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Optimal design of sampling sets for least-squares
signal recovery with the Frank-Wolfe algorithm

G. Chardon

Abstract—We consider the sensors selection problem in a least-
squares setting. The sensors selection is replaced by the relaxed
problem of designing a sampling density minimizing the number
of samples needed to ensure stability of the recovery, shown to be
equivalent to the D-optimal design problem. We propose to use
the Frank-Wolfe algorithm to solve this optimization problem,
with low space and time computational complexity, linear with
respect to the number of possible sensors positions. As the optimal
densities are usually sparse, sampling points are drawn from the
optimized density using resampling methods. The optimization
problem and procedure can be easily modified to account for
additional design constraints.

Index Terms—Least-squares, sensor selection, convex optimiza-
tion, optimal design.

I. INTRODUCTION

The problem of sampling signals is of particular importance
in digital signal processing, as one necessary step linking the
real, analog world, to the discrete computations of digital
devices.

In the classical sampling theorem, the compact support of
the Fourier transform of a signal is leveraged to allow its
perfect reconstruction from its values on a discrete set of finite
density. Starting from low-pass signal models and uniform
sampling, this line of work continues through sampling of
signal with bandpass spectrum [1] or arbitrary known Fourier
support in higher dimensions [2], to sampling of signal with
unknown Fourier support of finite measure. In this case,
vertices of quasi-crystals are easily built sets that are known to
be stable sampling sets [3]. Compressed sensing and its appli-
cations put once again the question of sampling set design on
the foreground of signal processing and harmonic analysis, by
considering the recovery of vectors that are sparse in a given
basis with a number of samples lower than the dimension of
the basis. [4]. The design of compressed sensing measurement
schemes is difficult, and usually relies on randomness, either
by using random matrices [5], or by choosing random lines
from a deterministic matrix [6].

In this article, we consider the least-squares recovery of a
signal f defined on a set X . We use a simple linear model
where f is approximated by a signal fm in a space Vm of finite
dimension m spanned by m basis functions (φi)1≤i≤m. An
estimate f̂m of f is found by matching f̂m to noisy samples of
f in a least-squares sense. A suboptimal sampling set can lead
to instability of the recovery, i.e. an estimation error ‖f̂m−f‖22
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larger than the approximation error ‖fm−f‖22 or than the noise
level by several orders of magnitude.

These instabilities can be reduced by regularizing the esti-
mation of f̂m. In this approach, priors on the noise and on the
signal f are needed, which are not necessarily available. More-
over, regularization reduces the variance of the estimation, but
also introduces bias. Our approach will be to design a sampling
set such that no regularization is required, i.e. that no prior is
necessary apart the knowledge that f can be approximated by
fm ∈ Vm with sufficient precision.

The problem of sensors placement is an important problem
in signal processing [7], [8], [9], but such considerations are no
limited to this field. Similar problems are found in numerical
analysis, in particular when solving PDEs using the reduced
basis method [10], or in optimal design of experiments in
statistics [11] (in particular, it will be shown that the problem
of D-optimal design is equivalent to the problem of stable
least-squares recovery).

A particular difficulty of the design of sampling sets is the
non-convexity of the optimization problem. Methods such as
convex relaxation of the problem as the optimization of a
probability density [7], [12], [9], as well as greedy algorithms
[8], [13], [14], can be used to construct approximate solutions
to the optimal sampling set problem. We will here use the
former approach, also known as variable density compressive
sampling in sparse recovery [15], [16].

Our main goal is the minimization of the number of samples
necessary to ensure stability of the reconstruction. To this end,
we use a lower bound on the necessary number of samples
needed for stability in function of the probability density
used to draw the sampling points, introduced in [17]. We
propose a fast algorithm for the design of the measurement
density to minimize this bound, as well as a sampling scheme
to construct the actual measurement set from the optimized
density.

A. Contributions

The problem of designing a sampling set for stable least-
squares estimation is shown to be equivalent to the D-optimal
design problem, in the sense that optimizing a sampling
density to minimize the necessary number a samples for
stable recovery is equivalent to maximizing the determinant
of the information matrix of a linear regression problem.
Furthermore, in generic settings, the optimal densities are
discrete.

The application of the Frank-Wolfe algorithm to this prob-
lem was introduced in [18]. It is here shown that the com-
plexity in time and space of this algorithm is lower than
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existing methods, with similar or better results. In particular,
the complexity is linear with respect to the number of possible
sensor positions. This algorithm, yielding sparse densities, is
well adapted to the properties of optimal sampling densities.

The algorithm can take in account additional constraints
or modified objective functions. As an example, the joint
optimization of a common sampling density for two different
spaces Vm is demonstrated. The number of samples necessary
for stable approximation in both spaces is also given by the
optimization algorithm.

Finally, as the optimal sampling densities are sparse, the
use of resampling methods is discussed. These methods yield
sampling sets that ensure stability with a number of measure-
ments close to the dimension of the space Vm, with a minimal
amount of randomness. The code necessary to reproduce the
figures is available online1.

B. Structure of the article

Results on the stability of least-squares recovery are recalled
in section II, as well as connections with D-optimal design
and other methods. The optimization problem and algorithm
are formulated in section III, with numerical comparisons with
existing algorithms. The problem of sampling the optimized
density and numerical results on estimation errors are dis-
cussed in section IV. Extensions of the method are introduced
in section V, and concluding remarks are given in section VI.

II. STABLE LEAST-SQUARES RECOVERY AND RELATED
PROBLEMS

The standard setting for the least-squares recovery of a sig-
nal is as follows. We assume that the signal f to be recovered
can be approximated by fm in a space of finite dimension Vm,
and that we observe samples yi = f(xi) + bi, where xi ∈ X
are n fixed sampling points, and the measurement errors bi
are i.i.d. centered random variables of variance σ2. The space
Vm depends on the application. Examples include standard or
trigonometric polynomials [17], Fourier-Bessel functions or
spherical harmonics [19], [20], cosine basis [8], etc.

The least-squares estimate f̂m of f is given by

f̂m = argmin
f̂m∈Vm

n∑
i=1

|yi − f̂m(xi)|2. (1)

The Gauss-Markov theorem shows that in the case where f =
fm, f̂m is the best linear unbiased estimate of f .

Our goal is to ensure the stability of the estimation with
respect to the measurement noise, as well as the approximation
error, i.e. that the estimation error can be bounded:

‖f̂m − f‖22 ≤ C1‖fm − f‖22 + C2σ
2 (2)

with C1 as close as possible to 1, and C2 as close as possible
to 0 for a given number of samples.

Depending on the choice of the sampling points xi, a large
number of samples can be necessary to ensure stability of
the estimation, even in noiseless cases. A famous example is

1https://gilleschardon.fr/fwkm

known as the Runge phenomenon, where polynomial interpo-
lation of a function with regularly spaced samples fails for a
number of samples linear with respect to the dimension m.

Optimizing the sampling points xi leads to an untractable
non-convex optimization problem. We will use a relaxed
approach, introduced in [17], where the sampling points are
drawn from a probability measure µ. The problem of choosing
points xi is replaced by choosing a density µ. A similar
approach is adopted for sparse recovery, where results similar
to (2) are obtained through the use of random matrices.

A. Stability of least-squares estimation

In this setting, Cohen et al. [17] give a criterion for
the stability of least-squares recovery. With (Lj)1≤j≤m an
orthogonal basis of Vm with respect to the measure µ, they
define

K(x, µ) =

m∑
j=1

|Lj(x)|2 (3)

K(µ) = sup
x∈X

K(x, µ). (4)

K(µ) is bounded from below by m. The following theorem
shows that the expectation of the estimation error is bounded
in a way similar to eq. (2).

Theorem 1. For a given r > 0, κ = (1− log 2)/(2+2r), and
ε(n) = 4κ/ log n, if the number of measurements n is such
that

K(µ) ≤ κ n

log n
(5)

then the expectation of the estimation error is bounded by

E
(
‖f̃m − f‖µ

)
≤ (1+2ε(n))‖fm−f‖2µ+8M2n−r+8σ2m

n
(6)

where M is an upper bound on |f | and

‖f‖2µ =

∫
X

|f |2dµ (7)

K(µ) essentially measures the number of samples necessary
to ensure stability with respect to deterministic approximation
errors and random measurement noise. Before introducing the
optimization algorithm to design a sampling density µ such
that K(µ) is close to m, we recall alternative state of the art
methods that will be tested against our proposed method.

B. D-Optimal design

The criterion K(µ) also appears in the analysis of D-
optimal design [11]. In this setting, the quantity of interest
are the parameters αi of the decomposition of f in the basis
(φi)1≤i≤m of Vm.

f(x) =

m∑
i=1

αiφi(x). (8)

Here, deterministic approximation errors are not considered
(i.e., f = fm).
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The parameters αi are estimated using measurements at
sampling points xi ∈ X , that can be repeated wi times with
independent noise realizations. The problem of D-optimal
design is the maximization of the determinant

D = detM (9)

where M is the information matrix with coefficients Mij =
1
n

∑n
l=1 wnφi(xl)φj(xl).

This determinant is proportional the inverse of the volume
of the uncertainty ellipsoid for the estimation of the parameters
αi. This problem can also be relaxed, by defining M(µ) with
coefficients M(µ)ij =

∫
X
φi(x)φj(x)dµ. In this approximate

design problem, it has been shown that maximizing D(µ) is
equivalent to minimizing K(µ) [21], in the sense that

argmin
µ

K(µ) = argmax
µ

D(µ). (10)

Furthermore, the following bound [22]

D(µ) ≥ exp(m−K(µ)) sup
µ
D(µ) (11)

shows that the maximization of the determinant can be re-
placed by the minimization of K(µ), of which the convergence
is easier to control. Indeed, it will be shown that the lower
bound m can be reached. Moreover, the variance of the
estimation of f(x) is σ2K(x, µ).

Different algorithms have been proposed for the design of
sampling sets in the D-optimal sense:
• greedy algorithms [13], [14],
• multiplicative algorithms [23], and combination with

greedy algorithms [24],
• convex optimization methods, either on a relaxed problem

[7], or on a moment problem in the particular case of
polynomial approximation [12],...

In [7], instead of optimizing a probability density, Joshi and
Boyd constrain the sampling density to sum to the number
of desired sensors n. The optimization problem is solved by
Newton’s method, and sampling points are selected as the n
largest values of the density. A local optimization can then
refine the choice of the sampling set.

C. FrameSense

The FrameSense algorithm [8], proposed by Ranieri et al., is
based on a proxy for the mean squared estimation error when
no deterministic measurement errors are present. For a given
set of points xi, the rows of the matrix with coefficients φij =
φi(xj) define a frame of Rm. In the case where this frame
has elements with unit norm, it is shown that minimizing the
estimation error is equivalent to minimizing the frame potential∑
i,j |
∑
l φilφjl|

2. An argument of sub-modularity is invoked
to justify the use of a greedy algorithm to minimize the frame
potential.

D. Weighted least-squares

An alternative to the standard least-squares is to use weights
in eq. (1) :

f̂m = argmin
f̂m∈Vm

n∑
i=1

w(xi)|yi − f̂m(xi)|2. (12)

A joint optimization procedure for the sampling density µ and
weights w(x) based on a modified version of Theorem 1 is
proposed in [25]. This procedure is not well adapted to the case
of measurement design, as imposing weights implies that not
only the location of the measurements, but also the variance of
the noise applied to each measurement can be independently
controlled.

III. THE MINIMIZATION PROBLEM

We aim at designing sampling sets ensuring stability of
the estimation with the smallest number of samples. To this
end, supported by Theorem 1, we consider the following
optimization problem:

µ? = argmin
µ

K(µ) (13)

under the constraint that µ is a probability measure.
As our objective is the numerical optimization of a sampling

set, we will limit ourselves to a discretized version of the
problem. The space Vm is a subspace of a larger space E of
dimension L. Vm is described by a matrix P containing the
basis vectors. The sampling density µ is replaced by a positive
vector w of weights wi, and the basis Q is an orthogonal basis
of Vm with respect to the weights w (Q?diag(w)Q = I).
Its row vectors are denoted qi (i.e. each qi contains the i-th
coefficient of the basis vectors of Vm).

In this discrete setting, the criterion K is defined by

K(i,w) = ‖qi‖22 (14)
K(w) = max

i
K(i,w) (15)

and the optimization problem becomes:

w? = argmin
w

K(w) subject to wi ≥ 0,

L∑
i=1

wi = 1 (16)

Theorem 2. The optimization problem (16) is convex and at
the optimal density w?

K(w?) = m, (17)

and
w?i = 0 if K(i,w?) 6= m. (18)

A proof is given in [21] in the continuous case, where the
support of µ? is included in the set {x|K(x, µ?) = m}. An
alternative proof is given in appendix A using standard convex
analysis tools in the discrete case. An important consequence
of the support condition is that in most cases, the optimal
density is sparse. Indeed, the functions used to build the
space Vm are usually analytic (exponentials, polynomials,
cosines, etc.), and so is K(x, µ?). Except in the unlikely
cases where K(x, µ?) is constant (e.g. for a Fourier basis),
K(x, µ?) 6= m almost everywhere, implying that the support
of the measurement density has Lebesgue measure 0.

The optimization problem (16), despite its apparent com-
plexity (cost of evaluation of the objective function which
involves the orthogonalization of a large matrix, large number
of constraints), can be solved in an efficient way using the
Frank-Wolfe algorithm. As will be shown, this algorithm
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allows to leverage the particular form of the objective function
and of the constraints to efficiently compute a minimizer of
(16).

A. Frank-Wolfe algorithm

Input: function f , feasible set D, initialization x0,
number of iterations N

Output: last iterate xN
n = 0
while n < N do

γ = 2
n+2

s = argmins∈D 〈s, grad f(xn)〉
xn+1 = (1− γ)xn + γs
n = n+ 1

end
Algorithm 1: Frank-Wolfe algorithm

The Frank-Wolfe algorithm, also known as the conditional
gradient method, is a convex optimization algorithm intro-
duced in 1956 by Frank and Wolfe [26], [27].

It is similar to a gradient descent, with the difference that the
next iterate is not chosen in the direction of the gradient, but in
the direction of the minimizer in the feasible set of the linear
approximation of the objective function around the current
iterate. The domain being convex, the iterates are guaranteed
to be feasible, and no projection in the feasible set is necessary.
The algorithm is outlined in Alg. 1.

In our case K(w) is the maximum of the smooth functions
K(i,w). The Franke-Wolfe algorithm can be extended to
such non-smooth functions [28]. The gradient of K(w) is the
convex hull of the gradients of the maximal K(i,w), and at
most points, the gradient of K(w) is simply the gradient of
the maximum K(i,w), with index i?.

The linear problem to solve at each iteration is:

min
s
〈s, gradK(i?,w)〉 subject to

L∑
i=1

si = 1, si ≥ 0. (19)

Its solution is a vector with zero coefficients, except at the
minimal value of the gradient, where it is one. A straightfor-
ward application of the Cauchy-Schwartz inequality to eq. (36)
shows that the minimal coordinate of the gradient of K(i?,w)
is the i?-th coordinate.

An iteration of the Frank-Wolfe algorithm applied to our
optimization problem has thus the simple implementation:
• find the index i? of the maximum value of K(i,w),
• add weight on the i?-th coefficient of the sampling

density,
• rescale the sampling density such that

∑L
i=1 wi = 1.

As at most one point is added to the support at each itera-
tions, the Frank-Wolfe algorithm yields sparse measurement
densities.

The results of the Frank-Wolfe algorithm for K(w) min-
imization, Newton’s method for the equivalent problem of
determinant maximization[7], and the measurement density
for weighted least-squares [25] are plotted on figure 1, for
a polynomial basis of size m = 20. For Newton’s method,
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Fig. 1. Measurement densities for a polynomial basis of size m = 20. The
2m largest values of the output of Newton’s method are indicated by circles.

the solution of the relaxed problem for n = 2m sensors is
plotted. As expected, the obtained density is sparse: K(i,w?)
being a polynomial of order 2m−2, the support of w?, where
K(i,w?) = m, contains at most 2m− 2 points.

The Frank-Wolfe optimization procedure for K(w) min-
imization can also be used to solve the approximate D-
optimality problem. As shown above, the determinant max-
imization problem and the K(µ) minimization problem have
the same solutions. Moreover, applying the Frank-Wolfe al-
gorithm to the determinant maximization problem gives the
same optimization procedure. Indeed, the Fisher information
matrix of the approximate D-optimal design problem (which
is also the Gram matrix of P with respect to the weights w)
is given by

M = P?diag(w)P (20)

and the determinant lemma shows that the derivative with
respect to the weight wi of the determinant D = detM is

∂D

∂wi
= piM

−1p?iD = qiq
?
iD = K(i,w)D (21)

where the orthogonal basis Q is defined as Q = PM−1/2

and pi are the row vectors of P. The maximal value of the
gradient is at index i?, identical to the index selected by eq.
(19).

B. Time and space complexity

The computational cost of an iteration of the Frank-Wolfe
algorithm is dominated by the orthogonalization of the design
matrix P of size L × m. While a standard orthogonaliza-
tion algorithm would have a complexity in O(Lm2), the
orthogonalization can be accelerated by using the particular
way the sampling density is updated. Indeed, an iteration of
the algorithm modifies the density at a unique point, and
renormalizes the density. As this modification amounts to a
rank-1 perturbation of the Gramian matrix, its squared root
can be computed using the matrix inversion lemma with
complexity O(Lm), which governs the cost of an iteration.

While no theoretical bound on the number of iterations
necessary to achieve a value of K(w) close to the optimum
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the size of the discretization L, with m = 20, for gaussian matrices.

is yet available, numerical experiments show that in various
settings, a number of iterations proportional to m is sufficient
to reach values of K(w) close to the optimum m. Fig. 2 shows
on the same plot the value of K(w) along the iterations, for
various dimensions L and m, and various bases (polynomials
and random matrices with Rademacher, gaussian, and uni-
formly distributed independent coefficients). In all settings, the
number of iterations necessary to reach a density w such that
(K(w) −m) ≤ Cm is approximately m/C. For a given C,
the computation complexity of the algorithm is thus O(Lm2).

The time and space complexity of the proposed algorithm,
Newton’s method [7], the FrameSense algorithm [8] and the
joint design of a sampling density and weights for weighted
least-squares [25] are given in table I. The proposed algorithm,
having time and space complexities linear in the number of
possible sensor locations, is much more efficient for increasing
L and fixed m, and can attain higher dimensions because
of its low memory requirements, as can be seen on figure
3 (the computation times are given for a laptop with an
Intel Core i7 quad core at 2.10 GHz and 16 GB of RAM,

TABLE I
TIME AND SPACE COMPLEXITIES OF THE PROPOSED FRANK-WOLFE

ALGORITHM, WEIGHT LEAST-SQUARES, FRAMESENSE, AND THE
DETERMINANT MAXIMIZATION.

algorithm init. iter. #iter. total space
Frank-Wolfe (prop.) O(Lm2) O(Lm) O(m) O(Lm2) O(Lm)
Weigted LS [25] O(Lm2) - - O(Lm2) O(Lm)
FrameSense [8] O(L2m) O(L) L− n O(L2m) O(L2)
Newton [7] O(1) O(L3) ≤ 30 O(L3) O(L2)

running MATLAB R2017b). The complexity of the joint
weights and density design for weighted least-squares is of
the same order as the Frank-Wolfe algorithm, but is faster as
it is equivalent to its initialization. While the method implies
control of the measurement noise variance and does not yield
sparse densities, its reduced numerical cost makes it a valuable
alternative.

IV. SAMPLING THE OPTIMAL DENSITY

Once a density is designed, the measurement points are
obtained by sampling this density. After introducing various
sampling methods, numerical results on estimation errors are
given.

A. Sampling methods

The sampling methods we consider are the following:
a) Maximal values of the density : Joshi and Boyd [7]

proposed to select the locations of the n largest values of
the weights wi. While this method works in random settings,
it does not produce efficient sampling sets in more typical
cases. Indeed, as is visible on figure 1, the n largest values of
the optimized density are not necessarily located at all sensor
positions necessary for a stable recovery. They also propose
a local optimization to improve the sampling set, by testing
swaps of a sampling point with a non-selected point.

b) i.i.d. samples: Theorem 1, based on a i.i.d. sampling
of the density, is valid for a number of measurements such
that

K(µ) ≤ κ n

log n
(22)

This quantity of samples ensures that the empirical Gram
matrix of the basis (Lj), with coefficients

Geij =
1

n

n∑
l=1

Li(xl)Lj(xl) (23)

is close enough to the coefficients of the Gram matrix with
respect to the sampling measure µ

Gij =

∫
X

Li(x)Lj(x)dµ (24)

= δij . (25)

In addition to the large number of samples compared to K(m)
and the dimension of the space m, using i.i.d. sampling in the
cases where the sampling density is concentrated on few points
leads to multiple selections of a given point, which is usually
to be avoided in practice.
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c) Resampling: The coefficients of the empirical Gram
matrix in eq. (23) are a Monte-Carlo evaluation of the integrals
(24). Moreover, in most cases, the optimal density is discrete.
Sampling of discrete densities is involved in the resampling
stage of particle filters, or sequential Monte-Carlo methods. In
this setting, the performances of an i.i.d. sampling of a discrete
density (also called multinomial sampling in this case) can be
improved by considering other resampling methods.

Stratified sampling and systematic sampling are well known
simple resampling methods in dimension 1 [29]. With F (x)
the cumulative distribution function of the sampling density,
the samples are chosen to be

xi = F−1
(
i− 1

n
+ ui

)
(26)

for stratified sampling, and

xi = F−1
(
i− 1

n
+ u

)
(27)

for systematic sampling, where u, u1, . . . , un are i.i.d uniform
random variables in the interval [0, 1/n].

To avoid multiple selections of a sampling point, duplicates
can be replaced by samples drawn from the uniform density.
In higher dimensions, methods based on parametrizing the
domain using an Hilbert curve and stratified or systematic
sampling along this curve can be used [30], [31].

d) FrameSense as a sampling method: The above sam-
pling methods are based on the sampling density only, and do
not take into account the row matrix qi associated to a point
xi. In the case when two rows are correlated, selecting both the
rows does not add much information. Another less probable
but uncorrelated row could yield more information. Removing
similar rows is the mode of operation of FrameSense, which
can be used as a sampling method after optimization of the
density using the proposed method. Here only the support of
the optimized density is used.

Conversely, the Frank-Wolfe algorithm can be considered
as a pre-processing for FrameSense, selecting important points
and lowering the computational complexity. The total cost of
the proposed method followed by FrameSense is O(Lm2), to
be compared with the cost O(L2m) for FrameSense alone.

B. Numerical results

1) Polynomials: Fig 4 shows the mean squared estimation
error for different design methods, in the case of polynomial
approximation in function of the number of samples. Poly-
nomials of order 19 (i.e. m = 20) are used to approximate
the function f(t) = (1 + 25t2)−1 in the interval [−1, 1]. The
mean squared error is estimated by repeating the experiment
10000 times, for 20 to 40 measurements, and the interval is
discretized using 2000 points. The FrameSense algorithm, as
well as systematic sampling combined with Newton’s method
algorithm, the proposed Frank-Wolfe algorithm and weighted
least-squares, have performances similar to the optimal density
(Dirac masses of weight 1/m at the extremities of the interval
and at zeros of the Legendre polynomial of order m−2 [11]).
Designing the sampling set using stratified sampling of the
optimized density reaches the same performances only when
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Fig. 4. Mean square error for polynomials approximation, m = 20.

n ≈ 2m (the increase of the error between n = 31 and
n = 32 is a consequence of the non identical distributions for
each sampling point). The performances of a set of regularly
spaced points in the interval is also plotted for completeness.
The mean squared errors of sets of independent samples of
the density optimized by the Frank-Wolfe algorithm, as well
as the n largest values of the result of Newton’s method and
the locally optimized sampling set, are too large to be included
in the figure.

2) Fourier-Bessel functions: Acoustical fields can be esti-
mated using the approximation of solutions to the Helmholtz
equation ∆p + k2p = 0 by so-called generalized harmonic
polynomials (in R2) or spherical harmonics (in R3) [20], [32].
In polar coordinates:

p(r, θ) ≈
m′∑

n=−m′

pnJn(kr)einθ (28)

where Jn is the Bessel function of order n, and m = 2m′+1.
In the case of a circular domain, it was proven that values
of K(µ) close to the lower bound are obtained with densities
that are concentrated on the boundary of the domain [19].
Numerical evidence showed that this was also the case for
square domains. Figure 5 shows the optimized density w in
the case of a polygonal domain with a reentrant corner. Here
m′ = 10, m = 2m′ + 1 = 21, and the square is discretized
using L′ = 100 points on each axis, i.e. L = 7500 points in
the domain. As expected, most of the optimized density (66%)
is concentrated on the boundary of the domain.

The mean square error for the approximation of a plane
wave on this domain is plotted on figure 6 for sampling sets
obtained by the FrameSense algorithm, as well as set sampled
from densities optimized with the Newton and the Frank-
Wolfe algorithms. The convex relaxation approach (Frank-
Wolfe or Newton) or weighted least-squares with Hilbert
parametrization and systematic sampling yields accurate re-
constructions. Using FrameSense as a postprocessing of the
Frank-Wolfe algorithm improves the results. FrameSense alone
is less accurate than the relaxed approached, and selecting
the maximal values of the density optimized with Newton’s
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Fig. 5. Optimized density for recovery of a wavefield using Fourier-Bessel
functions, m = 21. (a) Frank-Wolfe algorithm. The density is here multiplied
by m for an easier comparison with the maximal weight 1/m of a Dirac mass.
(b) Weighted least-squares.
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Fig. 6. Mean squared error for recovery using Fourier-Bessel functions, m =
21.

method does not yield accurate estimations, but is somewhat
improved by the local optimization. The computation times
are 0.12s for the proposed Frank-Wolfe method, 1.8s for the
FrameSense algorithm, and one minute for Newton’s method
(with L′ = 250, L = 46875, 2 seconds are necessary for the
Frank-Wolfe algorithm, while the FrameSense and Newton’s
method fails because of too large memory requirements).

V. EXTENSIONS

Formulating the sensors selection problem as a convex
optimization problem allows to modify the constraints and/or
the objective functions to take into account more complex
settings. We demonstrate here two simple modifications.

A. Bounding the error

A consequence of the concentration of the optimal sampling
density µ? on a set of measure 0 in important settings (e.g.
polynomial bases, cosine bases, etc.) is that the bound (6) is
unable to control the L2-norm of the error with respect to the
Lebesgue measure λ.

To ensure stability in the L2-norm, a bound can be applied
to the measure, e.g. µ(I) ≥ αλ(I) for any subset I of the
domain and α > 0. The L2-norm of the error with respect
to µ can now be used to bound the error with respect to the
Lebesgue measure :

‖f‖λ ≤
1

α
‖f‖µ. (29)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

K

Upper bound

Polynomial

Gauss

Fig. 7. Optimization of a sampling density for a polynomial basis and a
gaussian matrix ensuring an upper bound on the error in the interval, m = 20.

A bound on the optimal measure with this additional constraint
can be found. The measure µ?α = (1 − α)µ? + αλ being
feasible, a simple computation (see (35)) shows that

K(µ?α) ≤ K((1− α)µ? + αλ) ≤ 1

1− α
K(µ?) (30)

In the discrete formulation, the optimization problem be-
comes

ŵ = argminwK(w) subject to
L∑
i=1

wi = 1, wi ≥ α/L.

(31)
Algorithm 1 is easily modified to solve this problem. The value
of K(w) for a polynomial basis and a gaussian matrix with
L = 500, m = 20 is plotted for α between 0 and 1. The bound
(30) appears to be pessimistic in these cases. In the polynomial
case in particular, a bound of the error over the entire interval
can be obtained at a minimal cost as K(w) remains almost
equal to m for α < 0.6.

B. Joint optimization for multiple bases

In some applications, a unique sensor array has to be used
to sample several signals that are not necessarily described by
a unique linear model. An example is soundfield measurement
(or more generally, wavefield estimation), where the same mi-
crophone array is used at different frequencies. The approched
used in [9] for sensor placement in non-linear models involves
a similar problem.

In the case of S different subspaces, not necessarily of the
same dimension, a quantity Ks(w) can be computed for each
subspace. We define

K(w) = max
s
Ks(w), (32)

and the problem (16) with this modified objective function can
be solved with a simple application of Alg. 1.

This method is tested for the approximation of a function
using polynomials (space V pm, with criterion Kp) and a cosine
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Fig. 8. K(w) for a polynomial basis and a cosine basis, with the jointly
optimized density, with comparison to the mixed density and the lower and
upper bounds.

basis (space V dm, with criterion Kd). The following densities
are computed:
• wp, optimized for the polynomial basis,
• wd, optimized for the cosine basis,
• the mixture wm = (wp + wd)/2
• and wj , jointly optimized for the two bases. In this case,

a simple analysis of the optimization problem shows that
Kp(wj) = Kd(wj).

The values of Kp and Kd for the mixed and joint densities are
plotted on figure 8 in function of m. While the mixed density
yields values of Kp(wm) close to the upper bound 2m, for
the jointly optimized density, Kd and Kp can be bounded by
1.3m, making it possible to construct a sampling set capable
of stable recovery in two different spaces with a reasonable
number of measurements.

Estimation errors for the different combinations of spaces
and sampling densities are plotted on figure 9, using systematic
sampling. Here m = 20 and Kp(wj) = Kd(wj) = 24.1. As
expected, 24 samples are sufficient to ensure the stability of
the estimation simultaneously in the polynomial and cosine
bases.

VI. CONCLUSION

The problem of sampling set design for least-squares es-
timation is here considered in a relaxed setting. The Frank-
Wolfe algorithm offers an efficient optimization procedure in
terms of computational complexity in time and space. Variants
of this algorithm, such as the away step variant [33] could
improve the speed of convergence of the optimization.

The optimal densities, as well as the Frank-Wolfe iterates,
being sparse in generic cases, the sampling points are obtained
by resampling techniques. This approach is shown to be more
efficient than i.i.d. sampling or selecting the maximal values
of the density with local optimization. While efficient in
dimension 1 (they allow stable estimation with a number of
measurements close to the number of parameters to estimate),
the resampling methods considered here do not seem optimal

20 25 30 35 40 45 50

n

10 -2

M
S

E
 (

p
o

ly
n

o
m

ia
l 
b

a
s
is

)

Polynomial density

Cosine density

Joint density

Mixed density

20 25 30 35 40 45 50

n

10 0

M
S

E
 (

c
o

s
in

e
 b

a
s
is

)

Cosine density

Polynomial density

Joint density

Mixed density

Fig. 9. Mean square error for estimation using polynomial (top) and cosine
(bottom) bases.

in higher dimensions. The development of sampling methods
aware of the rows qi associated to a point wi along to its
probability should improve the performances of the sampling
sets.

Finally, the combination of the convex optimization for-
mulation with resampling methods offers a wide arrays of
possibilities, such as the optimization of sampling densities
for non-linear problems, or the optimization of E-criterion in
a way similar to [9].

APPENDIX A
MINIMUM OF K(w)

In this appendix, we prove the convexity of K(w) and
that the optimal value of K(w) is the dimension m of the
approximation space Vm.

We consider a discrete setting. A basis of the space Vm is
given by the matrix P of dimension L×m, with row vectors
pi. We call Gw = P?diag(w)P the Gram matrix of the basis
P with respect to the set of weights w.

A. Convexity of K(w)

As K(w) = maxiK(i,w), it is sufficient to prove the
convexity of K(i,w). We consider two sets of weights u and
v, and their convex combination w = αu + (1 − α)v. Then
K(i,w) = piG

−1
w p?i . By using Gw = αGu + (1 − α)Gv

and the derivative of the inverse of a matrix, we find

d2K(i,w)

dα2
= 2

(
piG

−1
w (Gu −Gv)

)
G−1w

(
(Gu −Gv)G−1w p?i

)
(33)

= 2r?G−1w r ≥ 0 (34)

where r =
(
(Gu −Gv)G−1w p?i

)
and G−1w is a positive

matrix.
The inequality

K(w) ≤ K(u)

α
(35)

can also be proved by using the matrix inequality G−1w ≤
G−1u /α.
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1) Subgradient of K(w): The subgradient of K(w) is the
convex combination of the gradients of the K(i,w) such that
K(i,w) = K(w). With similar computations as the previous
results and Q the matrix of a basis orthogonal with respect to
w, we find

∂K(i,w)

∂wj
= −| 〈qi,qj〉 |2 = −Jij (36)

The matrix J, as the Hadamard product of QQ? and its
conjugate, is semi-definite by the Schur product theorem.

The subgradient of K(w) is the set of vectors −Jα, for α
a positive vector of sum 1, and αi(K(i,w)−K(w)) = 0.

B. Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions for the optimization
problem (16) implies that there exists a scalar λ and a positive
vector γ such that the subgradient of K(w) verifies

Jα = λ1− γ (37)

with wiγi = 0, appropriate conditions on α, and 1 a vector
of L coefficients equal to 1. Combining the definitions of J,
K(w), Q, and the properties of α, w and γ, we find:
• α?Jw = K(w)
• w?Jα = λ
• α?Jα = λ−α?γ = K(w)−α?γ ≤ K(w)
• w?Jw = m

Using the symmetry and the positivity of J, we have :

|α?Jw|2 ≤ |w?Jw||α?Jα| (38)

K(w)2 ≤ mK(w) (39)

which implies K(w) ≤ m. Combined with the lower bound
K(w) ≥ m, we have K(w) = m. By remarking that∑
i wiK(i,w) =

∑
i wiqiq

?
i = m from the orthogonality

of the columns of Q, we also have that wi = 0 if K(i,w) <
K(w).
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