j-k)x 2t x -j 2t i(j -k) T (t, x)   x 2 x 1 +4t j =k e i(|α j | 2 -|α k | 2 ) log √ t α j α k e i j 2 -k 2 4t j -k x 2 x 1 e i (j-k)x 2t 1 x -j T (t, x) x dx = O( √ t) + 4t j =k e i(|α j | 2 -|α k | 2 ) log √ t α j α k e i j 2 -k 2 4t j -k x 2 x 1 e i (j-k)x 2t 1 x -j T x (t, x) dx.
From (55) we have T x = (u N ) so finally

T (t, x 1 ) -T (t, x 2 ) = O( √ t) + 4t j =k e i(|α j | 2 -|α k | 2 ) log √ t α j α k e i j 2 -k 2 4t j -k × x 2 x 1 e i (j-k)x 2t x -j   r e i|αr| 2 log √ t (α r + R r (t)) e -i (x-r) 2 4t √ t N (t, x)   dx = O( √ t).
Therefore in view of (64) we have indeed

T (0, x 1 ) -T (0, x 2 ) = 0.
4.6. Recovering self-similar structures through self-similar paths. In this subsection we shall use the results in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] that characterize all the selfsimilar solutions of BF and give their corresponding asymptotics (see Theorem 1 in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]). Let us denote by A ± |α k | ∈ S 2 the directions of the corner generated at time t = 0 by the canonical self-similar solution χ |α k | (t, x) of the binormal flow of curvature |α k | √ t :

A ± |α k | := ∂ x χ |α k | (0, 0 ± ).
We recall also that the frame of the profile (i.e. χ |α k | (1)) satisfies the system (65)

∂ x T |α k | (1, x) = (|α k |e -i x 2 4 N |α k | (1, x)), ∂ x N |α k | (1, x) = -|α k |e i x 2 4 T |α k | (1, x),
and that for x → ±∞ there exist

B ± |α k | ⊥ A ± |α k | , with (B ± |α k | ), (B ± |α k | ) ∈ S 2 , such that (66) T |α k | (1, x) = A ± |α k | + O( 1 x ), e i|α k | 2 log |x| N |α k | (1, x) = B ± |α k | + O( 1 |x| 
).

Lemma 4.3. Let t n be a sequence of positive times converging to zero. Up to a subsequence, there exists for all x ∈ R a limit

(T * (x), N * (x)) = lim n→∞ (T (t n , k + x √ t n ), e i|α k | 2 log √ tn N (t n , k + x √ t n )),
and there exists a unique rotation Θ k such that (67)

   T * (x) = Θ k (T |α k | (x)), (e iArgα k N * (x)) = Θ k ( (N |α k | (x))), (e iArgα k N * (x)) = Θ k ( (N |α k | (x))). Moreover, for x → ±∞ (68) T * (x) = Θ k (A ± |α k | ) + O( 1 |x| ), e i|α k | 2 log |x| e iArg(α k ) N * (x) = Θ k (B ± |α k | ) + O( 1 |x| ).
Proof. Let t n be a sequence of positive times converging to zero. We introduce for x ∈ R the functions

(T n (x), N n (x)) = (T (t n , k + x √ t n ), e i|α k | 2 log √ tn N (t n , k + x √ t n )).
This sequence is uniformly bounded. In view of ( 55) and ( 56) we have

T n (x) = √ t n (uN )(t n , k + x √ t n ) = ( j e i|α j | 2 log √ tn (α j + R j (t n ))e -i (k+x √ tn-j) 2 4tn N (t n , k + x √ t n )),
and

N n (x) = -e i|α k | 2 log √ tn √ t n (uT )(t n , k + x √ t n ) = - j e i(|α k | 2 -|α j | 2 ) log √ tn (α j + R j (t n ))e i (k+x √ tn-j) 2 4tn T (t n , k + x √ t n ).
Therefore the sequence (T n (x), N n (x)) is also uniformly bounded. These two facts give via Arzela-Ascoli's theorem the existence of a limit in n (of a subsequence, that we denote again (T n (x), N n (x))):

∃ lim n→∞ (T n (x), N n (x)) =: (T * (x), N * (x)).
Moreover, as {R j (t n )} l 1 = o(n) we can write

T n (x) = ( j e i|α j | 2 log √ tn α j e -i (k+x √ tn-j) 2 4tn N (t n , k + x √ t n )) + o(n)N n (x) = (α k e -i x 2 4 N n (x)) + (f n (x)N n (x)) + o(n)N n (x)
, where

f n (x) = j =k e i(|α j | 2 -|α k | 2 ) log √ tn α j e -i x 2 4 +ix j-k
For a test function ψ ∈ C ∞ c (R) we have by integrating by parts, avoiding in case a region os size o(n) around x = 0,

f n (x), ψ(x) = j =k e i(|α j | 2 -|α k | 2 ) log √ tn α j e -i x 2 4 +ix j-k 2 √ tn -i (k-j) 2 4tn ψ(x) dx = - j =k e i(|α j | 2 -|α k | 2 ) log √ tn α j 2 √ t n e ix j-k 2 √ tn -i (k-j) 2 4tn i(j -k) (e -i x 2 4 ψ(x)) x dx = C(ψ)o(n).
Similarly we obtain

N n (x) = -α k e i x 2 4 T n (x) + g n (x)T n (x) + o(n)T n (x),
with g n = o(n) in the weak sense. Therefore (T * (x), e iArg(α k ) N * (x)) satisfies system (65) in the weak sense. As the coefficients involved in the ODE are analytic we conclude that (T * (x), e iArg(α k ) N * (x)) satisfies system (65) in the strong sense, as (T

|α k | (x), N |α k | (x))
does. Therefore there exists a unique rotation Θ k such that (67) holds. We obtain (68) as a consequence of (66).

4.7.

Recovering the curvature angles of the initial data.

Lemma 4.4. Let k ∈ Z. Then, with the notations of the previous subsection,

T (0, k ± ) = Θ k (A ± |α k | ).
In particular, in view of (3) and (51) we recover that χ(0) is a polygonal line with corners at the same locations as χ 0 , and of same angles. 4Proof. Let > 0. In view of (68) we first choose x > 0 large enough such that

|T * (x) -Θ k (A + |α k | |) ≤ 3 ,
and that 

|T (0, k + ) -Θ k (A + |α k | )| = |T (0, k + x √ t n ) -Θ k (A + |α k | )| ≤ |T (0, k + x √ t n ) -T (t n , k + x √ t n )| + |T (t n , k + x √ t n ) -T * (x)| + |T * (x) -Θ k (A + |α k | )| ≤ , so T (0, k + ) = Θ k (A + |α k |
). Similarly we show by taking x < 0 that

T (0, k -) = Θ k (A - |α k | ).
The lemma insures us that χ(0) has corners at the same locations as χ 0 , and of same angles. To recover χ 0 up to rotation and translations we need to recover also the torsion properties of χ 0 . 4.8. Trace and properties of modulated normal vectors. In order to recover the torsion angles we shall need to get informations about N (t, x) as t goes to zero. For x / ∈ Z we denote the modulated normal vector (69) Ñ (t, x) = e iΦ(t,x) N (t, x), where

Φ(t, x) = j |α j | 2 log |x -j| √ t . (70) 
We start with a lemma insuring the existence of a limit for Ñ (t, x) at t = 0, with a convergence decay of selfsimilar type

√ t d(x,Z) for x close to Z. Lemma 4.5. Let 0 < t 1 < t 2 < 1. For x / ∈ 1 2 Z we have (71) | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ C(1 + |x|) √ t 2 1 d(x, 1 2 Z) + 1 d(x, Z) , while if x ∈ 1 2 Z\Z then (72) | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ C(1 + |x|) √ t 2 .
In particular for any x / ∈ Z there exists a trace for the modulated normal vector at t = 0: Proof. In view of (58) and (54) we have

Ñ (t 2 , x) -Ñ (t 1 , x) = t 2 t 1 -iu x T + i |u| 2 2 - M 2t N + iΦ t N e iΦ dt = t 2 t 1   -i j e -i|α j | 2 log √ t (α j + R j (t)) e i (x-j) 2 4t √ t i (x -j) 2t T (t, x) +i j =k e -i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t)) e i (x-j) 2 -(x-k) 2 4t 2t N (t, x) + iΦ t N (t, x)   e iΦ dt.
We can integrate by parts in the first term to get

Ñ (t 2 , x) -Ñ (t 1 , x) = =   j =x e -i|α j | 2 log √ t (α j + R j (t)) e i (x-j) 2 4t √ t (- 4t 2 i(x -j) 2 ) (x -j) 2t T (t, x)   t 2 t 1 -2i t 2 t 1 j =x e i (x-j) 2 4t x -j ( √ te -i|α j | 2 log √ t (α j + R j (t))T (t, x)e iΦ ) t dt +i t 2 t 1 ( j =x,k e -i(|α j | 2 -|α k | 2 ) log √ t (α j +R j (t))(α k + R k (t)) e i (x-j) 2 -(x-k) 2 4t 2t N (t, x)+Φ t N (t, x))e iΦ dt.
Having in mind the expression (57) for T t we obtain

Ñ (t 2 , x) -Ñ (t 1 , x) = O( √ t 2 d(x, Z) ) -2i t 2 t 1 j =x e i (x-j) 2 4t x -j √ te -i|α j | 2 log √ t (α j + R j (t)) × ( k e i|α k | 2 log √ t (α k + R k (t)) e -i (x-k) 2 4t √ t (-i x -k 2t )N (t, x)e iΦ dt +i t 2 t 1 ( j =x,k e -i(|α j | 2 -|α k | 2 ) log √ t (α j +R j (t))(α k + R k (t)) e i (x-j) 2 -(x-k) 2 4t 2t N (t, x)+Φ t N (t, x))e iΦ dt.
The integrals are in 1 t . By writing (-iz) = -z+z 2 in the first integral, we have terms e i (x-j) 2 -(x-k) 2 4t or e i (x-j) 2 +(x-k) 2 4t , both oscillant except for the first one, in case j = k or 2x = j + k. For x / ∈ 1 2 Z we perform integrations by parts in all terms, except in case j = k for the first integral, that allow for a gain of t 2 minus at worse terms involving N t that are in

1 t √ t : Ñ (t 2 , x) -Ñ (t 1 , x) = O((1 + |x|) √ t 2 ( 1 d(x, 1 2 Z) + 1 d(x, Z) )) +i t 2 t 1 j |α j + R j (t)| 2 2t N e iΦ + Φ t N (t, x)e iΦ dt.
In view of the decay of {R j (t)} and the expression (70) of the phase Φ we obtain (71). We are left with the case x ∈ 1 2 Z. The computations goes as above, with some extra non-oscillant terms that actually calcel:

Ñ (t 2 , x) -Ñ (t 1 , x) = O((1 + |x|) √ t 2 +i t 2 t 1 j =x,k;j+k=2x e -i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t)) x -k x -j N (t, x) 2t e iΦ dt +i t 2 t 1 j =x,k;j+k=2x e -i(|α j | 2 -|α k | 2 ) log √ t (α j + R j (t))(α k + R k (t)) N (t, x) 2t e iΦ dt. +i t 2 t 1 j =x |α j + R j (t)| 2 2t N e iΦ + Φ t N (t, x)e iΦ dt = O((1 + |x|) √ t 2 .
Next we shall prove that Ñ (0, x) is piecewise constant.

Lemma 4.6. Let n ∈ Z and x 1 , x 2 ∈ (n, n + 1). Then Ñ (0, x 1 ) = Ñ (0, x 2 ).

Moreover, the same statement remains valid for

x 1 , x 2 ∈ (n -1, n + 1) if α n = 0.
Proof. From Lemma 4.5 we have

(74) Ñ (0, x 1 ) -Ñ (0, x 2 ) = lim t→0 ( Ñ (t, x 1 ) -Ñ (t, x 2 )).
In view of (56) we compute

Ñ (t, x 1 ) -Ñ (t, x 2 ) = x 2 x 1 (-uT (t, x) + iΦ x N (t, x))e iΦ dx = x 2 x 1 (- j e -i|α j | 2 log √ t (α j + R j (t)) e i (x-j) 2 4t √ t T (t, x) + iΦ x N (t, x))e iΦ dx.
The integral is well defined, and In view of the decay of {R j (t)} we have

Ñ (t, x 1 Ñ (t, x 2 ) = O( √ t)+ x 2 x 1 (- j e -i|α j | 2 log √ t α j e i (x-j) 2 4t √ t T (t, x)+iΦ x N (t, x))e iΦ dx.
If we are in the case x 1 , x 2 ∈ (n -1, n + 1) and α n = 0, the phase x -j can vanish on (x 1 , x 2 ) only for j = n but in this case the whole term vanishes as α n = 0. In the case (x 1 , x 2 ) ∈ (n, n + 1) the phase x -j = 0 cannot vanish on (x 1 , x 2 ). Therefore to get decay in time we integrate by parts:

Ñ (t, x 1 ) -Ñ (t, x 2 ) = O( √ t) +   - j e -i|α j | 2 log √ t α j e i (x-j) 2 4t √ t 4t 2i(x -j) T (t, x)e iΦ   t 2 t 1 + x 2 x 1 j e -i|α j | 2 log √ t α j 2 √ t i e i (x-j) 2 4t ( 1 x -j T (t, x)e iΦ ) x + iΦ x N (t, x)e iΦ dx.
In view of formula (55) for the derivative T x and the expression (70) of Φ(t, x) we get Ñ

(t, x 1 ) -Ñ (t, x 2 ) = O( √ t) +i x 2 x 1 (-2 j e -i|α j | 2 log √ t α j e i (x-j) 2 4t 1 x -j ( j e i|α k | 2 log √ t α k e -i (x-k) 2 4t N (t, x))+Φ x N (t, x))e iΦ dx = O( √ t)+i x 2 x 1 (- j,k e -i(|α j | 2 -|α k | 2 ) log √ t α j α k e i (x-j) 2 -(x-k) 2 4t 1 x -j N (t, x)+Φ x N (t, x))e iΦ dx -i x 2 x 1 j,k e -i(|α j | 2 +|α k | 2 ) log √ t α j α k e i (x-j) 2 +(x-k) 2 4t 1 x -j N (t, x)e iΦ dx.
In the first integral the terms with j = k cancel with the ones from Φ x . In the second integral the phase (x -j) 2 + (x -k) 2 does not vanish as (x 1 , x 2 ) does not contain integers, so we can integrate by parts, use the expression (56) for N x and gain a √ t decay in time. We are left with Ñ (t,

x 1 ) -Ñ (t, x 2 ) = O( √ t) -i x 2 x 1 j =k e -i(|α j | 2 -|α k | 2 ) log √ t α j α k e i (x-j) 2 -(x-k) 2 4t 1 x -j N (t, x)e iΦ dx. If n ± 1 2 / ∈ (x 1 , x 2 ) the phase (x -j) 2 -(x -k) 2
does not vanish, so again we can perform an integration by parts to get the decay in time. If n + 1 2 ∈ (x 1 , x 2 ) ⊂ (n, n + 1) we split the integral into three pieces : (

x 1 , n + 1 2 - √ t), (n + 1 2 - √ t, n + 1 2 + √ t) and (n + 1 2 + √ t, x 2 
). On the middle segment, of size 2 √ t we upper-bound the integrant by a constant. On the extremal segments we perform an integration by parts, that gives a power √ t as

1 |(x -j) 2 -(x -k) 2 | ≤ C d(2x, Z) . The cases when n ± 1 2 ∈ (x 1 , x 2 ) ⊂ (n -1, n + 1) are treated similarly. Therefore Ñ (t, x 1 ) -Ñ (t, x 2 ) = O( √ t),
and in view of (74) we get the conclusion of the Lemma.

We end this section with a lemma that gives a link between Ñ (0, k ± ) and the rotation Θ k from Lemma 4.3 Lemma 4.7. Let t n be a sequence of positive times converging to zero, such that

(75) e i j |α j | 2 log( √ tn) = 1.
Using the notations in Lemma 4.3 we have the following relation:

Θ k (B ± |α k | ) = e -i j =k |α j | 2 log |k-j| e iArg(α k ) Ñ (0, k ± ).
Proof. Let > 0. We choose x > 0 large enough such that in view of (68) 

(76) |e i|α k | 2 log |x| e iArg(α k ) N * (x) -Θ k (B + |α k | )| ≤ 4 
|e i|α k | 2 log √ tn N (t n , k + x √ t n ) -N * (x)| ≤ 4 .
The last fact is possible in view of Lemma 4.3. Therefore we have, in view of Lemma 4.6 :

I := |e -i j =k |α j | 2 log |k-j| e iArg(α k ) Ñ (0, k + ) -Θ k (B + |α k | )| = |e -i j =k |α j | 2 log |k-j| e iArg(α k ) Ñ (0, k + x √ t n ) -Θ k (B + |α k | )| ≤ | Ñ (0, k + x √ t n ) -Ñ (t n , k + x √ t n )| +|e -i j =k |α j | 2 log |k-j| e iArg(α k ) Ñ (t n , k + x √ t n ) -Θ k (B + |α k | )|
. By using the convergence (71) of Lemma 4.5 together with (77), and the definition (69) of Ñ we get

I ≤ 4 + |e -i j =k |α j | 2 log |k-j| e iArg(α k ) e i j |α j | 2 log |x √ tn+k-j| √ tn N (t n , k + x √ t n ) -Θ k (B + |α k | )|.
In view of ( 78) and (75) we have

I ≤ 2 4 + |e iArg(α k ) e i|α k | 2 log |x| e -i j =k |α j | 2 log( √ tn) N (t n , k + x √ t n ) -Θ k (B + |α k | )| = 2 + |e iArg(α k ) e i|α k | 2 log |x| e i|α k | 2 log( √ tn) N (t n , k + x √ t n ) -Θ k (B + |α k | )|.
Finally, by (79)

I ≤ 3 4 + |e iArg(α k ) e i|α k | 2 log |x| N * (x) -Θ k (B + |α k | )|,
and we conclude by (76) that

I ≤ , ∀ > 0, thus Θ k (B + |α k | ) = e -i j =k |α j | 2 log
|k-j| e iArg(α k ) Ñ (0, k + ). For x < 0 we argue similarly to get Θ k (B - |α k | ) = e -i j =k |α j | 2 log |k-j| e iArg(α k ) Ñ (0, k -).

4.9. Recovering the torsion of the initial data. Recall that in §4.2 we have denoted by {x n , n ∈ L} the ordered set of the integer corner locations of χ 0 and by {θ n , τ n , δ n } n∈L the sequence determining the curvature and torsion angles of χ 0 . Lemma 4.4 insured us that χ(0) has corners at the same locations as χ 0 , and of same angles. Let us denote {θ n , τn , δn } n∈L the correspondent sequence of χ(0). To recover χ 0 up to rotation and translations we need to recover also the torsion properties of χ 0 , i.e. τn = τ n and δn = δ n . In §4.2 we have defined the torsion parameters in terms of the vectorial product of two consecutive tangent vectors, and in view of the way the tangent vectors of χ(0) are described in Lemma 4.4, we are lead to investigate vectorial products of type Θ k (A - |α k | ∧ A + |α k | ). We start with the following lemma. Proof. For simplicity we drop the subindex a. We recall from (66) that the tangent vectors of the profile χ(1) have asymptotic directions the unitary vectors A ± that can be described in view of formula [START_REF] Buttke | A numerical study of superfluid turbulence in the Self Induction Approximation[END_REF] in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] as

A + = (A 1 , A 2 , A 3 ), A -= (A 1 , -A 2 , -A 3 ).
This parity property for the tangent vector implies similar parity properties for normal and binormal vectors and from (66) we also get

B + = (B 1 , B 2 , B 3 ), B -= (B 1 , -B 2 , -B 3 ).
In particular we have

A -∧ A + |A -∧ A + | = 1 1 -A 2 1
(0, -A 3 , A 2 ), so (80)

A -∧ A + |A -∧ A + | .B + = 1 1 -A 2 1 (A 3 B 2 -A 2 B 3 ) = - A -∧ A + |A -∧ A + | .B -.
Since B + ⊥ A + and B + , B + , A + is an orthonormal basis of R 3 , we have a unique φ ∈ [0, 2π) such that

A -∧ A + |A -∧ A + | = cos φ B + + sin φ B + = (e -iφ B + ),
thus the first inequality in the statement. The second inequality follows from (80).

We continue with some useful information on the connection between quantities involving normal components at two consecutive corners of χ(0). Recall that we have defined α k = 0 if k / ∈ {x n , n ∈ L} and if k = x n for some n ∈ L we have defined α k ∈ C by ( 51) and [START_REF] Taylor | The Schrödinger equation on spheres[END_REF]. In particular two consecutive corners are located at x n and x n+1 , and the corresponding information is encoded by α xn and α x n+1 . Lemma 4.9. Let t n be a sequence of positive times converging to zero, such that the hypothesis (75) of Lemma 4.7 holds. We have the following relation concerning two consecutive corners located at x n and x n+1 : 4.10. End of the existence result proof. From Lemma 4.4 and Lemma 4.10 we conclude that χ(0) and χ 0 have the same characterizing sequences {θ n , τ n , δ n } n∈L . In view of the definition of this sequence in §4.2 we conclude that χ(0) and χ 0 coincide modulo a rotation and a translation. This rotation and translation can be removed by changing the initial point P and frame (v 1 , v 2 , v 3 ) used in the construction of χ(t) in §4.3. Therefore we have constructed the curve evolution in Theorem 1.1 for positive times. The extension in time is done by using the time reversibility of the Schrödinger equation and the one of the binormal flow, that means solving for positive times the binormal flow with initial data χ(-s), which is still a polygonal line satisfying the hypothesis. 

∃ lim t→0 Ñ

 t→0 (t, x) =: Ñ (0, x).Moreover for any x ∈ Z there exists a trace(73) ∃ lim t→0 e i j =x |α j | 2 log |x-j| √ t N (t, x),with a rate of convergence upper-bounded by C(1 + |x|) √ t.
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 48 For a > 0 there exists a unique φ a ∈ [0, 2π) such thatA - a ∧ A + a |A - a ∧ A + a | = (e iφa B + a ) = -(e -iφa B - a ).

Θ

  xn (B + |αx n | ) = e iβn e iArg(αx n )-Arg(αx n+1 ) Θ x n+1 (B - |αx n+1 | ),whereβ n = (|α xn | 2 -|α x n+1 | 2 ) log |x n -x n+1 |.Proof. The result is a simple consequence of Lemma 4.7 and Lemma 4.6.Now we shall recover in the next lemma the modulus and the sign of the torsion angles of χ 0 .Lemma 4.10. The torsion angles of χ(0) and χ 0 coincide:τn = τ n , δn = δ n , ∀n ∈ L.Proof. From the definition (50) we havecos(τ n ) = T (0, x - n ) ∧ T (0, x + n ) |T (0, x - n ) ∧ T (0, x + n )| . T (0, x - n+1 ) ∧ T (0, x + n+1 ) |T (0, x - n+1 ) ∧ T (0, x + n+1 )| . Now we use Lemma 4.4: cos(τ n ) = Θ xn A - |αx n | ∧ A + |αx n | |A - |αx n | ∧ A + |αx n | | .Θ x n+1   A - |αx n+1 | ∧ A + |αx n+1 | |A - |αx n+1 | ∧ A + |αx n+1 | |   .By using Lemma 4.8 we writecos(τ n ) = Θ xn (e iφ |αx n | B + |αx n | ) .Θ x n+1 -(e iφ |αx n+1 | B - |αx n+1 | ) = -Θ xn (e iφ |αx n | B + |αx n | ) . Θ x n+1 (e iφ |αx n+1 | B - |αx n+1 |) . Finally, by Lemma 4.9 we getcos(τ n ) = -e iφ |αx n | +iβn+i(Arg(αx n )-Arg(αx n+1 )) Θ x n+1 (B - |αx n+1 | ) . Θ x n+1 (e iφ |αx n+1 | B - |αx n+1 | ) . Since B - |αx n+1 | and B - |αx n+1 | are unitary orthogonal vectors, we obtain cos(τ n ) = -cos(φ |αx n | + β n + Arg(α xn ) -Arg(α x n+1 ) -φ |αx n+1 | ).Therefore, by definition (52) of {Arg(α j )} we getcos(τ n ) = cos(τ n ),and in particular τn = τ n .Similarly, we computeT (0, x - n ) ∧ T (0, x + n ) |T (0, x - n ) ∧ T (0, x + n )| ∧ T (0, x - n+1 ) ∧ T (0, x + n+1 ) |T (0, x - n+1 ) ∧ T (0, x + n+1 )| = -Θ x n+1 ( B - |αx n+1 | )∧Θ x n+1 ( B - |αx n+1 | ) sin(φ |αx n | +β n +Arg(α xn )-Arg(α x n+1 )-φ |αx n+1 | ). As (B - |αx n+1 | ) ∧ (B - |αx n+1 | ) = A - |αx n+1 | , in view of Lemma 4.4 we get T (0, x - n ) ∧ T (0, x + n ) |T (0, x - n ) ∧ T (0, x + n )| ∧ T (0, x - n+1 ) ∧ T (0, x + n+1 ) |T (0, x - n+1 ) ∧ T (0, x + n+1 )| = -T (0, x - n+1 ) sin(φ |αx n | + β n + Arg(α xn ) -Arg(α x n+1 ) -φ |αx n+1 |), so by definition (52) of {Arg(α j )} we conclude δn = δ n .

4. 11 .

 11 Further properties of the constructed solution. In this last subsection we describe the trajectories in time of the R 3 -locations of the corners, χ(t, k).
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 41100 Let k such that α k = 0, that is a location of corner for χ 0 . Then there exists v 1 , v 2 ∈ S 2 such thatχ(t, k) = χ(0, k) + √ t (v 1 sin(M log √ t) + v 2 cos(M log( √ t)) + O(t).Proof. From (59) and the decay of {R j (τ )} we haveχ(t, k) -χ(0, k) = i|α j | 2 log √ τ (α j + R j (τ ))e -i (k-jwith j = k we perform an integration by parts to get decay in timeχ(t, k) -χ(0, k) = t i|α k | 2 log √ τ α k N (τ, -j) 2 (e i|α j | 2 log √ τ τ √ τ N (τ, k)) τ dτ.The boundary term is of order O(t √ t). In view of (58) we get a 1 τ √ τ estimate for N τ so the last term is of order O(t), and we haveχ(t, k) -χ(0, k) = t i|α k | 2 log √ τ α k N (τ, k) dτ √ τ + O(t).Now, from (73) in Lemma 4.5 we get the existence of w 1 , w 2 ∈ S 2 such thatw 1 + iw 2 = lim t→0 e -i j =k |α j | 2 log √ t N (t, k),with a rate of convergence upper-bounded by C(1 + |k|) √ t. This impliesχ(t, k) -χ(0, k) = α k (w 1 + iw 2 ) t 0 e i j |α j | 2 log √ τ dτ √ τ + O(t),and thus the conclusion of the Lemma.

  (x)| ≤ 3 . The last fact is possible in view of Lemma 4.3. Finally, we have, in view of Lemma 4.2 and (60):

	C(1+|k|) x such that |x √ t n | < 1 ≤ 3 , where C is the coefficient in (60). Then we choose n large enough 2 and that |T (t n , k + x √ t n ) -T

*

  , |e -i j =k |α j | 2 log |x √ tn+k-j| -e -i j =k |α j | 2 log |k-j| ≤

	where C is the coefficient in (71). Then we choose n large enough such that |x	√	t n | < 1 2
	and such that				
	(78)				4	,
	and				
	(79)				
	and such that				
	(77)	C(1 + |k|) x	≤	4	,

√ tn -i (k-j) 2 4tn .

This also implies that the rotation Θ k does not depend on the choice of the sequence tn.