A one-variable bracket polynomial for some Turk's head knots

Franck Ramaharo

To cite this version:

Franck Ramaharo. A one-variable bracket polynomial for some Turk's head knots. 2018. hal01842108

HAL Id: hal-01842108
https://hal.science/hal-01842108
Preprint submitted on 17 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A one-variable bracket polynomial for some Turk's head knots

Franck Ramaharo
Département de Mathématiques et Informatique
Université d'Antananarivo
101 Antananarivo, Madagascar
franck.ramaharo@gmail.com

July 17, 2018

Abstract

We compute the Kauffman bracket polynomial of the three-lead Turk's head, the chain sinnet and the figure-eight chain shadow diagrams. Each of these knots can in fact be constructed by repeatedly concatenating the same 3 -tangle, respectively, then taking the closure. The bracket is then evaluated by expressing the state diagrams of the concerned 3 -tangle by means of the Kauffman monoid diagram's elements.

Keywords: bracket polynomial, tangle shadow, Kauffman state, flat sinnet.

1 Introduction

The present paper is a follow-up on our previous work which aims at collecting statistics on knot shadows [5]. We would like to establish the bracket polynomial for knot diagram generated by the 3 -tangle shadows below:

The knot diagrams under consideration are those obtained by repeatedly multiplying (or concatenating) the same 3 -tangle, then taking the closure of the resulting 3-tangle (i.e., connecting the endpoints in a standard way, without introducing further crossings between the strands). Knots obtained from the 3-tangles pictured in (1) belong to the Ashley's Turk's head family [1, p. 226, Chap. 17]: the three-lead Turk's head [1, \#1305], the chain sinnet [1, $\# 1374]$ and the figure-eight chain [1, \#1376], respectively (e.g. see Figure 1).

Three-lead Turk's head

Chain sinnet

Figure-eight chain

Figure 1: Some flat Turk's-head knot diagrams.

The remainder of this paper is arranged as follows. In section 2, we establish the expression of the bracket polynomial for any 3-tangle shadow diagram. Then in section 3, we apply those results to the flat sinnet Turk's heads mentioned earlier.

2 The Kauffman bracket of a 3-tangle shadow

In this paper, the Kauffman bracket maps a shadow diagram D to $\langle D\rangle \in \mathbb{Z}[x]$ and is constructed from the following rules:
$(\mathrm{K} 1):\langle\bigcirc\rangle=x ;$
(K2): $\langle\bigcirc \sqcup D\rangle=x\langle D\rangle$;
$(\mathrm{K} 3):\langle X\rangle=\langle)(\rangle+\langle\check{\frown}\rangle$.
The diagram \bigcirc in (K1) represents that of a single loop, and the symbol \sqcup in (K2) denotes the disjoint union operation. Formula in (K3) expresses the splitting of a crossing. Recall that the choice of such splittings for any single crossing is referred to as the so-called Kauffman state. Rules (K1), (K2) and (K3) can be summarized by the summation which is taken over all the states for D, namely $\langle D\rangle=\sum_{S} x^{|S|}$, where $|S|$ gives the number of loops in the state S. Kauffman shows that the states elements of a 3 -tangle diagram $B:=$ are generated by the product of a loop and the following 5 elements of the 3-strand diagram monoid $\mathcal{D}_{3}[2,8]$:

In other words, given a state S, there exist a nonnegative integer k and an element U in \mathcal{D}_{3} such that one writes $S=\bigcirc^{k} \sqcup U$, where $\bigcirc^{k}=\bigcirc \sqcup \bigcirc \sqcup \cdots \sqcup \bigcirc$ denotes the disjoint
union of k loops [3, p. 100]. The bracket of the 3-tangle B becomes $\langle B\rangle=\sum_{S}\langle S\rangle$, where $\langle S\rangle=x^{|S|}\langle U\rangle$ for certain $U \in \mathcal{D}_{3}$.

Therefore $\langle B\rangle$ is a linear combination of the brackets $\left\langle 1_{3}\right\rangle,\left\langle U_{1}\right\rangle,\left\langle U_{2}\right\rangle,\langle r\rangle$ and $\langle s\rangle$, i.e., there exist five polynomials a, b, c, d, e in $\mathbb{Z}[x]$ such that

$$
\begin{equation*}
\langle B\rangle=a\left\langle 1_{3}\right\rangle+b\left\langle U_{1}\right\rangle+c\left\langle U_{2}\right\rangle+d\langle r\rangle+e\langle s\rangle . \tag{2}
\end{equation*}
$$

Lemma 1. Given two 3-tangles B and D, we have

$$
\begin{aligned}
\langle B D\rangle= & a_{B} a_{D}\left\langle 1_{3}\right\rangle+\left(b_{B} a_{D}+\left(a_{B}+b_{B} x+d_{B}\right) b_{D}+\left(d_{B} x+b_{B}\right) e_{D}\right)\left\langle U_{1}\right\rangle \\
& +\left(c_{B} a_{D}+\left(a_{B}+c_{B} x+e_{B}\right) c_{D}+\left(c_{B}+e_{B} x\right) d_{D}\right)\left\langle U_{2}\right\rangle \\
& +\left(d_{B} a_{D}+\left(d_{B} x+b_{B}\right) c_{D}+\left(a_{B}+b_{B} x+d_{B}\right) d_{D}\right)\langle r\rangle \\
& +\left(e_{B} a_{D}+\left(c_{B}+e_{B} x\right) b_{D}+\left(a_{B}+c_{B} x+e_{B}\right) e_{D}\right)\langle s\rangle .
\end{aligned}
$$

Proof. We first establish the states of B leaving D intact, and then in D :

$$
\begin{aligned}
\langle B D\rangle= & a_{B} a_{D}\left\langle 1_{3}^{2}\right\rangle+a_{B} b_{D}\left\langle 1_{3} U_{1}\right\rangle+a_{B} c_{D}\left\langle 1_{3} U_{2}\right\rangle+a_{B} D\left\langle 1_{3} r\right\rangle+a_{B} e_{D}\left\langle 1_{3} s\right\rangle \\
& +b_{B} a_{D}\left\langle U_{1} 1_{3}\right\rangle+b_{B} b_{D}\left\langle U_{1}^{2}\right\rangle+b_{B} c_{D}\left\langle U_{1} U_{2}\right\rangle+b_{B} d_{D}\left\langle U_{1} r\right\rangle+b_{B} e_{D}\left\langle U_{1} s\right\rangle \\
& +c_{B} a_{D}\left\langle U_{2} 1_{3}\right\rangle+c_{B} b_{D}\left\langle U_{2} U_{1}\right\rangle+c_{B} c_{D}\left\langle U_{2}^{2}\right\rangle+c_{B} d_{D}\left\langle U_{2} r\right\rangle+c_{B} e_{D}\left\langle U_{2} s\right\rangle \\
& +d_{B} a_{D}\left\langle r 1_{3}\right\rangle+d_{B} b_{D}\left\langle r U_{1}\right\rangle+d_{B} c_{D}\left\langle r U_{2}\right\rangle+d_{B} d_{D}\left\langle r^{2}\right\rangle+d_{B} e_{D}\langle r s\rangle \\
& +e_{B} a_{D}\left\langle s 1_{3}\right\rangle+e_{B} b_{D}\left\langle s U_{1}\right\rangle+e_{B} c_{D}\left\langle s U_{2}\right\rangle+e_{B} d_{D}\langle s r\rangle+e_{B} e_{D}\left\langle s^{2}\right\rangle .
\end{aligned}
$$

The brackets for the pairs in the right-hand side can be evaluated by applying the following multiplication table.

\cdot	1_{3}	U_{1}	U_{2}	r	s
1_{3}	1_{3}	U_{1}	U_{2}	r	s
U_{1}	U_{1}	$\bigcirc \sqcup U_{1}$	s	U_{1}	$\bigcirc \sqcup s$
U_{2}	U_{2}	r	$\bigcirc \sqcup U_{2}$	$\bigcirc \sqcup r$	U_{2}
r	r	$\bigcirc \sqcup r$	U_{2}	r	$\bigcirc \sqcup U_{2}$
s	s	U_{1}	$\bigcirc \sqcup s$	$\bigcirc \sqcup U_{1}$	s

Table 1: Multiplication of elements in \mathcal{D}_{3}.
The proof is then completed by factoring with respect to the resulting brackets, eventually simplified according to (K2).

Notation 2. Let $B_{n}:=B B \cdots B$ denote the 3-tangle obtained by multiplying the 3-tangle B n times, with $B_{0}:=1_{3}$. For convenience, we shall identify the bracket formal expression in (2) by the 5 -tuple $[a, b, c, d, e]^{T}$. Similarly, assume that $\left\langle B_{n}\right\rangle$ is identified by $\left[a_{n}, b_{n}, c_{n}, d_{n}, e_{n}\right]^{T}$.

Lemma 3. The bracket 5 -tuple for B_{n} is given by

$$
\left[\begin{array}{l}
a_{n} \tag{3}\\
b_{n} \\
c_{n} \\
d_{n} \\
e_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
b & a+b x+d & 0 & 0 & d x+b \\
c & 0 & a+c x+e & c+e x & 0 \\
d & 0 & d x+b & a+b x+d & 0 \\
e & c+e x & 0 & 0 & a+c x+e
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Proof. We write $B_{n+1}=B B_{n}$, then from Lemma 1 we have

$$
\left[\begin{array}{c}
a_{n+1} \tag{4}\\
b_{n+1} \\
c_{n+1} \\
d_{n+1} \\
e_{n+1}
\end{array}\right]=\left[\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
b & a+b x+d & 0 & 0 & d x+b \\
c & 0 & a+c x+e & c+e x & 0 \\
d & 0 & d x+b & a+b x+d & 0 \\
e & c+e x & 0 & 0 & a+c x+e
\end{array}\right]\left[\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n} \\
d_{n} \\
e_{n}
\end{array}\right] .
$$

We conclude by unfolding the recurrence and taking into consideration the initial condition $\left[a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right]^{T}=[1,0,0,0,0]^{T}$.

We let M_{B} denote the 5×5 matrix in (3), and we will later refer to it as the states matrix for the 3-tangle B. Using the standard method for computing (3) we obtain the characteristic polynomial for M_{B}

$$
\chi\left(M_{B}, \lambda\right)=-(\lambda-a)\left(\lambda-\frac{1}{2}(p-q)\right)^{2}\left(\lambda-\frac{1}{2}(p+q)\right)^{2},
$$

then

$$
\begin{align*}
& a_{n}=a^{n}, \tag{5}\\
& b_{n}=\frac{-1}{2 q\left(x^{2}-1\right)}\left(2 a^{n} q x+\left(\frac{p-q}{2}\right)^{n}\left((b-c) x^{2}+(-d-e-q) x-2 b\right)\right. \\
&\left.+\left(\frac{p+q}{2}\right)^{n}\left((-b+c) x^{2}+(d+e-q) x+2 b\right)\right), \tag{6}\\
& c_{n}=\frac{-1}{2 q\left(x^{2}-1\right)}\left(2 a^{n} q x+\left(\frac{p+q}{2}\right)^{n}\left((b-c) x^{2}+(d+e-q) x+2 c\right)\right. \\
&\left.+\left(\frac{p-q}{2}\right)^{n}\left((-b+c) x^{2}+(-d-e-q) x-2 c\right)\right), \tag{7}\\
& d_{n}=\frac{1}{2 q\left(x^{2}-1\right)}\left(2 a^{n} q+\left(\frac{p-q}{2}\right)^{n}\left(-2 d x^{2}+(-b-c) x+d-e-q\right)\right. \\
&\left.+\left(\frac{p+q}{2}\right)^{n}\left(2 d x^{2}+(b+c) x-d+e-q\right)\right), \tag{8}\\
& e_{n}=\frac{1}{2 q\left(x^{2}-1\right)}\left(2 a^{n} q+\left(\frac{p-q}{2}\right)^{n}\left(-2 e x^{2}+(-b-c) x-d+e-q\right)\right. \\
&\left.+\left(\frac{p+q}{2}\right)^{n}\left(2 e x^{2}+(b+c) x+d-e-q\right)\right), \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& p:=(b+c) x+2 a+d+e, \tag{10}\\
& q:=\sqrt{\left(b^{2}-2 b c+c^{2}+4 d e\right) x^{2}+(2 b d+2 c d+2 b e+2 c e) x+4 b c+d^{2}-2 d e+e^{2}} . \tag{11}
\end{align*}
$$

Now let $\overline{B_{n}}$ denote the tangle closure of B_{n}. In order to evaluate $\left\langle\overline{B_{n}}\right\rangle$ from formula (3) we need to apply the closure to the elements of \mathcal{D}_{3}.

Lemma 4. The expression of the bracket polynomial for the closure $\overline{B_{n}}$ is given by

$$
\begin{equation*}
\left\langle\overline{B_{n}}\right\rangle=x^{3} a_{n}+x^{2}\left(b_{n}+c_{n}\right)+x\left(d_{n}+e_{n}\right) . \tag{12}
\end{equation*}
$$

The splitting at each crossing do not conflict with the closing process, hence the only point remaining concerns the evaluation of the brackets to the closure of the elements of \mathcal{D}_{3}, namely

$\left\langle\overline{U_{2}}\right\rangle=x^{2}$

$\langle\bar{s}\rangle=x$
Next, combining (3), (5)-(9) and (12), we obtain a better expression of the bracket:
Lemma 5. The bracket polynomial for the knot $\overline{B_{n}}$ is given by

$$
\begin{equation*}
\left\langle\overline{B_{n}}\right\rangle=x a^{n}\left(x^{2}-2\right)+x\left(\left(\frac{p-q}{2}\right)^{n}+\left(\frac{p+q}{2}\right)^{n}\right), \tag{13}
\end{equation*}
$$

where p and q are expressions defined in (10) and (11).
Finally, we let $\bar{B}(x ; y):=\sum_{n \geq 0}\left\langle\overline{B_{n}}\right\rangle y^{n}$ denote the generating function of $\left(\left\langle\overline{B_{n}}\right\rangle\right)_{n}$. By (13) we deduce

$$
\begin{aligned}
\bar{B}(x ; y)= & \frac{((b+c) x+2 a+d+e) y-2}{\left((d e-b c) x^{2}+(-a c-a b) x+(-d-a) e-a d+b c-a^{2}\right) y^{2}+((b+c) x+2 a+d+e) y-1} \\
& +\frac{x\left(x^{2}-2\right)}{1-a y} .
\end{aligned}
$$

3 Application

Throughout this section, let us refer to the 3-tangles in (1) as generators. Recall that in the expression $\left\langle\overline{B_{n}}\right\rangle=\sum_{k>0} s_{B}(n, k) x^{k}$ we have $s_{B}(n, k)=\#\left\{S \mid S\right.$ is a state of B_{n} and $\left.|S|=k\right\}$, with $B \in\{T, C, E\}$. For each flat sinnet Turk's head below, we will give the corresponding distribution $\left(s_{B}(n, k)\right)_{n, k}$ for small values of n and k.

1. Three-lead Turk's head. Let $\sum_{k \geq 0} s_{T}(n, k) x^{k}:=\left\langle\overline{T_{n}}\right\rangle$.

- Bracket for the generator T :

$$
\begin{aligned}
& \langle Y\rangle=\langle\mid \mathcal{Y}\rangle+\langle\hat{Y}\rangle \\
& =\langle || \rangle+\langle\mid \underset{\cap}{\cup}\rangle+\langle\hat{\cap} \|\rangle+\langle\stackrel{\cup}{\cup}\rangle \\
& \langle T\rangle=\left\langle 1_{3}\right\rangle+\left\langle U_{1}\right\rangle+\left\langle U_{2}\right\rangle+\langle s\rangle .
\end{aligned}
$$

- States matrix:

$$
M_{T}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & x+1 & 0 & 0 & 1 \\
1 & 0 & x+2 & x+1 & 0 \\
0 & 0 & 1 & x+1 & 0 \\
1 & x+1 & 0 & 0 & x+2
\end{array}\right]
$$

- Bracket for T_{n} :

$$
\left\langle\overline{T_{n}}\right\rangle=x\left(x^{2}-2\right)+x\left(\left(\frac{2 x+3-\sqrt{4 x+5}}{2}\right)^{n}+\left(\frac{2 x+3+\sqrt{4 x+5}}{2}\right)^{n}\right) .
$$

- Generating function:

$$
\bar{T}(x ; y)=\frac{x((-2 x-3) y+2)}{\left(x^{2}+2 x+1\right) y^{2}+(-2 x-3) y+1}+\frac{x\left(x^{2}-2\right)}{1-y} .
$$

- Distribution of $\left(s_{T}(n, k)\right)_{n, k}:[6, \underline{A 316659}]$

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	1								
1	0	1	2	1								
2	0	5	8	3								
3	0	16	30	16	2							
4	0	45	104	81	24	2						
5	0	121	340	356	170	35	2					
6	0	320	1068	1411	932	315	48	2				
7	0	841	3262	5209	4396	2079	532	63	2			
8	0	2205	9760	18281	18784	11440	4144	840	80	2		
9	0	5776	28746	61786	74838	55809	26226	7602	1260	99	2	
10	0	15125	83620	202841	282980	249815	144488	54690	13080	1815	120	2

Table 2: Values of $s_{T}(n, k)$ for $0 \leq n \leq 10$ and $0 \leq k \leq 11$.
2. Chain sinnet. Let $\sum_{k \geq 0} s_{C}(n, k) x^{k}:=\left\langle\overline{C_{n}}\right\rangle$.

- Bracket for the generator C :

$$
\begin{aligned}
& \langle\vartheta \alpha\rangle=\langle\mid \alpha\rangle+\langle\widehat{Q}\rangle \\
& =\langle ||\alpha\rangle+\langle |\}\rangle+\langle\bigcap \alpha\rangle+\langle\widehat{\bigcup}\rangle \\
& =\langle || \rangle\rangle+\langle || \rangle+\langle || \rangle+\langle\mid \underset{\cap}{\bigcup}\rangle+\langle\bigcap o \mid\rangle+\langle\cap \mid\rangle+\langle\cap \mid\rangle+\langle\wedge\rangle \\
& \langle C\rangle=(x+2)\left\langle 1_{3}\right\rangle+(x+2)\left\langle U_{1}\right\rangle+\left\langle U_{2}\right\rangle+\langle s\rangle .
\end{aligned}
$$

- States matrix:

$$
M_{C}=\left[\begin{array}{ccccc}
x+2 & 0 & 0 & 0 & 0 \\
x+2 & x^{2}+3 x+2 & 0 & 0 & x+2 \\
1 & 0 & 2 x+3 & x+1 & 0 \\
0 & 0 & x+2 & x^{2}+3 x+2 & 0 \\
1 & x+1 & 0 & 0 & 2 x+3
\end{array}\right]
$$

- Bracket for C_{n} :

$$
\begin{aligned}
\left\langle\overline{C_{n}}\right\rangle= & x\left(x^{2}-2\right)(x+2)^{n}+x\left(\left(\frac{x^{2}+5 x+5-\sqrt{x^{4}+2 x^{3}+3 x^{2}+10 x+9}}{2}\right)^{n}\right. \\
& \left.+\left(\frac{x^{2}+5 x+5+\sqrt{x^{4}+2 x^{3}+3 x^{2}+10 x+9}}{2}\right)^{n}\right)
\end{aligned}
$$

- Generating function

$$
\bar{C}(x ; y)=\frac{x\left(\left(-x^{2}-5 x-5\right) y+2\right)}{\left(2 x^{3}+8 x^{2}+10 x+4\right) y^{2}+\left(-x^{2}-5 x-5\right) y+1}+\frac{x\left(x^{2}-2\right)}{1-(x+2) y} .
$$

- Distribution of $\left(s_{C}(n, k)\right)_{n, k}$:

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	1										
1	0	1	3	3	1									
2	0	9	22	21	10	2								
3	0	49	141	164	105	42	10	1						
4	0	225	796	1186	1008	569	232	67	12	1				
5	0	961	4115	7677	8400	6205	3393	1435	461	105	15	1		
6	0	3969	20106	45481	61630	57078	39298	21239	9198	3151	822	153	18	1

Table 3: Values of $s_{C}(n, k)$ for $0 \leq n \leq 6$ and $0 \leq k \leq 13$.
3. Figure-eight chain. Let $\sum_{k \geq 0} s_{E}(n, k) x^{k}:=\left\langle\overline{E_{n}}\right\rangle$.

- Bracket for the generator E :

$$
\begin{aligned}
\langle\alpha \mid \alpha\rangle & =\langle\mid \alpha\rangle+\langle\langle A\rangle \\
& =\langle | Q \mid \alpha+\langle\mid \alpha\rangle+\langle\vartheta \mid\rangle=(x+1)\langle ||\alpha\rangle+\langle C\rangle \\
& =(x+1)(\langle || \rangle+\langle || |\rangle+\langle || \rangle+\langle\mid \cup\rangle)+\langle C\rangle \\
\langle E\rangle & =\left(x^{2}+4 x+4\right)\left\langle 1_{3}\right\rangle+(x+2)\left\langle U_{1}\right\rangle+(x+2)\left\langle U_{2}\right\rangle+\langle s\rangle .
\end{aligned}
$$

- States matrix:

$$
M_{E}=\left[\begin{array}{ccccc}
x^{2}+4 x+4 & 0 & 0 & 0 & 0 \\
x+2 & 2 x^{2}+6 x+4 & 0 & 0 & x+2 \\
x+2 & 0 & 2 x^{2}+6 x+5 & 2 x+2 & 0 \\
0 & 0 & x+2 & 2 x^{2}+6 x+4 & 0 \\
1 & 2 x+2 & 0 & 0 & 2 x^{2}+6 x+5
\end{array}\right] .
$$

- Bracket for $\overline{E_{n}}$:

$$
\begin{aligned}
\left\langle\overline{E_{n}}\right\rangle= & x\left(x^{2}-2\right)\left(x^{2}+4 x+4\right)^{n}+x\left(\left(\frac{4 x^{2}+12 x+9-\sqrt{8 x^{2}+24 x+17}}{2}\right)^{n}\right. \\
& \left.+\left(\frac{4 x^{2}+12 x+9+\sqrt{8 x^{2}+24 x+17}}{2}\right)^{n}\right)
\end{aligned}
$$

- Generating function

$$
\begin{aligned}
\bar{E}(x ; y)= & \frac{x\left(\left(-4 x^{2}-12 x-9\right) y+2\right)}{\left(4 x^{4}+24 x^{3}+52 x^{2}+48 x+16\right) y^{2}+\left(-4 x^{2}-12 x-9\right) y+1} \\
& +\frac{x\left(x^{2}-2\right)}{1-\left(x^{2}+4 x+4\right) y} .
\end{aligned}
$$

- Distribution of $\left(s_{E}(n, k)\right)_{n, k}$:

$n \backslash k \mid 0$	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	0	0	0	1										
1	0	1	4	6	4	1								
2	0	17	56	80	64	30	8	1						
3	0	169	660	1120	1096	684	280	74	12	1				
4	0	1377	6640	14112	17504	14128	7808	3008	800	142	16	1		
5	0	10201	59660	156624	244280	252460	182544	94960	35904	9800	1880	242	20	1

Table 4: Values of $s_{E}(n, k)$ for $0 \leq n \leq 5$ and $0 \leq k \leq 13$.

Remark 6. Column 1 in Table 2 is sequence A004146 in the OEIS [6], the sequence of alternate Lucas numbers minus 2, which is the determinant of the Turk's Head Knots THK $(3, n)$ [4]. Column 2 is the x-coefficients of a generalized Jaco-Lucas polynomials for even indices [7] (see column 1 in triangle A122076) and is also a subsequence of a Fibonacci-Lucas convolution A099920 for odd indices. Column 1 in Table 3 is A060867 with a leading 0.

Rows 1 in Table 2, Table 3, Table 4 match the coefficients of the bracket for the 2-twist loop (see row 1 in A300184, A300192 and row 0 in A300454), the 3-twist loop and the 4-twist loop modulo planar isotopy and move on the 2 -sphere [5], respectively (see Figure 2 (a), (b) and (d)). Row 2 in Table 2 gives those of the figure-eight knot (see Figure 2 (b) and row 1 in A300454).

Figure 2: Equivalent knot shadow diagrams.

References

[1] Clifford W. Ashley, The Ashley Book of Knots, New York: Doubleday, 1944.
[2] Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.
[3] Louis H. Kauffman, Knots and Physics, World Scientific, 1993.
[4] Seong Ju Kim, Ryan Stees, and Laura Taalman, Sequences of spiral knot determinants, J. Integer Seq. 19 (2016), 1-14.
[5] Franck Ramaharo, Statistics on some classes of knot shadows, arXiv preprint, https: //arxiv.org/abs/1802.07701v2, 2018.
[6] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2018.
[7] Ydong Sun, Numerical triangles and several classical sequences, Fib. Quart. 43 (2005), 359-370.
[8] Alexander Stoimenow, Square numbers, spanning trees and invariants of achiral knots, Communications in Analysis and Geometry 13 (2005), 591-631.

2010 Mathematics Subject Classifications: 05A19; 57M25.

