N

N

Context-adaptive neural network based prediction for
image compression
Thierry Dumas, Aline Roumy, Christine Guillemot

» To cite this version:

Thierry Dumas, Aline Roumy, Christine Guillemot. Context-adaptive neural network based prediction
for image compression. 2018. hal-01841034v1

HAL Id: hal-01841034
https://hal.science/hal-01841034v1

Preprint submitted on 17 Jul 2018 (v1), last revised 29 Aug 2019 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01841034v1
https://hal.archives-ouvertes.fr

Context-adaptive neural network based prediction
for image compression

Thierry Dumas, Aline Roumy, Christine Guillemot

Abstract— This paper describes a set of neural network
architectures, called Prediction Neural Networks Set (PNNS),
based on both fully-connected and convolutional neural networks,
for intra image prediction. The choice of neural network for
predicting a given image block depends on the block size, hence
does not need to be signalled to the decoder. It is shown that,
while fully-connected neural networks give good performance for
small block sizes, convolutional neural networks provide better
predictions in large blocks with complex textures. Thanks to
the use of masks of random sizes during training, the neural
networks of PNNS well adapt to the available context that
may vary, depending on the position of the image block to be
predicted. When integrating PNNS into a H.265 codec, PSNR-
rate performance gains going from 1.46% to 5.20% are obtained.
These gains are on average 0.99% larger than those of prior
neural network based methods. Unlike the H.265 intra prediction
modes, which are each specialized in predicting a specific texture,
the proposed PNNS can model a large set of complex textures.

Index Terms—Image compression, intra prediction, neural
networks.

I. INTRODUCTION

NTRA prediction is a key component of image and video

compression algorithms and in particular of recent coding
standards such as H.265 [1]. The goal of intra prediction is
to infer a block of pixels from the previously encoded and
decoded neighborhood. The predicted block is subtracted from
the original block to yield a residue which is then encoded.
Intra prediction modes used in practice rely on very simple
models of dependencies between the block to be predicted
and its neighborhood. This is the case of the H.265 standard
which selects according to a rate-distortion criterion one mode
among 35 fixed and simple prediction functions. The H.265
prediction functions consist in simply propagating the pixel
values along specified directions [2]. This approach is suitable
in the presence of contours, hence in small regions containing
oriented edges [3], [4], [5]. However, it fails in large areas
usually containing more complex textures [6], [7], [8]. Instead
of simply propagating pixels in the causal neighborhood, the
authors in [9] look for the best predictor within the image by
searching for the best match with the so-called template of
the block to be predicted. The authors in [10] further exploit
self-similarities within the image with more complex models
defined as linear combinations of k-nearest patches in the
neighborhood.

The authors are with INRIA Rennes, 35042 Rennes, France (e-mail:
thierry.dumas @inria.fr, aline.roumy @inria.fr, christine.guillemot@inria.fr).

This work has been supported by the French Defense Procurement Agency
(DGA).

In this paper, we consider the problem of designing an intra
prediction function that can predict both simple textures in
small image blocks, as well as complex textures in larger ones.
To create an optimal intra prediction function, the probabilistic
model of natural images is needed. Let us consider a pixel,
denoted by the random variable X, to be predicted from its
neighboring decoded pixels. These neighboring decoded pixels
are represented as a set I3 of observed random variables. The
authors in [11] demonstrate that the optimal prediction X+
of X, i.e. the prediction that minimizes the mean squared
prediction error, is the conditional expectation E [X|5]. Yet,
no existing model of natural images gives a reliable E [X|B].

However, neural networks have proved capable of learning a
reliable model of the probability of image pixels for prediction.
For example, in [12], [13], recurrent neural networks sequen-
tially update their internal representation of the dependencies
between the pixels in the known region of an image and then
generate the next pixel in the unknown region of the image.

In this paper, we consider the problem of learning, with
the help of neural networks, a reliable model of dependencies
between a block, possibly containing a complex texture, and
its neighborhood that we refer to as its context. Note that
neural networks have already been considered in [14] for intra
block prediction. However, the authors in [14] only take into
consideration blocks of sizes 4 x 4, 8 x 8, 16 x 16, and 32 x 32
pixels and use fully-connected neural networks. Here, we con-
sider both fully-connected and convolutional neural networks.
We show that, while fully-connected neural networks give
good performance for small block sizes, convolutional neural
networks are more appropriate, both in terms of prediction
PSNR and PSNR-rate performance gains, for large block sizes.
The choice of neural network is block size dependent, hence
does not need to be signalled to the decoder. This set of neural
networks, called Prediction Neural Networks Set (PNNS),
has been integrated into a H.265 codec, showing PSNR-rate
performance gains from 1.46% to 5.20%.

In summary, the contributions of this paper are as follows:

e We propose a set of neural network architectures, in-
cluding both fully-connected and convolutional neural
networks, for intra image prediction.

o We show that, in the case of large block sizes, convo-
lutional neural networks yield more accurate predictions
compared with fully-connected ones.

e Thanks to the use of masks of random sizes during
training, the neural networks of PNNS well adapt to
the available context that may vary. E.g. in H.265, the
available context, hence the number of known pixels
in the neighborhood, depends on the position of the

considered prediction unit within the coding unit and
within the coding tree unit.

o Unlike the H.265 intra prediction modes, which are each
specialized in predicting a specific texture, the proposed
PNNS, trained on a large unconstrained set of images, is
able to model a large set of complex textures.

o« We prove experimentally a surprising property of the
neural networks for intra prediction: they do not need to
be trained on distorted contexts, meaning that the neural
networks trained on undistorted contexts generalize well
on distorted contexts, even for severe distortions.

The code to reproduce all our numerical results and train the
neural networks of PNNS will be made available at the time
of the publication'.

II. CONDITIONS FOR EFFICIENT NEURAL NETWORK BASED
INTRA PREDICTION

Prediction is a key method in rate distortion theory, when
complexity is an issue. Indeed, the complexity of vector
quantization is prohibitive, and scalar quantization is rather
used. But, scalar quantization cannot exploit the statistical
correlations between data samples. This task can be done
via prediction [15]. Prediction can only be made from data
samples available at the decoder, i.e. causal and distorted data
samples. By distorted causal data samples we mean previously
encoded and decoded pixels above and on the left side of the
image block to be predicted. This set of pixels is often referred
to as the context of the block to be predicted.

Optimal prediction, i.e. conditional expectation [11], re-
quires knowing the conditional distribution of the image block
to be predicted given causal and distorted data samples. Esti-
mating such a conditional distribution is difficult. The use of
the predictor by the decoder would in addition require sending
the distribution parameters. Classical approaches in predictive
coding consist in proposing a set of predefined functions and
choosing the best of them in a rate-distortion sense. Thus, the
number of possible functions is limited. On the other hand,
neural networks can approximate many functions, in particular
complex predictive functions such as the generation of future
video frames given an input sequence of frames [16], [17].

But, the use of neural networks for intra prediction within an
image coding scheme raises several questions that we address
in this paper. What neural network architecture provides
enough power of representation to map causal and distorted
data samples to an accurate prediction of a given image block?
What context size should be used? Section III looks for a
neural network architecture and the optimal number of causal
and distorted data samples for predicting a given image block.
Moreover, the amount of causal and distorted data samples
available at the decoder varies. It depends on the partitioning
of the image and the position of the block to be predicted
within the image. Section IV trains the neural networks so
that they adapt to the variable context size. Finally, can neural
networks compensate for the quantization noise in its input
and be efficient in a rate-distortion sense? Sections V and VI
answer these two questions with experimental evidence.

1 https://www.irisa.fr/temics/demos/prediction_neural_network/
PredictionNeuralNetwork.htm

X s
X —peererrspannana, !
1Y m
X b
| m

Fig. 1: Illustration of the relative positions of X, X, X, and
Y.

III. PROPOSED NEURAL NETWORK BASED INTRA
PREDICTION

Unlike standard intra prediction in which the encoder
chooses the best mode in a rate-distortion sense among several
pre-defined modes, only one neural network among a set of
neural networks does the prediction here. Unlike [14], our
set contains both fully-connected and convolutional neural
networks. This section first presents our set of neural networks.
Then, it explains how one neural network is selected for
predicting a given image block and the context is defined
according to the block size. Finally, the specificities of the
integration of our neural networks into H.265 are detailed.

A. Fully-connected and convolutional neural networks

Let X be a context containing decoded pixels above and
on the left side of a square image block Y of width m €
N* to be predicted (see Figure 1). The transformation of X
into a prediction Y of Y via either a fully-connected neural
network f,,, parametrized by 6,,,, or a convolutional neural
network g¢,,, parametrized by ¢,,, is described in (1). The
corresponding architectures are depicted in Figures 2 and 3.

X, =X—-«

* fm (Xc§0m)

Y. = 1
Im (Xe; Om) o

Y = max (min (Y(+ «a, 255) ,0)

During optimization, each input variable to a neural network
must be approximatively zero-centered over the training set to
accelerate convergence [18]. Besides, since the pixel space
corresponds to both the input and output spaces in intra
prediction, it makes sense to normalize the input and output
similarly. One could subtract from each image block to be
predicted and its context their respective mean during training.
But, this entails sending the mean of a block to be predicted
to the decoder during the test phase. Instead, the mean pixels
intensity « is learned over the training set and subtracted
from each image block to be predicted and its context during
training. During the test phase, « is subtracted from the context
(see (1) where the subscript ¢ stands for centered).

This preprocessing implies a postprocessing of the neural
network output. More precisely, the learned mean pixels
intensity is added to the output and the result is clipped to
[0,255] (see (1)).

J
N
J
N
J
3
J
N

D L |

2123 s

]) 9] -

o || le L g

= Eixwg —
© © @© o |

Xaq_)a > O > 4= [

cl B s g — @) wyc

o=l —=|—|l"* Q

| Al sl & <

OO O]

W [][—

\ J

\

Fig. 2: Illustration of the fully-connected architecture f,,.
FC:p|LeakyReLU denotes the fully-connected layer with p
output neurons and LeakyReLU with slope 0.1 as non-linear
activation. Unlike FC:p|LeakyReLU, FC:p has no non-linear
activation. 6,,, gathers the weights and biases of the 4 fully-
connected layers of f,,.

fﬁxo ‘Zor—\ e
S gn (e 2|3
+ <|Z| S| -
X5 SN2
X \Z S
S ga (L5 | S| |8

Fig. 3: Illustration of the convolutional architecture g, in
which ¢¢,, g,,, and ¢!, denote respectively a stack of con-
volutional layer, the merger, and the stack of transpose convo-
lutional layers. ¢¢,, @,,,, and ¢!, gather the weights and biases

: c = t _ c,0 c,1 & t
of respectlvely 9m> 9m> and 9m:- ¢m - { m » Pm 7¢ma m}'

The first operation for both architectures consists in format-
ting the context to ease the computations in the neural network.
In the case of a fully-connected neural network, all elements in
the context are connected such that there is no need to keep
the 2D structure of the context [19]. Therefore, the context
is first vectorized, and fast vector-matrix arithmetics can be
used (see Figure 2). However, in the case of a convolutional
neural network, fast computation of 2D filtering requires to
keep the 2D structure of the context. Moreover, again for fast
computation, the shape of the input to the convolution has
to be rectangular. That is why the context is split into two
rectangles X and X; (see Figures 1 and 3). Xy and X; are
then processed by distinct convolutions.

The proposed fully-connected architecture is composed of 4
fully-connected layers. The first layer computes an overcom-
plete representation of the context to reach p € N* output
coefficients. Overcompleteness is chosen as it is observed
empirically that overcomplete representations in early layers
boost the performance of neural networks [20], [21], [22]. The
next two layers keep the number of coefficients unchanged,
while the last layer reduces it to provide the predicted image
block. The first three layers have LeakyReLU [23] with slope
0.1 as non-linear activation. The last layer has no non-linear
activation. This is because the postprocessing discussed earlier
contains already a non-linearity, which consists in first adding
the learned mean pixels intensity to the output and clipping
the result to [0, 255].

The first task of the convolutional architecture is the compu-
tation of features characterizing the dependencies between the
elements in Xg. X is thus fed into a stack of convolutional
layers. This yields a stack Zg of [€ N* feature maps
(see Figure 3). Similarly, X; is fed into another stack of
convolutional layers. This yields a stack Z; of [feature maps.

All the elements in the context can be relevant for predicting
any image block pixel. This implies that the information
associated to all spatial locations in the context has to be
merged. Unfortunately, convolutions only account for short-
range spatial dependencies. That is why the next layer in the
convolutional architecture merges spatially Zy and Z; (see
Figure 3). More precisely, for ¢ € [|1,1]], all the coefficients
of the i feature map of Zg and of the i feature map of Z;
are merged through affine combinations. Then, LeakyReLU
with slope 0.1 is applied, yielding the merged stack Z of
feature maps. Note that this layer bears similarities with
the “channelwise fully-connected layer” [24]. But, unlike the
“channelwise fully-connected layer”, it merges two stacks of
feature maps of different height and width. Its advantage over
a fully-connected layer is that it contains [times less weights.

The last task of the convolutional architecture is to merge
the information of the different feature maps of Z. Z is thus fed
into a stack of transpose convolutional layers [25], [26]. This
yields the predicted image block (see Figure 3). Note that all
convolutional layers and transpose convolutional layers, apart
from the last transpose convolutional layer, have LeakyReLU
with slope 0.1 as non-linear activation. The last transpose
convolutional layer has no non-linear activation due to the
postprocessing discussed earlier.

B. Growth rate of the context size with the block size

Now that the architectures and the shape of the context are
defined, the size of the context remains to be optimized. The
causal neighborhood of the image block to be predicted used
by the H.265 intra prediction modes is limited to one row of
2m+1 decoded pixels above the block and one column of 2m
decoded pixels on the left side of the block. However, a context
of such a small size is not sufficient for neural networks as a
neural network relies on the spatial distribution of the decoded
pixels intensity in the context to predict complex textures.
Therefore, the context size has to be larger than 4m + 1.

But, an issue arises when the size of the context grows too
much. Indeed, if the image block to be predicted is close to
either the top edge of the decoded image D or its left edge,
a large context goes out of the bounds of the decoded image.
The neural network prediction is impossible. There is thus a
tradeoff to find a suitable size for the context.

Let us look at decoded pixels above and on the left side
of Y to develop intuitions regarding this tradeoff. When m
is small, the long range spatial dependencies between these
decoded pixels are not relevant for predicting Y (see Figure
4). In this case, the size of the context should be small so that
the above-mentioned issue is limited. However, when m is
large, such long range spatial dependencies are informative
for predicting Y. The size of the context should now be
large, despite the issue. Therefore, the context size should be
a function of m?,q > 1.

Fig. 4: Dependencies between D and Y. The luminance
channel of the first image in the Kodak suite [27] is being
encoded via H.265 with Quantization Parameter QP = 17.

From there, we ran several preliminary experiments in
which ¢ € {1,2,3} and the PSNR between Y and Y was
measured. The conclusion is that a neural network yields the
best PSNRs when the size of the context grows with m2, i.e.
the ratio between the size of the context and the size of the
image block to be predicted is constant. This makes sense
as, in the most common regression tasks involving neural
networks, such as super-resolution [28], [29], segmentation
[30], [31] or video interpolation [32], [33], [34], the ratio
between the input image dimension and the output image
dimension also remains constant while the height and width
of the output image increase. Given the previous conclusions,
X is a rectangle of height 2m and width m. X is a rectangle
of height m and width 3m.

C. Criterion for selecting a proposed neural network

Now that the context is defined with respect to m, all that
remains is to choose between a fully-connected neural network
and a convolutional one according to m.

The main distinction between fully-connected neural net-
works and convolutional neural networks lies in the fact
that fully-connected neural networks do not profit from the
statistical properties of natural images such as stationarity
and multi-resolution structure whereas convolutional neural
networks do [35], [36], [37]. As an example, in a convolutional
layer, stationarity is leveraged by sharing the convolutional
kernels across the input space, hence increasing the expressive
capacity of the convolutional neural network for a given
number of parameters. On the contrary, in a fully-connected
layer, power of representation is wasted as some learned filters
are simply translated version of other filters [38]. Therefore, a
convolutional neural network is selected as the context exhibits
the above-mentioned properties. However, when the block
width m is small, the size of the context is so small that
the context has no multi-resolution structure. Therefore, there
is less need to use a convolutional architecture. In this case,
a fully-connected neural network is used as its setup is less
complicated than that of the convolutional one. We observed
that block widths m < 8 are well suited to fully-connected
architectures, and larger widths to convolutional architectures.

D. Integration of the neural network based intra prediction
into H.265

A specificity of H.265 is the quadtree structure partitioning,
which determines the range of values for m and the number
of available decoded pixels in the context.

In H.265 [1], an image is partitioned into Coding Tree Units
(CTUs). A CTU is composed of one luminance Coding Tree
Block (CTB), two chrominance CTBs, and syntax elements.
For simplicity, let us focus on a single CTB, e.g. the luminance
CTB. The CTB size is a designed parameter but the commonly
used CTB size is 64 x 64 pixels. A CTB can be directly used
as Coding Block (CB) or can be split into 4 32 x 32 CBs.
Then, each 32 x 32 CB can be iteratively split until the size
of a resulting CB reaches a minimum size. The minimum size
is a designed parameter. It can be as small as 8 x 8 pixels,
and is set to this value in most configurations. A Prediction
Block (PB) is a block on which the prediction is applied. If
the size of a CB is not the minimum size, this CB is identical
to its PB. Otherwise, in the case of intra prediction, this CB
can be split into 4 4 x 4 PBs. More splittings of this CB into
PBs exist for inter prediction [1]. A recursive rate-distortion
optimization finds the optimal splitting of each CTB.

Due to this partioning, m € {4,8,16,32,64}. For each
m € {4,8}, a fully-connected neural network is constructed
with internal size p = 1200. Similarly, one convolutional neu-
ral network is constructed per block width m € {16, 32,64}.
The convolutional architecture for each m € {16,32,64} is
detailed in Appendix A.

Another consequence of this partitioning is that the number
of available decoded pixels in the context depends on m and
the position of image block to be predicted in the current
CTB. For instance, if the block is located at the bottom of
the current CTB, the bottommost m? pixels in the context
are not decoded yet. More generally, it might happen that a
group of ng x m pixels, ng € {0,4,...,m}, located at the
bottom of the context, is not decoded yet. Similarly, a group of
m X ny pixels, ny € {0,4,...,m}, located furthest to the right
in the context, may not have been decoded yet (see Figure
5). When pixels are not decoded yet, the solution in H.265
is to copy a decoded pixel into its neighboring undecoded
pixels. But, this copy process cannot be re-used here. Indeed,
it would fool the neural network and make it believe that, in
an undecoded group of pixels and its surroundings, the spatial
distribution of pixels intensity follows the regularity induced
by the copy process. Alternatively, it is possible to indicate to
a neural network that the two undecoded groups are unknown
by masking them. The mask is set to the learned mean pixels
intensity over the training set so that, after subtracting it from
the context, the average of each input variable to a neural
network over the training set is still near 0. More precisely
regarding the masking, the first undecoded group in the context
is fully covered by an a-mask of height ny and width m. The
second undecoded group in the context is fully covered by
an a-mask of height m and width n; (see Figure 5). The
two a-masks together are denoted M, ,,,. In Section IV-A,
the neural networks will be trained so that they adapt to this
variable number of available decoded pixels in the context.

oD

F X
Mno,nl

Fig. 5: Illustration of the masking of the undecoded pixels in
X for H.265. The luminance channel of the first image in the
Kodak suite is being encoded via H.265 with QP = 37. Here,
m =8 and ng = ny = 4.

Is X out of
the bounds
of D?

D,m

Ng, Ny

a

[post] = [max(min(. +a,255),0)]

Fig. 6: Illustration of the neural network based intra prediction
scheme inside H.265.

Figure 6 summarizes the integration of the neural network
based intra prediction scheme into H.265. The last issue to
address is when no context is available. This occurs when
the context goes out of the bounds of the decoded image,
i.e. the pixel at the top-left of the context is not inside the
decoded image. In this case, no neural network is used, and a
zero prediction O of Y is returned. In Figure 6, e extracts
X from D with respect to the position of Y while applying
M, n, to X, following Figure 5.

IV. NEURAL NETWORKS TRAINING

This section explains how our neural networks are trained.
Notably, an adaptation to the changing number of available
decoded pixels in the input context is proposed. Then, an ex-
periment shows the effectiveness of this approach. Moreover,
this experiment compares the predictions of convolutional
neural networks and those of fully-connected neural networks
in terms of prediction PSNR in the case of large image blocks
to be predicted.

A. Adaptation of the neural networks to the variable number
of available decoded pixels via random context masking

The fact that ng and n; vary during the test phase, e.g.
in H.265, has to be considered during the training phase. It
would be unpractical to train one set of neural networks for
each possible pair {ng,n;}. Instead, we propose to train the
neural networks while feeding them with contexts containing
a variable number of known pixels. More precisely, during the
training phase, ng and n; are sampled uniformly from the set
{0,4,...,m}. This way, the amount of available information
in a training context is viewed as a random process the neural
networks have to cope with.

B. Objective function to be minimized

The goal of the prediction is to minimize the Euclidean dis-
tance between the image block to be predicted and its estimate,
or in other words to minimize the variance of the difference
between the block and its prediction [11], also called the
residue. The choice of the L2 norm is a consequence of the L2
norm chosen to measure the distortion between an image and
its reconstruction. So, this Euclidean distance is minimized to
learn the parameters 6,,,. Moreover, regularization by L2 norm
of the weights (not the biases), denoted [6,,,];, is applied [39]
(see (2)).

min E[[Ye — fn (Xei0n) o] + A0l @)
Y. =Y -«

The expectation E[.] is approximated by averaging over a
training set of image blocks to be predicted, each paired with
its context. A = 0.0005. For learning the parameters ¢,,, (2)
is used, replacing 8,,, with ¢,, and f,, with g,,.

The optimization algorithm is ADAM [40] with mini-
batches of size 100. The learning rate is 0.0001 for a fully-
connected neural network and 0.0004 for a convolutional one.
The number of iterations is 800000. The learning is divided
by 10 after 400000, 600000, and 700000 iterations. Regarding
the other hyperparameters of ADAM, the recommended values
[40] are used.

C. Training data

The experiments in Sections IV-D and VI involve luminance
images. That is why, for training, image blocks to be predicted,
each paired with its context, are extracted from luminance
images.

One 320 x 320 luminance crop I is, if possible, extracted
from each RGB image in the ILSVRC2012 training set [41].
This yields a set I' = {I(i)}i=1 1048717

The choice of the training set of pairs of contexts and
image blocks to be predicted is a critical issue. Moreover,
it needs to be handled differently for fully-connected and
convolutional neural networks. Indeed, a convolutional neural
network predicts large image blocks with complex textures,
hence its need for high power of representation (see Appendix
A). As a consequence, it overfits during training if no training
data augmentation [42], [43], [44], [45] is used. In constrast,
a fully-connected neural network predicts small blocks with

simple textures, hence its need for relatively low power of
representation. Thus, it does not overfit during training without
training data augmentation. Moreover, we have noticed that
a training data augmentation scheme creates a bottleneck in
training time for a fully-connected neural network. Therefore,
training data augmentation is used for a convolutional neural
network exclusively. The dependencies between a block to
be predicted and its context should not be altered during
the training data augmentation. Therefore, in our training
data augmentation scheme, the luminance crops in I' are
exclusively randomly rotated and flipped. Precisely, for each
step of ADAM, the scheme is Algorithm 1. S;ouion rotates
its input image by angle ¢ € [0,27[radians. Spipping flips
its input image horizontally with probability 0.5. egqiy is the
same function as e, except that e, extracts {X(i)7 Y(i)}
from potentially rotated and flipped I instead of extracting X
from D and the position of the extraction is random instead
of being defined by the order of decoding. For training a

fully-connected neural network, {Xg), Yéi) is
. . . J.i=1...10000000
generated offline from T, i.e. before the tralmilg starts.

TABLE I: Comparison of (a) PNSRPNNS,43 (b) PSNRPNNSJG
and (c) PSNRpnns 64 for different pairs {ng,n1} during the
training and test phases.

Algorithm 1 Training data augmentation for the convolutional
neural networks
Inputs: T', m, a.
Vi € [|1,100]],
1~ UJ[1,1048717]

T 37
1/’”“{0’2771',2}

no,n1 ~U{0,4,...,m}

J = Stipping (Srotation (I@ﬂ/)))
{X(i),Y(i)} = €yain (J, M, N0, N1, Q)
X _x0) _ 4

YE“ =YW —q

Output: {Xgi), Ygi)}

i=1...100

The issue regarding this generation of training data is that
the training contexts have no quantization noise whereas,
during the test phase in a coding scheme, a context has
quantization noise. This will be discussed during several
experiments in Section VI-D.

D. Effectiveness of the random context masking

A natural question is whether the random context masking
applied during training to adapt the neural networks to the
variable number of known pixels in the context degrades the
prediction performance. To address this question, a neural
network trained with random context masking is compared to
a set of neural networks, each trained with a fixed mask size.
The experiments are performed using fully-connected neural
networks for block width 4 pixels, f4, and convolutional neural
networks for block widths 16 and 64 pixels, g1¢ and gg4.

The experiments are carried out using the 24 RGB images
in the Kodak suite [27], converted into luminance. 960 image

Training fa with {ng,n1
Test {no, 1) o047 pLOF LT H0]
10,0} 34.63 3439 3444 3423 3,.57
{0, 4} 3290 94.39 32.82 34.23 34.42
{4,0} 3279 32.68 34.44 3423 34.39
{4,4} 30.93 32.68 32.82 34.23 34.20
(a)
Training g1 with {ng,n1
Test {no, 71} =657 70,16} {16, 0} {164,[16} ;{0,47...,16}
10,0} 29.23 22.60 24.85 20.76 29.25
{0,16} 28.65 29.12 24.66 23.99 29.11
{16,0} 28.43 22.60 29.06 22.99 29.12
{16,16} 27.87 28.37 28.35 28.98 28.97
(b)
Training ges with {ng,n1
Test {no, 71} =657 70,64} {64, 0} {644,[64} ;{0,47...,64}
10,0} 2146 1041 1078 18.17 21.47
{0, 64} 2127 21.85 19.68 19.95 21.38
{64,0} 21.11 19.18 21.34 19.06 21.34
(64,64} 20.94 21.08 21.16 21.27 21.27
(©)

blocks to be predicted, each paired with its context, are
extracted from these luminance images. Table I shows the
PSNR, denoted PSNRpnns,m, between the image block and its
prediction via PNNS, averaged over the 960 blocks, for each
block width m and each test pair {ng, n; }. We see that a neural
network trained with a fixed mask size has performance in
terms of PSNR that significantly degrades when the mask size
during the training phase and the test phase differ. By contrast,
a neural network trained with random context masking allows
to get the best (bold) or the second best (italic) performance in
terms of PSNR for all the possible mask sizes during the test
phase. Moreover, when the second best PSNR performance is
achieved, the second best PSNR is very close to the best one.

A second set of experiments is related to the success rate
ppNns,m Of the neural network based prediction, i.e. the rate
at which PNNS provides a better prediction in terms of PSNR
than any other prediction of H.265. Again, the neural network
trained with random context masking achieves the best (bold)
or the second best rate (italic), where the second best rate is
very close to the best rate (see Table II).

Therefore, we conclude that random context masking does
not alter the performance of the trained neural networks.
Besides, random context masking is an effective way of
dealing with the changing number of known pixels in the
context. Section VI will discuss rate-distortion performance.
Note that, in order to fix ny and n; during the test phase, the
previous experiments have been carried out outside H.265.

E. Relevance of convolutional neural networks for predicting
large image blocks

Let us have a look at the overall efficiency of our con-
volutional neural networks for predicting large image blocks
before comparing convolutional neural networks and fully-

TABLE II: Comparison of success rates in percentage (a)

1pNNs, 4, (b) ppnns,16 and (c) ppnns,es for different pairs
{no,n1} during the training and test phases.

Training f4 with {no,n1}
Test tnom} 766y 10,47 (4.0} (4.4} u{0.4y
{0,0} 22% 17% 19% 16% 19%
{0,4} 15% 18% 13% 15% 17%
{4,0} 1% 1% 20% 17% 19%
{4,4} 1% 12% 13% 16% 15%
(@)
Training gi16 with {no,n1}
Test {no,m1} —6-5v—10,167 {16,0] {16,16] /{0,4, 16}
10,0} 55% 18% 20% 9% 54%
{0,16} 2% 51% 18% 18% 50%
{16,0} 0% 15% 51% 1% 53%
{16,16} 33% 36% 40% 52% 49%
(b)
Training ge4 with {no,n1}
Test {no, ™1} =557 70,64} {64,0} {64,64] (10,4, . 64T
10,0} 68% 39% 43% 21% 67%
{0,64} 63% 64% A1% 44% 65%
{64,0} 62% 36% 66% 38% 68%
{64,64} 57% 61% 63% 64% 66%
©
| |
T
r -1 H N N
i (© ()] (e
() (b)

Fig. 7: Prediction of a block of size 16 x 16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 27) in
terms of PSNR, and (e) predicted block via PNNS.

‘ I q = N
(©) (@ (e)
(a) (b)

Fig. 8: Prediction of a block of size 16 x 16 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (of index 11) in
terms of PSNR, and (e) predicted block via PNNS.

()]

Fig. 9: Prediction of a block of size 64 x 64 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (DC) in terms of
PSNR, and (e) predicted block via PNNS.

() (e

Fig. 10: Prediction of a block of size 64 x 64 pixels via the best
H.265 mode in terms of PSNR and PNNS: (a) H.265 causal
neighborhood, (b) PNNS context, (c) block to be predicted,
(d) predicted block via the best H.265 mode (planar) in terms
of PSNR, and (e) predicted block via PNNS.

connected neural networks in this case. Figures 7, 8, 9, and
10 each compare the prediction of an image block provided
by the best H.265 intra prediction mode in terms of prediction
PSNR and the prediction provided by PNNS. Note that, the
neural networks of PNNS yielding these predictions are trained
via random context masking. Note also that ng = n; = 0
during the test phase. In Figure 9, the image block to be
predicted contains the frame of a motorbike. There is no better
H.265 intra prediction mode in terms of prediction PSNR than
the DC mode in this case. In contrast, PNNS can predict a
coarse version of the frame of the motorbike. In Figure 10,
the block to be predicted contains lines of various directions.
PNNS predicts a combination of diagonal lines, vertical lines
and horizontal lines, which is not feasible for a H.265 intra
prediction mode. Therefore, unlike the H.265 intra prediction
modes, the convolutional neural networks of PNNS can model
a large set of complex textures found in large image blocks.

TABLE III: Comparison of PSNRpnns, ., and PSNRpren-s,m
form € {4,8,16,32,64}. f4, fs, g16, 932, and ge4 are trained
via random context masking. During the test phase, ng = n; =
0.

m | PSNRpnNs, e PSNRppreN-s,m
4 34.57 33.70

8 32.01 31.44

16 29.25 28.71

32 25.52 24.96

64 21.47 —

TABLE IV: Comparison of success rates in percentage
HpNNs,m and fupren-s,m. for m € {4,8,16,32,64}. fi, fs,
g16, 932, and gg4 are trained via random context masking.
During the test phase, ng = n; = 0.

M | UPNNS,m MIPFCN-S,m
4 19% 14%
8 31% 26%
16 | 54% 35%
32| 60% 41%
64 67% -
Table III compares our set of neural networks

{f4, f3, 916, 932, 964} Wwith the set of 4 fully-connected
neural networks in [14], called IPFCN-S, in terms of
prediction PSNR. The 4 fully-connected neural networks in
[14] predict image blocks of sizes 4 x 4, 8 x 8, 16 x 16, and
32 x 32 pixels respectively. Let PSNRprcn-s,m be the PSNR
between the image block and its prediction via IPFCN-S,
averaged over the 960 blocks. We thank the authors in [14]
for sharing the trained model of each fully-connected neural
network of IPFCN-S. Table III reveals that the performance
of PNNS in terms of prediction PSNR is better than that of
IPFCN-S for all sizes of image blocks to be predicted. More
interestingly, when looking at the success rate jippcnN-s,m Of
IPFCN-S, i.e. the rate at which IPFCN-S provides a better
prediction in terms of PSNR than any other prediction of
H.265, the difference pipnns,m — UIPFCN-S,m increases with m
(see Table IV). This shows that convolutional neural networks
are more appropriate than fully-connected ones in terms of
prediction PSNR for large block sizes. Note that, in Tables
III and IV, there is no comparison for block width 64 pixels
as this block width is not considered in [14].

V. SIGNALLING OF THE PREDICTION MODES IN H.265

Before moving on to the experiments in Section VI where
PNNS is integrated into a H.265 codec, the last issue is
the signalling of the prediction modes inside H.265. Indeed,
the integration of PNNS into H.265 requires to revisit the
way all modes are signalled. Section V describes two ways
of signalling PNNS into H.265. The purpose of setting up
these two ways is to identify later on which signalling yields
the largest PSNR-rate performance gains and discuss why
a difference between them exists. The first signalling is the
substitution of a H.265 intra prediction mode with PNNS. The
second signalling is a switch between PNNS and the H.265
intra prediction modes.

A. Substitution of a H.265 intra prediction mode with PNNS

Section V-A first describes how H.265 selects the best of its
35 intra prediction modes for predicting a given image block.
Based on this, a criterion for finding the mode to be replaced
with PNNS is built.

To select the best of its 35 intra prediction modes for
predicting a given image block, H.265 proceeds in two steps.
During the first step, the 35 modes compete with one another.
Each mode takes the causal neighborhood of the block to
compute a different prediction of the block. The sum of
absolute differences between the input block and its prediction
is linearly combined with the mode signalling cost, yielding
the mode “fast” cost 2. The modes associated to a given
number of lowest “fast” costs are put into a “fast” list 3. During
the second step, only the modes in the “fast” list compete with
one another. The mode with the lowest rate-distortion cost is
the best mode.

Knowing this, it seems natural to replace the mode that
achieves the least frequently the lowest rate-distortion cost.
Therefore, the frequency of interest vz € [0,1],m €
{4,8,16, 32, 64}, is the number of times a mode has the lowest
rate-distortion cost when m = m divided by the number
of times the above-mentioned selection process is run when
m = m. To be generic, vm should not be associated to
luminance images of a specific type. That is why 100 380 x480
luminance crops extracted from the BSDS300 dataset [46] and
100 1200 x 1600 Iuminance crops extracted from the INRIA
Holidays dataset [47] are encoded with H.265 to compute 7.
In this case, the mode of index 18 has on average the lowest
v when T € {4,16,32,64} (see Figure 11). Note that this
conclusion is verified with QP € {22,27,32,37,42}. Note
also that statistics about the frequency of selection of each
H.265 intra prediction mode have already been analyzed [48],
[49]. But, they are incomplete for our case as they take into
account few videos and do not differentiate each value of m.
Thus, PNNS replaces the H.265 mode of index 18.

As explained thereafter, the signalling cost the H.265 intra
prediction mode of index 18 is variable and can be relatively
large. When substituting the H.265 intra prediction mode of
index 18 with PNNS, this variable cost transfers to PNNS. In
contrast, the purpose of the second signalling of PNNS inside
H.265 is to induce a fixed and relatively low signalling cost
of PNNS.

B. Switch between PNNS and the H.265 intra prediction
modes

The authors in [14] propose to signal the neural network
mode with a single bit. This leads to the signalling of the
modes summarized in Table V. In addition, we modify the
process of selecting the 3 Most Probable Modes (MPMs) [50]
of the current PB to make the signalling of the modes even
more efficient. More precisely, if the neural network mode is
the mode selected for predicting the PB above the current PB
or the PB on the left side of the current PB, then the neural

2“fast” stresses that the cost computation is relatively low.
3See “TEncSearch::estIntraPredLumaQT"” at https://hevc.hhi.fraunhofer.de/
trac/hevc/browser/trunk/source/Lib/TLibEncoder/TEncSearch.cpp

o.40_va for each mode index 0.40_va fOr each mode index

0.35 0.35

0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05

‘Ilnllllllllll |||I‘I|||nn
0'000 4 8 12 16 20 24 28 32

0.05

|||||IIIIIIII|||.|||||I| [TNERTNN]
4 8 12 16 20 24 28 32

(a) (b)

vy for each mode index vy for each mode index

OAOOU

0.40 0.40

0.35 0.35

0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05

0'000

l|l|||||||||l|u L ||II|||II|||||
000 12 16

20 24 28 32 4 8 12 16 20 24 28 32

©)

vg4 for each mode index vgy for each mode index

0.50 0.50

0.40 0.40
0.30 0.30
0.20 0.20

0.10 0.10

0.00 1l

1 N
0.00 12 16 20 24 28 32

0O 4 8 12 16 20 24“28 32 0 4 8
(e ®

Fig. 11: Analysis of (a, b) vy, (c, d) 116, and (e, f) vg4 for each
mode. 100 luminance crops from either (a, ¢, €) the BSDS300
dataset or (b, d, f) the INRIA Holidays dataset are encoded
via H.265 with QP = 32.

network mode belongs to the MPMs of the current PB. As
a result, redundancy appears as the neural network mode has
not only the codeword 1 but also the codeword of a MPM.
That is why, in the case where PNNS belongs to the MPMs
of the current PB, we substitute each MPM being PNNS with
either planar, DC or the vertical mode of index 26 such that
the 3 MPMs of the current PB are different from each other.
Besides, planar takes priority over DC, DC having priority
over the vertical mode of index 26. See the code' for further
details regarding this choice.

The key remark concerning Section V is that there is
a tradeoff between the signalling cost of PNNS versus the
signalling cost of the H.265 intra prediction modes. Indeed,
the substitution (see Section V-A) keeps the signalling cost of
the H.265 intra prediction modes constant but the signalling
cost of PNNS can be up to 6 bits. Instead, the switch decreases
the signalling cost of PNNS and raises that of each H.265 intra
prediction mode.

VI. EXPERIMENTS

Now that two ways of signalling PNNS inside H.265
are specified, these two ways can be compared in terms of
PSNR-rate performance gains. Moreover, PNNS integrated

TABLE V: Signalling of the modes described in [14].

Mode codeword
Neural network mode 1

First MPM 010
Second MPM 0110
Third MPM 0111
Non-MPM and non-neural network mode | 00 {5bits}

into H.265 can be compared to IPFCN-S integrated into H.265
in terms of PSNR-rate performance gains.

A. Experimental settings

The H.265 HM16.15 software is used in all the following
experiments. The configuration is all-intra main. Note that
the following settings only mention the integration of PNNS
into H.265 via the substitution of the H.265 intra prediction
mode of index 18 with PNNS, so called “PNNS substitution™.
But, the same settings apply to the integration of PNNS
into H.265 via the switch between PNNS and the H.265
intra prediction modes, so called “PNNS switch”. The PSNR-
rate performance of “PNNS substitution” with respect to
H.265 is computed using the Bjontegaard metric [51], which
is the average saving in bitrate of the rate-distortion curve
of “PNNS substitution” with respect to the rate-distortion
curve of H.265. It is interesting to analyze whether there
exists a range of bitrates for which “PNNS substitution” is
more beneficial. That is why 3 different ranges of bitrates
are presented. The first range, called “low rate”, refers to
QP € {32,34,37,39,42}. The second range, called “high
rate”, corresponds to QP € {17,19,22,24,27}. The third
range, called “full rate”, computes the Bjontegaard metric with
the complete set of QP values from 17 to 42. The H.265
common test condition [52] recommends {22,27,32,37} as
QPs setting. Yet, we add several QPs to the recommended
setting. This is because, to compute the Bjontegaard metric
for “low rate” for instance, a polynom of degree 3 is fitted to
rate-distortion points, and at least 4 rate-distortion points, i.e.
4 different QPs, are required to get a good fit.

Four test sets are used to cover a wide variety of images. The
first test set contains the luminance channels of respectively
Barbara, Lena, Mandrill and Peppers. The second test set
contains the 24 RGB images in the Kodak suite, converted into
luminance. The third test set gathers the 13 videos sequences
of the classes B, C, and D of the H.265 CTC, converted into
luminance. The fourth test set contains 6 widely used videos
sequences #, converted into luminance. Our work is dedicated
to image coding. That is why only the first frame of each video
sequence in the third and fourth test sets are considered. It is
important to note that the training in Section IV, the extraction
of the frequency of selection of each H.265 intra prediction
mode in Section V, and the current experiments involve 7
distinct sets of luminance images. This way, PNNS is not tuned
for any specific test luminance image.

“ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/

TABLE VI: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
first test set.

PSNR-rate performance gain
Image name “PNNS substitution” “PNNS switch”
Low rate High rate Full rate Full rate
Barbara 2.47% 1.31% 1.79% 2.77%
Lena 1.68% 2.11% 2.05% 3.78%
Mandrill 0.77% 0.58% 0.67% 1.46%
Peppers 1.61% 1.50% 1.71% 3.63%

TABLE VII: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
second test set.

PSNR-rate performance gain

Kodak image index “PNNS substitution” “PNNS switch”

Low rate High rate Full rate Full rate
1 1.20% 0.74% 0.95% 2.06%
2 0.59% 0.91% 0.88% 2.16%
3 0.91% 2.04% 1.59% 3.22%
4 1.78% 1.75% 1.80% 3.23%
5 1.40% 2.45% 2.08% 4.01%
6 1.43% 0.81% 1.12% 2.11%
7 1.12% 2.36% 1.76% 3.86%
8 1.01% 0.83% 0.98% 1.79%
9 1.54% 1.43% 1.46% 3.05%
10 2.20% 2.37% 2.42% 3.84%
11 0.93% 0.91% 1.00% 2.41%
12 0.96% 1.02% 1.07% 2.33%
13 0.83% 0.5% 0.64% 1.76%
14 0.96% 1.28% 1.20% 2.76%
15 1.53% 1.19% 1.37% 2.62%
16 0.66% 0.62% 0.70% 1.69%
17 1.35% 2.03% 1.80% 3.69%
18 0.68% 0.96% 0.88% 1.98%
19 1.44% 0.86% 1.05% 2.06%
20 0.92% 1.61% 1.38% 2.71%
21 0.99% 0.83% 0.94% 2.28%
22 0.56% 0.88% 0.78% 2.22%
23 1.20% 2.45% 2.03% 4.20%
24 0.68% 0.87% 0.80% 1.73%

TABLE VIII: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
third test set.

PSNR-rate performance gain
Video sequence “PNNS substitution” “PNNS switch”

Low rate High rate Full rate Full rate

BQTerrace 1.66% 0.95% 1.29% 2.44%
BasketballDrive | 4.80% 2.87% 3.65% 5.20%

B | Cactus 1.48% 1.51% 1.58% 3.05%
ParkScene 0.64% 1.16% 0.97% 2.58%
Kimono 1.28% 1.55% 1.65% 2.92%
BQMall 1.20% 1.30% 1.30% 3.14%

C BasketballDrill —1.18% 1.34% 0.39% 3.50%
RaceHorsesC 1.34% 1.58% 1.53% 3.29%
PartyScene 1.02% 0.91% 0.96% 2.42%
BQSquare 0.79% 0.86% 0.86% 2.21%

D BasketballPass 1.61% 1.80% 1.48% 3.08%
BlowingBubbles | 0.66% 1.22% 1.02% 2.65%
RaceHorses 1.32% 1.63% 1.54% 3.28%

TABLE IX: PSNR-rate performance gains compared with
H.265 of “PNNS substitution” and “PNNS switch” for the
fourth test set.

PSNR-rate performance gain

Video sequence “PNNS substitution” “PNNS switch”

Low rate High rate Full rate Full rate
Bus 1.67% 1.17% 1.45% 2.74%
City 1.55% 1.19% 1.35% 2.51%
Crew 1.56% 1.24% 1.38% 3.10%
Football 1.44% 1.78% 1.78% 3.52%
Harbour 1.80% 0.73% 1.25% 2.51%
Soccer 0.96% 0.95% 1.03% 1.90%

B. Analysis of the two ways of signalling the PNNS mode
inside H.265

The most striking observation is that the PSNR-rate perfor-
mance gains generated by “PNNS switch” are always larger
than those provided by “PNNS substitution” (see Tables VI,
VII, VIII, and IX). This has two explanations. Firstly, “PNNS
substitution” is hampered by the suppression of the original
H.265 intra prediction mode of index 18. Indeed, the PSNR-
rate performance gain is degraded when the original H.265
intra prediction mode of index 18 is a relevant mode for
encoding a luminance image. The most telling example is
the luminance channel of the first frame of ‘“BasketballDrill”.
When this channel is encoded via H.265, for the original H.265
intra prediction mode of index 18, v, = 0.085, vg = 0.100,
v1g = 0.116, v35 = 0.085, and vg4 = 0.088. This means that,
compared to the average statistics in Figure 11, the original
H.265 intra prediction mode of index 18 is used approxi-
matively 10 times more frequently. This explains why the
PSNR-rate performance gain provided by “PNNS substitution”
is only 0.39% (see Table VIII). The other way round, the
luminance channel of the first frame of ‘“BasketballDrive”
is an insightful example. When this channel is encoded via
H.265, for the original H.265 intra prediction mode of index
].8, Vy = 0004, Vg = 0005, Ve = 0004, V3o = 0004, and
vg4 = 0.000. In this case, the original H.265 intra prediction
mode of index 18 is almost never used. “PNNS substitution”
thus yields 3.65% of PSNR-rate performance gain.

There is another explanation for the gap in PSNR-rate
performance gain between “PNNS substitution” and “PNNS
switch”. As shown in Section IV-E, PNNS is able to model
a large set of complex textures found in large image blocks.
PNNS is also able to model a large set of simple textures found
in small blocks. Following the principle of Huffman Coding,
an intra prediction mode that gives on average predictions
of good quality, such as PNNS, should be signalled using
fewer bits. However, an intra prediction mode that seldom
yields the highest prediction quality, such as the H.265 intra
prediction mode of index 4, should be signalled using more
bits. This corresponds exactly to the principle of the switch be-
tween PNNS and the H.265 intra prediction modes. Therefore,
“PNNS switch” beats “PNNS substitution” in terms of PSNR-
rate performance gains. Figure 12 compares the reconstruction
of a luminance image via H.265 and its reconstruction via
“PNNS switch” at similar reconstruction PSNRs. More visual
comparisons are available on the website!.

Another interesting conclusion emerges when comparing
“low rate” and “high rate”. There is no specific range of bitrate
for which “PNNS substitution” is more profitable (see Tables
VI, VII, VIII, and IX). Note that, in few cases, the PNSR-rate
performance gain in “full rate” is slightly larger than those
in “low rate” and “high rate”. This happens when the area
between the rate-distortion curve of “PNNS substitution” and
the rate-distortion curve of H.265 gets relatively large in the
range QP € [27,32].

C. Comparison with the state-of-the-art

Now, “PNNS switch” is compared to IPFCN-S integrated
into H.265 in terms of PSNR-rate performance gains. It is
important to note that the authors in [14] develop two versions
of their set of 4 fully-connected neural networks for intra
prediction. The first version, called IPFCN-S, is the one used
in Section IV-E. The 4 fully-connected neural networks are
trained on an unconstrained training set of image blocks to
be predicted, each paired with its context. The second version
is called IPFCN-D. The training data are dissociated into two
groups. One group gathers image blocks exhibiting textures
with angular directions, each paired with its context. The
other group gathers image blocks exhibiting textures with non-
angular directions, each paired with its context. In IPFCN-
D, there are two sets of 4 fully-connected neural networks,
each set being trained on a different group of training data.
Then, the two sets are integrated into H.265. IPFCN-D gives
slightly larger PSNR-rate performance gains than IPFCN-S.
The comparison below involves IPFCN-S as our training set
is not dissociated. But, this dissociation could also be applied
to the training set of the neural networks of PNNS.

“PNNS switch” and IPFCN-S integrated into H.265 are
compared on the third test set. The PSNR-rate performance
gains of IPFCN-S are reported from [14]. We observe that the
PSNR-rate performance gains of “PNNS switch” are larger
than those of IPFCN-S integrated into H.265, apart from the
case of the video sequence “ParkScene” (see Table X). Note
that, for several videos sequences, the difference in PSNR-
rate performance gains between “PNNS switch” and IPFCN-
S integrated into H.265 is significant. For instance, for the
video sequence ‘“BasketballPass”, the PSNR-rate performance
gain of “PNNS switch” is 3.08% whereas that of IPFCN-S
integrated into H.265 is 1.1%. Therefore, the use of both fully-
connected neural networks and convolutional neural networks
for intra prediction, the training with random context masking
and the training data augmentation for training the convolu-
tional neural networks of PNNS help boost the PSNR-rate
performance gains. This is consistent with the conclusion in
Section I'V-E. Note that, even when comparing the PSNR-rate
performance gains of “PNNS switch” with those of IPFCN-
D integrated into H.265 which are reported in [14], “PNNS
switch” often yields larger gains.

D. Robustness of the neural networks to quantization noise in
their input context

Section VI-C just showed the effectiveness of the proposed
PNNS in a rate-distortion sense. The last issue is that the

TABLE X: PSNR-rate performance gains of “PNNS switch”
and IPFCN-S integrated into H.265 for the third test set. The
reference is H.265.

Video sequence PSNR-rate performance gain
“PNNS switch” IPFCN-S integrated into H.265
BQTerrace 2.44% 1.8%
BasketballDrive 5.20% 3.4%

B | Cactus 3.05% 2.7%
ParkScene 2.58% 2.8%
Kimono 2.92% 2.7%
BQMall 3.14% 2.0%

c BasketballDrill 3.50% 1.1%
RaceHorsesC 3.29% 2.9%
PartyScene 2.42% 1.3%
BQSquare 2.21% 0.6%

D BasketballPass 3.08% 1.1%
BlowingBubbles 2.65% 1.6%
RaceHorses 3.28% 2.8%

TABLE XI: Average computation time ratio with respect to
H.265.

“PNNS switch” IPFCN-S integrated into H.265
Encoding 51 46
Decoding 191 190

neural networks of PNNS are trained on contexts without
quantization noise but, during the test phase inside H.265,
these neural networks are fed with contexts containing H.265
quantization noise. It is thus natural to ask whether, during the
test phase inside H.2635, the quality of the predictions provided
by the neural networks of PNNS is degraded by the fact that no
quantization noise exists in the contexts during their training.
To answer this, let us consider two different “PNNS switch”.
In the first “PNNS switch”, our 5 neural networks, one for
each block size, are dedicated to all QPs. Note that the first
“PNNS switch” corresponds to the “PNNS switch” that has
been used so far. In the second “PNNS switch”, a first set of
5 neural networks is dedicated to QP < 27 whereas a second
set is dedicated to QP > 27. Unlike the first set of neural
networks, the second set is trained on contexts that are encoded
and decoded via H.265 with QP ~ U {32,37,42} for each
training context. For the third test set, the difference in PSNR-
rate performance gain between the first “PNNS switch” and
the second “PNNS switch” ranges between 0.0% and 0.1%.
This means that there is no need to train the neural networks
of PNNS on contexts with quantization noise.

E. Complexity

A fully-connected neural network needs an overcomplete
representation to provide predictions with high quality. That
is why the number of neurons in each fully-connected layer
is usually much larger than the size of the context. Likewise,
the number of feature maps in each convolutional layer of
a convolutional neural network is usually large. This incurs
a high computational cost. Table XI gives the encoding and
decoding times for “PNNS switch” and IPFCN-S and shows
comparable running times for both solutions. A Bi-Xeon CPU
E5-2620 is used for “PNNS switch”.

12

(@ (b)

©

Fig. 12: Comparison of (a) a 100 x 100 crop of the luminance channel of the first frame of BQMall, (b) its reconstruction via
H.265, and (c) its reconstruction via “PNNS switch”. QP = 27. For the luminance channel of the first frame of BQMall, for
H.265, {rate = 0.670 bpp, PSNR = 38.569 dB}. For “PNNS switch”, {rate = 0.644 bpp, PSNR = 38.513 dB}.

VII. CONCLUSION

This paper has presented a set of neural network archi-
tectures, including both fully-connected neural networks and
convolutional neural networks, for intra prediction. It is shown
that fully-connected neural networks are well adapted to the
prediction of image blocks of small sizes whereas convolu-
tional ones provide better predictions in large blocks. Our
neural networks are trained via a random context masking
of their context so that they adapt to the variable number
of available decoded pixels for the prediction in a coding
scheme. When integrated into a H.265 codec, the proposed
neural networks are shown to give rate-distortion performance
gains compared with the H.265 intra prediction. Moreover,
it is shown that these neural networks can cope with the
quantization noise present in the prediction context, i.e. they
can be trained on undistorted contexts, and then generalize
well on distorted contexts in a coding scheme. This greatly
simplifies training as quantization noise does not need to be
taken into account during training.

APPENDIX A
ARCHITECTURE OF g¢, AND g¢ FOR H.265

The architecture of g%, m € {16,32,64}, is shown in
Figure 13. conv:p, s|LeakyReLU, p € N*, s € N*, denotes
the convolutional layer with spatial stride s, p output feature
maps and LeakyReLU with slope 0.1 as non-linear activation.
Note that the height and width of the p convolutional kernels
in conv:p, s|LeakyReLU are 2s+1. For i € {0, 1}, ¢%; gathers
all the weights and biases in the g, that is applied to X;.

To obtain the architecture of gﬁn, the architecture of gy, is
reversed. This means that each sequence of layers in Figure
13 is reversed. Besides, each convolution is replaced by a
transpose convolution. For instance, Figure 14 illustrates the
result of reversing the architecture of g¢fs. “tconv” is an
abbreviation for “transpose convolution”. ¢!, gathers all the
weights and biases in g,.

Vo N e N s W Y
-}) -})
23|l 2|l =
] ()]
SIEEIE
==
AN
A e
Xia—a—»—a—»zi

(o] — (o] —
- - w~ m\
SR
> > b by
AR
() o (@] (o]
o o

| W S ———

I

[conv:512,2 | LeakyReLU] [conv:256,2 | LeakyReLU}

2
:

I

[conv:256,2 | LeakyReLU]@ [conv:128,1 | LeakyReLU]@
[conv:512,1 | LeakyReLU] [conv:256,1 | LeakyReLUJ

[conv:64,2 | LeakyReLU] [conv:64,2 | LeakyReLU]

[conv:128,2 | LeakyReLU] [conv:128,2 | LeakyReLU]

~
g}
~

Fig. 13: Illustration of the architecture of (a) g{g, (b) g5, and
(©) géa-

[1]
[2]

[3]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]

o Ve Ve Ve
31(2](3

[} Q Q

o o o

> > >

=~ = =

© © ©

Q] o || X
= = i} —
J—H—l—H =bV
Z — o~ - g YC
23| 2|2
1 > >

> c C

sl gl g

8 +— +—
\L_/;J;/

Fig. 14: Illustration of the architecture of gi.

REFERENCES

M. Wien, “High efficiency video coding: coding tools and specification,”
Springer, September 2014.

J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra coding
of the HEVC standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, no. 12, pp. 1792-1801, December 2012.
A.J. Bell and T. J. Sejnowski, “Edges are the independent components
of natural scenes,” in NIPS, 1996.

J. H. van Hateren and A. van der Schaaf, “Independent component filters
of natural images compared with simple cells in primary visual cortex,”
Proc. R. Soc. Lond. B, vol. 265, no. 1394, pp. 359-366, March 1998.
H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model
for visual area V2,” in NIPS, 2007.

H. Hosoya and A. Hyvirinen, “A hierarchical statistical model of natural
images explains tuning properties in V2,” The Journal of Neuroscience,
vol. 35, no. 29, pp. 10412-10428, July 2015.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in /CML, 2009.

M. Ranzato, V. Mnih, J. M. Susskind, and G. E. Hinton, “Modeling
natural images using gated MRFs,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2206-2222,
September 2013.

T. K. Tan, C. S. Boon, and Y. Suzuki, “Intra prediction by template
matching,” in ICIP, 2006.

M. Turkan and C. Guillemot, “Image prediction based on neighbor
embedding methods,” IEEE Transaction on Image Processing, vol. 21,
no. 4, pp. 1885-1898, April 2012.

T. Wiegand and H. Schwarz, “Source coding: part I of fundamentals of
source and video coding,” Foundations and Trends in Signal Processing,
vol. 4, nos. 1-2, pp. 1-222, 2011.

L. Theis and M. Bethge, “Generative image modeling using spatial
LSTMs,” in NIPS, 2015.

A. van der Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” in ICML, 2016.

J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully-connected network-
based intra prediction for image coding,” IEEE Transactions on Image
Processing, vol. 27, no. 7, pp. 3236-3247, July 2018.

R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on
Information Theory,, vol. 44, no. 6, pp. 2325-2383, October 1998.

M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and
S. Chopra, “Video (language) modeling: a baseline for generative models
of natural videos,” arXiv:1412.6604v4, April 2015.

M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” in /CLR, 2016.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient backprop,”
Neural Networks: Tricks of the Trade, Springer, 1998.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278-2324, November 1998.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
July 2006.

A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval,” in ESANN, 2011.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in /CLR, 2015.

[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]
[32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]
[44]
[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, 2013.

D. Pathak, P. Krihenbiihl, J. Donahue, T. Darell, and A. A. Efros,
“Context encoders: feature learning by inpainting,” in CVPR, 2016.

H. Hoh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in /CCV, 2015.

V. Dumoulin and F. Visin, “A guide to convolutional arithmetic for deep
learning,” arXiv:1603.07285v2, January 2018.

Kodak suite. [Online]. Available: rOk.us/graphics/kodak/

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295-307, February 2016.
B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in CVPR Workshops, 2017.
V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: a deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
12, pp. 2481-2495, December 2017.

P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun, “Predicting
deeper into the future of semantic segmentation,” in /CCV, 2017.

S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung,
“Phase-based frame interpolation for video,” in CVPR, 2015.

S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in CVPR, 2017.

J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz, Z. Wang, and
J. Caballero, “Frame interpolation with multi-scale deep loss functions
and generative adversarial networks,” arXiv:1711.06045v1, November
2017.

E. P. Simoncelli and B. A. Olshausen, “Natural image statistics and
neural representation,” Annual Review of Neuroscience, vol. 24, no. 1,
pp. 1193-1216, 2001.

J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
35, no. 8, pp. 1872-1886, August 2013.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond Euclidean data,” Signal Pro-
cessing Magazine, vol. 34, no. 4, pp. 18-42, July 2017.

D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher
layer features of a deep network,” University of Montreal, Tech. Rep.,
2009.

Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” Neural Networks: Tricks of the Trade, Springer,
2013.

D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in ICLR, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and E-F. Li, “ImageNet:
a large-scale hierarchical image database,” in CVPR, 2009.

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,” Neural
Computation, vol. 22, no. 12, pp. 3207-3220, December 2010.

D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in CVPR, 2012.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in /ICCV, 2001.

H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometry consistency for large scale image search,” in ECCV, 2008.
R. I. Chernyak, “Analysis of the intra predictions in H.265/HEVC,”
Applied Mathematical Sciences, vol. 8, no. 148, pp. 7389-7408, 2014.
0. Bougacha, H. Kibeya, N. Belhadj, M. A. Ben Ayed, and N. Mas-
moudi, “Statistical analysis of intra prediction in HEVC video encoder,”
in IPAS, 2016.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649—
1667, December 2012.

G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T SG16/Q6, Austin, TX, USA, Tech. Rep., 2001.

C. Rosewarne, K. Sharman, and D. Flynn, “Common test conditions
and software reference configurations for HEVC range extensions,”
document JCTVC-P1006, 16th meeting, JCT-VC, San Jose, CA, USA,
January 2014.

