
HAL Id: hal-01841034
https://hal.science/hal-01841034v2

Preprint submitted on 8 Aug 2019 (v2), last revised 29 Aug 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-adaptive neural network based prediction for
image compression

Thierry Dumas, Aline Roumy, Christine Guillemot

To cite this version:
Thierry Dumas, Aline Roumy, Christine Guillemot. Context-adaptive neural network based prediction
for image compression. 2019. �hal-01841034v2�

https://hal.science/hal-01841034v2
https://hal.archives-ouvertes.fr

1

Context-adaptive neural network based prediction
for image compression

Thierry Dumas, Aline Roumy, Christine Guillemot

Abstract— This paper describes a set of neural network
architectures, called Prediction Neural Networks Set (PNNS),
based on both fully-connected and convolutional neural networks,
for intra image prediction. The choice of neural network for
predicting a given image block depends on the block size, hence
does not need to be signalled to the decoder. It is shown that,
while fully-connected neural networks give good performance for
small block sizes, convolutional neural networks provide better
predictions in large blocks with complex textures. Thanks to
the use of masks of random sizes during training, the neural
networks of PNNS well adapt to the available context that
may vary, depending on the position of the image block to be
predicted. When integrating PNNS into a H.265 codec, PSNR-
rate performance gains going from 1.46% to 5.20% are obtained.
These gains are on average 0.99% larger than those of prior
neural network based methods. Unlike the H.265 intra prediction
modes, which are each specialized in predicting a specific texture,
the proposed PNNS can model a large set of complex textures.

Index Terms—Image compression, intra prediction, neural
networks.

I. INTRODUCTION

INTRA prediction is a key component of image and video
compression algorithms and in particular of recent coding

standards such as H.265 [1]. The goal of intra prediction is
to infer a block of pixels from the previously encoded and
decoded neighborhood. The predicted block is subtracted from
the original block to yield a residue which is then encoded.
Intra prediction modes used in practice rely on very simple
models of dependencies between the block to be predicted
and its neighborhood. This is the case of the H.265 standard
which selects according to a rate-distortion criterion one mode
among 35 fixed and simple prediction functions. The H.265
prediction functions consist in simply propagating the pixel
values along specified directions [2]. This approach is suitable
in the presence of contours, hence in small regions containing
oriented edges [3], [4], [5]. However, it fails in large areas
usually containing more complex textures [6], [7], [8]. Instead
of simply propagating pixels in the causal neighborhood, the
authors in [9] look for the best predictor within the image by
searching for the best match with the so-called template of
the block to be predicted. The authors in [10] further exploit
self-similarities within the image with more complex models
defined as linear combinations of k-nearest patches in the
neighborhood.

The authors are with INRIA Rennes, 35042 Rennes, France (e-mail:
thierry.dumas@inria.fr, aline.roumy@inria.fr, christine.guillemot@inria.fr).

This work has been supported by the French Defense Procurement Agency
(DGA).

In this paper, we consider the problem of designing an intra
prediction function that can predict both simple textures in
small image blocks, as well as complex textures in larger ones.
To create an optimal intra prediction function, the probabilistic
model of natural images is needed. Let us consider a pixel,
denoted by the random variable X , to be predicted from its
neighboring decoded pixels. These neighboring decoded pixels
are represented as a set B of observed random variables. The
authors in [11] demonstrate that the optimal prediction X̂∗

of X , i.e. the prediction that minimizes the mean squared
prediction error, is the conditional expectation E [X|B]. Yet,
no existing model of natural images gives a reliable E [X|B].

However, neural networks have proved capable of learning a
reliable model of the probability of image pixels for prediction.
For example, in [12], [13], recurrent neural networks sequen-
tially update their internal representation of the dependencies
between the pixels in the known region of an image and then
generate the next pixel in the unknown region of the image.

In this paper, we consider the problem of learning, with
the help of neural networks, a reliable model of dependencies
between a block, possibly containing a complex texture, and
its neighborhood that we refer to as its context. Note that
neural networks have already been considered in [14] for intra
block prediction. However, the authors in [14] only take into
consideration blocks of sizes 4×4, 8×8, 16×16, and 32×32
pixels and use fully-connected neural networks. Here, we con-
sider both fully-connected and convolutional neural networks.
We show that, while fully-connected neural networks give
good performance for small block sizes, convolutional neural
networks are more appropriate, both in terms of prediction
PSNR and PSNR-rate performance gains, for large block sizes.
The choice of neural network is block size dependent, hence
does not need to be signalled to the decoder. This set of neural
networks, called Prediction Neural Networks Set (PNNS),
has been integrated into a H.265 codec, showing PSNR-rate
performance gains from 1.46% to 5.20%.

In summary, the contributions of this paper are as follows:
• We propose a set of neural network architectures, in-

cluding both fully-connected and convolutional neural
networks, for intra image prediction.

• We show that, in the case of large block sizes, convo-
lutional neural networks yield more accurate predictions
compared with fully-connected ones.

• Thanks to the use of masks of random sizes during
training, the neural networks of PNNS well adapt to
the available context that may vary. E.g. in H.265, the
available context, hence the number of known pixels
in the neighborhood, depends on the position of the

2

considered prediction unit within the coding unit and
within the coding tree unit.

• Unlike the H.265 intra prediction modes, which are each
specialized in predicting a specific texture, the proposed
PNNS, trained on a large unconstrained set of images, is
able to model a large set of complex textures.

• We prove experimentally a surprising property of the
neural networks for intra prediction: they do not need to
be trained on distorted contexts, meaning that the neural
networks trained on undistorted contexts generalize well
on distorted contexts, even for severe distortions.

The code to reproduce our numerical results and train the
neural networks is available online 1.

II. CONDITIONS FOR EFFICIENT NEURAL NETWORK BASED
INTRA PREDICTION

Prediction is a key method in rate distortion theory, when
complexity is an issue. Indeed, the complexity of vector
quantization is prohibitive, and scalar quantization is rather
used. But, scalar quantization cannot exploit the statistical
correlations between data samples. This task can be done
via prediction [15]. Prediction can only be made from data
samples available at the decoder, i.e. causal and distorted data
samples. By distorted causal data samples we mean previously
encoded and decoded pixels above and on the left side of the
image block to be predicted. This set of pixels is often referred
to as the context of the block to be predicted.

Optimal prediction, i.e. conditional expectation [11], re-
quires knowing the conditional distribution of the image block
to be predicted given causal and distorted data samples. Esti-
mating such a conditional distribution is difficult. The use of
the predictor by the decoder would in addition require sending
the distribution parameters. Classical approaches in predictive
coding consist in proposing a set of predefined functions and
choosing the best of them in a rate-distortion sense. Thus, the
number of possible functions is limited. On the other hand,
neural networks can approximate many functions, in particular
complex predictive functions such as the generation of future
video frames given an input sequence of frames [16], [17].

But, the use of neural networks for intra prediction within an
image coding scheme raises several questions that we address
in this paper. What neural network architecture provides
enough power of representation to map causal and distorted
data samples to an accurate prediction of a given image block?
What context size should be used? Section III looks for a
neural network architecture and the optimal number of causal
and distorted data samples for predicting a given image block.
Moreover, the amount of causal and distorted data samples
available at the decoder varies. It depends on the partitioning
of the image and the position of the block to be predicted
within the image. Section IV trains the neural networks so
that they adapt to the variable context size. Finally, can neural
networks compensate for the quantization noise in its input
and be efficient in a rate-distortion sense? Sections V and VI
answer these two questions with experimental evidence.

1https://github.com/thierrydumas/context adaptive neural network based
prediction

Fig. 1: Illustration of the relative positions of X, X0, X1, and
Y.

III. PROPOSED NEURAL NETWORK BASED INTRA
PREDICTION

Unlike standard intra prediction in which the encoder
chooses the best mode in a rate-distortion sense among several
pre-defined modes, only one neural network among a set of
neural networks does the prediction here. Unlike [14], our
set contains both fully-connected and convolutional neural
networks. This section first presents our set of neural networks.
Then, it explains how one neural network is selected for
predicting a given image block and the context is defined
according to the block size. Finally, the specificities of the
integration of our neural networks into H.265 are detailed.

A. Fully-connected and convolutional neural networks

Let X be a context containing decoded pixels above and
on the left side of a square image block Y of width m ∈
N∗ to be predicted (see Figure 1). The transformation of X
into a prediction Ŷ of Y via either a fully-connected neural
network fm, parametrized by θm, or a convolutional neural
network gm, parametrized by φm, is described in (1). The
corresponding architectures are depicted in Figures 2 and 3.

Xc = X− α

Ŷc =

{
fm (Xc;θm)

gm (Xc;φm)
(1)

Ŷ = max
(
min

(
Ŷc + α, 255

)
, 0
)

During optimization, each input variable to a neural network
must be approximatively zero-centered over the training set to
accelerate convergence [18]. Besides, since the pixel space
corresponds to both the input and output spaces in intra
prediction, it makes sense to normalize the input and output
similarly. One could subtract from each image block to be
predicted and its context their respective mean during training.
But, this entails sending the mean of a block to be predicted
to the decoder during the test phase. Instead, the mean pixel
intensity α is first computed over all the training images. Then,
α is subtracted from each image block to be predicted and its
context during training. During the test phase, α is subtracted
from the context (see (1) where the subscript c stands for
centered).

This preprocessing implies a postprocessing of the neural
network output. More precisely, the learned mean pixels

3

Fig. 3: Illustration of the convolutional architecture gm in which gcm, gm, and gtm denote respectively a stack of convolutional
layers, the merger, and the stack of transposed convolutional layers. φc

m, φm, and φt
m gather the weights and biases of

respectively gcm, gm, and gtm. φm =
{
φc,0

m ,φc,1
m ,φm,φ

t
m

}
.

Fig. 2: Illustration of the fully-connected architecture fm.
FC:p|LeakyReLU denotes the fully-connected layer with p
output neurons and LeakyReLU with slope 0.1 as non-linear
activation. Unlike FC:p|LeakyReLU, FC:p has no non-linear
activation. θm gathers the weights and biases of the 4 fully-
connected layers of fm.

intensity is added to the output and the result is clipped to
[0, 255] (see (1)).

The first operation for both architectures consists in format-
ting the context to ease the computations in the neural network.
In the case of a fully-connected neural network, all elements in
the context are connected such that there is no need to keep
the 2D structure of the context [19]. Therefore, the context
is first vectorized, and fast vector-matrix arithmetics can be
used (see Figure 2). However, in the case of a convolutional
neural network, fast computation of 2D filtering requires to
keep the 2D structure of the context. Moreover, again for fast
computation, the shape of the input to the convolution has
to be rectangular. That is why the context is split into two
rectangles X0 and X1 (see Figures 1 and 3). X0 and X1 are
then processed by distinct convolutions.

The proposed fully-connected architecture is composed of 4
fully-connected layers. The first layer computes an overcom-
plete representation of the context to reach p ∈ N∗ output
coefficients. Overcompleteness is chosen as it is observed
empirically that overcomplete representations in early layers
boost the performance of neural networks [20], [21], [22]. The
next two layers keep the number of coefficients unchanged,
while the last layer reduces it to provide the predicted image

block. The first three layers have LeakyReLU [23] with slope
0.1 as non-linear activation. The last layer has no non-linear
activation. This is because the postprocessing discussed earlier
contains already a non-linearity, which consists in first adding
the learned mean pixels intensity to the output and clipping
the result to [0, 255].

The first task of the convolutional architecture is the compu-
tation of features characterizing the dependencies between the
elements in X0. X0 is thus fed into a stack of convolutional
layers. This yields a stack Z0 of l ∈ N∗ feature maps
(see Figure 3). Similarly, X1 is fed into another stack of
convolutional layers. This yields a stack Z1 of l feature maps.

All the elements in the context can be relevant for predicting
any image block pixel. This implies that the information asso-
ciated to all spatial locations in the context has to be merged.
That is why the next layer in the convolutional architecture
merges spatially Z0 and Z1 (see Figure 3). More precisely,
for i ∈ [|1, l|], all the coefficients of the ith feature map of Z0

and of the ith feature map of Z1 are merged through affine
combinations. Then, LeakyReLU with slope 0.1 is applied,
yielding the merged stack Z of feature maps. Note that this
layer bears similarities with the “channelwise fully-connected
layer” [24]. But, unlike the “channelwise fully-connected
layer”, it merges two stacks of feature maps of different height
and width. Its advantage over a fully-connected layer is that
it contains l times less weights.

The last task of the convolutional architecture is to merge
the information of the different feature maps of Z. Z is thus fed
into a stack of transposed convolutional layers [25], [26]. This
yields the predicted image block (see Figure 3). Note that all
convolutional layers and transposed convolutional layers, apart
from the last transposed convolutional layer, have LeakyReLU
with slope 0.1 as non-linear activation. The last transposed
convolutional layer has no non-linear activation due to the
postprocessing discussed earlier.

B. Growth rate of the context size with the block size

Now that the architectures and the shape of the context are
defined, the size of the context remains to be optimized. The

4

Fig. 4: Dependencies between D and Y. The luminance
channel of the first image in the Kodak suite [27] is being
encoded via H.265 with Quantization Parameter QP = 17.

causal neighborhood of the image block to be predicted used
by the H.265 intra prediction modes is limited to one row of
2m+1 decoded pixels above the block and one column of 2m
decoded pixels on the left side of the block. However, a context
of such a small size is not sufficient for neural networks as a
neural network relies on the spatial distribution of the decoded
pixels intensity in the context to predict complex textures.
Therefore, the context size has to be larger than 4m+ 1.

But, an issue arises when the size of the context grows too
much. Indeed, if the image block to be predicted is close to
either the top edge of the decoded image D or its left edge,
a large context goes out of the bounds of the decoded image.
The neural network prediction is impossible. There is thus a
tradeoff to find a suitable size for the context.

Let us look at decoded pixels above and on the left side
of Y to develop intuitions regarding this tradeoff. When m
is small, the long range spatial dependencies between these
decoded pixels are not relevant for predicting Y (see Figure
4). In this case, the size of the context should be small so that
the above-mentioned issue is limited. However, when m is
large, such long range spatial dependencies are informative
for predicting Y. The size of the context should now be
large, despite the issue. Therefore, the context size should be
a function of mq, q ≥ 1.

From there, we ran several preliminary experiments in
which q ∈ {1, 2, 3} and the PSNR between Ŷ and Y was
measured. The conclusion is that a neural network yields the
best PSNRs when the size of the context grows with m2, i.e.
the ratio between the size of the context and the size of the
image block to be predicted is constant. This makes sense
as, in the most common regression tasks involving neural
networks, such as super-resolution [28], [29], segmentation
[30], [31] or video interpolation [32], [33], [34], the ratio
between the input image dimension and the output image
dimension also remains constant while the height and width
of the output image increase. Given the previous conclusions,
X0 is a rectangle of height 2m and width m. X1 is a rectangle
of height m and width 3m.

C. Criterion for selecting a proposed neural network

Now that the context is defined with respect to m, all that
remains is to choose between a fully-connected neural network
and a convolutional one according to m.

Convolutional neural networks allow better extracting 2D
local image structures with fewer parameters compared to
fully-connected neural networks [19]. This is verified by the
better prediction performances of the convolutional neural
networks for m > 8 (see Sections IV-E and IV-F). However,
this property becomes less critical for small block sizes.
We indeed experimentally show that, when m ≤ 8, for the
prediction problem, fully-connected architectures outperform
convolutional architectures.

Therefore, when integrating the neural network based intra
predictor into a codec like H.265, the criterion is to predict
a block of width m > 8 via a proposed convolutional neural
network, and a block of width m ≤ 8 via a fully-connected
neural network.

D. Integration of the neural network based intra prediction
into H.265

A specificity of H.265 is the quadtree structure partitioning,
which determines the range of values for m and the number
of available decoded pixels in the context.

In H.265 [1], an image is partitioned into Coding Tree Units
(CTUs). A CTU is composed of one luminance Coding Tree
Block (CTB), two chrominance CTBs, and syntax elements.
For simplicity, let us focus on a single CTB, e.g. the luminance
CTB. The CTB size is a designed parameter but the commonly
used CTB size is 64× 64 pixels. A CTB can be directly used
as Coding Block (CB) or can be split into 4 32 × 32 CBs.
Then, each 32 × 32 CB can be iteratively split until the size
of a resulting CB reaches a minimum size. The minimum size
is a designed parameter. It can be as small as 8 × 8 pixels,
and is set to this value in most configurations. A Prediction
Block (PB) is a block on which the prediction is applied. If
the size of a CB is not the minimum size, this CB is identical
to its PB. Otherwise, in the case of intra prediction, this CB
can be split into 4 4× 4 PBs. More splittings of this CB into
PBs exist for inter prediction [1]. A recursive rate-distortion
optimization finds the optimal splitting of each CTB.

Due to this partioning, m ∈ {4, 8, 16, 32, 64}. For each
m ∈ {4, 8}, a fully-connected neural network is constructed
with internal size p = 1200. Similarly, one convolutional neu-
ral network is constructed per block width m ∈ {16, 32, 64}.
The convolutional architecture for each m ∈ {16, 32, 64} is
detailed in Appendix A.

Another consequence of this partitioning is that the number
of available decoded pixels in the context depends on m and
the position of image block to be predicted in the current
CTB. For instance, if the block is located at the bottom of
the current CTB, the bottommost m2 pixels in the context
are not decoded yet. More generally, it might happen that a
group of n0 × m pixels, n0 ∈ {0, 4, ...,m}, located at the
bottom of the context, is not decoded yet. Similarly, a group of
m×n1 pixels, n1 ∈ {0, 4, ...,m}, located furthest to the right
in the context, may not have been decoded yet (see Figure

5

Fig. 5: Illustration of the masking of the undecoded pixels in
X for H.265. The luminance channel of the first image in the
Kodak suite is being encoded via H.265 with QP = 37. Here,
m = 8 and n0 = n1 = 4.

5). When pixels are not decoded yet, the solution in H.265
is to copy a decoded pixel into its neighboring undecoded
pixels. But, this copy process cannot be re-used here. Indeed,
it would fool the neural network and make it believe that, in
an undecoded group of pixels and its surroundings, the spatial
distribution of pixels intensity follows the regularity induced
by the copy process. Alternatively, it is possible to indicate to
a neural network that the two undecoded groups are unknown
by masking them. The mask is set to the learned mean pixels
intensity over the training set so that, after subtracting it from
the context, the average of each input variable to a neural
network over the training set is still near 0. More precisely
regarding the masking, the first undecoded group in the context
is fully covered by an α-mask of height n0 and width m. The
second undecoded group in the context is fully covered by
an α-mask of height m and width n1 (see Figure 5). The
two α-masks together are denoted Mn0,n1 . In Section IV-A,
the neural networks will be trained so that they adapt to this
variable number of available decoded pixels in the context.

Figure 6 summarizes the integration of the neural network
based intra prediction scheme into H.265. The last issue to
address is when no context is available. This occurs when
the context goes out of the bounds of the decoded image,
i.e. the pixel at the top-left of the context is not inside the
decoded image. In this case, no neural network is used, and a
zero prediction O of Y is returned. In Figure 6, etest extracts
X from D with respect to the position of Y while applying
Mn0,n1

to X, following Figure 5.

IV. NEURAL NETWORKS TRAINING

This section explains how our neural networks are trained.
Notably, an adaptation to the changing number of available
decoded pixels in the input context is proposed. Then, an ex-
periment shows the effectiveness of this approach. Moreover,
this experiment compares the predictions of convolutional
neural networks and those of fully-connected neural networks

Fig. 6: Illustration of the neural network based intra prediction
scheme inside H.265.

in terms of prediction PSNR in the case of large image blocks
to be predicted.

A. Adaptation of the neural networks to the variable number
of available decoded pixels via random context masking

The fact that n0 and n1 vary during the test phase, e.g.
in H.265, has to be considered during the training phase. It
would be unpractical to train one set of neural networks for
each possible pair {n0, n1}. Instead, we propose to train the
neural networks while feeding them with contexts containing
a variable number of known pixels. More precisely, during the
training phase, n0 and n1 are sampled uniformly from the set
{0, 4, ...,m}. This way, the amount of available information
in a training context is viewed as a random process the neural
networks have to cope with.

B. Objective function to be minimized

The goal of the prediction is to minimize the Euclidean dis-
tance between the image block to be predicted and its estimate,
or in other words to minimize the variance of the difference
between the block and its prediction [11], also called the
residue. The choice of the L2 norm is a consequence of the L2
norm chosen to measure the distortion between an image and
its reconstruction. So, this Euclidean distance is minimized to
learn the parameters θm. Moreover, regularization by L2 norm
of the weights (not the biases), denoted [θm]W , is applied [35]
(see (2)).

min
θm

E [‖Yc − fm (Xc;θm)‖2] + λ ‖[θm]W ‖
2
2

(2)

Yc = Y − α

The expectation E [.] is approximated by averaging over a
training set of image blocks to be predicted, each paired
with its context. For learning the parameters φm, (2) is used,
replacing θm with φm and fm with gm.

The optimization algorithm is ADAM [36] with mini-
batches of size 100. The learning rate is 0.0001 for a fully-
connected neural network and 0.0004 for a convolutional one.
The number of iterations is 800000. The learning is divided by
10 after 400000, 600000, and 700000 iterations. Regarding the

6

other hyperparameters of ADAM, the recommended values
[36] are used. The learning rates and λ = 0.0005 were found
via an exhaustive search. For a given m, a neural network is
trained for each combination of learning rate and λ value in
{0.007, 0.004, 0.001, 0.0007, 0.0004, 0.0001, 0.00007, 0.00004}
× {0.001, 0.0005, 0.0001}. We select the pair of parameter
values giving the largest mean prediction PSNR on a
validation set.

For both fully-connected and convolutional neural networks,
the weights of all layers excluding the first one are initialized
via Xavier’s initialization [37]. Xavier’s initialization allows to
accelerate the training of several consecutive layers by making
the variance of the input to all layers equivalent. The problem
concerning the first layer is that the pixel values in the input
contexts, belonging to [−α, 255− α], have a large variance,
which leads to instabilities during training. That is why, in the
first layer, the variance of the output is reduced with respect
to that of the input by initializing the weights from a Gaussian
distribution with mean 0 and standard deviation 0.01. The
biases of all layers are initialized to 0.

C. Training data

The experiments in Sections IV-D and VI involve luminance
images. That is why, for training, image blocks to be predicted,
each paired with its context, are extracted from luminance
images.

One 320 × 320 luminance crop I is, if possible, extracted
from each RGB image in the ILSVRC2012 training set [38].
This yields a set Γ =

{
I(i)
}
i=1...1048717

.
The choice of the training set of pairs of contexts and

image blocks to be predicted is a critical issue. Moreover,
it needs to be handled differently for fully-connected and
convolutional neural networks. Indeed, a convolutional neural
network predicts large image blocks with complex textures,
hence its need for high power of representation (see Appendix
A). As a consequence, it overfits during training if no training
data augmentation [39], [40], [41], [42] is used. In constrast,
a fully-connected neural network predicts small blocks with
simple textures, hence its need for relatively low power of
representation. Thus, it does not overfit during training without
training data augmentation. Moreover, we have noticed that
a training data augmentation scheme creates a bottleneck in
training time for a fully-connected neural network. Therefore,
training data augmentation is used for a convolutional neural
network exclusively. The dependencies between a block to be
predicted and its context should not be altered during the
training data augmentation. Therefore, in our training data
augmentation scheme, the luminance crops in Γ are exclu-
sively randomly rotated and flipped. Precisely, for each step
of ADAM, the scheme is Algorithm 1. srotation rotates its input
image by angle ψ ∈ {0, π / 2, π, 3π / 2} radians. sflipping flips
its input image horizontally with probability 0.5. etrain is the
same function as etest, except that etrain extracts

{
X(i),Y(i)

}
from potentially rotated and flipped I instead of extracting X
from D and the position of the extraction is random instead
of being defined by the order of decoding. For training a

fully-connected neural network,
{

X
(i)
c ,Y

(i)
c

}
i=1...10000000

is
generated offline from Γ, i.e. before the training starts.

Algorithm 1 Training data augmentation for the convolutional
neural networks
Inputs: Γ, m, α.

∀i ∈ [|1,100|],
i ∼ U [1, 1048717]

ψ ∼ U
{
0,
π

2
, π,

3π

2

}
n0, n1 ∼ U {0, 4, ...,m}

J = sflipping

(
srotation

(
I(i), ψ

))
{

X(i),Y(i)
}
= etrain (J,m, n0, n1, α)

X(i)
c = X(i) − α

Y(i)
c = Y(i) − α

Output:
{

X
(i)
c ,Y

(i)
c

}
i=1...100

.

The issue regarding this generation of training data is that
the training contexts have no quantization noise whereas,
during the test phase in a coding scheme, a context has
quantization noise. This will be discussed during several
experiments in Section VI-D.

D. Effectiveness of the random context masking

A natural question is whether the random context masking
applied during training to adapt the neural networks to the
variable number of known pixels in the context degrades the
prediction performance. To address this question, a neural
network trained with random context masking is compared to
a set of neural networks, each trained with a fixed mask size.
The experiments are performed using fully-connected neural
networks for block sizes 4 × 4 and 8 × 8 pixels (f4 and f8),
and convolutional neural networks for block sizes 16 × 16,
32× 32, and 64× 64 pixels (g16, g32, and g64).

The experiments are carried out using the 24 RGB images
in the Kodak suite [27], converted into luminance. 960 image
blocks to be predicted, each paired with its context, are
extracted from these luminance images. Table I shows the
average PSNR between the image block to be predicted
and its prediction via PNNS over the 960 blocks, denoted
PSNRPNNS,m, for each block width m and each test pair
{n0, n1}. We see that a neural network trained with a fixed
mask size has performance in terms of PSNR that significantly
degrades when the mask size during the training phase and the
test phase differ. By contrast, a neural network trained with
random context masking allows to get the best (bold) or the
second best (italic) performance in terms of PSNR for all the
possible mask sizes during the test phase. Moreover, when the
second best PSNR performance is achieved, the second best
PSNR is very close to the best one.

A second set of experiments is related to the success rate
µPNNS,m of the neural network based prediction, i.e. the rate
at which PNNS provides a better prediction in terms of PSNR

7

TABLE I: Comparison of (a) PNSRPNNS,4, (b) PSNRPNNS,8,
(c) PSNRPNNS,16, (d) PSNRPNNS,32, and (e) PSNRPNNS,64
for different pairs {n0, n1} during the training and test
phases. U {0, 4, ...,m} denotes the fact that, during the train-
ing phase, n0 and n1 are uniformly drawn from the set
{0, 4, 8, 12, ...,m}.

Test {n0, n1}
Training f4 with {n0, n1}

{0, 0} {0, 4} {4, 0} {4, 4} U {0, 4}
{0, 0} 34.63 34.39 34.44 34.23 34 .57
{0, 4} 32.90 34 .39 32.82 34.23 34.42
{4, 0} 32.79 32.68 34.44 34.23 34 .39
{4, 4} 30.93 32.68 32.82 34.23 34 .20

(a)

Test {n0, n1}
Training f8 with {n0, n1}

{0, 0} {0, 8} {8, 0} {8, 8} U {0, 4, 8}
{0, 0} 31.85 31.73 31.68 31.62 31 .79
{0, 8} 30.93 31.73 30.83 31.62 31 .66
{8, 0} 30.70 30.75 31.68 31.62 31.68
{8, 8} 29.58 30.75 30.83 31.62 31 .56

(b)

Test {n0, n1}
Training g16 with {n0, n1}

{0, 0} {0, 16} {16, 0} {16, 16} U {0, 4, ..., 16}
{0, 0} 29 .23 22.69 24.85 20.76 29.25
{0, 16} 28.65 29.12 24.66 23.99 29 .11
{16, 0} 28.43 22.60 29 .06 22.99 29.12
{16, 16} 27.87 28.37 28.35 28.98 28 .97

(c)

Test {n0, n1}
Training g32 with {n0, n1}

{0, 0} {0, 32} {32, 0} {32, 32} U {0, 4, ..., 32}
{0, 0} 25.93 22.13 22.29 18.85 25 .92
{0, 32} 25.39 25.79 22.18 21.75 25 .76
{32, 0} 25.41 22.02 25.82 20.38 25 .80
{32, 32} 25.00 25.31 25.32 25.63 25 .62

(d)

Test {n0, n1}
Training g64 with {n0, n1}

{0, 0} {0, 64} {64, 0} {64, 64} U {0, 4, ..., 64}
{0, 0} 21 .46 19.41 19.78 18.17 21.47
{0, 64} 21.27 21 .35 19.68 19.95 21.38
{64, 0} 21.11 19.18 21.34 19.06 21.34
{64, 64} 20.94 21.08 21.16 21.27 21.27

(e)

than any other prediction of H.265. Again, the neural network
trained with random context masking achieves the best (bold)
or the second best rate (italic), where the second best rate is
very close to the best rate (see Table II).

Therefore, we conclude that random context masking does
not alter the performance of the trained neural networks.
Besides, random context masking is an effective way of
dealing with the changing number of known pixels in the
context. Section VI will discuss rate-distortion performance.
Note that, in order to fix n0 and n1 during the test phase, the
previous experiments have been carried out outside H.265.

E. Relevance of convolutional neural networks for predicting
large image blocks

Let us have a look at the overall efficiency of our convolu-
tional neural networks for predicting large image blocks before
comparing convolutional neural networks and fully-connected

TABLE II: Comparison of success rates in percentage (a)
µPNNS,4, (b) µPNNS,8, (c) µPNNS,16, (d) µPNNS,32, and (e)
µPNNS,64 for different pairs {n0, n1} during the training and
test phases. U {0, 4, ...,m} denotes the fact that, during the
training phase, n0 and n1 are uniformly drawn from the set
{0, 4, 8, 12, ...,m}.

Test {n0, n1}
Training f4 with {n0, n1}

{0, 0} {0, 4} {4, 0} {4, 4} U {0, 4}
{0, 0} 22% 17% 19% 16% 19%
{0, 4} 15% 18% 13% 15% 17%
{4, 0} 11% 11% 20% 17% 19%
{4, 4} 11% 12% 13% 16% 15%

(a)

Test {n0, n1}
Training f8 with {n0, n1}

{0, 0} {0, 8} {8, 0} {8, 8} U {0, 4, 8}
{0, 0} 33% 30% 30% 30% 32%
{0, 8} 21% 31% 20% 31% 29%
{8, 0} 21% 20% 34% 31% 32%
{8, 8} 16% 20% 20% 31% 30%

(b)

Test {n0, n1}
Training g16 with {n0, n1}

{0, 0} {0, 16} {16, 0} {16, 16} U {0, 4, ..., 16}
{0, 0} 55% 18% 20% 9% 54%
{0, 16} 42% 51% 18% 18% 50%
{16, 0} 40% 15% 51% 17% 53%
{16, 16} 33% 36% 40% 52% 49%

(c)

Test {n0, n1}
Training g32 with {n0, n1}

{0, 0} {0, 32} {32, 0} {32, 32} U {0, 4, ..., 32}
{0, 0} 63% 30% 30% 14% 63%
{0, 32} 54% 61% 27% 27% 61%
{32, 0} 54% 28% 63% 22% 62%
{32, 32} 46% 53% 52% 60% 60%

(d)

Test {n0, n1}
Training g64 with {n0, n1}

{0, 0} {0, 64} {64, 0} {64, 64} U {0, 4, ..., 64}
{0, 0} 68% 39% 43% 27% 67%
{0, 64} 63% 64% 41% 44% 65%
{64, 0} 62% 36% 66% 38% 68%
{64, 64} 57% 61% 63% 64% 66%

(e)

neural networks in this case. Figures 7, 8, 9, 10, 11, and 12
each compares the prediction of an image block provided by
the best H.265 intra prediction mode in terms of prediction
PSNR and the prediction provided by PNNS. Note that, the
neural networks of PNNS yielding these predictions are trained
via random context masking. Note also that n0 = n1 = 0
during the test phase. In Figure 11, the image block to be
predicted contains the frame of a motorbike. There is no better
H.265 intra prediction mode in terms of prediction PSNR than
the DC mode in this case. In contrast, PNNS can predict a
coarse version of the frame of the motorbike. In Figure 12,
the block to be predicted contains lines of various directions.
PNNS predicts a combination of diagonal lines, vertical lines
and horizontal lines, which is not feasible for a H.265 intra
prediction mode. However, Figures 9 and 10 show failure
cases for the convolutional neural network. The quality of the
prediction provided by the convolutional neural network looks
worse than that provided by the best H.265 mode. Indeed,

8

(a) (b)

(c) (d) (e)

Fig. 7: Prediction of a block of size 16×16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 27) in
terms of PSNR, and (e) predicted block via PNNS.

(a) (b)

(c) (d) (e)

Fig. 8: Prediction of a block of size 16×16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 11) in
terms of PSNR, and (e) predicted block via PNNS.

the prediction PSNRs are 27.09 dB and 23.85 dB for the
H.265 mode of index 25 and the convolutional neural network
respectively in Figure 9. They are 29.35 dB and 27.37 dB
for the H.265 mode of index 29 and the convolutional neural
network respectively in Figure 10. Therefore, the convolutional
neural networks of PNNS is often able to model a large set
of complex textures found in large image blocks.

Table III compares our set of neural networks
{f4, f8, g16, g32, g64} with the set of 4 fully-connected neural
networks in [14], called Intra Prediction Fully-Connected
Networks Single (IPFCN-S), in terms of prediction PSNR.
“Single” refers to the single set of 4 fully-connected neural
networks. This differs from the two sets of fully-connected
neural networks mentioned later on in Section VI-C. The
4 fully-connected neural networks in [14] predict image
blocks of sizes 4 × 4, 8 × 8, 16 × 16, and 32 × 32 pixels
respectively. Let PSNRIPFCN-S,m be the PSNR between the
image block and its prediction via IPFCN-S, averaged over
the 960 blocks. We thank the authors in [14] for sharing
the trained model of each fully-connected neural network of

(a) (b)

(c) (d) (e)

Fig. 9: Prediction of a block of size 16×16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 25) in
terms of PSNR, and (e) predicted block via PNNS.

(a) (b)

(c) (d) (e)

Fig. 10: Prediction of a block of size 16×16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 29) in
terms of PSNR, and (e) predicted block via PNNS.

(a) (b)

(c) (d) (e)

Fig. 11: Prediction of a block of size 64×64 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (DC) in terms of
PSNR, and (e) predicted block via PNNS.

(a) (b)

(c) (d) (e)

Fig. 12: Prediction of a block of size 64×64 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (planar) in terms
of PSNR, and (e) predicted block via PNNS.

9

TABLE III: Comparison of PSNRPNNS,m and PSNRIPFCN-S,m
[14] for m ∈ {4, 8, 16, 32, 64}. f4, f8, g16, g32, and g64 are
trained via random context masking. During the test phase,
n0 = n1 = 0.

m PSNRPNNS,m PSNRIPFCN-S,m [14]
4 34.57 33.70
8 32.01 31.44
16 29.25 28.71
32 25.52 24.96
64 21.47 −

TABLE IV: Comparison of success rates in percentage
µPNNS,m and µIPFCN-S,m [14], for m ∈ {4, 8, 16, 32, 64}. f4,
f8, g16, g32, and g64 are trained via random context masking.
During the test phase, n0 = n1 = 0.

m µPNNS,m µIPFCN-S,m [14]
4 19% 14%
8 31% 26%
16 54% 35%
32 60% 41%
64 67% −

IPFCN-S. Table III reveals that the performance of PNNS in
terms of prediction PSNR is better than that of IPFCN-S for
all sizes of image blocks to be predicted. More interestingly,
when looking at the success rate µIPFCN-S,m of IPFCN-S,
i.e. the rate at which IPFCN-S provides a better prediction
in terms of PSNR than any other prediction of H.265, the
difference µPNNS,m − µIPFCN-S,m increases with m (see Table
IV). This shows that convolutional neural networks are more
appropriate than fully-connected ones in terms of prediction
PSNR for large block sizes. Note that, in Tables III and IV,
there is no comparison for block width 64 pixels as this block
width is not considered in [14].

F. Justification of fully-connected neural networks for predict-
ing small image blocks

Now that the benefit of using convolutional neural networks
rather than fully-connected ones for predicting large image
blocks is shown, the choice of fully-connected neural networks
for predicting small blocks must be justified. Table V displays
the average PSNR between the image block to be predicted
and its prediction over the 960 blocks for both a fully-
connected architecture and a convolutional one for each block
width m ∈ {4, 8, 16}. The two fully-connected architectures
f4 and f8 are already presented in Figure 2. The fully-
connected architecture f16 is also that in Figure 2. The three
convolutional architectures g4, g8, and g16 are shown in Table
XIII in Appendix A. We see that the convolutional neural
network provides better prediction PSNRs on average than its
fully-connected counterpart only when m > 8. This justifies
why f4 and f8 are selected for predicting blocks of width 4
and 8 pixels respectively.

G. Different objective functions

In the objective function to be minimized over the neural
network parameters, the distortion term involves the L2 norm

TABLE V: Comparison of the average prediction PSNR given
by the fully-connected architecture and that given by the
convolutional one for different pairs {n0, n1} during the test
phase: (a) PSNRPNNS,4 given by f4 and g4, (b) PSNRPNNS,8
given by f8 and g8, and (c) PSNRPNNS,16 given by f16 and
g16. All neural networks are trained by drawing n0 and n1
uniformly from the set U {0, 4, 8, 12, ...,m}.

Test {n0, n1} f4 g4
{0, 0} 34.57 33.82
{0, 4} 34.42 33.66
{4, 0} 34.39 33.79
{4, 4} 34.20 33.54

(a)

Test {n0, n1} f8 g8
{0, 0} 31.79 31.40
{0, 8} 31.66 31.41
{8, 0} 31.68 31.32
{8, 8} 31.56 31.32

(b)

Test {n0, n1} f16 g16
{0, 0} 29.07 29.25
{0, 16} 28.95 29.11
{16, 0} 28.95 29.12
{16, 16} 28.86 28.97

(c)

of the difference between the image block to be predicted
and its estimate (see (2)). We also tried an alternative. This
alternative consisted in replacing the L2 norm by the L1 norm.
The choice of the L1 norm could be justified by the fact
that, in H.265, for a given image block to be predicted, the
criterion for selecting several intra prediction modes among
all modes involves the sum of absolute differences between
the image block to be predicted and its estimate3. But, this
alternative distortion term did not yield any increase of the
mean prediction PSNRs compared to those shown in Table I.

A common alternative to the regularization by L2 norm of
the weights is the regularization by L1 norm of the weights
[35]. Both approaches have been tested and it was observed
that the regularization by L2 norm of the weights slightly
reduces the mean prediction error on a validation set at the
end of the training.

V. SIGNALLING OF THE PREDICTION MODES IN H.265

Before moving on to the experiments in Section VI where
PNNS is integrated into a H.265 codec, the last issue is
the signalling of the prediction modes inside H.265. Indeed,
the integration of PNNS into H.265 requires to revisit the
way all modes are signalled. Section V describes two ways
of signalling PNNS into H.265. The purpose of setting up
these two ways is to identify later on which signalling yields
the largest PSNR-rate performance gains and discuss why
a difference between them exists. The first signalling is the
substitution of a H.265 intra prediction mode with PNNS. The
second signalling is a switch between PNNS and the H.265
intra prediction modes.

A. Substitution of a H.265 intra prediction mode with PNNS

Section V-A first describes how H.265 selects the best of its
35 intra prediction modes for predicting a given image block.
Based on this, a criterion for finding the mode to be replaced
with PNNS is built.

10

To select the best of its 35 intra prediction modes for
predicting a given image block, H.265 proceeds in two steps.
During the first step, the 35 modes compete with one another.
Each mode takes the causal neighborhood of the block to
compute a different prediction of the block. The sum of
absolute differences between the input block and its prediction
is linearly combined with the mode signalling cost, yielding
the mode “fast” cost 2. The modes associated to a given
number of lowest “fast” costs are put into a “fast” list 3. During
the second step, only the modes in the “fast” list compete with
one another. The mode with the lowest rate-distortion cost is
the best mode.

Knowing this, it seems natural to replace the mode that
achieves the least frequently the lowest rate-distortion cost.
Therefore, the frequency of interest νm ∈ [0, 1] ,m ∈
{4, 8, 16, 32, 64}, is the number of times a mode has the lowest
rate-distortion cost when m = m divided by the number
of times the above-mentioned selection process is run when
m = m. To be generic, νm should not be associated to
luminance images of a specific type. That is why 100 380×480
luminance crops extracted from the BSDS300 dataset [43] and
100 1200× 1600 luminance crops extracted from the INRIA
Holidays dataset [44] are encoded with H.265 to compute νm.
In this case, the mode of index 18 has on average the lowest
νm when m ∈ {4, 16, 32, 64} (see Figure 13). Note that this
conclusion is verified with QP ∈ {22, 27, 32, 37, 42}. Note
also that statistics about the frequency of selection of each
H.265 intra prediction mode have already been analyzed [45],
[46]. But, they are incomplete for our case as they take into
account few videos and do not differentiate each value of m.
Thus, PNNS replaces the H.265 mode of index 18.

As explained thereafter, the signalling cost the H.265 intra
prediction mode of index 18 is variable and can be relatively
large. When substituting the H.265 intra prediction mode of
index 18 with PNNS, this variable cost transfers to PNNS. In
contrast, the purpose of the second signalling of PNNS inside
H.265 is to induce a fixed and relatively low signalling cost
of PNNS.

B. Switch between PNNS and the H.265 intra prediction
modes

The authors in [14] propose to signal the neural network
mode with a single bit. This leads to the signalling of the
modes summarized in Table VI. In addition, we modify the
process of selecting the 3 Most Probable Modes (MPMs) [47]
of the current PB to make the signalling of the modes even
more efficient. More precisely, if the neural network mode is
the mode selected for predicting the PB above the current PB
or the PB on the left side of the current PB, then the neural
network mode belongs to the MPMs of the current PB. As
a result, redundancy appears as the neural network mode has
not only the codeword 1 but also the codeword of a MPM.
That is why, in the case where PNNS belongs to the MPMs
of the current PB, we substitute each MPM being PNNS with

2“fast” stresses that the cost computation is relatively low.
3See “TEncSearch::estIntraPredLumaQT” at https://hevc.hhi.fraunhofer.de/

trac/hevc/browser/trunk/source/Lib/TLibEncoder/TEncSearch.cpp

(a) (b)

(c) (d)

(e) (f)

Fig. 13: Analysis of (a, b) ν4, (c, d) ν16, and (e, f) ν64 for each
mode. 100 luminance crops from either (a, c, e) the BSDS300
dataset or (b, d, f) the INRIA Holidays dataset are encoded
via H.265 with QP = 32.

TABLE VI: Signalling of the modes described in [14].

Mode codeword
Neural network mode 1
First MPM 010
Second MPM 0110
Third MPM 0111
Non-MPM and non-neural network mode 00 {5bits}

either planar, DC or the vertical mode of index 26 such that
the 3 MPMs of the current PB are different from each other.
Besides, planar takes priority over DC, DC having priority
over the vertical mode of index 26. See the code1 for further
details regarding this choice.

The key remark concerning Section V is that there is
a tradeoff between the signalling cost of PNNS versus the
signalling cost of the H.265 intra prediction modes. Indeed,
the substitution (see Section V-A) keeps the signalling cost of
the H.265 intra prediction modes constant but the signalling
cost of PNNS can be up to 6 bits. Instead, the switch decreases
the signalling cost of PNNS and raises that of each H.265 intra
prediction mode.

11

VI. EXPERIMENTS

Now that two ways of signalling PNNS inside H.265
are specified, these two ways can be compared in terms of
PSNR-rate performance gains. Moreover, PNNS integrated
into H.265 can be compared to IPFCN-S integrated into H.265
in terms of PSNR-rate performance gains.

A. Experimental settings

The H.265 HM16.15 software is used in all the following
experiments. The configuration is all-intra main. Note that
the following settings only mention the integration of PNNS
into H.265 via the substitution of the H.265 intra prediction
mode of index 18 with PNNS, so called “PNNS substitution”.
But, the same settings apply to the integration of PNNS
into H.265 via the switch between PNNS and the H.265
intra prediction modes, so called “PNNS switch”. The PSNR-
rate performance of “PNNS substitution” with respect to
H.265 is computed using the Bjontegaard metric [48], which
is the average saving in bitrate of the rate-distortion curve
of “PNNS substitution” with respect to the rate-distortion
curve of H.265. It is interesting to analyze whether there
exists a range of bitrates for which “PNNS substitution” is
more beneficial. That is why 3 different ranges of bitrates
are presented. The first range, called “low rate”, refers to
QP ∈ {32, 34, 37, 39, 42}. The second range, called “high
rate”, corresponds to QP ∈ {17, 19, 22, 24, 27}. The third
range, called “all rates”, computes the Bjontegaard metric with
the complete set of QP values from 17 to 42. The H.265
common test condition [49] recommends {22, 27, 32, 37} as
QPs setting. Yet, we add several QPs to the recommended
setting. This is because, to compute the Bjontegaard metric
for “low rate” for instance, a polynom of degree 3 is fitted to
rate-distortion points, and at least 4 rate-distortion points, i.e.
4 different QPs, are required to get a good fit.

Four test sets are used to cover a wide variety of images. The
first test set contains the luminance channels of respectively
Barbara, Lena, Mandrill and Peppers. The second test set
contains the 24 RGB images in the Kodak suite, converted into
luminance. The third test set gathers the 13 videos sequences
of the classes B, C, and D of the H.265 CTC, converted into
luminance. The fourth test set contains 6 widely used videos
sequences 4, converted into luminance. Our work is dedicated
to image coding. That is why only the first frame of each video
sequence in the third and fourth test sets are considered. It is
important to note that the training in Section IV, the extraction
of the frequency of selection of each H.265 intra prediction
mode in Section V, and the current experiments involve 7
distinct sets of luminance images. This way, PNNS is not tuned
for any specific test luminance image.

B. Analysis of the two ways of signalling the PNNS mode
inside H.265

The most striking observation is that the PSNR-rate perfor-
mance gains generated by “PNNS switch” are always larger
than those provided by “PNNS substitution” (see Tables VII,

4ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/

TABLE VII: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
first test set.

Image name
PSNR-rate performance gain

“PNNS substitution” “PNNS switch”
Low rate High rate All rates All rates

Barbara 2.47% 1.31% 1.79% 2.77%
Lena 1.68% 2.11% 2.05% 3.78%
Mandrill 0.77% 0.58% 0.67% 1.46%
Peppers 1.61% 1.50% 1.71% 3.63%

TABLE VIII: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
second test set.

Kodak image index
PSNR-rate performance gain

“PNNS substitution” “PNNS switch”
Low rate High rate All rates All rates

1 1.20% 0.74% 0.95% 2.06%
2 0.59% 0.91% 0.88% 2.16%
3 0.91% 2.04% 1.59% 3.22%
4 1.78% 1.75% 1.80% 3.23%
5 1.40% 2.45% 2.08% 4.01%
6 1.43% 0.81% 1.12% 2.11%
7 1.12% 2.36% 1.76% 3.86%
8 1.01% 0.83% 0.98% 1.79%
9 1.54% 1.43% 1.46% 3.05%
10 2.20% 2.37% 2.42% 3.84%
11 0.93% 0.91% 1.00% 2.41%
12 0.96% 1.02% 1.07% 2.33%
13 0.83% 0.5% 0.64% 1.76%
14 0.96% 1.28% 1.20% 2.76%
15 1.53% 1.19% 1.37% 2.62%
16 0.66% 0.62% 0.70% 1.69%
17 1.35% 2.03% 1.80% 3.69%
18 0.68% 0.96% 0.88% 1.98%
19 1.44% 0.86% 1.05% 2.06%
20 0.92% 1.61% 1.38% 2.71%
21 0.99% 0.83% 0.94% 2.28%
22 0.56% 0.88% 0.78% 2.22%
23 1.20% 2.45% 2.03% 4.20%
24 0.68% 0.87% 0.80% 1.73%

TABLE IX: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
third test set.

Video sequence
PSNR-rate performance gain

“PNNS substitution” “PNNS switch”
Low rate High rate All rates All rates

B

BQTerrace 1.66% 0.95% 1.29% 2.44%
BasketballDrive 4.80% 2.87% 3.65% 5.20%
Cactus 1.48% 1.51% 1.58% 3.05%
ParkScene 0.64% 1.16% 0.97% 2.58%
Kimono 1.28% 1.55% 1.65% 2.92%

C

BQMall 1.20% 1.30% 1.30% 3.14%
BasketballDrill −1.18% 1.34% 0.39% 3.50%
RaceHorsesC 1.34% 1.58% 1.53% 3.29%
PartyScene 1.02% 0.91% 0.96% 2.42%

D

BQSquare 0.79% 0.86% 0.86% 2.21%
BasketballPass 1.61% 1.80% 1.48% 3.08%
BlowingBubbles 0.66% 1.22% 1.02% 2.65%
RaceHorses 1.32% 1.63% 1.54% 3.28%

12

TABLE X: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
fourth test set.

Video sequence
PSNR-rate performance gain

“PNNS substitution” “PNNS switch”
Low rate High rate All rates All rates

Bus 1.67% 1.17% 1.45% 2.74%
City 1.55% 1.19% 1.35% 2.51%
Crew 1.56% 1.24% 1.38% 3.10%
Football 1.44% 1.78% 1.78% 3.52%
Harbour 1.80% 0.73% 1.25% 2.51%
Soccer 0.96% 0.95% 1.03% 1.90%

VIII, IX, and X). This has two explanations. Firstly, “PNNS
substitution” is hampered by the suppression of the original
H.265 intra prediction mode of index 18. Indeed, the PSNR-
rate performance gain is degraded when the original H.265
intra prediction mode of index 18 is a relevant mode for
encoding a luminance image. The most telling example is
the luminance channel of the first frame of “BasketballDrill”.
When this channel is encoded via H.265, for the original H.265
intra prediction mode of index 18, ν4 = 0.085, ν8 = 0.100,
ν16 = 0.116, ν32 = 0.085, and ν64 = 0.088. This means
that, compared to the average statistics in Figure 13, the
original H.265 intra prediction mode of index 18 is used
approximatively 10 times more frequently. This explains why
the PSNR-rate performance gain provided by “PNNS substi-
tution” is only 0.39% (see Table IX). The other way round,
the luminance channel of the first frame of “BasketballDrive”
is an insightful example. When this channel is encoded via
H.265, for the original H.265 intra prediction mode of index
18, ν4 = 0.004, ν8 = 0.005, ν16 = 0.004, ν32 = 0.004, and
ν64 = 0.000. In this case, the original H.265 intra prediction
mode of index 18 is almost never used. “PNNS substitution”
thus yields 3.65% of PSNR-rate performance gain.

There is another explanation for the gap in PSNR-rate
performance gain between “PNNS substitution” and “PNNS
switch”. As shown in Section IV-E, PNNS is able to model
a large set of complex textures found in large image blocks.
PNNS is also able to model a large set of simple textures
found in small blocks. Following the principle of Huffman
Coding, an intra prediction mode that gives on average pre-
dictions of good quality, such as PNNS, should be signalled
using fewer bits. However, an intra prediction mode that
seldom yields the highest prediction quality, such as the
H.265 intra prediction mode of index 4, should be signalled
using more bits. This corresponds exactly to the principle
of the switch between PNNS and the H.265 intra prediction
modes. Therefore, “PNNS switch” beats “PNNS substitution”
in terms of PSNR-rate performance gains. Figures 14 and 15
each compares the reconstruction of a luminance image via
H.265 and its reconstruction via “PNNS switch” at similar
reconstruction PSNRs. More visual comparisons are available
on the website5.

Another interesting conclusion emerges when comparing
“low rate” and “high rate”. There is no specific range of bitrate

5https://www.irisa.fr/temics/demos/prediction neural network/
PredictionNeuralNetwork.htm

for which “PNNS substitution” is more profitable (see Tables
VII, VIII, IX, and X). Note that, in few cases, the PNSR-rate
performance gain in “all rates” is slightly larger than those
in “low rate” and “high rate”. This happens when the area
between the rate-distortion curve of “PNNS substitution” and
the rate-distortion curve of H.265 gets relatively large in the
range QP ∈ [27, 32].

C. Comparison with the state-of-the-art

Now, “PNNS switch” is compared to IPFCN-S integrated
into H.265 in terms of PSNR-rate performance gains. It is
important to note that the authors in [14] develop two versions
of their set of 4 fully-connected neural networks for intra
prediction. The first version, called IPFCN-S, is the one used
in Section IV-E. The 4 fully-connected neural networks are
trained on an unconstrained training set of image blocks
to be predicted, each paired with its context. The second
version is called Intra Prediction Fully-Connected Networks
Double (IPFCN-D). The training data are dissociated into two
groups. One group gathers image blocks exhibiting textures
with angular directions, each paired with its context. The
other group gathers image blocks exhibiting textures with non-
angular directions, each paired with its context. In IPFCN-
D, there are two sets of 4 fully-connected neural networks,
each set being trained on a different group of training data.
Then, the two sets are integrated into H.265. IPFCN-D gives
slightly larger PSNR-rate performance gains than IPFCN-S.
The comparison below involves IPFCN-S as our training set
is not dissociated. But, this dissociation could also be applied
to the training set of the neural networks of PNNS.

“PNNS switch” and IPFCN-S integrated into H.265 are
compared on the third test set. The PSNR-rate performance
gains of IPFCN-S are reported from [14]. We observe that the
PSNR-rate performance gains of “PNNS switch” are larger
than those of IPFCN-S integrated into H.265, apart from the
case of the video sequence “ParkScene” (see Table XI). Note
that, for several videos sequences, the difference in PSNR-
rate performance gains between “PNNS switch” and IPFCN-
S integrated into H.265 is significant. For instance, for the
video sequence “BasketballPass”, the PSNR-rate performance
gain of “PNNS switch” is 3.08% whereas that of IPFCN-S
integrated into H.265 is 1.1%. Therefore, the use of both fully-
connected neural networks and convolutional neural networks
for intra prediction, the training with random context masking
and the training data augmentation for training the convolu-
tional neural networks of PNNS help boost the PSNR-rate
performance gains. This is consistent with the conclusion in
Section IV-E. Note that, even when comparing the PSNR-rate
performance gains of “PNNS switch” with those of IPFCN-
D integrated into H.265 which are reported in [14], “PNNS
switch” often yields larger gains.

D. Robustness of the neural networks to quantization noise in
their input context

In this section, we show that the proposed PNNS performs
well with test data compressed with different QP values despite
the fact that the neural networks of PNNS have been trained

13

TABLE XI: PSNR-rate performance gains of our proposed
“PNNS switch” and IPFCN-S [14] inside H.265 for the third
test set. The reference is H.265.

Video sequence PSNR-rate performance gain
our “PNNS switch” IPFCN-S [14] inside H.265

B

BQTerrace 2.44% 1.8%
BasketballDrive 5.20% 3.4%
Cactus 3.05% 2.7%
ParkScene 2.58% 2.8%
Kimono 2.92% 2.7%

C

BQMall 3.14% 2.0%
BasketballDrill 3.50% 1.1%
RaceHorsesC 3.29% 2.9%
PartyScene 2.42% 1.3%

D

BQSquare 2.21% 0.6%
BasketballPass 3.08% 1.1%
BlowingBubbles 2.65% 1.6%
RaceHorses 3.28% 2.8%

TABLE XII: Average computation time ratio with respect to
H.265.

our “PNNS switch” IPFCN-S [14] inside H.265
Encoding 51 46
Decoding 191 190

only once with no quantization noise in their input context.
Indeed, let us consider two different “PNNS switch”. In the
first “PNNS switch”, our 5 neural networks, one for each
block size, are dedicated to all QPs. Note that the first “PNNS
switch” corresponds to the “PNNS switch” that has been used
so far. In the second “PNNS switch”, a first set of 5 neural
networks is dedicated to QP ≤ 27 whereas a second set is
dedicated to QP > 27. Unlike the first set of neural networks,
the second set is trained on contexts that are encoded and
decoded via H.265 with QP ∼ U {32, 37, 42} for each training
context. For the third test set, the difference in PSNR-rate
performance gain between the first “PNNS switch” and the
second “PNNS switch” ranges between 0.0% and 0.1%. This
means that there is no need to train the neural networks of
PNNS on contexts with quantization noise.

E. Complexity

A fully-connected neural network needs an overcomplete
representation to provide predictions with high quality. That
is why the number of neurons in each fully-connected layer
is usually much larger than the size of the context. Likewise,
the number of feature maps in each convolutional layer of
a convolutional neural network is usually large. This incurs
a high computational cost. Table XII gives the encoding and
decoding times for “PNNS switch” and IPFCN-S and shows
comparable running times for both solutions. A Bi-Xeon CPU
E5-2620 is used for “PNNS switch”.

F. Memory consumption

In addition to the complexity, another issue arising from the
integration of PNNS into H.265 is the increase of the memory
consumption. For a regular intra prediction mode in H.265,
the context around the image block to be predicted consists of

one row of 2m+1 pixels above the block and one column of
2m pixels on the left side of the block. However, for a neural
network of PNNS, the context around the image block consists
of m rows of 3m pixels above the block and m columns of 2m
pixels on the left side of the block (see Figure 5). Therefore,
the hardware must be adapted to handle the large memory
required by the input contexts to the neural networks of PNNS.

VII. CONCLUSION

This paper has presented a set of neural network archi-
tectures, including both fully-connected neural networks and
convolutional neural networks, for intra prediction. It is shown
that fully-connected neural networks are well adapted to the
prediction of image blocks of small sizes whereas convolu-
tional ones provide better predictions in large blocks. Our
neural networks are trained via a random context masking
of their context so that they adapt to the variable number
of available decoded pixels for the prediction in a coding
scheme. When integrated into a H.265 codec, the proposed
neural networks are shown to give rate-distortion performance
gains compared with the H.265 intra prediction. Moreover,
it is shown that these neural networks can cope with the
quantization noise present in the prediction context, i.e. they
can be trained on undistorted contexts, and then generalize
well on distorted contexts in a coding scheme. This greatly
simplifies training as quantization noise does not need to be
taken into account during training.

APPENDIX A
CONVOLUTIONAL ARCHITECTURES FOR H.265

The architecture of the stack of convolutional layers
gcm
(
. ;φc,0

m

)
that is applied to the context portion X0 located

on the left side of the image block to be predicted is shown in
Table XIII for m ∈ {4, 16, 64}. The architecture of the stack of
convolutional layers gcm

(
. ;φc,1

m

)
that is applied to the context

porton X1 located above the image block is identical to that
of gcm

(
. ;φc,0

m

)
. The slope of LeakyReLU is equal to 0.1.

The architecture of gc8

(
. ;φc,0

8

)
is similar to that of

gc4

(
. ;φc,0

4

)
but, in the first layer, the filter size is 5× 5× 1,

the number of filters is 64, and the stride is 2. Moreover, in
the second layer, the filter size is 3× 3× 64 and the number
of filters is 64. The architecture of gc32

(
. ;φc,0

32

)
is similar to

that of gc64
(
. ;φc,0

64

)
but, in the third layer, the filter size is

3× 3× 128, the number of filters is 128, and the stride is 1.
Moreover, in the fourth layer, the filter size is 5×5×128 and
the number of filters is 256. In the fifth layer, the filter size is
3× 3× 256 and the number of filters is 256.

To obtain the architecture of gtm, each sequence of layers
in gcm is reversed. Besides, each convolution is replaced by a
transposed convolution (see Table XIII).

14

(a) (b) (c)

Fig. 14: Comparison of (a) a 100× 100 crop of the luminance channel of the first frame of BQMall, (b) its reconstruction via
H.265, and (c) its reconstruction via “PNNS switch”. QP = 27. For the luminance channel of the first frame of BQMall, for
H.265, {rate = 0.670 bpp,PSNR = 38.569 dB}. For “PNNS switch”, {rate = 0.644 bpp,PSNR = 38.513 dB}.

(a) (b) (c)

Fig. 15: Comparison of (a) a 100×100 crop of the luminance channel of the first frame of BasketballPass, (b) its reconstruction
via H.265, and (c) its reconstruction via “PNNS switch”. QP = 37. For the luminance channel of the first frame of Basket-
ballPass, for H.265, {rate = 0.167 bpp,PSNR = 32.386 dB}. For “PNNS switch”, {rate = 0.160 bpp,PSNR = 32.407 dB}.

REFERENCES

[1] M. Wien, “High efficiency video coding: coding tools and specification,”
Springer, September 2014.

[2] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra coding
of the HEVC standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, no. 12, pp. 1792–1801, December 2012.

[3] A. J. Bell and T. J. Sejnowski, “Edges are the independent components
of natural scenes,” in NIPS, 1996.

[4] J. H. van Hateren and A. van der Schaaf, “Independent component filters
of natural images compared with simple cells in primary visual cortex,”
Proc. R. Soc. Lond. B, vol. 265, no. 1394, pp. 359–366, March 1998.

[5] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model
for visual area V2,” in NIPS, 2007.

[6] H. Hosoya and A. Hyvärinen, “A hierarchical statistical model of natural
images explains tuning properties in V2,” The Journal of Neuroscience,
vol. 35, no. 29, pp. 10 412–10 428, July 2015.

[7] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in ICML, 2009.

[8] M. Ranzato, V. Mnih, J. M. Susskind, and G. E. Hinton, “Modeling
natural images using gated MRFs,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2206–2222,
September 2013.

[9] T. K. Tan, C. S. Boon, and Y. Suzuki, “Intra prediction by template
matching,” in ICIP, 2006.

[10] M. Turkan and C. Guillemot, “Image prediction based on neighbor
embedding methods,” IEEE Transaction on Image Processing, vol. 21,
no. 4, pp. 1885–1898, April 2012.

[11] T. Wiegand and H. Schwarz, “Source coding: part I of fundamentals of
source and video coding,” Foundations and Trends in Signal Processing,
vol. 4, nos. 1-2, pp. 1–222, 2011.

[12] L. Theis and M. Bethge, “Generative image modeling using spatial
LSTMs,” in NIPS, 2015.

[13] A. van der Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” in ICML, 2016.

[14] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully-connected network-
based intra prediction for image coding,” IEEE Transactions on Image
Processing, vol. 27, no. 7, pp. 3236–3247, July 2018.

[15] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on
Information Theory,, vol. 44, no. 6, pp. 2325–2383, October 1998.

[16] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and
S. Chopra, “Video (language) modeling: a baseline for generative models
of natural videos,” arXiv:1412.6604v4, April 2015.

[17] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” in ICLR, 2016.

[18] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
Neural Networks: Tricks of the Trade, Springer, 1998.

15

TABLE XIII: Architectures of the stack of convolutional layers
gcm
(
. ;φc,0

m

)
that is applied to the context portion X0 located

on the left side of the image block to be predicted ((a) m = 4,
(c) m = 16, and (e) m = 64) and the stack of transposed
convolutional layers gtm (. ;φt

m) ((b) m = 4, (d) m = 16, and
(f) m = 64). “conv” means convolution and “tconv” means
transposed convolution.

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 conv 3× 3× 1 32 1 LeakyReLU
2 conv 3× 3× 32 32 1 LeakyReLU

(a)

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 tconv 3× 3× 32 32 1 LeakyReLU
2 tconv 3× 3× 32 1 1 -

(b)

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 conv 5× 5× 1 64 2 LeakyReLU
2 conv 3× 3× 64 64 1 LeakyReLU
3 conv 5× 5× 64 128 2 LeakyReLU
4 conv 3× 3× 128 128 1 LeakyReLU

(c)

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 tconv 3× 3× 128 128 1 LeakyReLU
2 tconv 5× 5× 128 64 2 LeakyReLU
3 tconv 3× 3× 64 64 1 LeakyReLU
4 tconv 5× 5× 64 1 2 -

(d)

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 conv 5× 5× 1 64 2 LeakyReLU
2 conv 5× 5× 64 128 2 LeakyReLU
3 conv 5× 5× 128 256 2 LeakyReLU
4 conv 5× 5× 256 512 2 LeakyReLU
5 conv 3× 3× 512 512 1 LeakyReLU

(e)

Layer Layer Filter size Number of Stride Non-linearity
number type filters

1 tconv 3× 3× 512 512 1 LeakyReLU
2 tconv 5× 5× 512 256 2 LeakyReLU
3 tconv 5× 5× 256 128 2 LeakyReLU
4 tconv 5× 5× 128 64 2 LeakyReLU
5 tconv 5× 5× 64 1 2 -

(f)

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, November 1998.

[20] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
July 2006.

[21] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval,” in ESANN, 2011.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[23] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, 2013.

[24] D. Pathak, P. Krähenbühl, J. Donahue, T. Darell, and A. A. Efros,
“Context encoders: feature learning by inpainting,” in CVPR, 2016.

[25] H. Hoh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in ICCV, 2015.

[26] V. Dumoulin and F. Visin, “A guide to convolutional arithmetic for deep
learning,” arXiv:1603.07285v2, January 2018.

[27] Kodak suite. [Online]. Available: r0k.us/graphics/kodak/
[28] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using

deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, February 2016.

[29] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in CVPR Workshops, 2017.

[30] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: a deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
12, pp. 2481–2495, December 2017.

[31] P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun, “Predicting
deeper into the future of semantic segmentation,” in ICCV, 2017.

[32] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung,
“Phase-based frame interpolation for video,” in CVPR, 2015.

[33] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in CVPR, 2017.

[34] J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz, Z. Wang, and
J. Caballero, “Frame interpolation with multi-scale deep loss functions
and generative adversarial networks,” arXiv:1711.06045v1, November
2017.

[35] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” Neural Networks: Tricks of the Trade, Springer,
2013.

[36] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in ICLR, 2015.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of AISTATS 2010, vol 9.,
pp 249-256, May 2010.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet:
a large-scale hierarchical image database,” in CVPR, 2009.

[39] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,” Neural
Computation, vol. 22, no. 12, pp. 3207–3220, December 2010.

[40] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in CVPR, 2012.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[43] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in ICCV, 2001.

[44] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometry consistency for large scale image search,” in ECCV, 2008.

[45] R. I. Chernyak, “Analysis of the intra predictions in H.265/HEVC,”
Applied Mathematical Sciences, vol. 8, no. 148, pp. 7389–7408, 2014.

[46] O. Bougacha, H. Kibeya, N. Belhadj, M. A. Ben Ayed, and N. Mas-
moudi, “Statistical analysis of intra prediction in HEVC video encoder,”
in IPAS, 2016.

[47] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1667, December 2012.

[48] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T SG16/Q6, Austin, TX, USA, Tech. Rep., 2001.

[49] C. Rosewarne, K. Sharman, and D. Flynn, “Common test conditions
and software reference configurations for HEVC range extensions,”
document JCTVC-P1006, 16th meeting, JCT-VC, San Jose, CA, USA,
January 2014.

Thierry Dumas received the Engineering degree
and the Master degree from École Centrale Mar-
seille, Marseille, France, in November 2014 and
the Ph.D. degree from the University of Rennes
I, France, in June 2019. He is now working as
postdoctoral fellow at Interdigital, Rennes, France.
His research interests include image and video com-
pression.

16

Aline Roumy received the Engineering degree from
École Nationale Supérieure de l’Éléctronique et de
ses Applications (ENSEA), Cergy, France, in 1996,
the Master degree in June 1997, and the Ph.D. degree
from the University of Cergy-Pontoise, France, in
September 2000. During 2000-2001, she was the
recipient of a French Defense DGA/DRET post-
doctoral fellowship and was a research associate
at Princeton University, Princeton, New Jersey. In
November 2001, she joined INRIA Rennes, France.
Her current research and study interests include the

area of statistical signal processing, coding theory, and information theory.

Christine Guillemot IEEE fellow, is Director of
Research at INRIA, head of a research team deal-
ing with image and video modeling, processing,
coding and communication. She holds a Ph.D. de-
gree from ENST (Ecole Nationale Supérieure des
Télécommunications) Paris, and an Habilitation for
Research Direction from the University of Rennes.
From 1985 to October 1997, she has been with
FRANCE TELECOM, where she has been involved
in various projects in the area of image and video
coding for TV, HDTV, and multimedia. From Jan-

uary 1990 to mid 1991, she has worked at Bellcore, NJ, USA, as a visiting
scientist. Her research interests are signal and image processing, and in
particular 2D and 3D image and video processing for various problems
(compression, super-resolution, inpainting, classification).

She has served as Associate Editor for IEEE Trans. on Image Processing
(from 2000 to 2003, and from 2014-2016), for IEEE Trans. on Circuits and
Systems for Video Technology (from 2004 to 2006), and for IEEE Trans.
on Signal Processing (2007-2009). She has served as senior member of the
editorial board of the IEEE journal on selected topics in signal processing
(2013-2015) and is currently senior area editor of IEEE Trans. on Image
Processing.

