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Summary
What can machine learning do for (social) scientific analysis, and what can it do to it? A
contribution to the emerging debate on the role of machine learning for the social sciences,
this article offers an introduction to this class of statistical techniques. It details its premises,
logic,  and the  challenges  it  faces.  This  is  done by comparing  machine  learning  to  more
classical approaches to quantification – most notably parametric regression– both at a general
level and in practice. The article is thus an intervention in the contentious debates about the
role and possible consequences of adopting statistical learning in science. We claim that the
revolution announced by many and feared by others will not happen any time soon, at least
not  in  the  terms  that  both proponents  and critics  of  the technique  have spelled  out.  The
growing use of machine learning is not so much ushering in a radically new quantitative era
as it is fostering an increased competition between the newly termed classic method and the
learning approach. This, in turn, results in more uncertainty with respect to quantified results.
Surprisingly enough, this may be good news for knowledge overall.
 
Résumé
Que peut faire l’apprentissage automatique (machine learning) pour les sciences sociales, et
que  peut-il  lui  faire  ?  Cet  article  propose  une  introduction  à  cette  classe  de  méthodes
statistiques. Il détaille ses prémisses, sa logique, et les défis qu’elle pose pour les sciences
(sociales). Il le fait au moyen d’une comparaison avec d’autres approches quantitative plus
conventionnelles, les régressions paramétriques en premier lieu, et ce tant au niveau général
qu’en pratique.  Au-delà de l’exercice  méthodologique,  l’article  se propose de revenir  sur
débats  houleux  qui  entourent  le  learning.  Il  revient  pour  se  faire  sur  le  rôle  et  les
conséquences possibles de l’usage de l’apprentissage statistique. Il soutient que la révolution
promise par beaucoup et crainte par d’autres ne se produira pas de sitôt, ou en tout cas pas
dans  les  termes  souvent  évoqués.  Le  changement  de  paradigme  évoqué  de  manière
prophétique  n’aura  pas  lieu.  Plutôt,  une  concurrence  accrue  entre  différentes  formes  de
quantification du monde social va se mettre en place. Contre toute attente, cette incertitude
croissante pourrait être de bon augure pour la connaissance en général.
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Jorge Luis Borges once described a band of monkeys locked up in a room solely furnished
with typewriters1.  Given  a few eternities, he argued, the primate's  random strokes on the
keyboards would produce not only meaningful sentences, but also world-class literature and
scientific  discoveries.  “Everything”,  the  Argentine  novelist  wrote,  “would be  in  its  blind
volumes. Everything: the detailed history of the future, Aeschylus'  The Egyptians, the exact
number of times that the waters of the Ganges have reflected the flight of a falcon, the secret
and true name of Rome.” And, of course, the complete collected writings of Shakespeare.
Facts and fiction alike would be present in this utopian “total library” (Borges, 1939).

This  image  of  a battalion  of  immortal  typist  monkeys  haphazardly  trying  out
numerous combinations in an attempt to solve a given problem is probably how many view
machine learning today.  In the view of  its critics, a statistical method that tries to replace
sound  mathematical  reasoning  by  sheer  brute  computation  is  about  as  likely  to  yield
interesting  results  as  an  army  of  apes  randomly  stroking  keyboards2.  Machine  learning
proponents  would  certainly  disagree  with  this  characterization.  They  would  for  instance
rightfully  argue that  their  algorithms do not  work at  random. These algorithms certainly
exploit  randomness, but they do so while  following very specific  rules that  allows them,
contrary to Borges’ monkeys, to learn from their mistakes. The fact remains, however, that
machine learners do tend to embrace some form of radical inductivism. As their  argument
goes, a learning machine can, through clever use of intense computation and with virtually no
pre-established conceptions about the data at hand, efficiently  uncover  its hidden structure,
and indeed detect complex correlations that would take mere human statisticians ages to find.

These debates are nothing new, echoing classic oppositions about the primacy of data
vs. models, or about induction vs. deduction. Almost twenty years ago, a provocative paper
on  the  “two  cultures”  of  statistics  sparked  an  intense  conversation  within  the  statistical
community. Written by machine learning figurehead Leo Breiman, the text made a powerful
case for  the “algorithmic”  culture while  trying  to  respond to  the main  criticisms  leveled
against it (see Breiman, 2001 and its rejoinders). While this debate is still raging, the context
has changed: over time, the machine learning approach has led to such important successes
that it can no longer be dismissed on purely theoretical grounds. In the recent years, learning
(or artificial intelligence) algorithms have written important pages in the history of science
and  technology.  Disease  detection,  face  recognition,  real-time  translation  in  multiple
languages: all rely on some machine learning algorithm, and all perform their task better, or
at least faster, than any human. Today, the apes are indeed writing Shakespeare-like verses,
and driving themselves around the streets of various cities.

These recent successes owe much to the rise in computational power and the growing
availability  of data, which have done much to increase the standing of machine learning.
Moreover,  they  occur  at  a  time of  crisis  for  statistics,  on two separate  fronts.  The more
conventional statistical methods, with probabilistic hypotheses designed in the early twentieth
century to deal with small random samples, are drowning in the rising tide of large, non-

1 The authors are grateful to Jean-Yves Bart, Marie Bergström, Arthur Charpentier,  Sébastien Chauvin, Illias
Garnier,  Satu Helske, Estiatorio Margaritas, Jean-Philippe Touffut, the participants of the IAS lectures series
(Linköping university), of the CREST (ENSAE) workshop, of the Berkeley sociology colloquium series, and of
the University of Chicago Mixed Methods workshop. We are also grateful to the editorial board of the Revue
Française de Sociologie for insightful comments. The data was accessed via Linköping University and paid for
by several grants, including ERC grant agreement no 324233, Riksbankens Jubileumsfond (DNR M12-0301:1),
and  the  Swedish  Research  Council  (DNR  445-2013-7681  and  DNR  340-2013-5460)  and  the  Excellence
Initiative of the University of Strasbourg.
2 In fact,  when the experiment  was effectively carried out in the 2000s, the results turned out to be quite
disappointing. In thirty days, the six macaques locked up with a computer only produced five pages of text,
mostly made of “s.” After a short while, the lead animal started bashing the keyboard with a rock, while others
used it as a lavatory. See http://news.bbc.co.uk/2/hi/3013959.stm, retrieved on February 25th, 2018.
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random and dirty datasets.  Additionally,  statisticians  themselves  are  increasingly vocal  in
their fundamental critique of the many ill uses of the tools that have come to dominate large
swaths of quantitative science - linear regressions and hypothesis testing (see Wasserstein and
Lazar,  2016).  The time may thus seem ripe for a rapid take-over of science by machine
learning  algorithms.  And  indeed,  the  idea  that  they  will  deeply  transform  numerous
disciplines  is  now regularly evoked. Famed computer  scientist  Pedro Domingos,  for one,
recently wrote that machine learning “follows the same procedure [as classic statistics] of
generating, testing, and discarding or refining hypotheses. But while a scientist may spend
her whole life [doing so], machine learning can do it in a fraction of second” (Domingos,
2015, p. 13). Machine learning, he concluded, is “the scientific method on steroids”. To him,
it is thus “no surprise that it is revolutionizing science” (ibid.).

For machine learning to offer  meaningful  results  in  science,  however,  it  will  take
more than just automation or computer power. While its achievements in certain areas are
beyond  dispute,  and  while  scientists  are  increasingly  discussing  its  relevance  for  their
endeavors, certain central problems remain. The question of the respective roles of data and
theory is one. Another is the lack of guarantees that comes with machine learning results: the
very  flexibility  that  makes  the  models  so  powerful  makes  it  virtually  impossible  to
mathematically demonstrate  that their  results are optimal.  Yet another issue is even more
problematic  for scientific  investigation:  the merit  of these algorithms is  mainly judged in
terms of predictive capacities,  with little attention given to interpretation.  Flexible models
may be very accurate, but they are also much harder to interpret than a standard regression. In
other words, they may be very good at telling whether a person will do something (buy a
product, develop a disease, get married), but they have trouble telling us why. That marketing
companies,  internet  giants  or  applied  disciplines  can  make  profitable  use  of  techniques
designed for prediction is  understandable.  What scientists  who are more interested in the
explanation of their chosen object can gain from them remains unclear.

A contribution to the ongoing debate on the role  of machine learning for (social)
science, this article offers an introduction to this class of statistical techniques. It starts by
detailing its premises, its logic, and the challenges it currently faces. Because the field is
much too diverse to warrant a uniform treatment, the rest of our argument is restricted to one
key subclass of algorithms,  called supervised learning. These algorithms are of particular
interest for quantitative social science because they are aimed at generalizing one of its most
dominant and ubiquitous tools,  parametric regression3. The article systematically compares
the two approaches, from a theoretical standpoint first, then on a large-scale dataset. Beyond
sheer methodological clarification, the article argues that the statistical revolution announced
by  many is not likely to happen anytime soon, at least not in the terms spelled out by its
proponents. Rather than ushering in a radically new scientific era in quantitative methods, the
dissemination of machine  learning is  fostering an increased competition between the two
approaches,  one that  brings  about more  uncertainty  about  quantified  results.  Surprisingly
enough, we argue, this uncertainty may be good news for science overall.

1. What is machine learning?
“Machine  learning”,  “artificial  intelligence”,  “statistical  learning”,  “data  mining”,

“pattern recognition”… the diversity of overlapping denominations reflects both the diversity

3 In all the following, we will refer to parametric regression for the wide family of models comprising linear
regression, its logistic and Poisson cousins, non-linear least squares and other methods that both rely on an
explicit formulation of the model and are interpreted through statistical significance tests. They are parametric in
the sense that their main objective is to identify the value of certain parameters, which are hypothesized to play
a key role in the phenomenon under study.
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of approaches and the diverging research goals of the various scientific  communities  that
have  contributed  to  the  development  of  the  field.  As  an  intellectual  endeavor,  machine
learning is probably best described as a crossover between disciplines, statistics and computer
science in the first place. From the former, it  retains the creation of mathematical models
meant  to  capture  the  underlying  structure  of  otherwise  unmanageable  datasets.  From the
latter, it borrows the skills to produce efficient algorithms for solving complex optimization
problems.

Machine learning is currently the most popular form of artificial intelligence (“AI”), a
term  it  is  sometimes  equated  with  nowadays.  In  the  early  1950s,  the  progressive
dissemination of digital computers reignited a century-old quest: producing a machine that
could  emulate  human  reasoning  (Buchanan,  2005),  or  at  least  acquire  and  improve
knowledge. A wealth of methods and principles developed over time, most of which can be
said to fall into one of the two great families of AI, namely the top-down and the bottom-up
approach (Copeland, 2000). The top-down approach is also known as “symbolic AI”, because
it  consists  in  making  computers  manipulate  symbolic  representations  of  the  world  using
logical rules, in an effort to mimic the way a human would juggle concepts and knowledge
using her reason4. The bottom-up approach takes the opposite stance: artificial intelligence
can be generated from interconnected networks of simple calculating units. This approach,
which comprises much of what is called machine learning today, was largely influenced by a
theory called “connectionism”, in which animal intelligence is thought to emerge from the
connections between its biological neurons.

 The history is partly technical, and both traditions experienced cyclical episodes of
great expectations, followed by years of relative disinterest. Starting in the 1950s, researchers
garnered sufficient results to attract interest in AI, both from the scientific community and
from a wider audience. This initial golden era came to an end in the late 1960s, when several
unsolved issues,  such as the impossibility  to carry out  certain simple tasks or prohibitive
computational requirements, started to be considered as unsurpassable. As often exaggerated
promises had not been kept, both funding and interest plummeted abruptly, leading to what is
known today as the first  “AI winter.”  For over  a decade,  AI and machine learning were
regarded  by  many  as  past  science  fiction  (Crevier  1993,  p.  203).  In  the  1980s,  a  new
generation  of  artificial  neural  networks  called  “multilayer  perceptrons”  overcame  these
technical  difficulties  and,  although  they  were  quickly  overshadowed  by  more  efficient
techniques, initiated a revival of the machine learning approach. Neural networks came back
again  in  the  2000s,  when so-called  deep learning models  suddenly  gave much improved
results when faced with much larger databases; they are currently one of the most fashionable
methods in the whole field. Over the years, the progressive refinements of techniques, the rise
in computational power and the increase in available data all concurred to help removing
bottlenecks that had previously halted the development of AI.

The history of the field is also partly commercial. In the 1950s, artificial intelligence
received large subsidies from private companies and public administrations, which allowed
blue-sky research.  Likewise,  the current  phase of intense development  owes much to the
massive  investments  made  by  numerous  companies,  including  technology  giants  like
Facebook,  Google,  Baidu and Microsoft,  that  dedicate  large  chunks of  their  Research  &
Development  budgets  to  continually  improving  their  standing  in  this  highly  competitive
domain.  Because they have significantly higher resources than universities,  and can offer
compensations  that  far  exceed  any  academic  salary,  they  attract  numerous  qualified
researchers, PhD students and seasoned academics alike. For over a decade now, they have

4 Expert systems were a very successful example of symbolic AI, whose many commercial applications in the 
1980s included medical diagnosis, chemical analysis and credit authorization.
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been a transforming force in the field, sometimes steering research toward their own goals,
and blurring the line between academia and industry.
 
What does machine learning do?

Machine learning is classically defined as “the field of study that gives computers the
ability to learn without being explicitly programmed,” the art of programming computers to
“optimize  a  performance  criterion  using  example  or  past  data”  (Alpaydin,  2010).  Most
definitions  thus stress the role of empirics in the elaboration of the model,  and intensive
computation.  Beyond  this  point  however,  there  is  little  agreement  about  what  machine
learning is, and even less about what it should be.

One possible response is to consider what the algorithms do. Work in the field of
machine learning is divided into several overarching tasks: numerical optimization, function
approximation, visualization of multidimensional data, problem solving... Goals and tasks are
thus varied, and not all of them are relevant for social science. A few of them are, though,
insofar as they pursue the goals of classic statistical techniques with renewed means. One
particularly  relevant  distinction  is  that  between  supervised  and unsupervised  learning.  In
supervised learning, the goal is to predict the values of an outcome variable y, based on the
values of a set of predictor variables  x. To achieve a good result, the algorithm should find
good approximations to the unknown relationship between the predictors and the outcome
variable. This is, of course, a standard task in statistics, called regression in the case of a
continuous output (e.g. when trying to predict an individual’s income based on age, gender,
level  of  education,  etc),  or  classification  in  the  case  of  a  categorical  output  (e.g. when
predicting success or failure at an exam, based on students’ social backgrounds). Expanding
on the standard method of linear  regression,  which has been known since the nineteenth
century,  many  different  algorithms  tackle  this  problem  from  very  different  angles:
feedforward neural networks, support vector machines, decision trees and their extensions
such as random forests, are but a few popular examples.

In unsupervised learning, there are no y values to predict, and instead the focus is on
the detection of regularities in a set of  x variables5. This family of methods  can be further
divided into two subtasks, clustering and dimensionality reduction. Clustering is the grouping
of observations into coherent classes, whereas dimensionality reduction consists in mapping a
multidimensional dataset in more manageable form, typically two-dimensional plots. Some
classic unsupervised algorithms are already part of the standard toolset of quantitative social
science:  hierarchical  clustering  and  k-means  on  the  clustering  side,  factorial  analysis
(correspondence analysis such as it was developed by Benzecri and popularized by Bourdieu)
for  dimensionality  reduction.  Over  the  years,  many  techniques  have  been  developed  to
generalize  them  and  overcome  some  of  their  limitations:  self-organizing  maps  are  one
example,  dating from the 1980s, blending the clustering and the dimensionality reduction
approaches; t-SNE and deep autoencoders are more recent developments, highly publicized
in the machine learning literature.

Comparing machine learning to more classic statistical  techniques can be difficult,
because the frontier between the two is not always clear-cut. For one thing, the main tasks
they are asked to perform are largely the same. To add to the confusion, linear regression and
PCA are often the first methods taught in machine learning classes. Some strong differences
do nonetheless set apart the common econometric use of parametric models from the machine
learning approach to prediction. The following section focuses on the differences between
these two strands of supervised learning.

5 Whereas in prediction tasks the outcome variable plays the role of a supervising variable, where only the
changes in  x that are relevant to those in  y must be accounted for, in unsupervised learning all variables are
treated equally, as the observations are not “labelled” by an y value; hence the name unsupervised.

6



 
2. Four Salient Differences
Mathematical foundations versus empirical efficacy

The first major difference pertains to the theoretical foundations of the two families of
methods. The parametric modeling approach has solid foundations in mathematical statistics
and probability theory. This can be readily observed in its methodological articles, which are
usually  centered  around mathematical  theorems,  and thick  with algebraic  or  probabilistic
formulae. Indeed, the overall quality of a parametric method is mainly evaluated on the basis
of its theoretical properties. The simple linear regression model, for instance, owes much of
its popularity to the fact that its estimator is known to be unbiased, consistent and efficient6 if
its hypotheses are fulfilled.

This  stands  in  sharp  contrast  with  the  bulk  of  the  supervised  machine  learning
literature. Surely mathematics are not altogether absent from its papers and manuals, but they
are mostly mobilized  to explain what  the models  do,  rather  than to prove their  desirable
properties.  More  generally,  its  ties  to  mathematical  statistics,  and  probability  theory  in
particular, are much looser. Indeed, successful machine learning models owe their popularity
to their empirical efficacy rather than to their theoretical properties. To put it bluntly, a good
supervised learning model is one that gives good predictions on a wide range of empirical
problems. Significantly, some of the most widely used algorithms are poorly understood from
a mathematical  standpoint.  Random forests offer a prime example of this surprising fact:
while they have been shown to be a highly effective and easy-to-use predictive model in
many different settings, the question of just why they work so well remains open, largely due
to  the  difficulty  of  expressing  the  workings  of  the  complete  algorithm  into  tractable
mathematical formulae (Biau and Scornet, 2016).

This major difference is further refracted into various practical aspects of both types
of methods. One striking difference is that parametric models typically have exact, unique,
optimal  and  tractable  solutions,  while  most  machine  learning  methods  have  to  rely  on
approximate optimization. Given a specified model and a dataset, a  parametric regression’s
parameters  are  computed  using  an  algebraic  formula,  which  is  bound  to  yield  the  best
possible solution - given the initial hypotheses. Most supervised machine learning models, on
the other hand, are much too complex to have a known solution that can be expressed in a
mathematical formula. Instead, the search for good parameters - the “training” phase - is
algorithmic: it follows a procedure that typically consists in a series of steps that are repeated
many times, in order to progressively approach a satisficing solution. The solutions found by
machine learning algorithms are thus approximate, and their optimality is rarely guaranteed:
there is always a possibility that a better  solution exists but wasn’t found by the training
procedure7. In addition to this, the fact that many training procedures are stochastic (ie make
use  of  random  number  generation  in  their  search  for  a  good  model)  has  an  unsettling
consequence: two consecutive runs of the same algorithm on the same dataset may yield
different solutions.

Perhaps  the  aspect  in  which  supervised  machine  learning  suffers  most  from  its
comparative  lack  of  mathematical  foundations  is  in  the  interpretation  of  its  results,  and

6  Following the Gauss-Markov theorem.
7 The fact that most machine learning results cannot be guaranteed to be optimal has one important consequence
in practice, in the case of negative results. If a given learning procedure fails to fnd a good relationship between
the predictors and the outcome variable, the failure may either be due to the fact that no meaningful relationship
exists in the data, or to a failure of the training algorithm to fnd a good solution to its intricate optimization
problem. Negative results (such as the absence of a relationship) are thus very hard to establish using supervised
machine learning tools. 
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inference8. The known theoretical properties of a parametric regression ensure that, once the
model is trained, we know not only the value of the estimated parameter (e.g. the marginal
effect  of  education  level  on personal  income),  but  also  its  theoretical  distribution  (e.g. a
normal distribution centered around the true value of the parameter). This makes it possible
to evaluate the quality of the estimation, and the extent of its uncertainty. These properties
can then be harnessed, usually in the form of inferential tests, to answer the question “is there
a statistically significant wage gap between genders, when taking into account the level of
education and social background of the studied individuals?” Results from machine learning
procedures, on the other hand, rarely grant such definite inference: not much is known of
their quality (apart from measures of goodness of fit), so that they can usually not answer
such precise questions, or that they give a measure of uncertainty to their answer.
 
Explicit modeling versus flexible forms

In  the supervised setting,  both parametric  modeling and machine  learning share a
common goal: they try to model an outcome variable y as a function of predictor variables, x1

,  x2,  x3 so  that  y is  approximated  by  y= f (1, x2 , x3).  Different  specifications  of  the
transformation f  are the main distinction between different kinds of models. In the parametric
setting,  it  is  almost  entirely  specified  ex  ante:  the  model,  all  the  transformations  of  the
variables and their potential interactions must be explicitly provided by the researcher. Fitting
these models to the data then consists in tuning a few free parameters so that the predictions
are as close as possible to the observed true values of the outcome variable. The model can
take a very simple form, such as the familiar “naive” linear model:

y=a+b x1+c x2+d x3.
Alternatively,  it  can  take  a  much  more  sophisticated  form,  and  include  any  number  of
interactions  between  variables,  or  nonlinear  (e.g. polynomial)  transformations  of  the
predictors or parameters.

The specific mathematical form of the model should be guided by a detailed theory
about the phenomenon under study (or, in technical terms, the  “data-generating process”),
and the predictor variables should be chosen on strong empirical or theoretical grounds. In
economics for instance, models of individual or collective behavior are supposed to reflect
particular  specifications  of  the  actors’  utility  functions.  Moreover,  it  should  be  entirely
defined ex ante: the progressive addition or transformation of variables to optimize a criterion
(such  as  p-values)  is  strongly  advised  against,  a rule  that  is  as  strict  as  it  is  frequently
transgressed. In common statistical practice, decisions as to which variables, transformations
or interactions to include or exclude from a regression model are often based on preliminary
results (such as descriptive plots  or bivariate significance tests), or made by fitting many
regression  models  sequentially.  However  common  it  might  be,  this  practice  is  strictly
prohibited by statistical theory, at least if further statistical inference is to be carried out, such
as  statistical  significance  tests.  The  reason  for  this  interdiction  is  that  iterative  model
construction  tends  to  artificially  increase  statistical  significance.  Had the  data  been  even
slightly different,  the many modeling decisions taken prior  to computing the final  model
might have led to different choices. This uncertainty, however, is not taken into account in
the reported standard errors and p-values of statistical software. In other words, a routine and
seemingly harmless procedure such as the iterative adjustment of the model frequently leads
to artificially improved p-values (a practice sometimes called “p-value hacking”).

In  contrast,  most  supervised  machine  learning  procedures  start  from the  opposite
stance:  they treat  the relationship  between variables  as fully  unknown, and try to  train a

8 Here the word  inference is understood in the general meaning of what can be said about the results, their
stability and how they confirm or contradict a given assertion about the data-generating process, see (Efron and
Hastie, 2016, p. 3-8). 
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complex, flexible model to fit the data. Their starting point is that the reality expressed in the
data is too complex to be known in advance, and that the model should be built from the data
rather than specified ex ante. While they do feature a model (a set of mathematical formulae
that  link  the  predictors  to  the  outcome),  the  key  aspect  of  their  model  is  flexibility,  the
capacity to automatically adapt to the data at hand. This is not to say that there are no choices
to be made by the researcher when running machine learning algorithms. They are usually
governed by two sets of parameters: one that fixes a level of complexity for the model (i.e.
how far from linearity the model is allowed to go), and one that governs the way in which the
algorithm searches for an optimal solution9.

The flexibility of their models is what allows machine learning procedures to bear the
promise of universal approximation: if a relationship does exist in the data, then the flexible
model is, in theory at least, capable of finding and reproducing it. This allows them to do
away  with  many  constraints  inherent  to  parametric  modeling,  the  most  obvious  being
monotonicity. In the simplest form of linear regression (a linear combination of the variables
without  further  transformations  or  interactions,  what  we  have called  a  naive  model),  the
effect  of  each  predictor  on  the  outcome  is  the  same  for  the  whole  population.  While
mathematically appealing, this hypothesis is regularly contradicted in empirical analyses. For
instance,  young women from working-class families  and/or from an ethnic minority  have
long outperformed the males of their social groups at school in France, a situation that was
reversed at the other end of the social  spectrum (Baudelot and Establet,  1992). Or again,
using GSS data from the 1990s, an article  showed that  sexual orientation used to play a
different role respective to earnings, as lesbian women earned 20–30% more than similar
heterosexual  women (Carpenter,  2006,  p.  258)  -  a  fact  the author  attributed  to  the more
limited (sexual) division of labor in the latter couples. In both cases, the situation may have
changed over time, but the idea remains true: that the effect of predictor variables is context-
dependent and overall non-linear is the norm rather than the exception in the social sciences. 

Many of these limitations can of course be overcome in the parametric setting. One
can introduce non-monotonous effects by making the model more complex, e.g. by including
a  squared  age  variable,  or  interactions  terms  between  gender  and  social  background.
However, all such refinements have to be specified (by hand) by the researcher, as parametric
models are not designed to detect anything by themselves. Hence the temptation of trying to
build a parametric model step by step10. But as stated above, this poses serious problems for
further interpretation, especially in terms of p-values. Machine learning solves this problem
in a somewhat radical way: p-values are virtually absent from the whole literature.

Validation criteria
These  remarks  beg  the  question  of  the  assessment  of  model  quality.  Here,  too,

machine learning and parametric  modeling differ. In the latter,  quality is mainly assessed
through p-values. While goodness-of-fit measures, such as the R², AIC or BIC, are sometimes
reported, they are mainly used for model comparison, and rarely interpreted for themselves.

9 The sensitivity to these two types of parameters varies widely among diferent types of machine learning
models. Some, such as random forests, need practically no tuning, and can be successfully be run with default
parameters in most situations. Others, such as feedforward neural networks, allow (and often require) intensive
fne-tuning of both sets of parameters. 
10 Some approaches, such as the popular stepwise regression, even automate this trial and error process. This
has sometimes been called data-mining, often disparagingly coming from statisticians (Chatfeld, 1995 notes
that the practice, especially when combined with interpretation of p-values, has been called “logically unsound
and practically misleading”, or even “a quiet scandal”). When used carefully and without hypothesis testing, it
may be regarded as a primitive and crude form of machine learning (it is typically addressed at the very start of
the discipline’s manuals).
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P-values,  by  difference,  are  central,  as  they  are  used  to  test  specific  hypotheses.
Conventionally, a p-value smaller than 0.05  for some parameter of interest in a regression
model is interpreted as proof of the existence of a significant effect. P-values and statistical
significance testing have a long history,  going back to Neyman and Pearson in the early
twentieth century, and have been central to the development of many scientific disciplines as
we know them today. Their  importance in current research cannot be overstated:  in most
quantitative research, p-values decide whether a study makes it to print or not.

One  of  the  most  disorienting  aspects  of  supervised  machine  learning  for  the
newcomer is thus that it is devoid of any such metric. P-values and statistical tests are almost
altogether absent. Instead, its universal criterion of model quality is prediction. The logic is
the following: if the model is able to predict well, then it has probably succeeded in capturing
the patterns  that  link the predictors  to the outcome variable.  In other words, the ultimate
measure of quality is the ability of the model to accurately guess the outcome value. While
reminiscent of the common R² of linear regression, the measures in machine learning differ in
one key aspect: they are computed by  cross-validation,  i.e.,  on observations that were not
used to build the model. This is done in order to prevent overfitting: if the same data are used
to train the model and evaluate its quality, there is a high risk that the model will stick too
close to that specific dataset, and not generalize well to other data11.

The  simplest  way to  implement  cross-validation  is  to  divide  the  dataset  into  two
subgroups: the “train set” (typically comprising two thirds of the population’s observations)
is fed to the algorithm during the training phase, in order to fit the model. The “test set” (the
remaining third of the observations) is held out during training, and only used to evaluate the
model’s quality:  after  training,  the predictors of the test  set are fed to the trained model,
which yields predicted values that are then compared to the actual values of the outcome
variable in the test set. This train/test approach is just one possibility among many, but the
principle is clear: the quality of a model is assessed by its power of generalization, its ability
to correctly predict observations from other samples of the same population.
 
Analysis of the results

Finally, the type of results and interpretations also vary between the two approaches.
With  parametric  regressions,  the  results  mostly  consist  in  interpreting  the  estimated
parameters and their standard errors. Four main types of interpretation can be drawn from
such models: the statistical significance of an effect (“controlling for other predictors, gender
has a significant effect on wages, at the 5% level”), the sign of this effect (“women earn less
than similar men”), its magnitude (“women earn a% less than similar men”), or a confidence
interval for this magnitude (“the gender gap is between b% and c% with probability 95%”).
Parametric  models  are  generally  sufficiently  simple  for  their  parameters  to  have  an
interpretable meaning, one that is shaped by the prior modeling choices. Being parsimonious
in the way they link the predictors to the outcome, they provide simple answers to specific
research  questions  –  either  a  parameter  for  a  given  variable,  or  a  binary  answer  to  the
question  of  significance.  All  these  interpretations  have  direct  implications  in  terms  of
understanding of the phenomenon under  study,  and can be immediately  used outside the
regression  model  they  were  based  on.  Furthermore,  the  very  questions  they  answer  are
worked into the modeling choices, so that one typically tailors a parametric model to extract
such knowledge from the data at hand.

11 A model that overfts is akin to a student who, in order to prepare for a math exam, would learn the all of the
numerical  answers  given in class,  without understanding  the reasoning.  This student  would succeed  in the
unlikely case the test perfectly replicates the examples seen in class, but fail should the teacher change any
number in the exercise. Learning the answers is not the same as being able to generalize them to other contexts.
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The situation is quite different in supervised learning models,  which usually do not
allow direct interpretation of their parameters. This is a notorious downside  to their greater
flexibility. Rather than parameters, the main result of most learning algorithms is, once again,
their prediction, a type of information social scientists are not used to working with 12. Once
the model has been trained, it can output a predicted value of the outcome variable for any
given observation. This type of information can certainly be relevant in engineering problems
(such as assigning a category to an image), or for commercial uses. Likewise, it can reap –
and indeed already has reaped – significant  results  in applied domains such as medicine,
where  some  algorithms  routinely  detect  certain  pathologies  better  and  faster  than
professionals.  But  what  can more fundamental  disciplines  do with prediction,  when their
main  questions  have  less  to  do with  diagnosis  and  more  with  explanation?  Since  most
academic  disciplines  are  more  concerned  with  answering  “why”  rather  than  “whether”
someone will “do” something (be it success at an exam, consumption of cultural goods, or the
spread of a disease), this feature of machine learning has long been described as a major
impediment to its acclimatization in science.

While they are certainly problematic, these traits are also well known by proponents
of machine learning. Some even argue that prediction may not be such a bad tool overall, and
that correct interpretation and good prediction actually  go hand in hand (Breiman, 2001).
Their reasoning is the following: a model that achieves better prediction is bound to extract
more information from the data, and to capture the phenomenon under study more precisely.
Surely, the argument goes, there is more to be learned from an income model that accounts
for 90% of income variance than from one that accounts for 60%. Furthermore, several tools
have  been  developed  over  the  years  to  “open  the  black  box”  and  extract  meaningful
interpretations from the otherwise obscure models. Most are model-specific, but a few are
generalizable to all predictive models (including parametric models). Some offer insights into
the  global  interpretability  of  the  model  and  demonstrate  which  variables  play  the  most
important role; others explore the role of one variable across the dataset. These measures are
detailed and illustrated in the following section, which compares parametric regression and
supervised machine learning on an empirical case.
 
3. Differences in Practice: Determinants of salary in Sweden

How do supervised learning methods and parametric regression compare in practice?
The  following  pages  present  a  comparative  analysis  of  the  two approaches  on  a  classic
question of social sciences, the determinants of individual wages, on a single dataset. To do
so, we consider the usual moments of quantitative analysis: model building, assessment of
model quality, and interpretation of the results. 

The analysis is carried out on the Swedish labor force for 2012. The rationale for
choosing this  country is  that  Sweden practices  population registration  (folkbokföring).  As
such, it keeps detailed information about all of the persons living on its soil, and has done so
since the seventeenth century at least13. The continued collection of varied information over
decades,  along  with  the  merging  of  various  administrative  registers  (census,  taxes,  land
register, educational attainments), makes the Swedish register a well-known trove of reliable,
fine-grained mass data, which can be accessed through  Statistika centralbyrån (SCB), the
country’s statistical service. For each individual living in Sweden, one can thus access data

12 It  should be stressed that the term “prediction”,  in this context,  does not mean predicting the future.  A
supervised model acts like a function: when given a set of input values, it produces an output value, which is
called a prediction because it represents what the model “thinks” the outcome variable should be. It can thus
apply to any observation. 
13 A prerogative of the Swedish church until the ofcial separation of church and state, population registration
is now conducted by the tax ofce.
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on a wide range of items including civil  status, composition of the household, identity of
spouse and children if applicable, as well as place and company of employment, eligibility to
taxes, days of sick leave taken in the previous 12 months, etc. All these are updated and
stored yearly. Other information, such as results from tests taken during conscription or real-
estate transactions, can also be retrieved. The register thus offers both large-scale and quality
data, a combination that is quite rare nowadays in the social sciences.

With these sources, we analyzed income in Sweden in 2012. A classic question in the
quantitative  social  scientific  literature  since  Jacob  Mincer’s  famous  equation  (1974),  its
determinants are overall well-known. For instance, certain regularities like the gender wage
gap and the role of age have consistently been established in the literature, both in Sweden
and abroad. This approach may lack the excitement of novelty, but it also offers precious
landmarks when investigating a new method. For the sake of the analysis, not all items were
used – only nine predictor variables were retained (see insert). The rationale for selecting
only a few variables is that the use of many predictor variables (whose role is at best unclear)
is likely to unduly favor the machine learning algorithms. The output variable for all models
is the logarithm of the yearly gross wage14, as this transformation helps linear models cope
with the usually non-Gaussian distribution of wages. We furthermore restricted the study to
the employed population aged 18 to 65, with a gross salary exceeding 50,000 crowns a year
(about 5,000 euros, less than a third of the full-time observed minimum wage), to remove
part-time workers. Again, this was done in order not to unduly unfavor the linear model,
which  is  notoriously  sensitive  to  outliers  and  heterogeneous  samples.  This  left  us  with
4,109,447 observations. 

We  fit three  models  to  these  data.  The  first  one  is  the  simplest  form  of  linear
regression, which takes as predictors the nine aforementioned variables, without any further
transformation or interaction effect. We call this model “naive” because it does not require
any  domain-specific  knowledge.  The  second  model  builds  on  this  model  by  adding
interaction effects and variable transformations. It does so using a “lasso,” a popular variant
of the linear model in the machine learning context.  Finally,  the third model uses a fully
flexible machine learning algorithm: random forests.

All  three models are presented in sequence.  In order to be able to apply machine
learning validation standards, the studied population was randomly divided into three samples
prior  to  any  treatment:  the  training  sample  (70%  of  the  studied  population,  2,876,613
observations) was used to fit the models15, the validation sample (15%) was used to fine-tune
the models’ meta-parameters, and the remaining 15% was used only once at the very end, as
a test sample to estimate the generalization error of each final model.

DESCRIPTION OF VARIABLES
 

The predictor variables retained in all models are the following:
Age: A numerical variable, indicating the person's age in 2012.
Gender: A categorical variable with two levels (man / woman).
Occupation: A categorical variable with seven ordered levels (Managers, Skilled employees,

14 The logarithm is the most common transformation for the econometric study of wage equations. It helps
linear  models  cope  with the  usually  non-Gaussian  distribution of  wages,  so  that  the  partial  effect  of  each
variable is relative rather than absolute (e.g. an extra year of schooling might be associated with, say, a 5%
increase in wages, rather than an increase of 3,000 Swedish crowns).
15 While  it  is  unusual  to  split  the  data  into  training  and  validation  samples  in  the  context  of  parametric
regression, it is worth noting that in this specifc case where the data describe the complete population, ftting a
linear regression on a random sample makes it conform better to the probabilistic hypotheses of inference (p-
values, for instance, lose their theoretical justifcation when computed on a complete population).
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Intermediary  occupations,  Office  and  service  activities  (low  qualifications),  Low-skilled
workers, Military, and Other occupations).
Children between 0 to 10: A numerical variable indicating the number of children under the
age of 10 in 2012.
Region: A categorical variable with 21 unique levels indicating the region of residence.
Family Type: A categorical variable with 4 levels indicating the type of relationship (single,
couple) along with the presence of children in the household. 
Educational  Level:  A categorical  variable  with 5 levels  indicating  the highest  educational
achievement (including an “Unknown education” level).
Unemployment: A continuous variable indicating the number of days of paid unemployment
in the previous year.
Citizenship:  A  categorical  variable  with  4  levels  indicating  the  individual’s  citizenship
(Swedish, Nordic countries, European Union, Others).

Three models, one dataset and one question
We start with a simple linear regression model, in which each predictor variable has a

linear association with the output variable (logarithmic gross wage). This “naïve” model is
fitted through ordinary least squares on the training sample. The R² is 0.36, meaning that the
model bridges 36% of the error gap between a null model, which would predict the average
wage for all observations, and a perfect prediction. This corresponds to a (root mean squared)
prediction  error  of  0.44  which  means  that,  on  average,  the  predicted  gross  wage  lies
somewhere between 64% and 155% of the true observed gross wage16.

The estimated coefficients and associated statistics are reported in table 1. As could be
expected given the large number of observations, nearly all coefficients have p-values very
close to zero, making this standard interpretation tool virtually useless. This is a well-known
limitation of significance testing:  large numbers of observations push standard deviations
(and thus p-values) toward 0. Conceived at a time when data was scarce, statistical tests do
not fare well in the era of big data17. On the other hand, the estimated parameters are readily
interpretable: the coefficient for Gender-Woman (-0.26) means that, according to this model,
women earn around 23% less18 than comparable men, all other things being equal. Similarly,
each additional  year  of age is  found to be associated with a  1% increase in gross wage,
ceteris paribus.

The simplicity of these association effects reflects the simplicity of the chosen model:
a  1% increase  in  wage for  each additional  year  of  age  is  an  interesting  and remarkably
parsimonious result, but it is very probably an over-simplification, as wages are known to rise
faster in the early stages of a professional career, and the temporal dynamics of wages are
most probably different for men and women. It is thus tempting to try and specify a better
model, by adding, removing and combining terms that might take into account such non-
linear and interaction effects. This is what we do for the second model.

     

16 Because our models predict logarithmic wages, the models’ errors have to be turned into percent of change
to be interpretable in terms of nominal wages. A root mean squared error of A thus becomes a (100 x exp(+/- A))
% error in nominal wages.
17 (Saporta 2006, p. xxxii) gives a telling example of this fact. When measuring the linear correlation between
two continuous  variables  with  one million  observation,  the  absolute  correlation  need  only  be  0.002 to  be
signifcant at the 5% level. Such a small correlation is, of course, of no interest for interpretation.
18 Because  gross  wage  enters  our  regression  function  in  logarithmic  form,  an  estimated  coefcient  b for
predictor X means that a unit increase in X is, on average, and all other variables held equal, associated with a
100 x (exp(b) - 1) % variation of gross wage.
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Estimate Std. Error Marginal effect on
gross wage (%)

p-value

(Intercept) 7.534 0.003429 < 10 ¹⁻ ⁵

Age 0.0111 0.000023 1.1 < 10 ¹⁻ ⁵

Gender: Man ref

Gender: Woman -0.2572 0.000571 -22.7 < 10 ¹⁻ ⁵

Family: Couple with no children ref

Family: Couple with child(ren) 0.0649 0.000897 6.7 < 10 ¹⁻ ⁵

Family: Single parent 0.0445 0.001143 4.6 < 10 ¹⁻ ⁵

Family: Single & others 0.0631 0.000901 6.5 < 10 ¹⁻ ⁵

Children 0-10 -0.0010 0.000401 -0.1 0.011523

Education: Below high school ref

Education: High school degree 0.0982 0.000922 10.3 < 10 ¹⁻ ⁵

Education: Higher ed - 2 years or less 0.0723 0.001337 7.5 < 10 ¹⁻ ⁵

Education: Higher ed - over 2 years 0.1185 0.001074 12.6 < 10 ¹⁻ ⁵

Education: Unknown 0.0170 0.003675 1.7 0.000003

Occupation: Intermediary Occupations ref

Occupation: Managers 0.3388 0.001203 40.3 < 10 ¹⁻ ⁵

Occupation: Military 0.1042 0.004306 11.0 < 10 ¹⁻ ⁵

Occupation: Office & Service (LowQ) -0.2648 0.000837 -23.3 < 10 ¹⁻ ⁵

Occupation: Others -0.5658 0.001669 -43.2 < 10 ¹⁻ ⁵

Occupation: Skilled Employees 0.1172 0.000864 12.4 < 10 ¹⁻ ⁵

Occupation: Workers -0.2086 0.000883 -18.8 < 10 ¹⁻ ⁵

Days of unemployment -0.0031 0.000009 -0.3 < 10 ¹⁻ ⁵

Citizenship: EU, Except Nordic ref

Citizenship: Nordic countries 0.0435 0.002997 4.4 < 10 ¹⁻ ⁵

Citizenship: Other countries -0.1169 0.002734 -11.0 < 10 ¹⁻ ⁵

Citizenship: Sweden 0.0388 0.001936 4.0 < 10 ¹⁻ ⁵

Multiple R-squared:  0.3586, Adjusted R-squared:  0.3586 
F-statistic: 4.022e+04 on 40 and 2876572 DF,  p-value: < 2.2e-16

Table 1: Estimation results for the “naive” linear regression on Swedish register data.
Dependent variable: logarithmic gross wage. Reference case: man, in a couple with no

children, below high school education level, Intermediary occupation, EU (except Nordic)
citizenship.
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For better readability, 21 coefficients for County of residence were omitted from the table (of
which 15 showed p-values that were virtually 0).
 

***  
The second model, which we shall call  sophisticated linear, builds on the naive one

by adding a squared age term and an interaction effect between age and gender. This allows a
non-monotonic association between age and wages,  and specific  age effects  for men and
women. Because we arrived at this specific model formulation by a process of trial and error,
trying  multiple  specifications  and  choosing  the  best  we  could  find,  we  used  the  lasso
procedure instead of standard linear regression19. This lasso is still  a linear model, but its
optimization follows  a machine learning  approach (see insert), circumventing the problems
that trial-and-error poses to standard regression and hypothesis testing. We thus chose the
model’s specification based on its prediction quality  on the validation set.  Once this  was
done20, the final generalization error was evaluated on the test set, yielding a R² of 0.40.

The lasso: parametric models without p-values
 
The lasso is  a  popular  procedure that  was invented  in  the 1990s,  and may be seen as the
machine  learning  way  of  performing  linear/parametric  regression.  In  a  sense,  it  is  still  a
parametric  model,  because the form of the relationship  between predictors  and outcome is
specified by hand in the exact same way it would be for a linear model. However, it uses a
different optimization algorithm than standard linear models, because it has a different cost
function to minimize (see Hastie et al, 2008, p. 68).
Instead of just  finding the parameters that minimize the sum of squared errors, the lasso also
seeks  to  limit  the  complexity  of  the  fitted  model,  by  forcing  the  parameters  toward  small
absolute values. This is done to overcome some well-known limitations of linear regression
(possible overlearning, overinterpretation of p-values…) while at the same time retaining its
ease of interpretation. The intuition is that, for a given model specification, higher parameters
mean more complex models:  smaller  parameters  imply  that  a  change in  some predictor  is
associated with a small change in the outcome, making the overall model more careful.
The  complexity  of  the  model  is  measured  by  the  sum of  its  absolute  parameters,  and  is
controlled  by an additional  parameter  λ. For  zero  λ the lasso has the same solution  as  an
unconstrained linear model, while for a very large  λ all coefficients are forced toward zero.
Between these two extremes lies an optimal value, the  λ that yields the best generalization
error. This optimal value is found, as typically for a machine learning procedure, by cross-
validation on the training sample.
Just like a standard parametric model, a lasso yields estimated parameter values that can be
immediately interpreted. However, these parameters are not associated with standard errors and
p-values;  instead,  the  constrained  cost  function  ensures  that  “useless”  variables  have  a
parameter exactly equal to 0, so that they are left out of the model.
The  lasso  is  thus  a  useful  cross-over  between  standard  parametric  modeling  and  machine
learning. It has been extensively used in many empirical settings over the last two decades, and
been given many extensions. Additionally, and quite uniquely for a machine learning model, it

19 The attentive reader might note that, moving from our frst to our second model, we make two changes at
once:  the  model’s  parametric  specifcation  and  the  optimization  algorithm,  thus  making  comparison  more
difcult. We would argue, however, that if anything the lasso is supposed to perform better than ordinary least
squares in terms of generalization error, so that our second model is actually giving parametric specifcations
their best chance.
20 All lasso computations were executed using the glmnet package for R (Friedman, Hastie, Tibshirani, 2010),
using the default parameters and 10-fold cross-validation.
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can be fully justified in terms of Bayesian statistics.

The  estimated  coefficients  are  reported  in  table  2,  and while  their  value  may  be
interpreted in roughly the same way as for the simple linear model, interpretation is made
harder  by  the  fact  that  all  predictors  were  standardized  prior  to  fit,  and  by  the  higher
complexity of the model (the effect of age, for instance, can no longer be summarized by a
single number, as it enters the predictive model through a linear term, a quadratic term, and
an interaction term with one of the genders). Note the absence of standard errors and p-values
next to  the coefficients,  as  such statistics cannot  be computed using the lasso procedure.
Instead,  the  lasso  has  forced  some  coefficients  to  zero  (not  reproduced  in  the  table):
according to the lasso procedure, and given the specific model we chose, these variables are
better left out in order to achieve good generalization. The non-zero coefficients, on the other
hand, are deemed useful for prediction; this is notably the case for the squared age term, the
gender-age  interaction,  and  the  number  of  children.  Finally,  because  all  variables  were
standardized, the absolute value of their parameters can serve as a measure of the relative
contribution of each variable to the fit. The model can thus be said to be dominated by the
age, gender and occupation variables.

Variable Coefficient Variable Coefficient

(Intercept) 7.9555 Occupation: Intermediary Occupations ref

Age 0.8198 Occupation: Managers 0.0807

Age (squared) -0.7107 Occupation: Military 0.0072

Occupation: Office & Service (LowQ) -0.1094

Gender: Man ref Occupation: Others -0.0792

Gender: Woman -0.1655 Occupation: Skilled Employees 0.0469

Age x Gender:Man 0.0415 Occupation: Workers -0.0851

Family: Couple with no children ref Days of unemployment -0.0884

Family: Couple with child(ren) -0.0081

Family: Single parent -0.0089 Education: Below high school ref

Family: Single & others 0.0030 Education: High school degree 0.0376

Education: Higher ed - 2 years or less 0.0111

Children 0-10 -0.0245 Education: Higher ed - over 2 years 0.0409

Education: Unknown -0.0006

Citizenship: EU, Except Nordic ref

Citizenship: Nordic countries 0.0073

Citizenship: Other countries -0.0157

Citizenship: Sweden 0.0159

Table 2: Estimation results for the “sophisticated” linear regression, estimated by
lasso on Swedish register data.
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Dependent  variable:  logarithmic  gross  wage.  All  variables  (dummy transformations  and
interactions included) were scaled to unit variance prior to estimation. Reference case: man,
in a couple with no children, below high school education, intermediary occupation, and EU
(except Nordic) citizenship21.

We thus achieved a slightly better generalization result by using a more sophisticated
linear model than the first one. This is, of course, encouraging, but still begs the question: is
this really the best possible model? Despite our best efforts to build a good and meaningful
model, and our (limited) knowledge of the subject, it might very well be that we missed some
important effects or interactions. We therefore turn to a fully flexible model to try and extract
the most information from the data.

***
   

The random forest algorithm was introduced in 2001, and has been acclaimed ever
since for its adaptiveness and ease of use (see Hastie et al., 2008, p. 587-603). Without going
into the technicalities of the algorithm, it can be said that it uses multiple instances of an
earlier supervised learning procedure called  classification and regression trees (CART22) in
what is called an ensemble. The idea of an ensemble is, in a sense, democratic: combine the
opinions of many voters, and you get a single powerful decision. The random forest applies
this principle by averaging the predictions of many low-bias, high-variance and de-correlated
trees23. A typical forest is a collection of hundreds of trees, each of which is slightly perturbed
in a process involving random numbers, hence the name. Its individual trees are relatively
poor  predictors,  but  as  an  ensemble  it  is  a  powerful  low-bias,  low-variance  model.  The
resulting complexity of the random forest also makes it a typical black box.

Simply  giving the  nine predictor  variables  and the outcome variable  to  a  random
forest  implementation24 yields  an R² of  0.45 on the test  sample.  This  is  a  notably  better
prediction score than our best effort with linear models (see figure 1 for diagnostics plots of
the  three  trained  models).  This  was,  furthermore,  achieved  effortlessly  since  the  model
construction effort was carried out by the computer, without the researcher doing a thing. The
algorithm has thus captured a more accurate picture of how wages vary along with social
characteristics in Sweden. However, immediate interpretation was lost in the process. Indeed,
there  is  no  reading  of  coefficients  in  random forests,  as  the  combination  of  variables  it
produces is an intricate entanglement of tree branches. In fact, should the full mathematical
equation of the trained model be written down, it would fill many pages (this is thus never
done). Interpretation, instead, has to rely on prediction.

21 For improved readability, 21 coefficients for county of residence were omitted from the table (all of which
except Stockholm showed very small absolute coefficients, three of which were 0).
22 Classification and regression trees are simple algorithms for supervised learning (see Hastie et al., 2008, p.
305-312). They work with recursive binary partitioning: first find the explanatory variable that best separates the
output variable into well-separated groups, split the population in two, then repeat the operation on each of these
resulting sub-populations,  then on the four subsequent sub-populations,  etc.  The result has a tree form that
makes it easy to interpret.
23 The individual trees of a random forest are said to have low bias in the sense that, on average, they give a
prediction that is close to the desired target value; they have high variance because a small change in the data
can result in a large change in the fitted tree; they are de-correlated in the sense that they are forced, by various
random perturbations, to fit the data in many different ways.
24 For all random forest computations we used the very efficient ranger package (version 0.8.0) for R (Wright
and Ziegler, 2017), with 500 trees and 4 variables per split.
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Figure 1: Diagnostics plots, observed vs. predicted wages.
Sample  of  1,000  test  observations,  from  the  Swedish  wages  data.  The  horizontal  axis
represents observed logarithmic wages, the vertical their predicted counterparts, for three
different models. The diagonal represents perfect generalization, where each out-of-sample
observation is correctly predicted by the model.

Model interpretation
The  first  key  of  interpretation  of  supervised  models,  especially  in  the  machine

learning context, is their predictive power. In terms of generalization error, the random forest
is clearly the best of the three: its R² of 0.45 means that it bridges 45% of the gap between the
null model and perfect prediction (compared to 36% and 40% for the naive and sophisticated
linear models). Its root mean squared error on the test set is 0.4063. In terms of nominal gross
wages, this means that most random forest predictions lie between 67% and 150% of the true
observed  wages  (65%-153% for  the  sophisticated  linear,  64%-155% for  the  naive  linear
model).  This  is  certainly  a  step  forward,  although  admittedly  still  far  from perfect25.  In
exactly what way does the random forest  surpass the linear models? The diagnostics from
figure  1  give  us  a  first  indication,  showing that  the  flexible  model  does  a  better  job  at
capturing variations at the ends of the wage spectrum: its predictions are better for the nearly
40% of the population whose log-wages are under 7.5 or above 9, and its predicted wages are
less narrowly distributed than is the case for both linear models. All in all, it is thus a better
prediction machine, in the sense that it gives a more accurate answer to the question “how
much does someone with this set of social properties earn?”

Prediction alone, of course, is not very useful to a social scientist, and the black box
aspect of the random forest model, with individual parameters that are meaningless for direct
interpretation, can be unsettling. Fortunately, a variety of tools have been designed to extract
interpretable information from predictive models. The next pages present two of the most

25 A word on perfect prediction might be in order here. While it is, in theory, the ultimate goal of any predictive
model, it can of course never be attained in practice, at least in social science. For one thing, individual and
social behavior are always partly random, so that there always remains a portion of incompressible “noise” in
the data. Furthermore, even complex models trained on millions of cases cannot compensate for low-quality
predictor  variables:  measurement  errors,  dubious proxies  and omitted variables  are  very  common in social
scientifc research, and are most probably the real bottleneck that prevents good prediction.
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common, which share the benefit of being applicable regardless of the type of model used:
permutation importance and partial dependence.

Permutation importance: which variables matter for prediction?

As its name suggests, the  permutation importance  measure aims at assessing the
relative (predictive) importance of the variables at hand, using permutation. It exploits the
fact that once the model has been trained, it works as a prediction machine that can be fed
any predictor data.  Its principle is simple: using a subset of the population under study
(preferably the test set), the values of a given variable are randomly permuted (rearranged
in a random order), leaving all other variables intact. When these perturbed data are passed
through the model, the prediction quality is degraded (when compared to prediction on the
unperturbed data). This degradation in prediction quality is interpreted as an importance
measure for the current variable: a variable that makes the model much worse when it is
permuted is important, while a variable that can be permuted without affecting prediction
quality is not important. The procedure is repeated for each variable in sequence, and may
be repeated several times for each variable to improve robustness. The whole process thus
offers a standardized, interpretable measure of variable importance that can be compared
across predictors (both continuous or categorical), does not depend on the type of learning
model used, and demands only a single trained model26.

Figure 2: Variable importance estimation for the three models (effect of random permutation
of each variable on prediction accuracy).

Occupation is an important predictor for all models (prediction error increases by around
40% when this predictor is shuffled); Age is interpreted as not very important in the Naive

26 Prediction importance could also be measured by training multiple models, and measuring the degradation in
prediction  quality  that  results  from removing  each  variable;  this,  however,  is  not  practical,  as  it  demands
training a large number of diferent models, a number that grows exponentially with the number of regressors.

19



Linear  model,  important  in  the  Sophisticated  Linear  model,  and  very  important  in  the
Random Forest.

Figure 2 shows the results of permutation importance for the three trained models. For
both linear models, the importance measure yields results that are in stark contrast with the
common interpretation of its coefficients and p-values. The first difference is formal: while
significance tests give a binary (yes-no) answer, permutation importance yields a score and
an  ordering.  More  importantly,  whereas  nearly  all  regression  parameters  were  deemed
significantly different from 0 (at the 0.1% level) and showed sizeable marginal effects, from a
permutation point of view only Occupation, Age, Gender (and to some extent the number of
days of unemployment in the past year) play an important part in prediction27. In comparing
both sets of results, however, one should keep in mind that the two importance measures do
not answer quite the same question. Consider, for instance, a dataset in which a predictor x1

has a definite but very small effect on outcome y, independent from the other regressors.
While a (well-defined) parametric model should find the effect to be significantly different
from zero, x1 would score low on permutation importance. Depending on what one means by
“importance”, one of several possible measures can thus be favored.

For the sophisticated linear (lasso) model, the permutation importance measure can be
confronted to the estimated coefficients, again with contrasting results: while many variables
have  non-zero  estimated  parameters  (such  as  the  education  and  county  of  residence
dummies), again only three or four variables can be deemed important for prediction, based
on the permutation measure.

Comparing these models on permutation results alone, we find that all three agree on
the  main  lines:  Occupation,  Age  and  Gender  are  always  the  most  important  variables,
followed  by  numbers  of  days  of  unemployment.  Additionally,  the  random  forest  draws
attention to Education by giving it  a moderate importance level. The order of the variables,
however,  varies  from  one  model  to  another:  the  importance  of  Age  increases  as  the
complexity of the model increases (around 20% increased error for the naive linear model,
35% for the sophisticated linear, over 60% for the random forest). We may infer from this
that wages and age are associated in a complex way, or at least one that is hard to accurately
formulate into an explicit equation.

Such diverging results raise the question of which of the three importance measures is
the most accurate, the answer to which is debatable. From a machine learning perspective, the
fact  that  the  random  forest  yields  better  (cross-validated)  prediction  makes  it  more
trustworthy. However, the lack of inference on the permutation importance values (in the
sense of a measure of uncertainty of the computed values) makes it somewhat dubious from a
statistical  perspective.  This  flaw applies  more  generally  to  most  interpretation  results  of
supervised machine learning,  although in recent  years some effort  has been made in that
direction: see (Efron and Hastie, 2016, chap. 20).

The partial dependence measure is another method that harnesses prediction power to
gain insight into a model’s representation of the data. In the naive linear model, the marginal
effect  of  a  given  variable  can  be  directly  computed  from  its  estimated  parameter,  and
interpreted in the common ceteris paribus way. The sophisticated linear model has slightly
more complex marginal effects due to the interaction terms, and these effects are allowed to

27 Of  course,  p-values  by  themselves  are  not  sufcient  to  assess  whether  a  variable  does  really  play  an
important  role  in  the  model,  as  reminded  by  the  American  Statistical  Association’s  statement.  Further
interpretation should rely on the size of  the efects,  as  measured  by the estimated parameters  (and  always
keeping in mind that these strongly depend on the chosen model form). For instance, the marginal diference
between men and women on gross wage is equivalent to a 20-year diference in terms of age, so that the efect
of gender can be said to be more important. 
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vary between different sub-populations, as pre-specified in the model’s construction. When
using flexible models such as the random forest, the effects of a given predictor are allowed
to vary freely according to the predictor’s value, in a non-monotonic and non pre-specified
way. Contextual interpretations can then be made about the local effects of variables (age, for
instance, is not specified ex ante to play a monotonic or quadratic role, or to be independent
from the  other  regressors).  Partial  dependence  is  a  popular  method  to  extract  such
information  from black  box models.  As it  cannot  be summarized  by a  single digit,  it  is
typically represented on bivariate “partial dependence plots”.

Partial dependence: isolating the effect of a single variable in a complex model

The intuition for partial dependence is that, if one is to study the association of a
single variable with the outcome, the effects of all other predictors can be neutralized by
averaging  them  out.  Just  as  permutation  importance,  partial  dependence  combines
predictive  power  and  perturbations  of  the  original  dataset  to  produce  interpretable
measures.  The  partial  dependence  of  the  outcome  variable  on  a  given  predictor  X1 is
computed in the following way: for each value xthat X1 takes in the dataset (and preferably
in its test-subsample), a new dataset is created in which all values of X1 are replaced by this
single value  x. If  X1 is gender, for instance, two synthetic datasets are created, each one
with as many observations (N) as the base dataset: in the first table all observations are
assumed to be women (while all other variables are left untouched), in the other all are set
to be men. Both these synthetic datasets are fed, in turn, to the predictive model, yielding N
predicted  wages  for  synthetic  women,  and  another  N for  synthetic  men.  Finally,  we
compute the average prediction for the synthetic men and for the synthetic women, and
these two average predictions make up the partial dependence plot28. In the case of age, 47
different synthetic datasets of size N are created: one where all individuals are set to be 18
years old, one for 19, and so on until 65 years old.

28 As in the case of permutation importance, it is interesting to note that, while the partial dependence measure
is used to answer a question similar to that of the ceteris paribus efects of variables in the linear model, it does
not  measure  the  exact  same  thing.  While  the  estimated  parameters  of  the  logistic  regression  measure  the
marginal efect of each variable,  independently from the other predictors, the partial dependence measures the
average efect of a given predictor, for all observed values of the other predictors. In the former case, the other
predictors are “controlled” by the specifc form of the model, while in the latter they are “averaged out” (see
Hastie, Tibshirani and Friedman, 2008, pp. 369-370 for a treatment of this diference).
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Figure 3: Partial dependence plot for age, computed from three predictive models
The horizontal axis is age. The vertical axis is the predicted log wage, obtained by averaging
out all predictors other than age. This is interpreted as the specific contribution of age to the
variations of wages, as understood by each model.

Figure 3 shows the partial dependence plots for the age regressor, for all three fitted
models. The shape of the curves is a telling visual indicator of the way the regressor is used
in the model. The naive model’s curve is by design straight, while the  sophisticated linear
model’s curve describes a section of a parabola: predicted wages rise steadily from 18 years
on, peaking just before 50, and slowly decreasing afterwards. In these models, the shape of
partial  dependence  is  determined  by  the  initial  modeling  choices:  the  naive  linear
specification  can  only  yield  a  linear  curve,  the  sophisticated  linear  is  allowed  to  take a
quadratic shape. The random forest, on the other hand, is free to let each regressor take an
arbitrary  form in  the  predictive  model.  As  noted  before,  it  predicts  wages  on  a  broader
spectrum than the two other models; on figure 3 this is visible from the fact that it predicts
much lower  average  wages  for  the  youngest  in  the  sample  (18-25 years  old).  Its  partial
dependence curve is reminiscent of the quadratic shape of the sophisticated linear, but its
irregular form is actually closer to piecewise linear: fast rising wages for the young, then a
slower increase from 25 to 40, followed by a plateau between 40 and 60 years old, and a
steady decrease afterwards. Such an irregular form would be near-impossible to attain with
parametric models29, the plateau shape being especially difficult to build using polynomial
transformations. It is also probably a more accurate description of the association between
age and wage in Sweden, judging by the lower generalization error of the random forest.

It must be noted that the same partial  dependence method can be extended to the
estimation of combined effects of two or more predictors, although the required amount of
computation grows exponentially with the number of variables. The search for interesting
combined effects of predictors, the modeling of which is theoretically one of the strong points

29 This is at least true for models were age is kept as a continuous variable. Piecewise linear functions are easy
to construct if the turning points are already known (in this case, ages 25, 40 and 60), but the whole point of the
random forest (and similar fexible models) is that it was able to detect these thresholds by itself.
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of machine learning, thus largely falls to the researcher, who must try out different small
subsets of predictor variables and visualize them on 2D or 3D plots. Another weakness of the
partial dependence measure arises from the way it tries to force counterfactual prediction:
when estimating the partial dependence on occupation, for instance, the model will be asked
to predict synthetic observations that have no close equivalent in the training dataset (for
instance women with a high education level doing manual construction labor), which can
yield  misleading  results.  Finally,  as  in  the  case  of  permutation  importance,  faith  in  the
interpretation of partial dependence rests entirely on the credit given to the predictive power
of the model, rather than on statistical theory.

4. The advent of statistical learning? 

In the light of the previous developments, it should be clear that machine learning
offers  an  alternative  approach  to  quantification.  Will  it  replace  more  classic  methods
altogether,  starting  with  parametric  regression?  The  time  may  seem  ripe  for  the
computational approach to take over quantitative social science. Vast amounts of funding are
being poured into the field.  Just like big data in the last  decade,  “machine learning” has
become the fashionable keyword to include in an abstract when applying for a grant or a
prestigious  conference.  Similarly,  the  hype surrounding the  field,  whose results  regularly
make the headlines of international media, attracts  masses of scholars and students. More
importantly  perhaps,  these  successes  come at  a  time  of  heightened  defiance  towards  the
dominant  method  of  parametric  regression  and  its  longtime  companion,  statistical
significance testing. P-values, in particular, are suspected to lie at the heart of the crisis of
replicability that has been documented in many areas of science, and their use and abuse has
lately  been  condemned  by  the  largest  professional  association  in  mathematical  statistics
(Wasserstein and Lazar, 2016). However, the current results offered by statistical learning,
along with lessons from the history of science, should warn against unfettered optimism: the
oft-evoked machine learning revolution, advocated by some and feared by others, may have
to wait.

Three challenges for machine learning in science
One reason has to do with the type of results produced by these techniques. As evoked

before, prediction is not a tool many scientists are used to working with. Surely, various tools
have been developed to extract information from black-box models and to offer interpretation
possibilities  akin  to  those  of  parametric  regression.  However,  the  large  variety  of  both
machine  learning models  and interpretation  tools,  along with  the  lack  of  solid  statistical
inference,  means that  no golden standard for interpretation  has appeared  as of  yet.  This,
combined with the fact  that  learning methods are  not commonly taught  in  social  science
departments,  makes  publishing  machine  learning  results  much  costlier  than  sticking  to
standard parametric modeling. Furthermore, the lack of guarantees as to the optimality of any
given trained machine learning model, and the fact that their high flexibility could make them
easier  to  manipulate  toward  a  preconceived  result,  might  make  their  results  even  more
suspicious than those of parametric models.

In addition  to  the types  of  information  offered by learning algorithms,  the results
themselves  are  often  not  as  spectacular  as  could  be  hoped  for.  There  are,  of  course,
undeniable successes in certain areas. Automatic translation, self-driving cars, or, closer to
science, the detection of rare diseases all bear witness to the efficiency of the approach - and
the list is regularly growing longer. But even on its own criterion of choice, (cross-validated)
predictive power, machine learning is regularly outperformed by more classic methods on
social science datasets.
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Here  lies  another  challenge  for  machine  learning: the  size  of  the  datasets.  While
parametric  regression  does  not  usually  improve  significantly  beyond  a  few  hundreds  of
observations, machine learning algorithms can require a very large number of training cases
(observations) to live up to their promise of universal approximation. There is no rule as to
how many observations are enough, as this is entirely dependent on the intrinsic complexity
of the relationships to be modeled. And of course, this complexity remains largely unknown
in advance30.

Figure 4 illustrates how the three different models presented above were affected by
size: all three were trained multiple times on random samples on the Swedish wages dataset,
with sample sizes varying from 300 to 300,000 observations31. The linear and random forest
models are the same as in section 3. XGBoost is another flexible learning model; it refers to
“Extreme Gradient Boosting”, a recent variation on the popular gradient boosting algorithm
(Hastie et al,  op. cit., chapter 10). The linear model’s  prediction quality increases at first,
when data is scarce, but reaches a plateau after 3,000 observations: its rigid specification
prevents  it  from extracting  more  information  from additional  data.  The  random forest’s
prediction power, on the other hand, shows a steady increase as the dataset expands, with a
curve hinting at the fact that it might do better still on a larger dataset (as indeed it does, to
wit its results on the full near-three-million training set in section 3). The XGBoost curve is
even more interesting: while this powerful model performs  slightly better than the random
forest  after  the 30,000 observations mark, it  does consistently  worse than even the linear
model  on datasets  with  under  10,000 observations.  Unfortunately,  10,000 observations  is
already a large dataset for social sciences. 

30 It should be noted that machine learning procedures are in fact capable of surpassing parametric models on
small datasets, as witnessed by the many examples of only a hundred observations that can be found in machine
learning textbooks. In the authors’ experience, however, this is not the rule on social science datasets.
31 In order to assess this efect of size, we used 7 sample sizes, from 300 to 300,000 observations. Each model
was trained on 20 random samples of each size, for increased robustness. As we used three diferent models, this
adds up to a total of 7 x 20 x 3 = 420 trained models.
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Figure 4: R² for three different predictive models, on random subsamples of varying
sizes taken from the Swedish wages dataset. Here the R² is said to be cross-validated because

it is computed on an independent test sample. A value of 0 means that the prediction is no
better than the null model (predicting only the average wage for all observations), 1 means

perfect prediction.

There is an important lesson to be gained from this: when faced with datasets that are
too small  (even with tens of thousands of observations  in the case of complex patterns),
machine learning procedures  may not fulfil their promise of universal approximation. They
may not even do better than more classic approaches. In fact, it is worth noting that while
doing research for this article, the authors have tried out supervised learning algorithms on a
good dozen datasets with varied properties and size. More often than not, standard parametric
regression performed at least as well as advanced learning algorithms.  This issue could be
progressively  solved  by  the  ever-increasing  mass  of  available  data.  The  growing  use  of
computers, the dissemination of sensors capturing varied aspects of everyday life, or the ease
with which one can now format and merge databases, have led to a sharp increase in the size
and number of datasets at hand. This might however not be sufficient. The majority of the
newly and massively available data is, in fact, quite  limited in information. As the former
head of the U.S. Census bureau once put it, the current rise in data is not primarily due to an
increase in what he called “design data” - data collected with a research question in mind.
Instead,  it  consists  in  a  new  abundance  of  what  he  termed  “organic  data,”  information
collected for other purposes (the functioning of an administration, of a service, or for business
matters). And while the latter may be converted into relevant information, this is in no way
guaranteed (Grove, 2011). In the social sciences, big data all too often remain poor data.

There is yet another reason why machine learning may not replace standard methods
altogether.  The history of science  reminds us that  this  is  not  the first  time that   (social)
sciences have discussed the relative merits  of a more inductivist  approach over a theory-
driven one. The cyclical debates about the primacy of empirics bear witness to this. This is of
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course the case in sociology - one need only think of the periodic resurgences of such claims,
for instance under the guise of “serendipity” or of “grounded theory”. This is also the case in
economics, where empiricism is sometimes denounced as a form of “measurement without
theory” (Koopmans,  1947),  but sometimes  vindicated  too.  Likewise,  the stern defense of
flexible models coming from proponents of machine learning echoes the oppositions between
proponents of modeling and supporters of rich descriptions in many disciplines. The lessons
of the past must be heeded here: the lack of resolution of these century-old disputes has less
to do with the absence of an appropriate method, and more with the fact that by choosing to
focus on one aspect, one necessarily loses sight of the other. There is no easy way out of
established antinomies.

History  also  suggests  that,  in  science  at  least,  revolutions  are  less  frequent  than
selective appropriation. In his book Chaos of Discipline (Abbott, 2001), Abbott defines this
as a process of “fractalization,” whereby key insights from one approach are integrated within
the other, while the two traditions keep on existing on their own. Such a process is surely
ongoing between machine learning and parametric regression. In a  recent example of what
the data avalanche could do to econometrics, Hal Varian (2014) mentioned a few elements
that could be fruitfully imported into this discipline from statistical learning, most notably
tools for variable selection (the choice of which predictors to include in a regression model).
Coming from econometrics too, (Charpentier et al., forthcoming) make a case for a broader
use of machine learning, and in particular for ascertaining the correct specification of the
model. The article also evokes the use of prediction and the question of causal inference, two
aspects that were largely tackled by Susan Athey, who in recent years has consistently looked
for  ways  to  improve  the  classic  econometric  approach  in  the  light  of  the  practices  of
statistical learning (Athey, 2017). Conversely, causal modeling, an endeavor that used to be
the  hallmark  of  econometrics,  is  gaining  currency  in  the  machine  learning  literature,
following the influential work of Judea Pearl (2009).

Knowledge and uncertainty
Hybridization does not mean that no change is under way. In the words of Abbott, “a

fractal distinction produces both change and stability” (2001, p. 21). To capture this change,
one must switch focal lenses and consider not what social  sciences can do with machine
learning, but rather what the rise of this set of techniques can do to social sciences. When it
comes to their methods, many disciplines have been through deep introspection. Initiated in
the  first  decade  of  the  twenty-first  century  with  a  series  of  proven  frauds  and  blatant
invention of data, a movement for more transparency in scientific research emerged. It was
reinforced by several failed attempts at replicating various studies. One of the most famous
may be the Reproducibility project, spearheaded by psychologist Brian Nosek. Looking at
100 recently published studies in the field, he and his colleagues were able to reproduce only
a third of the results proclaimed by the papers (Open Science Collaboration, 2015). Although
the authors themselves nuance this result by stating that several reasons may account for such
a low figure, the overall picture is grim. One reason is well known, and has to do with the
organization  of scientific  production;  the reduction of research budgets and the increased
conditioning of grants on publications have led to more publication bias:  publishing only
conclusive results - and being in constant dire need to publish some - tends to generate false
conclusions.

This is nonetheless not the only, and maybe not the even the main cause for this crisis
that looms over most contemporary applied quantitative research. In a remarkable discussion
of the issues plaguing contemporary quantitative research, John Ioannidis explained that the
reason why “Most Published Research Findings Are False” had to do with the ubiquity of
statistical  significance testing (2005). And in fact, since its introduction in social sciences
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after  the 1950s,  hypothesis  testing,  usually  by way of parametric  regression,  has become
omnipresent. With variations between disciplines and countries, they have largely reshaped
the way researchers deal with numbers in the social sciences. This omnipresence, though,
came at a cost. Speaking about U.S. sociology, Abbott famously contended that the adoption
of the “generalized linear model” gave way to a cognitive change: increasingly, researchers
started to think about the world as if it had the properties of the model, thus giving way to a
generalized  linear  vision of  reality  (1988).  The quasi  universal  adoption  of  this  one tool
certainly forced many to format their research so as to be able to implement a regression -
even when the method was not warranted. Having become the main token of scientificity,
parametric regression narrowed the scope of possible quantitative research.

Here may lie the most lasting impact of machine learning for social science, once the
considerable hype surrounding it settles down. The rapid dissemination of statistical learning
in  many  disciplines  is  indeed  favoring  the  emergence  of  an  alternative  approach  to
quantification. By offering results that are sometimes, but certainly not always, in line with
standard  regression;  by  advancing  different  validation  criteria;  and  most  importantly  by
promoting  another  way  to  work  with  quantitative  data.  As  the  fundamental  critique  of
parametric  models  and  statistical  testing  gains  currency,  and  as  a  plausible  alternative
emerges, parametric regression is being rooted out of its quasi monopolistic position. The
aforementioned limitations of the machine learning approach, however, make it somewhat
incommensurable,  in the terms famously  proposed by  Kuhn. Its results are generally of a
different nature than those of regression, and this  prevents it from fully filling the opening
space32.

Paradoxically, the greater diversity of statistical techniques and criteria is thus making
scientists more ignorant about their object of study: on the one hand, the statistical certainties
of old are now known to be ill-founded, on the other hand the newer methods do not even
pretend to give any definite answers regarding scientific hypotheses. All in all, this forces
scientists to adopt a humbler position towards their data. In this sense, greater uncertainty
may not be such a problem. Controlled ignorance might indeed be a scientific blessing in this
time of patented replicability crisis. In a more recent endeavor, Nosek assembled three dozen
teams of researchers to assess the magnitude of implicit bias in quantitative research. Each
starting  with the  same question  and the  same database,  the  teams reached very  different
conclusions (Silberzahn et al., 2017). The article drawn from this experience subsequently
made a powerful case for collective scrutiny. According to the authors, crowdsourcing of
quantitative  methods  is  necessary  to  debunk  potential  biases.  Though  obviously
commendable, this option is not always feasible, as it would require too many people’s time
and energy - especially if it is to be done at every stage of research. But the multiplication of
quantitative standards can offer such a critical eye. The presence of an alternative approach to
quantification  could  become  a  way  to  ascertain  our  results.  By  forcing  us  to  multiply
standpoints, it would trigger an unsettling but eventually productive confrontation. After all,
it has long been known that monoculture yields decreasing returns after a while33.

32 If  anything,  Bayesian  statistics  might  be  the  best  candidate  for  this  office,  as  it  provides  a  rigorous
theoretical framework on which to build more traditional and interpretable models - albeit again at the cost of
increased complexity and loss of familiarity.
33 In other places or disciplines,  the statistical  hegemon may be diferent.  The problem of methodological
monoculture extends well beyond parametric regression.
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Conclusion  
Clifford Geertz once wrote that the immense success experienced by certain ideas is

as justified as it is problematic. Speaking about concepts such as that of “culture” in the early
twentieth century, he wrote that these ideas “resolve so many fundamental problems that they
seem also to promise that  they will  resolve all  fundamental  problems, clarify all  obscure
issues.” However, the anthropologist quickly noted, this achievement often becomes an issue
in itself, as it can quickly transform into solipsism. “The sudden vogue of a grande idée,” he
added, is always at risk of “crowding out almost everything else for a while” (Geertz, 1973,
p. 310). The same goes for methods. In quantitative research, few techniques have been as
central as parametric regression (in its various forms of linear regression, logistic, Poisson,
nonlinear least squares, etc.). Born itself at the turn of the twentieth century, it has produced
momentous changes in numerous scientific areas. It also became so ubiquitous that its use has
not only become rigidified – it may have become unproductive.

Judging from its resounding successes of the early twenty-first century, supervised
machine learning may seem slated to be the next statistical grande idée. Emerging at a time
of crisis for conventional statistics in general, and the common econometric use of parametric
models in particular, this renewed approach to quantification may have sparked a new hope.
By freeing itself from constraining and easily-violated probabilistic hypotheses, by being able
to harness the ever-growing masses of data and computation power,  and to automatically
detect intricate patterns the researcher could not even have formulated, it bears the promise of
making regression great again. While all this is true, the present article argues that it is very
unlikely that machine learning will  become the next methodological  hegemon, at  least  in
social science. This argument is not founded on the methods’ alleged abandonment of theory:
they are in no way a tool that magically extracts knowledge from raw data, nor can they be
fruitfully used without the guidance of a precise research question and theoretical framework.
The lack of solid understanding of their results, along with their need for large datasets to
perform well, are much more serious obstacles to its prophesied rise to prominence. What
machine learning does seem likely to do,  however,  is force scholars to denaturalize their
methods. By widening the scope of possible uses of quantification, and exposing the weak
points of yesterday’s certainties, it is favoring a humbler attitude toward statistical results.

There are, no doubt, some unnerving aspects to machine learning. Not the least is the
arrogance  of  some  of  its  users,  who buy  into  (or  try  to  sell)  the  rhetoric  of  an  always
upcoming revolution. Against such naiveté, Geertz again had some cautionary words: “after
we have become familiar with the new idea [...] it no longer has the grandiose, all-promising
scope,  the  infinite  volatility  of  apparent  application  it  once  had.”  Past  that  point,  “our
attention shifts to isolating [what the idea is good for], to disentangling ourselves from a lot
of pseudoscience to which, in the first flush of celebrity, it has also given rise” (Geertz, 1973,
p. 311).
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