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EXCHANGEABLE COALESCENTS, ULTRAMETRIC
SPACES, NESTED INTERVAL-PARTITIONS: A UNIFYING

APPROACH

By Félix Foutel-Rodier, Amaury Lambert and Emmanuel
Schertzer

Sorbonne Université, Collège de France
Kingman’s representation theorem (Kingman, 1978) states that

any exchangeable partition of N can be represented as a paintbox
based on a random mass-partition. Similarly, any exchangeable com-
position (i.e. ordered partition of N) can be represented as a paintbox
based on an interval-partition (Gnedin, 1997).

Our first main result is that any exchangeable coalescent process
(not necessarily Markovian) can be represented as a paintbox based
on a random non-decreasing process valued in interval-partitions,
called nested interval-partition, generalizing the notion of comb met-
ric space introduced in Lambert and Uribe Bravo (2017) to represent
compact ultrametric spaces.

As a special case, we show that any Λ-coalescent can be obtained
from a paintbox based on a unique random nested interval parti-
tion called Λ-comb, which is Markovian with explicit transitions.
This nested interval-partition directly relates to the flow of bridges
of Bertoin and Le Gall (2003). We also display a particularly sim-
ple description of the so-called evolving coalescent (Pfaffelhuber and
Wakolbinger, 2006) by a comb-valued Markov process.

Next, we prove that any ultrametric measure space U , under mild
measure-theoretic assumptions on U , is the leaf set of a tree composed
of a separable subtree called the backbone, on which are grafted
additional subtrees, which act as star-trees from the standpoint of
sampling. Displaying this so-called weak isometry requires us to ex-
tend the Gromov-weak topology of Greven, Pfaffelhuber and Winter
(2009), that was initially designed for separable metric spaces, to
non-separable ultrametric spaces. It allows us to show that for any
such ultrametric space U , there is a nested interval-partition which is
1) indistinguishable from U in the Gromov-weak topology; 2) weakly
isometric to U if U has a complete backbone; 3) isometric to U if U
is complete and separable.

MSC 2010 subject classifications: Primary 60G09; secondary 60J35, 60C05, 54E70.
Keywords and phrases: Combs, compositions, nested compositions, Lambda-

coalescents, flow of bridges, metric measure spaces, Gromov-weak topology.
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1. Introduction.

1.1. Ultrametric spaces and exchangeable coalescents. In this paper we
extend earlier work from Lambert and Uribe Bravo (2017) on the comb
representation of ultrametric spaces. An ultrametric space is a metric space
(U, d) such that the metric d fulfills the additional assumption

∀x, y, z ∈ U, d(x, y) ≤ max(d(x, z), d(z, y)).

In applications, ultrametric spaces are used to model the genealogy of
entities co-existing at the same time. The distance between two points x
and y of an ultrametric space is interpreted as the time to the most recent
common ancestor (MRCA) of x and y. For instance, in population genetics
ultrametric spaces model the genealogy of homologous genes in a population.
Another example can be found in phylogenetics where ultrametric spaces are
used to model the evolutionary relationships between species.

In population genetics and more generally in biology we do not have access
to the entire population (that is to the entire ultrametric space) but only to
a sample from the population. To model the procedure of sampling we equip
the ultrametric space with a probability measure µ (also referred to as the
sampling measure), yielding the notion of ultrametric measure spaces.

Definition 1.1. A quadruple (U, d, U, µ) is called an ultrametric mea-
sure space (UMS) if the following holds.

(i) The distance d is an ultrametric on U which is U ⊗ U measurable.
(ii) The measure µ is a probability measure defined on U.
(iii) The family U is a σ-field such that

∀x ∈ U, ∀t > 0, {y ∈ U : d(x, y) < t} ∈ U

and U ⊆ B(U), where B(U) is the usual Borel σ-field of (U, d).
If U = B(U), we say that (U, d, U, µ) is a Borel UMS.

Remark 1.2. This definition might be surprising as we would naively
expect a UMS to be any ultrametric space with a probability measure on
its Borel σ-field. However the previous naive definition is not satisfying
for several reasons, that are exposed in Section 4.1. Notice that if (U, d) is
separable, then U = B(U) and point (i) always holds. We thus recover the
usual definition of an ultrametric measure space.

A sample from a UMS is an i.i.d. sequence (Xi)i≥1 distributed according
to µ. The genealogy of the sample is usually encoded as a partition-valued
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Fig 1. Representation of two nested interval-partitions. A point (x, t) is plotted in dark
if x ̸∈ It. Left panel: A realization of the Kingman comb, a tooth of size y at location
x represents that f(x) = y. Right panel: The star-tree comb, an example of a nested
interval-partition that cannot be represented as an original comb.

process, (Πt)t≥0 called a coalescent. For any time t ≥ 0, the blocks of the
partition Πt are given by the following relation

i ∼Πt j ⇐⇒ d(Xi, Xj) ≤ t.(1)

The process (Πt)t≥0 has two major features. First a well-known characteristic
of ultrametric spaces is that for a given t the balls of radius t form a partition
of the space that gets coarser as t increases. This implies that given s ≤ t,
the partition Πt is coarser than Πs. Second, if σ denotes a finite permutation
of N and σ(Πt) is the partition of N whose blocks are the images by σ of
the blocks of Πt, we have

(Πt)t≥0
(d)
= (σ(Πt))t≥0.

We call any càdlàg partition valued process that fulfills these two conditions
an exchangeable coalescent (note that the process (Πt)t≥0 is not necessarily
Markovian).

1.2. Combs in the compact case.

Combs and ultrametric spaces. In this section, we address similar questions
in the much simpler framework of comb metric spaces which have been in-
troduced recently by Lambert and Uribe Bravo (2017) to represent compact
ultrametric spaces. A comb is a function

f : [0, 1] → R+
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such that for any ε > 0 the set {f ≥ ε} is finite (see Figure 1 left panel). To
any comb is associated a comb metric df on [0, 1] defined as

∀x, y ∈ [0, 1], df (x, y) = 1{x≠y} sup
[x∨y,x∧y]

f.

In general df is only a pseudo-metric on [0, 1] and it is easy to verify that it
is actually ultrametric. One of the main results in Lambert and Uribe Bravo
(2017) shows that any compact ultrametric space is isometric to a properly
completed and quotiented comb metric space (see Theorem 3.1 in Lambert
and Uribe Bravo (2017)).
Exchangeable coalescents. We also will be interested in the relation between
combs and exchangeable coalescents. Any comb metric space ([0, 1], df ) can
be naturally endowed with the Lebesgue measure on [0, 1]. Sampling from
a comb can be seen as a direct extension of Kingman’s paintbox procedure.
More precisely, given a comb f , we can generate an exchangeable coalescent
(Πt)t≥0 by throwing i.i.d. uniform random variables (Xi)i≥1 on [0, 1] and
declaring that

i ∼Πt j ⇐⇒ sup
[Xi∧Xj ,Xi∨Xj ]

f ≤ t.

For the sake of illustration, we recall the comb representation of the King-
man coalescent stated in Kingman (1982). The Kingman comb is constructed
out of an i.i.d. sequence (ei)i≥1 of exponential variables with parameter 1,
and of an independent i.i.d. sequence (Ui)i≥1 of uniform variables on [0, 1].
We define the sequence (Ti)i≥2 as

Ti =
∑
j≥i

2

j(j − 1)
ej .

The Kingman comb fK is defined as

fK =
∑
i≥2

Ti1Ui .

See Figure 1 left panel for an illustration of a realization of the Kingman
comb. The paintbox based on fK is a version of the Kingman coalescent (see
Section 4.1.3 of Bertoin (2006)).

More generally, the assumption that {f ≥ ε} is finite implies that the
coalescent (Πt)t≥0 obtained from a paintbox based on f has only finitely
many blocks for any t > 0. This property is usually referred to as “coming
down from infinity”. It has been shown in Lambert (2017) that any coalescent
which comes down from infinity can be represented as a paintbox based on
a comb, see Proposition 3.2.
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1.3. General combs. One of the objectives of this work is to extend The-
orem 3.1 of Lambert and Uribe Bravo (2017) and Proposition 3.2 of Lambert
(2017) to any ultrametric space (not only compact) and to any exchangeable
coalescent (i.e., beyond the “coming down from infinity” property). From a
technical point of view, we note that this extension is conceptually harder,
and requires the technology of exchangeable nested compositions which were
absent in Lambert and Uribe Bravo (2017). This point will be discussed fur-
ther in Section 2.1.

In order to deal with non-compact metric spaces, we need to generalize the
definition of a comb by relaxing the condition on the finiteness of {f ≥ ε}.
We will encode combs as functions taking values in the open subsets of (0, 1).
Any open subset I of (0, 1) can be decomposed into an at-most countable
union of disjoint intervals denoted by (Ii)i≥1. For this reason we will call
an open subset of (0, 1) an interval-partition and each of the intervals Ii is
an interval component of I. The space of interval-partitions is conveniently
topologized with the Hausdorff distance on the complement, dH , defined as

dH(I, Ĩ) = sup
{
d(x, [0, 1] Ĩ), x ̸∈ I

}
∨ sup

{
d(x, [0, 1] I), x ̸∈ Ĩ

}
.

We propose to generalize the notion of comb to the notion of nested
interval-partition.

Definition 1.3. A nested interval-partition is a càdlàg function (It)t≥0

taking values in the open subsets of (0, 1) verifying

∀s ≤ t, Is ⊆ It.

Sometimes nested interval-partitions will be called generalized combs or even
simply combs.

Let us briefly see how this definition extends the initial comb of Lambert
and Uribe Bravo (2017). Starting from a comb function f , we can build a
nested interval-partition (It)t≥0 as follows

∀t > 0, It = {f < t} {0, 1}

and
I0 = int({f = 0})

where int(A) denotes the interior of the set A.
Conversely if (It)t≥0 is a nested interval-partition we can define a comb

function fI : [0, 1] → R+ as

fI(x) = inf{t ≥ 0 : x ∈ It}.
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In general fI does not fulfill that {fI ≥ t} is finite. A necessary and sufficient
condition for this to hold is that for any t > 0, It has finitely many interval
components, and the summation of their lengths is 1. If the latter condition
is fulfilled, we say that It is proper or equivalently that it has no dust.

A nested interval-partition naturally encodes a (pseudo-)ultrametric dI
on [0, 1] defined as

dI(x, y) = inf{t ≥ 0 : x and y belong to the same interval of It}
= sup

[x,y]
fI

for x < y. We call the ultrametric space ([0, 1], dI) the comb metric space
associated to (It)t≥0. In order to turn ([0, 1], dI) into a UMS, we need to
define an appropriate σ-field and a sampling measure. The interval [0, 1] is
naturally endowed with the usual Borel σ-field B([0, 1]) and the Lebesgue
measure. However, the usual Borel σ-field does not fulfill the requirements
of Definition 1.1 in general because two points that belong to the same
interval component of I0 are indistinguishable in the metric dI . This can be
addressed by considering a slightly smaller σ-field as follows.

Let (I0i )i≥1 be the interval components of I0. We define a σ-field I on
[0, 1] as

I =
{
A ∪

∪
i∈M

I0i : A ∈ B([0, 1] I0) and M ⊆ N
}

where B([0, 1] I0) denotes the usual Borel σ-field on [0, 1] I0. It is clear that
I ⊆ B([0, 1]). We call comb metric measure space associated to (It)t≥0 the
quadruple ([0, 1], dI ,I,Leb), where Leb is the restriction of the Lebesgue
measure to I. The following lemma shows that the Lebesgue measure on I
satisfies the requirements of Definition 1.1, and that a comb metric measure
space is a UMS.

Lemma 1.4. Any comb metric measure space ([0, 1], dI ,I,Leb) is a
UMS.

Proof. Let us first prove that (iii) holds. For x ∈ [0, 1] and t ≥ 0, let
It(x) denote the interval component of It to which x belongs if x ∈ It, or let
It(x) = {x} else. Then for t > 0 we have

{y ∈ [0, 1] : dI(x, y) < t} =
∪
s<t

Is(x) ∈ I.

It remains to show that I ⊆ BI([0, 1]), where BI([0, 1]) denotes the σ-
field induced by dI . It is sufficient to prove that for all x, y ̸∈ I0, we have
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(x, y) ∈ BI([0, 1]). Let z ∈ (x, y) and suppose that z ∈ It for all t > 0. Then
Itz(z) ⊆ (x, y) for a small enough tz, and thus{

z′ ∈ [0, 1] : dI(z, z
′) < tz

}
⊆ (x, y).

Otherwise if z ̸∈ Itz(z) for some tz, then {z′ ∈ [0, 1] : dI(z, z
′) < tz} = {z}.

We can now write

(x, y) =
∪

z∈(x,y)

{
z′ ∈ [0, 1] : dI(z, z

′) < tz
}
∈ BI([0, 1])

which proves that point (iii) of the definition is fulfilled.
Let It− =

∪
s<t Is, then{

(x, y) ∈ [0, 1]2 : d(x, y) < t
}
= ∆0 ∪

∪
x∈It−

It(x)× It(x),

where ∆0 =
{
(x, y) ∈ ([0, 1] I0)

2 : x = y
}
. As there are only countably

many interval components of It, the union on the right-hand side is count-
able, and this set belongs to the product I ⊗ I. This proves that point (i)
holds and that the comb metric measure space is a UMS.

For later purpose, let us denote by UI the completion of the quotient
space of {fI = 0} by the relation x ∼ y if f dI(x, y) = 0. (This completion
can be realized explicitly by adding countably many “left” and “right” faces
to the comb, see Section 4.5.)

Finally, as in the compact case, an exchangeable coalescent (Πt)t≥0 can
be obtained from a nested interval-partition (It)t≥0 out of an i.i.d. uniform
sequence (Xi)i≥1 by defining

i ∼Πt j ⇐⇒ Xi and Xj belong to the same interval component of It.(2)

Notice that this definition is a multidimensional extension of the origi-
nal Kingman paintbox procedure, see e.g. the beginning of Section 2.3.2
of Bertoin (2006).

Remark 1.5. The coalescent obtained through this sampling procedure
is not càdlàg in general. As a coalescent is a non-decreasing process, we can
(and will) always suppose that we work with a càdlàg modification of the
coalescent.
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Remark 1.6. We have defined two natural ways of sampling a coalescent
from a nested interval-partition. First, one can realize the extended paintbox
procedure described in equation (2). Second, one can consider the comb metric
measure space associated to the nested interval-partition and sample the
coalescent according to equation (1). It is not hard to see that the coalescent
obtained through (1) is the càdlàg version of the one obtained through (2).

We will now demonstrate that nested interval-partitions form a large
enough framework to answer our two initial problems: representing any ex-
changeable coalescent as a paintbox on a comb and representing general
ultrametric measure spaces.

1.4. Comb representation of exchangeable coalescents.

General comb representation. We start by showing that one can always find
a comb representation of any coalescent. First notice that this representation
cannot be unique. For example taking the reflection of a comb about the
vertical line in the middle of the segment [0, 1] yields a new comb but does
not change the associated coalescent. In many applications we will not be
interested in this order but only in the genealogical structure of the comb.
For this reason we introduce the following relation.

Definition 1.7. Two generalized combs are paintbox-equivalent if their
associated coalescents are identical in law. Being paintbox-equivalent is an
equivalence relation, we denote by I the quotient space.

Given I ∈ I we denote by ρI the distribution on the space of coalescents
of the paintbox based on any representative of I. We provide the follow-
ing version of Kingman’s representation theorem (e.g. see Bertoin (2006)
Theorem 2.1) for exchangeable coalescents.

Theorem 1.8. Let (Πt)t≥0 be an exchangeable coalescent. There exists
a unique distribution ν on I such that

P
(
(Πt)t≥0 ∈ ·

)
=

∫
I
ρI(·)ν(dI).

Remark 1.9. It is interesting to relate this result to the original theorem
from Kingman. A mass-partition is a sequence β = (βi)i≥1 such that

β1 ≥ β2 ≥ · · · ≥ 0,
∑
i≥1

βi ≤ 1.
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Fig 2. An example of two nested interval-partitions that have the same mass-
coalescent but different coalescents. For both processes, the initial mass-partition is
( 1
3
, 1
6
, 1
6
, 1
9
, 1
9
, 1
9
, 0, . . . ), then ( 2

3
, 1
3
, 0, . . . ) and finally (1, 0, . . . ). However, for the process

on the left-hand side the first blocks to merge are those of mass 1/6 and 1/9, whereas for
the right-hand process, the blocks of mass 1/6 first merge with the block of size 1/3.

Kingman’s representation theorem states that any exchangeable partition can
be obtained through a paintbox based on a random mass-partition, and that
this correspondence is bijective. A mass-partition can be seen as the ranked
sequence of the lengths of the interval components of an interval-partition.
Now notice that two interval-partitions are paintbox-equivalent, i.e. induce
the same exchangeable partition, if f they have the same associated mass-
partition. In this one-dimensional setting, any paintbox-equivalence class
of interval-partitions can be identified with a random mass-partition. In a
similar way, it would be natural to try to identify the elements of I with
mass-partition valued processes, also called mass-coalescents. However, one
can easily find two different equivalence classes of I that have the same
associated mass-coalescent, see Figure 2.

Remark 1.10. A result very similar to Theorem 1.8 has been obtained
in Forman, Haulk and Pitman (2018), Theorem 4, in the context of hier-
archies. Roughly speaking, an exchangeable hierarchy is obtained from an
exchangeable coalescent by “forgetting about time”. In this sense, an ex-
changeable coalescent carries more information, and this part of our work
can be seen as an extension of Forman, Haulk and Pitman (2018). However,
the forthcoming Section 3 and Section 4 heavily rely on the knowledge of
the coalescence times, and could not have been achieved in the framework of
hierarchies. We have dedicated Appendix A to the explanation of the links
between the present work and Forman, Haulk and Pitman (2018).

Λ-coalescents. Most of the efforts made in the study of exchangeable co-
alescents have been devoted to the special case of Λ-coalescents (Pitman,
1999; Sagitov, 1999). These coalescents are parametrized by a finite mea-
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sure Λ on [0, 1], and their restriction to [n] := {1, . . . , n} is a Markov chain
whose transitions are the following. The process undergoes a transition from
a partition π with b blocks to a partition obtained by merging k blocks of π
at rate λb,k given by

λb,k =

∫
[0,1]

xk−2(1− x)b−kΛ(dx).

The next proposition states that we can always find a Markovian comb
representation of a Λ-coalescent. Moreover in Section 3 we provide an explicit
description of its transition.

Proposition 1.11. Let (Πt)t≥0 be a Λ-coalescent. There exists (It)t≥0 a
Markov nested interval-partition such that the coalescent obtained from the
paintbox based on (It)t≥0 is distributed as (Πt)t≥0.

Remark 1.12 (Combs and the flow of bridges). The flow of bridges
introduced by Bertoin and Le Gall (2003) represents the dynamics of a pop-
ulation whose genealogy is given by a Λ-coalescent. We will show that we
can build a nested interval-partition from the flow of bridges and that it has
the same distribution as the Markov nested interval-partition of Proposi-
tion 1.11, see Section 3.

Remark 1.13. There exists a natural extension of the Λ-coalescents
called the coalescents with simultaneous multiple collisions or Ξ-coalescents
(Schweinsberg, 2000). All our results carry over to Ξ-coalescents, however
for the sake of clarity we will focus on the case of Λ-coalescents.

A coalescent process models the genealogy of a population living at a
fixed observation time. Many works have been concerned with the dynami-
cal genealogy obtain by varying the observation time of the population. For
example, in Pfaffelhuber and Wakolbinger (2006); Pfaffelhuber, Wakolbinger
and Weisshaupt (2011) the authors study some statistics of the dynamical
genealogy, namely the time to the MRCA and the total length of the geneal-
ogy. In Greven, Pfaffelhuber and Winter (2012) the genealogy is encoded as
a metric space (a real tree, see Evans (2007)) and the authors introduce the
tree-valued Fleming-Viot process, a process bearing the entire information
on the dynamical genealogy. This encoding requires to work with metric
space-valued stochastic processes, and with the rather technical Gromov-
weak topology for metric spaces.

We address such questions in the framework of combs in Section 3.3. We
show that we can naturally encode a dynamical genealogy as a comb-valued
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process called the evolving comb. This process is a Markov process, whose
semi-group can be explicitly described. In the particular case of coalescents
that come down from infinity, the semi-group of the evolving comb takes a
particularly simple form in terms of sampling from an independent comb.

1.5. Comb representation of ultrametric spaces. The second main aim of
this paper is to provide a comb representation of ultrametric measure spaces
in the same vein as Theorem 3.1 of Lambert and Uribe Bravo (2017). We
will only state our results informally and refer to Section 4 for the precise
statements.

We first introduce the Gromov-weak topology on the space of UMS and
show that any UMS is indistinguishable from a comb metric space in this
topology. To do so, we realize a straightforward extension of the work de-
veloped in Greven, Pfaffelhuber and Winter (2009); Gromov (1999) which
is focused on separable metric measure spaces. In short, starting from a
UMS a we can obtain a coalescent by sampling from it as described in Sec-
tion 1.1. We say that a sequence of UMS converges to a limiting UMS in
the Gromov-weak sense if the corresponding coalescents converge weakly
as partition-valued stochastic processes (see Section 4.2 for a more precise
definition). We are now ready to state our representation result, which is a
direct application of Theorem 1.8.

Theorem 1.14. For any UMS (U, d, U, µ) there exists a comb metric
measure space that is indistinguishable in the Gromov-weak topology from
(U, d, U, µ).

Proof. As we have identified any UMS with the distribution of its
coalescent, two UMS are indistinguishable if f their coalescents have the
same distribution. Theorem 1.8 shows that we can always find a nested
interval-partition (It)t≥0 such that the coalescent obtained from a paintbox
based on (It)t≥0 is distributed as the coalescent obtained by sampling from
(U, d, U, µ). As noticed in Remark 1.6, the coalescent obtained by sampling
in the comb metric measure space ([0, 1], dI ,I,Leb) has the same distribu-
tion as the coalescent obtained from the paintbox based on (It)t≥0, and thus
this comb metric measure space is indistinguishable from (U, d, U, µ).

The comb representation given by Theorem 1.14 is rather weak, since it
only ensures that we can find a comb that has the same sampling structure
as a given UMS. We would like to be more precise and obtain an isometry
result as in the compact case. This is not possible in general, and we have
to consider separately the separable case and the non-separable case.
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The separable case. In the separable case, the coalescent contains all the
information about the UMS. More precisely, the Gromov reconstruction
theorem ensures that two complete separable UMS that are indistinguish-
able in the Gromov-weak topology have the supports of their measures in
isometry, see e.g. Gromov (1999), Section 3.12 .5 or Greven, Pfaffelhuber and
Winter (2009), Proposition 2.6. The following refinement of Theorem 1.14
in the separable case is a direct consequence of the Gromov reconstruction
theorem and of Theorem 1.14, see Section 4.6 for a proof.

Corollary 1.15. Let (U, d, U, µ) be a complete separable UMS. There
exists a comb metric measure space such that the support of µ is isometric
to (UI , dI), and that the isometry maps µ to Leb.

Additionally, any separable ultrametric space (U, d) can be endowed with
a probability measure whose support is the whole space U , see Lemma 4.17.
This result combined with Corollary 1.15 yields the following representation
result for complete separable ultrametric spaces, which is the direct exten-
sion of Theorem 3.1 of Lambert and Uribe Bravo (2017) to the separable
case.

Proposition 1.16. Let (U, d) be a complete separable ultrametric space.
We can find a nested interval-partition such that (UI , dI) is isometric to
(U, d).

A proof of this proposition is provided in Section 4.6. Notice that the
proof of the previous proposition is very different from the original proof
of Lambert and Uribe Bravo (2017) which is no longer valid for non-compact
UMS.
The general case. In general, two UMS that are associated to the same
coalescent are not isometric. This essentially comes from the fact that a
coalescent only bears the information about a sequence of “typical” points
of the UMS, and that a non-separable UMS may contain more information
than the topology generated by these “typical” points. The main idea of our
approach relies on a new decomposition that we now expose.

An UMS (U, d, U, µ) can be seen as the leaves of a tree. We show that
we can decompose this tree into two parts. The first part is a separable tree
that we call the backbone. Secondly, one can then recover the tree from the
backbone by grafting some “simple” subtrees on the backbone. By “simple”,
we mean that each of those subtrees has the sampling properties of a star-
tree, in the sense that all points sampled in the same subtree are at the same
distance to each other. See Figure 3 for an illustration of this decomposition,
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and Definition 4.7 for a precise definition of the backbone. An object very
similar to the backbone is studied in Gufler (2018) but the construction of
the backbone from a general UMS is not considered there.

Our result states that if two UMS have complete backbones and are asso-
ciated to the same coalescent, then the backbones are in isometry in a way
that preserves the star-trees attached to it. We say that the two UMS are in
weak isometry, see Definition 4.10. We provide the following version of the
Gromov reconstruction theorem in the case of general UMS.

Proposition 1.17. Let (U, d, U, µ) and (U ′, d′, U′, µ′) be two UMS with
complete backbones. These UMS are indistinguishable in the Gromov-weak
topology if f (U, d, U, µ) and (U ′, d′, U′, µ′) are in weak isometry.

An equivalent reformulation of the previous proposition is stated in Sec-
tion 4.4, see Proposition 4.11, and proved at the end of Section 4.4. As a
consequence of Proposition 1.17 and Theorem 1.14, we have the following
version of Theorem 3.1 of Lambert and Uribe Bravo (2017) in the general
case. See Section 4.5 for a proof.

Corollary 1.18. Let (U, d, U, µ) be a UMS with a complete back-
bone. There exists a nested interval-partition (It)t≥0 such that, up to the
addition of a countable number of points, the comb metric measure space
([0, 1], dI ,I,Leb) is weakly isometric to (U, d, U, µ).

1.6. Outline. The rest of the paper is divided into three parts.
In Section 2 we introduce the notion of composition and nested compo-

sition which will be our main tool to study combs. Section 2.1 introduces
the existing material on random compositions. In Section 2.2 we define ex-
changeable nested compositions and prove the representation theorem link-
ing combs and nested compositions. The proof of Theorem 1.8 is given in
Section 2.3.

In Section 3 we restrict our attention to the case of Λ-coalescents. We de-
fine there the notion of a Λ-comb and study a family of nested compositions
emerging from the Λ-coalescents. The proof of Proposition 1.11 is given in
Section 3.2. The evolving comb is introduced and studied in Section 3.3.

Finally in Section 4 we envision combs as ultrametric spaces. A precise
outline of this section is given at the beginning of Section 4.

2. Combs and nested compositions. The objective of this section
is to prove Theorem 1.8 on the comb representation of exchangeable co-
alescents. As was already mentioned in introduction, the correspondence
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Fig 3. Illustration of the backbone decomposition. The dark thick lines represent the back-
bone. An element of the tree is represented in grey if its descendance has zero mass.

between combs and exchangeable coalescents cannot be bijective. Roughly
speaking, this comes from the fact that a nested interval-partition inher-
its an order from [0, 1], and that changing this order does not modify the
associated coalescent. However, we will show in Section 2.2 that there is a
bijective correspondence between nested interval-partitions and exchange-
able nested compositions, the ordered version of exchangeable coalescents.
Exchangeable nested compositions will be our main tool to study combs.

We start this section by recalling existing results and material on ex-
changeable compositions developed in Gnedin (1997); Donnelly and Joyce
(1991) and then show how to extend them to nested compositions.

2.1. Exchangeable compositions. In combinatorics, a composition of [n]
(resp. N) is a partition of [n] (resp. N) with a total order on the blocks. We
write C = (π,≤) for a composition of N where π is the partition and ≤ the
order on the blocks. The blocks of the partition π can always be labeled in
increasing order of their least element, i.e. the blocks of π are denoted by
(A1, A2, . . . ) and are such that for any i, j ≥ 1,

i ≤ j ⇐⇒ min(Ai) ≤ min(Aj).
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Let σ be a finite permutation of N, we denote by σ(C) the composition whose
blocks are (σ(A1), σ(A2), . . . ) and such that the order of the blocks is

σ(Ai) ≤ σ(Aj) ⇐⇒ Ai ≤ Aj .

For example, for n = 5, consider Cn the composition

Cn = {2, 3} ≤ {5} ≤ {1, 4}.

With our labeling convention, we have A1 = {1, 4}, A2 = {2, 3} and A3 =
{5} (A1 needs not be the first block of C for the order ≤). If σ = (2, 1, 3, 5, 4),
the composition σ(Cn) is given by

σ(Cn) = {1, 3} ≤ {4} ≤ {2, 5}.

A random composition C of N is called exchangeable if for any finite permu-
tation σ,

C (d)
= σ(C).

Gnedin (1997) provides a procedure to build an exchangeable composition
of N from any interval-partition I called the ordered paintbox. Let (Vi)i≥1

be an i.i.d. sequence of uniform [0, 1] variables. Let C be the composition of
N whose blocks are given by the relation

i ∼ j ⇐⇒ Vi and Vj belong to the same interval component of I

and the order of the blocks is

A ≤ A′ ⇐⇒ Vi ≤ Vj , ∀i ∈ A, ∀j ∈ A′.

The main result of Gnedin (1997) shows that any exchangeable composition
of N can be obtained as an ordered paintbox based on a random interval-
partition (see Theorem 11 in Gnedin (1997)). We now give a proof of this
result that differs from the original proof of Gnedin (1997). We make use
of de Finetti’s theorem in a similar way as Aldous’ proof of Kingman’s
theorem, see e.g. the proof of Theorem 2.1 in Bertoin (2006). The original
proof of Gnedin (1997) relies on a reversed martingale argument combined
with the method of moments.

Theorem 2.1 (Gnedin). Let C be an exchangeable composition of N.
There exists on the same probability space a random interval-partition I and
an independent i.i.d. sequence (Vi)i≥1 of uniform [0, 1] variables such that
the ordered paintbox based on I by the sequence (Vi)i≥1 is a.s. C.
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Before showing the theorem we need a technical lemma. Any composition
C = (π,≤) can be encoded as a total preorder ⪯ on N defined as

i ⪯ j ⇐⇒ Bi ≤ Bj

where Bi (resp. Bj) is the block containing i (resp. j). The blocks of π can
be recovered from ⪯ by the following relation

i ∼ j ⇐⇒ i ⪯ j and j ⪯ i

and the order ≤ by

B ≤ B′ ⇐⇒ i ⪯ j, ∀i ∈ B, ∀j ∈ B′.

Lemma 2.2. Let C be an exchangeable composition of N. We can find an
exchangeable sequence of [0, 1]-valued random variables (ξi)i≥1 such that

i ⪯ j ⇐⇒ ξi ≤ ξj .

Proof. Let Di be the set of integers lower than i

Di = {k : k ⪯ i}.

It is immediate that the partition (Di {i},N {i} Di) is an exchange-
able partition of N {i}. Thus Kingman’s representation theorem (see e.g.
Theorem 2.1 in Bertoin (2006)) ensures that the limit

ξi = lim
n→∞

1

n
Card(Di ∩ [n])

exists a.s. Fix a finite permutation σ whose support lies in [n], i.e. such that
σ(i) = i for i ≥ n. For m ≥ n, the distribution of (Card(Di ∩ [m]))i≥1 is
invariant by the action of σ. Taking the limit, the distribution of the sequence
(ξi)i≥1 is also invariant by the action of σ, and thus it is an exchangeable
sequence.

We need to show that

i ⪯ j ⇐⇒ ξi ≤ ξj .

The only difficulty here is to show that ξi ≤ ξj implies i ⪯ j. Suppose that
i ̸⪯ j, we need to show that

ξi − ξj = lim
n→∞

1

n
Card

(
(Di Dj) ∩ [n]

)
> 0.
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The partition (Dj {i, j}, Di {i, j} Dj , N {i, j} Di) is an exchangeable
partition of N {i, j}. Another interesting consequence of Kingman’s theorem
is that in any exchangeable partition, the blocks are either singletons or have
positive asymptotic frequencies. According to this, it is sufficient to show
that a.s. Di Dj has at least two elements that are not i. Consider Bi (resp.
Bj) the block to which i (resp. j) belongs. The set Di Dj is the reunion of all
the blocks B such that Bj < B ≤ Bi. Thus Di Dj is a singleton if f Bi = {i}
and there exists at most one singleton block B such that Bj < B < Bi. Let
n ≥ 1 and consider the block sizes and order of Cn as fixed. Exchangeability
shows that the labels inside the blocks are chosen uniformly among all the
possibilities. In particular this shows that the probability that (Di Dj)∩ [n]
is a singleton goes to 0 as n goes to infinity.

Now Theorem 2.1 is essentially a corollary of the previous lemma and of
de Finetti’s theorem.

Proof of Theorem 2.1. Let (ξi)i≥1 be as above. Applying de Finetti’s
theorem we know that there exists a random measure µ such that condi-
tionally on it the sequence (ξi)i≥1 is i.i.d. distributed as µ. Consider the
distribution function Fµ of µ, and its generalized inverse

F−1
µ (x) = inf{r : Fµ(r) > x}.

The interval-partition associated with µ, Iµ, is defined as the set of flats of
F−1
µ :

Iµ =
{
x ∈ [0, 1] : ∃y < x < z, F−1

µ (y) = F−1
µ (z)

}
.

The measure µ has the property that if X is distributed as µ, then µ-a.s.
Fµ(X) = X. Conditioning on µ, this can be seen from the definition of the
sequence (ξi)i≥1 and the law of large numbers:

Fµ(ξ1) = lim
n→∞

1

n

n∑
j=1

1{ξj≤ξ1} = lim
n→∞

1

n

n∑
j=1

1{j⪯1} = ξ1 µ-a.s.

In the terminology of Gnedin (1997) this shows that the measure µ is uni-
formized. A uniformized measure has an atomic and a diffuse part. The
support of the diffuse part is [0, 1] Iµ and coincides with the Lebesgue mea-
sure. The atomic part is supported by the right endpoints of the interval
components of Iµ. If J = (ℓ, r) is an interval component of Iµ, the measure
µ has an atom of mass r − ℓ located at r.
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Let (Jk)k≥1 be the interval decomposition of Iµ, and write Jk = (ℓk, rk).
Let (Xi)i≥1 be an independent i.i.d. sequence of uniform variables, we define

Vi =

{
ξi if ξi ̸∈ Iµ

(rk − ℓk)Xi + ℓk if ξi = rk.

In words, the variables from the sequence (ξi)i≥1 which are equal to the
atom rk are uniformly dispersed over the interval Jk. The previous remarks
on the structure of uniformized measures show that conditionally on µ, the
sequence (Vi)i≥1 is i.i.d. uniform on [0, 1]. The conditional distribution does
not depend on µ, thus the sequence (Vi)i≥1 is independent of µ and of Iµ.

We only need to show that the ordered paintbox based on Iµ using the
sequence (Vi)i≥1 is C a.s. This is plain from the design of the sequence.

We end this section with a technical result already present in Gnedin
(1997) (see Proposition 9) which we will require. Let C be an exchangeable
composition of N and Cn its restriction to [n]. Let us denote by ni the size
of the i-th block of Cn. The empirical interval-partition associated to Cn is
given by

In = (0,
n1
n
) ∪ (

n1
n
,
n1 + n2

n
) ∪ · · · ∪ (

n1 + · · ·+ nk−1

n
, 1).

Here is a more pictorial way of constructing In. Divide [0, 1] in intervals of
size 1/n and label them from 1 to n in such a way that i ⪯ j if f the block
with label i is before the block with label j. Then In is obtained by merging
the intervals whose labels are in the same block of the composition. The
next result states that the interval-partition representing C in Theorem 2.1
can be obtained as the limit of the empirical interval-partitions.

Proposition 2.3. If C is an exchangeable composition of N, I the
interval-partition obtained from Theorem 2.1 and (In)n≥1 the sequence of
empirical interval-partitions associated to C, we have

lim
n→∞

dH(In, I {0, 1}) = 0 a.s.

Proof. Let µ, (ξi)i≥1 and Iµ be as in the proof of Theorem 2.1. De
Finetti’s theorem ensures that

lim
n→∞

µn :=
1

n

n∑
i=1

δξi = µ a.s.
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in the sense of weak convergence of probability measures. The interval-
partition Iµn coincides with the empirical interval-partition In and as was
already noticed in Gnedin (1997), the weak convergence of µn to µ implies
the convergence of Iµn to I in the Hausdorff topology.

Remark 2.4. This also shows that the representation obtained through
Theorem 2.1 is unique in distribution. The interval-partition I is a.s. recov-
ered from In whose distribution is fully determined by C.

2.2. Exchangeable nested compositions. Gnedin’s theorem sets up a cor-
respondence between random interval-partitions and exchangeable compo-
sitions. We want to find a similar correspondence between nested interval-
partitions and exchangeable nested compositions, the ordered version of ex-
changeable coalescents. A nested composition of [n] (resp. N) is a càdlàg
process (Ct)t≥0 taking values in the compositions of [n] (resp. N) such that,
as t increases, only adjacent blocks of the composition merge. More pre-
cisely, if (Ct)t≥0 is a nested composition, for any s ≤ t, the blocks of Ct are
obtained by merging blocks of Cs, and if A ≤ B are two blocks of Cs that
merge, they also merge with any block C such that A ≤ C ≤ B.

Naturally we say that (Ct)t≥0 is an exchangeable nested composition of
N if for any finite permutation σ we have

(Ct)t≥0
(d)
= (σ(Ct))t≥0.

We can extend the ordered paintbox construction to nested compositions.
Let (It)t≥0 be a nested interval-partition, and (Vi)i≥1 an independent i.i.d.
uniform sequence. Let Ct be the composition obtained from the ordered
paintbox based on It by (Vi)i≥1. Then it is immediate that (Ct)t≥0 is an
exchangeable nested composition. Notice that this is only true because we
have used the same sequence (Vi)i≥1 for all times t.

Remark 2.5. Similarly to Remark 1.5, the nested composition obtained
from an ordered paintbox is not càdlàg in general. Again it admits a unique
càdlàg modification and we shall always consider this modification.

We have the following direct reformulation of Theorem 2.1 in the frame-
work of nested compositions.

Theorem 2.6. Let (Ct)t≥0 be an exchangeable nested composition of N.
We can find on the same probability space a nested interval-partition (It)t≥0

and an independent i.i.d. sequence (Vi)i≥1 of uniform variables such that
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a.s. the ordered paintbox based on (It)t≥0 with (Vi)i≥1 is (Ct)t≥0. This nested
interval-partition is unique in distribution.

Proof. Existence. For any t ≥ 0, Ct is an exchangeable composition of
N. We can apply Theorem 2.1 distinctly for t ∈ Q+ to find on the same
probability space a collection of interval-partitions (It)t∈Q+ such that for
any t ∈ Q+ the ordered paintbox based on It is Ct. Let Int be the empirical
interval-partition associated to Ct ∩ [n]. The fact that (Ct)t≥0 is a nested
composition ensures that (Int )t∈Q+ is a nested interval-partition. Taking the
limit as n goes to infinity shows that (It)t∈Q+ is also a nested interval-
partition. It admits a unique càdlàg extension given by

Is = int(
∩
t≥s
t∈Q+

It).

Let (Vi)i≥1 be the i.i.d. uniform sequence given by Theorem 2.1 applied
at time t = 0. To see that (Vi)i≥1 is independent of (It)t≥0, one can do the
exact same steps as in the proof of Theorem 2.1 but using a vectorial version
of de Finetti’s theorem (see Appendix B).

We now show that for any t ∈ Q+, a.s.

i ∼t j ⇐⇒ Vi and Vj are in the same interval of It(3)

where ∼t is the relation given by the blocks of Ct.
Let n ≥ 1 and divide the interval [0, 1] in n intervals of size 1/n. We label

the intervals from 1 to n in the same order as the variables V1, . . . , Vn. Let
t ∈ Q+, the first step is to notice that the empirical interval-partition Int can
be recovered by merging the blocks of size 1/n whose labels belong to the
same block of Ct. Now, let V (n)

i (resp. V (n)
j ) be the right-hand extremity of

the interval with label i (resp. j). Using twice the law of large numbers shows
that V (n)

i and V
(n)
j converge to Vi and Vj respectively. Moreover, we know

that Int converges a.s. to It. If we suppose that Vi < Vj and i ∼t j, then for
any n ≥ 1, (V (n)

i , V
(n)
j ) ⊂ Int , and taking the limit shows that (Vi, Vj) ⊂ It.

Conversely if (Vi, Vj) ⊂ It, using the convergence, for n large enough we
have (V

(n)
i , V

(n)
j ) ⊂ Int and thus i and j are in the same block of Ct.

That relation (3) holds a.s. for any t ≥ 0 will follow by right-continuity.
However we have to be careful, in general the nested composition obtained
from an ordered paintbox is not càdlàg. By continuity, the relation (3) only
holds a.s. for all times t when (Ct)t≥0 is continuous. The original nested
composition (Ct)t≥0 is recovered by considering a càdlàg modification of the
nested composition obtained though an ordered paintbox based on (It)t≥0.
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Uniqueness. The uniqueness will come from the following convergence
result

lim
n→∞

sup
t≥0

dH(Int , It) = 0 a.s.

We start by showing the convergence. Let ε > 0, we can split [0, 1] into a
finite number of pairwise disjoint intervals of length smaller than ε denoted
by J1, . . . , Jp. Given a combination of such intervals, J = Ji1 ∪ · · · ∪ Jik , let
fnJ denote the fraction of variables V1, . . . , Vn which belong to J . Then for
any η > 0 using the law of large numbers we can a.s. find a large enough NJ

such that
∀n ≥ NJ , |Leb(J)− fnJ | < η.

Let N be large enough such that this condition is fulfilled for all possible
combinations of intervals.

We now show that a.s.

∀t ≥ 0, ∀n ≥ N, dH(Int , It) ≤ η + ε.

Let x ̸∈ It, and Jx = (ℓx, rx) be the interval such that x ∈ J (in case x is the
boundary of two intervals, we choose the left interval). First suppose that
ℓx = 0 or rx = 1. By construction 0, 1 ̸∈ Int , thus d(x, 0) < ε or d(x, 1) < ε.
In the other case, the variables (Vi)i≥1 which are in [0, ℓx] and those in
[rx, 1] are not in the same interval component of It, and by construction of
the paintbox, their labels are not in the same block of Ct. For n ≥ 1, let fn1
(resp. fn2 ) denote the frequency of the variables (Vi)i≤n belonging to [0, ℓx]
(resp. [0, rx]). The previous remark shows that there is a point y ∈ [fn1 , f

n
2 ]

which does not belong to Int . For n ≥ N we know that y ∈ [ℓx − η, rx + η]
and thus d(x, y) ≤ η + ε. This shows

∀t ≥ 0,∀n ≥ N, sup
x̸∈It

d(x, [0, 1] Int ) ≤ η + ε.

Similarly consider xn ̸∈ Int . If xn ∈ {0, 1}, clearly d(xn, [0, 1] It) = 0. In
the other case the point xn is the separation between two intervals of Int .
These two intervals can be seen as an agglomeration of blocks of size 1/n
whose labels belong to the same block of It. Let i (resp. j) be the label of the
right-most (resp. left-most) block of size 1/n of the left interval (resp. right
interval) separated by xn. The rules of the paintbox construction imply that
Vi and Vj are not in the same interval of It, thus there exists Vi ≤ yn ≤ Vj
such that yn ̸∈ It. The value of xn is exactly the frequency of variables
V1, . . . Vn which belong to [0, yn]. Let Jyn = (ℓyn , ryn) be the interval to which
yn belongs, and fn1 , fn2 be as above the frequency of the n first variables in
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[0, ℓyn ] and [0, ryn ]. As ℓyn ≤ yn, we know that fn1 ≤ xn, and similarly
xn ≤ fn2 . Thus for n ≥ N , xn ∈ [ℓyn − η, ryn + η] and d(xn, yn) ≤ η+ ε. This
shows

∀t ≥ 0,∀n ≥ N, sup
x ̸∈Int

d(x, [0, 1] It) ≤ η + ε.

Thus, a.s. (Int )t≥0 converges uniformly to (It)t≥0.

To get uniqueness, it is sufficient to notice that the distribution of the
sequence ((Int )t≥0; n ≥ 1) is determined uniquely by that of (Ct)t≥0. As we
can recover a.s. (It)t≥0 from ((Int )t≥0; n ≥ 1), the distribution of (It)t≥0 is
also determined by that of (Ct)t≥0.

Remark 2.7. This also proves Proposition 2.3 in a more detailed way.

2.3. Uniform nested compositions, proof of Theorem 1.8. We recall that
I stands for the quotient space of combs for the paintbox-equivalence rela-
tion. To be entirely rigorous we need to define a suitable σ-field on I. By
definition of I a paintbox based on any of the representatives of a class yields
the same distribution on the space of coalescents. We can identify each class
with this distribution and endow I with the weak convergence topology of
probability measures on the space of coalescents. We consider the associated
Borel σ-field. This approach bears similarity with the Gromov-weak topol-
ogy introduced in Greven, Pfaffelhuber and Winter (2009), more on this can
be found in Section 4.

The first step to find a comb representation of a given exchangeable coales-
cent (Πt)t≥0 is to order the blocks of (Πt)t≥0 to obtain a nested composition.
We will do that using the notion of uniform nested composition that we now
introduce.

Definition 2.8. Let (Ct)t≥0 be an exchangeable nested composition of
N and (Πt)t≥0 be the associated coalescent. We say that (Ct)t≥0 is uniform
if for any n ≥ 1, conditionally on (Πn

t )t≥0, the order of the blocks of (Cn
t )t≥0

is uniform among all the possible orderings, i.e. all the orderings such that
(Cn

t )t≥0 is a nested composition.

The following lemma shows that any exchangeable coalescent can be
turned into a uniform exchangeable nested composition.

Lemma 2.9. Let (Πt)t≥0 be an exchangeable coalescent. There exists a
uniform exchangeable nested composition (Ct)t≥0 whose associated coalescent
is (Πt)t≥0.
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Proof. We proceed by induction. For n = 1 there is a unique trivial
possible order on the blocks. Suppose that we have built for n an order
on the blocks of (Πn

t )t≥0 such that only adjacent blocks can merge, we call
such an order an order consistent with the genealogy. Then there are finitely
many orders on the blocks of (Πn+1

t )t≥0 that extend the previous order and
are consistent with the genealogy. More precisely, if n + 1 is in a block
of Πn+1

0 the extension is unique. If n + 1 is a singleton of Πn+1
0 , suppose

that {n+ 1} coalesce at some point and that k blocks are involved in this
coalescence event. Then there are k consistent extensions: {n+ 1} can be
placed between any of the k−1 other blocks, or at the left-most (resp. right-
most) position. If {n+ 1} does not coalesce, the singleton can be placed at
any position between blocks that do not coalesce. We pick one of these orders
independently and uniformly.

By induction, we have built on the same probability space as (Πt)t≥0 a
nested composition of N whose blocks merge according to (Πt)t≥0. It is easily
checked from the construction that (Ct)t≥0 is a uniform nested composition.
It remains to show that it is exchangeable. Fix 0 ≤ t1 < · · · < tp, and
let c1, . . . , cp be compositions of [n], whose block partitions are π1, . . . , πn
respectively. Fix some trajectory Πn := (Πn

t )t≥0 of the coalescent. Let us
denote by O(Πn) the number of orderings of the blocks of Πn

0 yielding a
nested composition, and let O(c1, . . . , cp; Π

n) be the number of such order-
ings verifying that Cn

ti = ci, for i ∈ {1, . . . , p}. Then for any permutation σ
of [n], the following direct calculation

P
(
Cn
t1 = c1, . . . , Cn

tp = cp

)
= E

[O(c1, . . . , cp; Π
n)

O(Πn)
1{

Πn
t1
=π1,...,Πn

tp
=πp

}]
= E

[O(c1, . . . , cp;σ(Π
n))

O(σ(Πn))
1{

σ(Πn
t1
)=π1,...,σ(Πn

tp
)=πp

}]
= E

[O(σ−1(c1), . . . , σ
−1(cp); Π

n)

O(Πn)
1{

Πn
t1
=σ−1(π1),...,Πn

tp
=σ−1(πp)

}]
= P

(
Cn
t1 = σ−1(c1), . . . , Cn

tp = σ−1(cp)
)

proves that the nested composition is exchangeable.

Proof of Theorem 1.8. Let (Πt)t≥0 be an exchangeable coalescent.
Let (Ct)t≥0 be the uniform nested compositions obtained through Lemma 2.9.
Invoking Theorem 2.6 shows that there exists a comb representation (It)t≥0

of (Πt)t≥0. The uniqueness is immediate from the definition of the quo-
tient.



24 F. FOUTEL-RODIER, A. LAMBERT, E. SCHERTZER

3. Comb representation of Λ-coalescents. In this section, we re-
strict our attention to the well-studied case of Λ-coalescents. A process
(Πt)t≥0 is a Λ-coalescent if for any n ≥ 1, its restriction (Πn

t )t≥0 to [n]
is a Markov process such that starting from a partition with b blocks, any k
blocks coalesce at rate

λb,k =

∫
[0,1]

xk−2(1− x)b−kΛ(dx)

for a finite measure Λ on [0, 1].
The broad aim of this section is to find a Markovian comb representation

of a given Λ-coalescent, and to provide its transitions. Recall from the last
section the path followed to obtain a comb associated to an exchangeable
coalescent. The first step is to order the block of the coalescent to get a
nested composition, and then to use Theorem 2.6 to define a comb. Here we
will follow this path in the special case of Λ-coalescents where we can have
an explicit description of both the nested composition and the comb.

Let us first define the nested composition associated to a Λ-coalescent.
Consider the modified transition rates

λ̃b,k =
1

b− k + 1

(
b

k

)
λb,k.

Let n ≥ 1, we define a Markov chain (Cn
t )t≥0 taking values in the space of

composition of [n] as follows. Starting from c, a composition of [n] with b
blocks, any k adjacent blocks merge at rate λ̃b,k. These transition rates have
a natural combinatorial interpretation. Consider (Πn

t )t≥0 the restriction to
[n] of a Λ-coalescent. Starting from a partition with b blocks, there are

(
b
k

)
ways of merging k distinct blocks. Thus the total transition rate from b
to b − k + 1 blocks is

(
b
k

)
λb,k. Given that k blocks merge, the blocks that

merge are chosen uniformly among the
(
b
k

)
possible choices. Starting from a

composition with b blocks, there are only b−k+1 ways to merge k adjacent
blocks. Thus, the total transition rate of (Cn

t )t≥0 from b to b−k+1 blocks is
the same as (Πn

t )t≥0, but instead of choosing uniformly k blocks among the(
b
k

)
possibilities, we choose k adjacent blocks among the b−k+1 possibilities.

We now extend this sequence of nested compositions to a nested compo-
sition of N. To fully determine the distribution of (Cn

t )t≥0 we have to specify
an initial distribution. We will always assume in this section that the pro-
cess (Cn

t )t≥0 starts from the composition of [n] composed of only singletons
ordered uniformly. Using the Markov projection theorem (see e.g. Kemeny
and Snell (1960), Section 6.3), it is not hard to see that the sequence of
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processes ((Cn
t )t≥0; n ≥ 1) is sampling consistent, i.e. that the restriction of

(Cn+1
t )t≥0 to [n] is distributed as (Cn

t )t≥0. Using the Kolmogorov extension
theorem we can find (Ct)t≥0 an exchangeable nested composition of N whose
projections to [n] is distributed as (Cn

t )t≥0 for all n ≥ 1. The process (Ct)t≥0

is a nested composition whose blocks merge according to a Λ-coalescent.

Lemma 3.1. Let (Πt)t≥0 be the coalescent associated to (Ct)t≥0. Then
(Πt)t≥0 is a Λ-coalescent. Moreover for any t ≥ 0, conditionally on Πn

t , the
composition Cn

t is obtained by ordering uniformly the blocks of Πn
t .

Proof. Let (Cn
t )t≥0 and (Πn

t )t≥0 be the restriction to [n] of (Ct)t≥0 and
(Πt)t≥0 respectively. Let Qn be the generator of (Cn

t )t≥0 and Q̂n be the
generator of a Λ-coalescent on [n]. The result will follow by using a Markov
projection theorem from Rogers and Pitman (1981), see their Theorem 2.
To apply this result, we need to find a probability kernel Ln from the space
of partitions of [n] to the space of compositions of [n] such that for any
function f from the space of partitions of [n] to R,

∀π, Q̂nLnf(π) = LnQnf(π)

and such that the initial distribution of (Cn
t )t≥0 is the push-forward by Ln

of the initial distribution of (Πn
t )t≥0.

Let f be such a function. For π a partition of [n], let Cπ be the random
composition of [n] obtained by ordering the blocks of π uniformly. We set

∀π, Lnf(π) = E[f(Cπ)].

Our choice of initial distribution for (Ct)t≥0 ensures that the second condition
holds. A straightforward generator calculation shows that the above equality
is fulfilled and that the desired result holds. See Appendix C for the details
of the calculation.

Using Theorem 2.6, the nested composition (Ct)t≥0 defines a unique nested
interval-partition (It)t≥0 that we call the Λ-comb. In the remainder of the
section we want to show that the Λ-comb is a Markov process and give
its transitions. We will express the transitions in terms of composition of
bridges that we now introduce.

We say that a function B : [0, 1] → [0, 1] is a bridge if it is of the form

B(x) = x(1−
∑
i≥1

βi) +
∑
i≥1

βi1{x≤Vi}
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for a random mass-partition β and an independent i.i.d. sequence (Vi)i≥1

of uniform [0, 1]-valued variables. To any bridge we associate an interval-
partition defined as

I(B) = int
(
[0, 1] B([0, 1])

)
where B([0, 1]) is the range of B. We can ask if the converse holds. The
correct notion to answer this question is that of uniform order.

Definition 3.2. Let I be a random interval-partition and C be the com-
position of N obtained through an ordered paintbox based on I. We say that
I has a uniform order if for any n ≥ 1, the order of the blocks of C ∩ [n] is
uniform.

The following lemma shows that having a uniform order is a necessary and
sufficient condition for an interval-partition to be represented by a bridge.
See Section 3.1 for a proof.

Lemma 3.3. Let I be a random interval-partition. There exists a bridge
B such that I(B) = I if f I has a uniform order. If I has a uniform order,
the bridge B such that I(B) = I is unique in distribution.

Notice that for any t ≥ 0, the Λ-comb It at time t has a uniform order.
We will denote by BIt the bridge associated to It through Lemma 3.3. We
are now in position to provide the transitions of the Λ-comb.

Proposition 3.4. Let (It)t≥0 be the Λ-comb. The process (It)t≥0 is
Markovian, and for any s, t ≥ 0, conditionally on It,

It+s
(d)
= I(BIt ◦B′

s)(4)

where B′
s is an independent bridge distributed as BIs.

Remark 3.5. In the coming down from infinity case we have a simpler
description of the semi-group of the Λ-comb. Suppose that (It)t≥0 starts from
an interval-partition I0 with b blocks and no dust. Then any k adjacent blocks
of I0 merge at rate λ̃b,k.

The above proposition shows that the Λ-comb can be represented in terms
of composition of independent bridges. As a direct corollary, we provide
an alternative construction of the Λ-comb based on the flow of bridges of
Bertoin and Le Gall (2003). A flow of bridges is a collection (Bs,t)s≤t of
bridges which fulfills the following three conditions:
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1. For any s < r < t, Bs,t = Bs,r ◦Br,t (cocycle property).
2. For any t1 < · · · < tp, the bridges (Bt1,t2 , . . . , Btp−1,tp) are independent,

and Bt1,t2 is distributed as B0,t2−t1 (stationarity and independence of
the increments).

3. The bridge B0,t converges to the identity map Id as t ↓ 0 in probability
in Skorohod topology.

It can be seen from the cocycle property that the interval-partition-valued
process (I(B0,t))t≥0 is a nested interval-partition. Bertoin and Le Gall (2003)
have defined a sampling procedure to obtain a coalescent from a flow of
bridges. In our context, sampling from the flow of bridges according to this
procedure is the same as doing a paintbox based on (I(B0,t))t≥0. An impor-
tant result from Bertoin and Le Gall (2003) states that given a Λ-coalescent
(Πt)t≥0, there exists a unique flow of bridges whose associated coalescent is
distributed as (Πt)t≥0 (see Theorem 1 in Bertoin and Le Gall (2003)). We
call it the Λ-flow of bridges. As a corollary of this correspondence and of
Proposition 3.4, we are able to show that the comb associated to the Λ-flow
of bridges is the Λ-comb introduced above from the transition rates.

Corollary 3.6. Let Λ be a finite measure on [0, 1], and let (It)t≥0 be
the Λ-comb and (Bs,t)s≤t be the Λ-flow of bridges. Then

(It)t≥0
(d)
= (I(B0,t))t≥0.

Proof. Let p ≥ 1 and 0 ≤ t1 < · · · < tp. Using the Markov property of
(It)t≥0 and the expression of the transitions (4) we know that

(It1 , . . . , Itp)
(d)
= (It1 , I(B

It1 ◦B′
1), . . . , I(B

It1 ◦B′
1 ◦ · · · ◦B′

p−1)),

where (B′
1, . . . , B

′
p−1) are independent bridges and for 1 ≤ k ≤ p− 1, B′

k is
distributed as BItk+1−tk .

Let (Bs,t)s≤t be the Λ-flow of bridges. Then from the cocycle property

(I(B0,t1), . . . , I(B0,tp)) = (I(B0,t1), . . . , I(B0,t1 ◦Bt1,t2 ◦ · · · ◦Btp−1,tp)).

Moreover as the flow of bridges has independent and stationary increments,
(Bt1,t2 , . . . , Btp−1,tp) are independent bridges with the same distribution as
above.

3.1. Proof of Lemma 3.3. We will need the following continuity result.
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Lemma 3.7. The map I : B 7→ I(B) that maps a bridge to its associated
interval-partition is continuous when the space of interval-partitions is en-
dowed with the Hausdorff topology and the space of bridges with the Skorohod
topology.

Proof. Let Bn be a sequence of bridges that converge to B in the Skoro-
hod topology. We know that we can find a sequence of continuous bijections
λn from [0, 1] to [0, 1] such that

lim
n→∞

∥λn − Id∥∞ = 0

and
lim
n→∞

∥B −Bn ◦ λn∥∞ = 0.

Let I = I(B) and In = I(Bn). As the interval-partitions are obtained from
bridges, we can re-write the Hausdorff distance as

dH(I, In) = sup
x∈[0,1]

inf
y∈[0,1]

|Bn(x)−B(y)| ∨ sup
x∈[0,1]

inf
y∈[0,1]

|Bn(y)−B(x)|.

We have

sup
x∈[0,1]

inf
y∈[0,1]

|B(x)−Bn(y)| ≤ sup
x∈[0,1]

|B(x)−Bn(λn(x))|

and
sup

x∈[0,1]
inf

y∈[0,1]
|B(y)−Bn(x)| ≤ sup

x∈[0,1]

∣∣B(λ−1
n (x))−Bn(x)

∣∣
and thus

lim
n→∞

dH(I, In) = 0,

which ends the proof.

Proof of Lemma 3.3. First suppose that I is of the form I(B) for some
bridge B. Consider B−1 the generalized inverse of B. Let (Vi)i≥1 be i.i.d.
uniform variables and C be the composition obtained through an ordered
paintbox using these variables. By construction of the ordered paintbox and
as B−1 is non-decreasing, the order of the blocks of C is given by the order
of the variables (B−1(Vi))i≥1. Conditionally on the bridge these variables
are i.i.d. and thus their order is uniform.

Now let I be an interval-partition with a uniform order and C be the
composition obtained by an ordered paintbox. We will first consider the case
where I has finitely many interval components and no dust. The fact that
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the order of the blocks of the composition C is uniform shows that the order
of the interval components of I is uniform (each block of C corresponds to
an interval of I). Let K be the number of blocks of I, and let V ∗

1 < · · · < V ∗
K

be the order statistics of independent uniform variables. Suppose that β1 is
the length of the left-most interval of I, β2 that of the second left-most, etc.
then

∀u ∈ [0, 1], B(u) =

K∑
i=1

βi1{V ∗
i ≤u}

is a bridge such that I(B) = I. Indeed, since the order of the intervals is
uniform, there is a uniform permutation σ of [K] independent of V ∗

1 , . . . , V
∗
K ,

such that (βσ(i)) is ranked in nonincreasing order. This shows that

B(u) =

K∑
i=1

βσ(i)1
{
V ∗
σ(i)

≤u
}

indeed defines a bridge. This also shows the uniqueness in distribution of B.
Let us turn to the general case. Let n ≥ 1 and consider In the empirical

interval-partition associated to C ∩ [n]. By assumption the interval-partition
In has a uniform order, thus using the above argument we can find a unique
bridge Bn such that I(Bn) = In. We know that In converges a.s. to I. Let
βn (resp. β) be the mass-partition associated to In (resp. I). As the function
that maps an interval-partition to its mass-partition is continuous, we have
that βn converges a.s. to β (see e.g. Bertoin (2006) Proposition 2.2). We can
now make use of another continuity result, namely Lemma 1 from Bertoin
and Le Gall (2003), to show that the sequence of bridges (Bn)n≥1 con-
verges in distribution to a bridge B obtained from the mass-partition β.
Using Lemma 3.7, we know that I(Bn) converges in distribution to I(B).
By uniqueness of the limit, we get that

I
(d)
= I(B),

and that B is unique.

3.2. Proof of Proposition 3.4. We will first prove Proposition 3.4 for
empirical interval-partitions and then take the limit. We start by proving
the following lemma, which is the direct reformulation of Proposition 3.4 for
empirical interval-partitions.

Lemma 3.8. Let Cn
0 be an exchangeable composition of [n] with a uniform

order on its blocks, and let (Cn
t )t≥0 be the Markov process started from Cn

0
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with transitions (λ̃b,k; 2 ≤ k ≤ b < ∞). If (Int )t≥0 denotes the empirical
nested interval-partition associated to (Cn

t )t≥0, then conditionally on Cn
0 ,

Int
(d)
= I(Bn

0 ◦Bt),

where Bn
0 and Bt are independent bridges such that I(Bn

0 ) = In0 and I(Bt) =
It, the Λ-comb at time t.

Proof. Let us denote by (A1, . . . , AK) the blocks of Cn
0 in order of

their least element. As Cn
0 has a uniform order on its blocks, according to

Lemma 3.3 we can find (U1, . . . , UK) such that conditionally on K these are
i.i.d. uniform variables on [0, 1] and

∀r ∈ [0, 1], Bn
0 (r) =

1

n

K∑
i=1

Card(Ai)1{Ui≤r}

defines a bridges satisfying I(Bn
0 ) = In0 . Let Bt be independent and such that

I(Bt) = It. To each interval component of In0 corresponds a unique block Ai

of Cn
0 , and thus a unique jump time Ui of Bn

0 . We claim that I(Bn
0 ◦ Bt) is

obtained by merging the intervals of In0 whose jump times belong to the same
interval component of It. To see this, notice that by definition I(Bn

0 ◦Bt) is
the set of flats of (Bn

0 ◦Bt)
−1 = B−1

t ◦ (Bn
0 )

−1. Thus x and y belong to the
same flat of (Bn

0 ◦Bt)
−1 if f (Bn

0 )
−1(x) and (Bn

0 )
−1(y) belong to the same flat

of B−1
t , that is to the same interval component of It. The claim is proved by

further noting that (Bn
0 )

−1(x) is the jump time of the interval component
of In0 to which x belongs.

The previous procedure can be rephrased in terms of an ordered paintbox.
The interval-partition I(Bn

0 ◦ Bt) is obtained by labeling uniformly the K
blocks of In0 , sampling a composition C′

t of [K] according to an ordered
paintbox based on It and merging the intervals of In0 whose labels belong to
the same block of C′

t. As It is the Λ-comb at time t, the composition C′
t is

distributed as CK
t , the nested composition at time t obtained by merging K

initial singleton blocks ordered uniformly according to the rates (λ̃b,k; 2 ≤
k ≤ b <∞). Thus I(Bn

0 ◦Bt) can be obtained by letting its intervals merge
at rate (λ̃b,k; 2 ≤ k ≤ b <∞), and is distributed as Int .

Proof of Proposition 3.4. Let (It)t≥0 be the Λ-comb, and (Vi)i≥1

be an independent sequence of i.i.d. uniform variables on [0, 1]. Denote by
(Cn

t )t≥0 the nested composition of [n] obtained by an ordered paintbox based
on (It)t≥0 using the sampling variables (Vi)i≥1, and let (Int )t≥0 be the cor-
responding empirical nested interval-partition. According to Lemma 3.1 the
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interval-partition It has a uniform order, and thus there exists a bridge Bt

such that I(Bt) = It. Conditionally on Bt, the sequence

∀i ≥ 1, ξi = B−1
t (Vi)

is i.i.d. We denote by µt the (random) law of ξ1 conditionally on Bt, and by
µnt its empirical distribution defined as

µnt =
1

n

n∑
i=1

δξi .

Note that Bt is the distribution function of µt. If Bn
t denotes the distribution

function of µnt , then Bn
t is a bridge such that I(Bn

t ) = Int . It follows from
Lemma 3.8 that

(Int , I
n
t+s)

(d)
= (Int , I(B

n
t ◦B′

s))(5)

where B′
s is an independent bridge distributed as BIs . The result will follow

by taking the limit in (5).
According to the Glivenko-Cantelli theorem (see Proposition 4.24 in Kallen-

berg (2002)), the sequence of bridges (Bn
t )n≥1 converges almost surely to Bt

in the uniform topology. Thus Bn
t ◦B′

s converges a.s. in the uniform topology
to Bt ◦B′

s, and by Lemma 3.7 and Proposition 2.3 the right-hand side of (5)
converges a.s. to (It, I(Bt ◦B′

s)). According to Proposition 2.3, the left-hand
side converges a.s. to (It, It+s) and we have proved that (4) holds.

It remains to show that (It)t≥0 is Markovian. It is sufficient to prove that
(Ct)t≥0 is Markovian. This follows from standard arguments from measure
theory by noting that σ-field of (Ct)t≥0 is induced by that of its restrictions
to [n], and that all of these restrictions are Markov.

3.3. Dynamical combs. As mentioned in the introduction, an exchange-
able coalescent models the genealogy of a population observed at a given
time. By varying the observation time we obtain a dynamical genealogy
that has been named the evolving coalescent. There has been much interest
into studying evolving coalescents. For example, if the coalescent at a fixed
time is the Kingman coalescent, the authors of Pfaffelhuber and Wakol-
binger (2006); Pfaffelhuber, Wakolbinger and Weisshaupt (2011) have stud-
ied statistics of the evolving coalescent using a look-down representation, the
authors of Greven, Pfaffelhuber and Winter (2012) studied the dynamics of
the entire tree structure using the framework of the Gromov-weak topology.
Evolving coalescents such that the coalescent at a fixed time is a more gen-
eral Λ-coalescent have also been considered, see e.g. Kersting, Schweinsberg
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and Wakolbinger (2014) for the case of Beta-coalescents and Schweinsberg
(2012) for the Bolthausen-Sznitman coalescent.

In this section we show that the previous results on the Markov property of
the Λ-comb allow us to define a comb-valued process, the evolving comb, such
that sampling from the evolving comb at a fixed time yields a Λ-coalescent.
The evolving comb contains all the information about the dynamical ge-
nealogy but does not require the cumbersome framework of random metric
spaces endowed with the Gromov-Hausdorff topology as in Greven, Pfaf-
felhuber and Winter (2012). For the sake of clarity we will only consider
the evolving Kingman comb where we have an explicit construction of the
genealogy at a fixed time.

We will build the evolving Kingman comb by defining its semi-group. Re-
call that when the coalescent associated to a nested interval-partition comes
down from infinity, the comb can be represented using a comb function, see
Section 1.2. Let f be a deterministic comb function and s > 0, we want to
describe the genealogy of the population at time s given that its genealogy
at time 0 is encoded by f . The procedure we follow is illustrated in Figure 4.
Recall the Kingman comb construction discussed in introduction. Let (ei)i≥1

be a sequence of i.i.d. exponential variables, and (Ui)i≥1 a sequence of i.i.d.
uniform [0, 1] variables. For i ≥ 1, we set

Ti =
∑

k≥i+1

2

k(k − 1)
ek.

The Kingman comb is given by

fK =
∑
i≥1

Ti1Ui .

It is known from Lambert and Schertzer (2019), Proposition 3.1, that the
above construction generates the comb associated to the flow of bridges, i.e.
the Λ-comb associated to the Kingman coalescent. There are only finitely
many teeth of fK that are larger than s, i.e. such that Ti ≥ s, say Ns.
Let σ be their order, e.g. σ(1) is the label of the left-most tooth. Consider
V ∗
1 < · · · < V ∗

Ns+1 the order statistics of Ns + 1 independent i.i.d. uniform
variables. For 1 ≤ k ≤ Ns let Mk be the greatest tooth of f in the interval
(V ∗

k , V
∗
k+1), i.e.

Mk = sup
(V ∗

k ,V ∗
k+1)

f.

We define new variables (T̂i)i≥1 as follows

∀i > Ns, T̂i = Ti,
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and
∀i ≤ Ns, T̂σ(i) =Mi + s.

We define
f̂K =

∑
i≥1

T̂i1Ui .

Geometrically, the comb f̂K is obtained through a cutting and pasting pro-
cedure illustrated in Figure 4.

The above construction defines an operator given by

PtF (f) = E[F (f̂K)],

for all continuous bounded functions F . We will show below that the fam-
ily of operators (Pt)t≥0 is a semi-group. Thus we can define a comb-valued
Markov process (Ir)r≥0 whose transitions are given by the above construc-
tion. We call the process (Ir)r≥0 the evolving Kingman comb.

Lemma 3.9. The family of operators (Pt)t≥0 is a semi-group. Moreover
the Kingman comb is a stationary distribution of the evolving Kingman comb.

Proof. Let s, t ≥ 0, let f be a deterministic comb. We call ft the comb
obtained through the above procedure at level t starting from f , and ft+s

the one obtained according to the above procedure at level s, but using ft
as starting comb. We need to show that ft+s is distributed as f ′t+s, the comb
obtained at level t+ s starting from f .

It is sufficient to show that the portion of the comb ft+s lying between
level 0 and t+s is distributed as a Kingman comb truncated at height t+s. To
show that, it is more convenient to see combs as nested interval-partitions.
The procedure described above can be rephrased in terms of composition.
Suppose that ft+s has K truncated teeth at time s, this defines K + 1
intervals of [0, 1]. For each of these intervals of ft+s, we throw a uniform
variable. Two intervals merge at the first moment when their corresponding
variables belong to the same subinterval of ft. This is exactly the description
of the ordered paintbox procedure. Thus, using the Markov property of the
Kingman comb we know that ft+s, between level 0 and t+ s, is distributed
as the truncation of a Kingman comb. This argument also shows that the
Kingman comb is a stationary distribution.

This construction can be easily extended to the case of Λ-coalescents that
come down from infinity, even though we do not have an explicit construction
of the comb in this case. In short, to obtain the evolving comb at time s, one
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Fig 4. Transition of the evolving Kingman comb. The comb at time s, f̂K , is represented
on the right, and the initial comb f is on the left. To obtain f̂K , one has first to erase the
part of the right comb lying above level s. Here we have erased Ns = 4 teeth. Then throw
Ns + 1 uniform variables V1, . . . , VNs+1, this defines Ns intervals between these variables,
here (V5, V1), (V1, V4), (V4, V2) and (V2, V3). Finally take the largest tooth of f in each of
these intervals, represented with a coloured root, and paste it in place of the erased tooth.

needs to sample independently a new comb, erase the portion lying above
height s and replace it by teeth sampled from the original comb. In the
general case, we have to define the transition of the evolving comb using
composition of bridges.

Again, the evolving comb can be built from the flow of bridges. Let
(Bs,t)t≥0 be a Λ-flow of bridges, for any time r we can build a nested interval-
partition by setting

(Irt )t≥0 = (I(Br,r+t))t≥0.

Then, using a similar argument as in the proof of Corollary 3.6 we could
show that the comb-valued process (Ir)r≥0 = ((I−r

t )t≥0)r≥0 is distributed
as the evolving comb introduced above. As a remark this provides a càdlàg
modification of the evolving comb, and the Feller property of the flow of
bridges ensures that the evolving comb is a Feller process.

4. Combs and ultrametric spaces. In this section we envision combs
as random UMS. Random metric measure spaces have already been studied
in Greven, Pfaffelhuber and Winter (2009); Gromov (1999). A key work-
ing hypothesis there is that the metric spaces are separable. In terms of
combs and coalescents, separability translates into absence of dust (see Sec-
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tion 4.6). While separability is a very natural hypothesis when consider-
ing metric measure spaces, restricting our attention to combs without dust
seems arbitrary, as dust has not raised any difficulty so far. In this section
we provide a straightforward extension of the framework of random metric
measure spaces to account for non-separable UMS.

Let us recall the heuristic of our approach and give a short outline of
this section. After a discussion on the assumptions of Definition 1.1 in Sec-
tion 4.1, we define a topology on the space of UMS in Section 4.2 by saying
that a sequence of UMS converges if the associated sequence of coalescents
converges weakly as probability measures. In the separable case, the Gro-
mov reconstruction theorem (see Section 3.12 .5 of Gromov (1999)) ensures
that spaces that are indistinguishable have the support of their measures in
isometry. In general this result does not hold, we want to obtain a similar
result for general UMS. In order to do that, we introduce in Section 4.3 the
notion of a backbone of a UMS. An UMS can be seen as the leaves of a
tree. This tree can be decomposed into 1) a separable part, that we call the
backbone and 2) additional subtrees grafted on this backbone. Even though
these subtrees can have a complex geometry, from a sampling standpoint
they behave as star-trees (recall Figure 3). In Section 4.4, we show that if
two UMS are indistinguishable in the Gromov-weak topology, then they are
weakly isometric, in the sense that we can find an isometry between their
backbones and a measure-preserving correspondence between the star-trees
attached to them (see Proposition 4.11 for a rigorous statement). Finally
Section 4.5 is dedicated to showing Corollary 1.18, i.e. that we can always
find a comb metric space weakly isometric to a given UMS with complete
backbone, and Section 4.6 is devoted to showing Corollary 1.15 and Propo-
sition 1.16 which are the analogous results in the complete and separable
case.

4.1. Discussion of Definition 1.1. Recall Definition 1.1 of a UMS from
the introduction. This definition has two differences with the “naive” defi-
nition of a UMS (that is, any ultrametric space endowed with a probability
measure on its Borel σ-field). First, we impose a measurability condition
on the metric d. Second we allow the measure µ to be defined on a σ-field
that is smaller than the usual Borel σ-field. In this section, we start with a
discussion of the assumptions of Definition 1.1.

Let Pcoal denote the state space of coalescents, endowed with its usual
Borel σ-field (see Bertoin (2006) Lemma 2.6), and let Π be the application
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defined as

Π:

{
UN → Pcoal

(xi)i≥1 7→ (Πt)t≥0,

where
i ∼Πt j ⇐⇒ d(xi, xj) ≤ t.

The following simple lemma proves that the measurability of d is the min-
imal requirement so that the coalescent obtained by sampling from U is a
measurable process.

Lemma 4.1. The application Π is measurable when UN is endowed with
the product σ-algebra U⊗N if f the distance d is U ⊗ U measurable.

Proof. Notice that by definition of Π we have

{d(x1, x2) ≤ t} = {1 ∼Πt 2}

which yields the “only if” part of the proof.

To prove the converse implication, let π be a partition of [n] and define

Ri,j =

{
{d(xi, xj) ≤ t} if i ∼π j,
{d(xi, xj) > t} if i ̸∼π j.

Then {
Πt [n] = π

}
=

∩
i,j≤n

Ri,j ,

which ends the proof.

We now turn to the second point of the definition. Roughly speaking, the
Borel σ-field of a non-separable ultrametric space tends to be large, and fewer
measures can be defined on it. It is natural to ask whether all coalescents
(especially coalescents with dust) can be represented as samples from ultra-
metric measure spaces, endowed with their natural Borel σ-field. It turns
out that this question can be linked to a deep measure-theoretic problem
known as the Banach-Ulam problem. It can be formulated as follows: can we
find a space X and a probability measure µ defined on the power set of X
such that µ({x}) = 0 for all x ∈ X? Point (iii) of the following proposition
yields a positive answer to this question.

Proposition 4.2. The following statements are equivalent.
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(i) There exists an exchangeable coalescent with dust that can be obtained
as a sample from a Borel UMS.

(ii) Any exchangeable coalescent can be obtained as a sample from a Borel
UMS.

(iii) There exists an extension of the Lebesgue measure to all subsets of R.

This proposition is proved in Appendix F. A treatment of the Banach-
Ulam problem requires advanced tools from set theory. Let us briefly report
some basic facts about it, and refer the interested reader to Fremlin (1993).

The last point of Proposition 4.2 cannot be proved from the sole axioms
Zermelo-Fraenckel-Choice (ZFC) of set theory. This is a consequence of the
following two well-known facts. First, assuming the continuum hypothesis
(CH) and the axiom of choice it is possible to prove that there exists no
extension of the Lebesgue measure to all subsets of R, see e.g. the end of
Section 3 of Chapter 1 of Billingsley (1995). Second, ZFC and ZFC+CH
are equiconsistent. Thus a proof in ZFC that an extension of the Lebesgue
measure exists would show that ZFC+CH is inconsistent, and thus that ZFC
itself is inconsistent.

The previous paragraph shows that a positive answer to our question can-
not be obtained from ZFC alone. We can now ask if a negative answer could
be proved. However, as we will see it cannot be shown that a negative answer
to our question is not provable in ZFC. According to Corollary 2E in Fremlin
(1993), the theory ZFC+“there exists an extension of the Lebesgue measure”
is equiconsistent with the theory ZFC+“there exists a measurable cardinal”.
Measurable cardinals are instances of (strongly) inaccessible cardinals (see
Theorem 1D of Fremlin (1993)), and it is well-known that it cannot be shown
that the existence of inaccessible cardinals is consistent relative to ZFC, see
e.g. Theorem 12.12 in Jech (2003).

Summing up these two consistency results, the situation is the following:
assuming that ZFC is consistent, we can safely suppose that no coalescent
with dust can be obtained as a sample from a Borel UMS. However it cannot
be shown from ZFC that assuming the converse statement will not lead to
a contradiction. According to Fremlin (1993) such a scenario is extremely
unlikely, as many consequences of ZFC+“there exists a measurable cardinal”
have been explored and have not led to any contradiction so far, see the
discussion in Remark 1E(e) in Fremlin (1993).

Obviously, all these considerations go far beyond the scope of the current
work. The approach we propose in this paper is to let the sampling measures
be defined on a smaller σ-field, namely U. This relaxation allows us to find
enough measures to represent all coalescents as samples from ultrametric
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measure spaces, avoiding the aforementioned set-theoretic issues. We simply
hope that this short discussion has led the reader to the conclusion that
allowing sampling measures to be defined on U is a more natural framework
in which discussing coalescent theory on non-separable UMS than having to
assume that one of the statements of Proposition 4.2 holds.

Let us finally discuss the last point of Definition 1.1. This point can be
reformulated in terms of the ball σ-field which is defined as follows.

Definition 4.3. Let (U, d) be an ultrametric space. The ball σ-field
denoted by Ub is the σ-field induced by the open balls of (U, d), that is,

Ub = σ({B(x, t) : x ∈ U, t > 0}),

where
∀x ∈ U,∀t > 0, B(x, t) = {y ∈ U : d(x, y) < t}.

Example 4.4. Consider any set U endowed with the metric

∀x, y ∈ U, d(x, y) = 1{x ̸=y}.

In this case Ub is the countable-cocountable σ-field.

The last point of Definition 1.1 can now be rephrased as Ub ⊆ U ⊆ B(U).
It is important to notice that if B(U) denotes the Borel σ-field of (U, d),
then Ub ⊆ B(U) always holds. In that sense, our definition of a UMS
should be seen as a generalization of the naive definition as more measures
can be defined on Ub than on B(U). The converse statement, i.e. that
B(U) ⊆ Ub, does not hold in general, as Example 4.4 shows. Nevertheless,
in the important case where (U, d) is separable, we have that Ub = B(U),
and the ultrametric d is B(U) ⊗ B(U)-measurable. We thus recover the
usual framework of metric measure spaces.

Remark 4.5. The ball σ-field appears in other contexts where the under-
lying metric space is not separable, for example when considering the space
of càdlàg functions with the uniform topology, as in Billingsley (1999), Sec-
tion 6 and Section 15.

4.2. The Gromov-weak topology. We now define the Gromov-weak topol-
ogy on the space of UMS. Let (U, d, U, µ) be a UMS, and consider (Xi)i≥1

an i.i.d. sequence distributed as µ. Recall that we define an exchangeable
coalescent through the set of relations

i ∼Πt j ⇐⇒ d(Xi, Xj) ≤ t.



COALESCENTS, ULTRAMETRIC SPACES AND COMBS 39

Alternatively, we can see this coalescent as a random pseudo-ultrametric on
N defined as

∀i, j ≥ 1, dΠ(i, j) = d(Xi, Xj).

Both objects encode the same information, as dΠ can be recovered from
(Πt)t≥0 through the equality

∀i, j ≥ 1, dΠ(i, j) = inf{t ≥ 0 : i ∼Πt j}.

The distribution of this pseudo-ultrametric is called the distance matrix
distribution of the UMS.

Remark 4.6. From a topological point of view, a pseudo-ultrametric on
N can be seen as an element of RN×N

+ endowed with its product topology.
Notice that in this case, the correspondence between pseudo-ultrametrics on
N and coalescents outlined above is a homeomorphism.

We use distance matrix distributions to define a topology on the space
of UMS. Consider a sequence (Un, dn, Un, µn)n≥1 of UMS, and denote by
(νn)n≥1 the associated sequence of distance matrix distributions. We say that
the sequence (Un, dn, U, µn)n≥1 converges in the Gromov-weak topology to
(U, d, U, µ) if (νn)n≥1 converges weakly to ν, the distance matrix distribution
of (U, d, µ), in the space of probability measures on RN×N

+ .

4.3. Backbone. It is well known that any ultrametric space (U, d) can be
seen as the leaves of a tree. This is illustrated in Figure 3. Formally, we work
on the space U ×R+ and consider the pseudo-metric

dT
(
(x, s), (y, t)

)
= max

(
d(x, y)− s+ t

2
,
|t− s|

2

)
.

Let T be the space U ×R+ quotiented by the equivalence relation

z ∼ z′ ⇐⇒ dT (z, z
′) = 0.

Then the space (T, dT ) is a real tree (see Evans (2007), Definition 3.15)
whose leaves can be identified with (U, d).

Definition 4.7 (Backbone of T ). Define

f :

{
U → R+

x 7→ inf{t ≥ 0 : µ(B(x, t)) > 0},
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(note that f is measurable since Ub ⊆ U) and let

S := {(x, t) ∈ T : t ≥ f(x)}.

The space S will be referred to as the backbone of the tree T , and we denote
by dS the distance dT restricted to S.

Let us now motivate the next result that will be fundamental to our
approach. In words, Proposition 4.8 states that even if the underlying UMS
is not separable, the backbone is always a separable tree. Secondly, one can
recover the whole tree from the backbone by grafting some “simple” subtrees
on the skeleton. By “simple”, we mean that each of those subtrees has the
sampling properties of a star-tree. Let us be more explicit about this last
statement and discuss an example.

Consider the space [0, 1]× {0, 1} endowed with the ultrametric

∀x, y ∈ [0, 1], ∀a, b ∈ {0, 1}, d
(
(x, a), (y, b)

)
=


1 if x ̸= y,

1/2 if x = y and a ̸= b,

0 if (x, a) = (y, b).

The space ([0, 1] × {0, 1}, d) is a star-tree where each branch splits in two
at height 1/2 (see Figure 5 left panel), we call it the bifurcating star-tree.
We endow this space with the product measure of the Lebesgue measure
on [0, 1] and the uniform measure on {0, 1}, defined on the usual product
Borel σ-field. Consider two independent random variables (X,A) and (Y,B)
distributed according to the above measure. We see that these two variables
lie at distance 1/2 if f X = Y and A ̸= B, which happens with probability 0.
Thus, from a sampling point of view, all points of the space lie at distance
1 from one another, i.e. the bifurcating star-tree is a star-tree (see Figure 5
right panel).

This examples illustrates the more general phenomenon that from the
measure point of view, the subtrees attached to the backbone behave like
star-trees. More formally, consider an UMS (U, d, U, µ). We introduce the
distance

∀x, y ∈ U, d̃(x, y) = 1{x≠y} inf{t ≥ 0 : d(x, y) ≤ t and µ(B(x, t)) > 0},

which replaces each subtree attached to the backbone by a star-tree. The
point (iii) of the following proposition shows that the coalescent obtained
by sampling from (U, d, U, µ) is the same as the coalescent obtained by
sampling from (U, d̃, U, µ).
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Fig 5. Left panel: The bifurcating star-tree. Right panel: The bifurcating star-tree simplified
according to the metric d̃. In both cases, the backbone is illustrated with a bold black line
and the subtrees attached to it with thin grey lines.

Proposition 4.8. (i) The space (S, dS) is a separable real tree.
(ii) The map

ψ :

{
(U, U) → (S,B(S))
x 7→ (x, f(x))

is measurable and we define µS := ψ ⋆µ, the pushforward measure (on
(S,B(S))) of µ by ψ. In particular, the support of µS belongs to the
subset of the backbone {(x, t) ∈ S : t = f(x)}.

(iii) Consider an i.i.d. sequence (Xi)i≥1 distributed according to µ. Then
a.s. for all i, j ≥ 1, d̃(Xi, Xj) = d(Xi, Xj).

Proof. We start by proving (i). The fact that S is a real tree can be
checked directly from the definition. We now show that it is separable. Let
t ∈ Q+, there are only countably many balls of (U, d) of radius t and positive
mass, let us label them (Bt

i)i≥1. For any t ∈ Q+ and i ≥ 1, let xti ∈ Bt
i . Let us

now consider the collection ((xti, t); t ∈ Q+, i ≥ 1). First, since µ(B(xti, t)) >
0, it follows from the definition that t ≥ f(xti), and thus ((xti, t); t ∈ Q+, i ≥
1) is a countable collection of S and it remains to show that this collection
is dense in S.

Let ε > 0 and let (x, s) ∈ U ×R+ be in S. We can find t ∈ Q+ such that
t > s ≥ f(x) and t − s < ε. By definition of f , µ(B(x, t)) > 0, and we can
find i such that B(x, t) = Bt

i . Then d(x, xti) < t and

d(x, xti)−
t+ s

2
< d(x, xti)− t+

ε

2
<
ε

2
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and thus dT ((x, s), (xti, t)) < ε. This shows that the collection is dense and
that the space is separable.

We now turn to the proof of (ii). Let (x, t) ∈ S, we denote by

C(x, t) = {(y, s) ∈ S : dT ((x, t), (y, t)) = 0}

the clade generated by (x, t). In a genealogical interpretation, C(x, t) is the
progeny of (x, t) i.e. the subtree that has (x, t) as its MRCA. Notice that
this notion can be defined similarly on any rooted tree (here the root is an
“infinite point” obtained by letting t → ∞). It is clear that ψ−1(C(x, t)) =
B(x, t). Our results is now immediate from the fact that the clades of a
rooted separable tree induce the Borel σ-field of the tree. A proof of this
fact is given in Appendix D.

We now prove (iii). It is sufficient to prove that a.s. d(X,Y ) = d̃(X,Y )
for X and Y two independent variables distributed as µ. Notice that for any
x, y ∈ U , d(x, y) ≤ d̃(x, y). Thus the probability that d(X,Y ) ̸= d̃(X,Y ) can
be written

P
(
d(X,Y ) ̸= d̃(X,Y )

)
=

∫∫
1{d(x,y)<d̃(x,y)}µ(dx)µ(dy)

=

∫
µ(dx)

∫
µ(dy)1{d(x,y)<f(x)} = 0,

where the last equality can be seen by writing

{x, y ∈ U : d(x, y) < f(x)} =
∪
ε>0

{x, y ∈ U : d(x, y) < f(x)− ε}

and noticing that each event of the union in the right-hand side has null
mass.

Remark 4.9 (Backbone and marked metric measure space). An object
similar to the backbone appears in Gufler (2018) using the framework of
marked metric measure spaces introduced in Depperschmidt, Greven and
Pfaffelhuber (2011). We can interpret the backbone as a marked metric mea-
sure space where the metric space is U endowed with the backbone metric

d̄(x, y) = dS
(
(x, f(x)), (y, f(y))

)
and the mark space is R+. According to this correspondence, backbones are
examples of elements of the set Û defined in Gufler (2018). In Gufler (2018)
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the marked metric measure space corresponding to the backbone is either
considered as given, or built as the completion of the ultrametric measure
space on N corresponding to the distance matrix distribution. The novelty
of the present work is that we start from a general UMS and simplify it
to obtain the backbone. This approach requires to identify the measurability
assumptions to be made on UMS to avoid the problems that are discussed in
Section 4.1.

Moreover, the link between backbones and marked metric measure spaces
enables us to use the work of Depperschmidt, Greven and Pfaffelhuber (2011).
For instance, this provides a metric, the marked Gromov-Prohorov metric,
that metrizes the Gromov-weak topology on UMS and ensures that the topol-
ogy is separable.

4.4. Isomorphism between backbones. The aim of this section is to in-
troduce the notion of isomorphism between backbones and to prove our
reformulation of the Gromov reconstruction theorem.

Definition 4.10. Let (U, d, U, µ) and (U ′, d′, U′, µ′) be two UMS with
respective backbones (S, µS) and (S ′, µ′S). We say that Φ is an isomorphism
from S to S ′ if:

(i) The map Φ is a measure-preserving isometry from S to S ′.
(ii) For every (x, t) ∈ S, there exists x′ ∈ U ′ such that Φ

(
(x, t)

)
= (x′, t),

i.e. Φ preserves the second coordinate.
We say that two UMS are in weak isometry when they have isomorphic
backbones.

Recall Proposition 1.17 from the introduction. We want to show the fol-
lowing reformulation of Proposition 1.17. In words, this states that having
the same distance matrix distribution is equivalent to being weakly isomet-
ric.

Proposition 4.11. Let (U, d, U, µ) and (U ′, d′, U′, µ′) be two UMS with
respective backbones (S, µS) and (S ′, µ′S). We suppose that the two backbones
are complete metric spaces. Then the two spaces (S, µS) and (S ′, µ′S) are
isomorphic if f the distance matrix distribution associated (U, d, U, µ) and
(U ′, d′, U′, µ′) are identical.

Let us compare this result to the original result from Gromov (1999). In
the separable case, if two UMS share the same coalescent then the supports
of their measures are in isometry. Thus two separable spaces that are in-
distinguishable in the Gromov-weak topology share the exact same metric
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structure. The situation is rather different in the general case. Even if two
UMS share the same coalescent, they can have rather different metric struc-
tures, think of the bifurcating star-tree and the star-tree of Figure 5. What
Proposition 4.11 states is that in this case there is only a correspondence
between coarsenings of the UMS, i.e. the backbones on which all the sub-
trees are replaced by star-trees. This result is not surprising as the distance
matrix distribution only contains the information of a countable number of
points, which is not enough to explore the fine metric structure of the UMS.

The “only if” part of Proposition 4.11 is a direct consequence of the
following lemma, which shows that the distance matrix distribution of a
UMS can be recovered from an i.i.d. sequence of points of the backbone.

Lemma 4.12. Let (Xi)i≥1 be an i.i.d. sequence in U sampled according
to µ. Then a.s.

∀i, j ≥ 1, d(Xi, Xj) = dS
(
(Xi, f(Xi)), (Xj , f(Xj))

)
+
f(Xi) + f(Xj)

2
(6)

and

∀i ≥ 1, f(Xi) = inf{t ≥ 0 : {j : d(Xj , Xi) ≤ t} is infinite}.(7)

Proof. We know from Proposition 4.8 that for any i, j ≥ 1, d̃(Xi, Xj) =
d(Xi, Xj) almost surely. Suppose that (Xi, f(Xi)) and (Xj , f(Xj)) lie at
distance 0 in the backbone, then d̃(Xi, Xj) = f(Xi) = f(Xj) and (6) holds.
Otherwise notice that d(Xi, Xj) ≥ f(Xi) and d(Xi, Xj) ≥ f(Xj). Thus

d(Xi, Xj)−
f(Xi) + f(Xj)

2
≥ |f(Xi)− f(Xj)|

2

and

dS
(
(Xi, f(Xi)), (Xj , f(Xj))

)
= d(Xi, Xj)−

f(Xi) + f(Xj)

2
.

The second point of the lemma is a direct consequence of the definition of
f and of the observation that if µ(B(x, t)) > 0, then a.s. there are infinitely
many (Xi)i≥1 that belong to this ball.

It remains to show the converse proposition, i.e. that if two UMS are
sampling equivalent then they are in weak isometry. The proof we give is an
adaptation of Gromov reconstruction theorem from Section 3.12 .6 of Gromov
(1999).
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Proof of Proposition 4.11. We say that a sequence (xi, ti)i≥1 in S is
equidistributed if for any A ∈ S,

lim
n→∞

1

n

n∑
i=1

1{(xi,ti)∈A} = µS(A).

A well-known fact is that the empirical measure of an i.i.d. sample converges
weakly to the sampling measure. Thus, a.s. an i.i.d. sequence is equidis-
tributed.

Consider the map

D :

{
SN → RN×N

(xi, ti)i≥1 7→ (dS
(
(xi, ti), (xj , tj)

)
+

ti+tj
2 )i,j≥1.

and let D′ be the analogous map for U ′. Then Lemma 4.12 shows that the
pushforward measure D⋆µ⊗N

S is the distance matrix distribution associated
to U . Similarly D′ ⋆ µ′S

⊗N is the distance matrix distribution associated to
U ′. As we have supposed that the two distance matrix distributions coincide,
we can find a sequence (xi)i≥1 in U and a corresponding sequence (x′i)i≥1 in
U ′ that have the same distance matrix, i.e. such that

D((xi, f(xi))i≥1) = D′((x′i, f(x
′
i))i≥1).

We can suppose that these sequences are equidistributed and fulfill equali-
ties (6) and (7) as all these events have probability 1. Using (7) we have

∀i ≥ 1, f(xi) = f(x′i)

and then using (6) we obtain

∀i, j ≥ 1, dS
(
(xi, f(xi)), (xj , f(xj))

)
= d′S

(
(x′i, f(x

′
i)), (x

′
j , f(x

′
j))

)
.

We now extend this correspondence to an isomorphism between the back-
bones. Let i ≥ 1 and t ≥ f(xi), we set

Φ((xi, t)) = (x′i, t).

It is clear that Φ is an isomorphism from {(xi, t) ∈ S : t ≥ f(xi), i ≥ 1} to
{(x′i, t) ∈ S ′ : t ≥ f(x′i), i ≥ 1}. It is now sufficient to show that this set is
dense to end the proof, by extending Φ to S by continuity. To see that, let
(x, t) ∈ S. As t ≥ f(x), we know that µ({y ∈ U : d(x, y) ≤ t+ ε}) > 0 for
any ε > 0. Writing

{y ∈ U : d(x, y) ≤ t+ ε} =
{
y ∈ U : dS

(
(x, t+ ε), (y, t+ ε)

)
= 0

}
,
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as (xi, f(xi))i≥1 is equidistributed, we see that we can find (xi, f(xi)) such
that (xi, t+ε) = (x, t+ε). Moreover, it is immediate that t+ε ≥ f(xi), and
we have

dS
(
(xi, t+ ε), (x, t)

)
= dS

(
(x, t+ ε), (x, t)

)
= ε.

The fact that Φ is measure preserving holds because we have chosen
equidistributed sequences.

Remark 4.13. According to the correspondence between backbones and
marked metric measure spaces outlined earlier, Proposition 4.11 is similar
to the more general Theorem 1 in Depperschmidt, Greven and Pfaffelhuber
(2011), which is itself an adaptation of the Gromov reconstruction theorem.
However as we only address the case of backbones, we can be more specific. A
direct application of Theorem 1 in Depperschmidt, Greven and Pfaffelhuber
(2011) would only provide an isometry between the supports of the backbones
whereas here we obtain a global isometry.

Remark 4.14. The results of this section show that the backbone of a
UMS contains the same information as the coalescent associated to that
UMS. Thus properties of the coalescent can be read off from properties of
the backbone. In particular, we can make precise an informal conjecture for-
mulated in the context of exchangeable hierarchies in Forman, Haulk and
Pitman (2018), and addressed in Forman (2018), concerning a nice de-
composition of the sampling measure µ. Indeed, the sampling measure on
the backbone is naturally decomposed into its atoms, its diffuse part on the
set {(x, t) ∈ S : t = 0} of leaves of S at height 0 and the remaining diffuse
part. This decomposition induces three qualitatively different behaviors of the
coalescent. In short, points sampled in the atomic part form singletons of
the coalescent that all merge at the same time, an event called “broom-like
explosion” in Forman, Haulk and Pitman (2018). Second, points sampled
in {(x, t) ∈ S : t = 0} always belong to an infinite block of the coalescent for
t > 0, they form the “iterative branching part”. Finally points sampled in the
remaining part of the backbone are singletons of the coalescent that contin-
uously merge with existing blocks. This behavior is referred to as “erosion”.

4.5. Comb metric measure space, completion of the backbone. An im-
portant assumption of Proposition 4.11 is that the backbones of the UMS
we consider are complete metric spaces. We will show in this section that
the UMS associated to a comb enjoys this property up to the addition of a
countable number of points. Let us start with two examples of combs illus-
trating that the backbone of a comb metric measure space is not in general
complete.
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First, consider the comb associated to the diadic space. Let 0 < t < 1 and
let k be the only integer such that t ∈

[
2−(k+1), 2−k

)
. We set

I2t =
∪

0≤i≤2k+1−1

(
i2−(k+1), (i+ 1)2−(k+1)

)
and for t ≥ 1 we set

I2t = (0, 1).

The diadic comb is illustrated in Figure 6. Now consider the comb metric
d2I associated to this comb, and let x = 2−k for some k ≥ 1. Consider a
non-decreasing sequence (xn)n≥1 that converges to x. It is not hard to see
that (xn)n≥1 is Cauchy for d2I but does not admit a limit.

Let us discuss a second example which is not separable. Consider the
following comb

I ′t =

{
O̸ if t < 1/2

I2t−1/2 otherwise.
This comb is illustrated in Figure 6. It is rather clear that the backbone as-
sociated to (I ′t)t≥0 is isometric to the backbone obtained from (I2t )t≥0 (notice
that here the isometry is not an isomorphism, as the backbone associated
to (I ′t)t≥0 is “shifted above by 1/2” from that of (I2t )t≥0). The backbone is
not complete for the same reason as above. The following proposition shows
that up to the addition of a countable number of points, we can assume that
the backbone associated to a comb metric space is complete.

Proposition 4.15. Consider the comb metric dI associated to a comb
(It)t≥0. We can find a countable set F and an extension d̄I of dI to [0, 1]∪F
such that d̄I is ultrametric and the backbone associated to ([0, 1]∪F, d̄I ,I,Leb)
is complete.

Remark 4.16. Here we have implicitly extended the Lebesgue measure
to [0, 1] ∪ F by giving zero mass to F .

A proof of this result is given in Appendix E. The proof of Corollary 1.18
now directly follows from the various results we have shown.

Proof of Corollary 1.18.. Let (U, d, U, µ) be a UMS with complete
backbone, and let (Πt)t≥0 be the associated coalescent. Using Theorem 1.8
we can find a nested interval-partition whose associated coalescent is (Πt)t≥0.
We can now use Proposition 4.15 to find a comb metric measure space whose
backbone is complete which has the same distance matrix distribution as
(U, d, U, µ). Using Proposition 4.11 ends the proof.
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tt

0 01 1

Fig 6. Left panel: The diadic comb. Right panel: The comb (I ′t)t≥0.

4.6. The separable case. In this section we consider the case of separable
UMS and prove Corollary 1.15 and Proposition 1.16. The former result states
that the weak isometry between backbones can be reinforced to an isometry
between the supports of the measures in the case of separable complete UMS.
The latter states that any complete separable ultrametric space is isometric
to a properly completed comb metric space. Let us start with Corollary 1.15.

Proof of Corollary 1.15. Let (It)t≥0 be a nested interval-partition
without dust, and consider the corresponding comb metric measure space
([0, 1], dI ,I,Leb). The quotient space of {fI = 0} by the equivalence relation
x ∼ y if f dI(x, y) = 0 is a separable ultrametric space. Moreover, it is isomet-
ric to the subset {(x, t) ∈ S : t = 0} of the backbone S of ([0, 1], dI ,I,Leb).
Thus the quotient space of ({fI = 0}, dI) can be turned into a complete
ultrametric space by adding a countable number of points as in Proposi-
tion 4.15, we denote this completion by (UI , dI) as in the introduction. As
(It)t≥0 has no dust, we have Leb({fI = 0}) = 1. Thus UI can be endowed
with the pushforward measure of the restriction of Leb to {fI = 0}, defined
on the Borel σ-field of (UI , dI). It is a probability measure, let us denote it
by Leb. The space (UI , dI ,Leb) is a separable complete Borel UMS that has
the same distance matrix distribution as the original comb metric measure
space ([0, 1], dI ,I,Leb).

Let (U, d, U, µ) be a complete separable UMS. By restricting our attention
to supp(µ) we can assume without loss of generality that supp(µ) = U . Ac-
cording to Theorem 1.14 we can find a nested interval-partition (It)t≥0 and
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a corresponding comb metric measure space ([0, 1], dI ,I,Leb) whose dis-
tance matrix distribution is equal to that of (U, d, U, µ). As supp(µ) = U ,
for each t > 0 we have µ(B(x, t)) > 0. If (Πt)t≥0 denotes the coalescent ob-
tained by sampling from (U, d, U, µ), this shows that for each t > 0 all the
blocks of Πt have positive asymptotic frequency. Thus (It)t≥0 has no dust,
and let (UI , dI ,Leb) be the completion of the comb metric measure space
as above. Then (U, d, µ) and (UI , dI ,Leb) are two complete separable metric
measure spaces (in the usual sense) whose distance matrix distributions are
equal. Thus, the Gromov reconstruction theorem (see Section 3.12 .6 of Gro-
mov (1999)) proves that we can find a measure-preserving isometry between
(UI , dI ,Leb) and (U, d, µ), which ends the proof.

We now turn to the proof of Proposition 1.16. We will need the following
lemma.

Lemma 4.17. Any separable ultrametric space (U, d) can be endowed with
a measure µ on its Borel σ-field such that supp(µ) = U .

Proof. We build the measure by induction. For n = 1, as the space is
separable there are only countably many balls of radius 1. If there are finitely
many such balls, say k balls B1, . . . , Bk, we define

µ(Bi) =
1

k
.

Else we can find an enumeration of the balls, (Bi)i≥1, and we define

µ(Bi) =
(1
2

)i
.

Suppose that we have defined µ(B) for any ball of radius 1/n. Given a ball
Bn of radius 1/n there are at most countably many balls (Bn+1

i )i≥1 of radius
1/(n+ 1) such that Bn+1

i ⊂ Bn. Similarly if there are k balls we define

µ(Bn+1
i ) =

µ(Bn)

k

and if there are countably many balls we define

µ(Bn+1
i ) = µ(Bn)

(1
2

)i
.

A simple application of Caratheodory’s extension theorem now provides a
probability measure µ defined on the Borel σ-field of (U, d) that extends this
measure. It is straightforward from the construction that supp(µ) = U .
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Remark 4.18. Note that a similar construction was mentioned in Lam-
bert and Uribe Bravo (2017), where the resulting measure was referred to as
the “visibility measure”.

Proof of Proposition 1.16. Let (U, d) be a separable complete UMS.
Using Lemma 4.17 we can find a measure µ such that supp(µ) = U . An
appeal to Corollary 1.15 now proves the result.
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APPENDIX A: EXCHANGEABLE HIERARCHIES

The aim of this section is to recall some results derived in Forman, Haulk
and Pitman (2018) and discuss the link they have with the current results.
Again, we recall that the present work should not be viewed as stemming
from the work of Forman, Haulk and Pitman (2018), but should be viewed
as an independent approach bearing similarities that we now expose.

Let X be an infinite space. A hierarchy on X is a collection H of subsets
of X such that

1. for x ∈ X, {x} ∈ H, X ∈ H and O̸ ∈ H;
2. given A,B ∈ H, then A ∩B is either A, B or O̸ .

Any ultrametric space encodes a hierarchy that is obtained by “forgetting
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the time”. More precisely, if (U, d) is an ultrametric space, then

H = {B(x, t), x ∈ X, t ≥ 0} ∪ {{x}, x ∈ X} ∪ {X,O̸ }

is a hierarchy. The hierarchy H encodes the genealogical structure of (U, d),
i.e. the order of coalescence of the families, but not the coalescence times.

Remark A.1. The converse does not hold, there exist hierarchies that
cannot be obtained as the collection of balls of an ultrametric space. For
example, consider a space X with cardinality greater than the continuum,
endowed with a total order ≤, and define

H = {{y : y ≤ x} : x ∈ X} ∪ {{x}, x ∈ X} ∪ {X,O̸ }.

The main object studied in Forman, Haulk and Pitman (2018) are ex-
changeable hierarchies on N. Let σ be a permutation of N, and H be a
hierarchy on N. Then σ naturally acts on H as

σ(H) = {σ(A), A ∈ H}.

A random hierarchy on N (see Forman, Haulk and Pitman (2018) for a
definition of the σ-field associated to hierarchies) is called exchangeable if
for any permutation σ,

σ(H)
(d)
= H.

In a similar way that exchangeable coalescents are obtained by sampling in
UMS, exchangeable hierarchies are obtained by sampling in hierarchies on
measure spaces. Let (X,µ) be a probability space, and consider a hierarchy
H on X. An exchangeable hierarchy H′ can be generated out of an i.i.d.
sequence (Xi)i≥1 by defining

H′ = {{i ≥ 1 : Xi ∈ A}, A ∈ H}.

Again, an exchangeable hierarchy can be obtained from an exchangeable
coalescent by forgetting the time. Let (Πt)t≥0 be an exchangeable coalescent.
Then

H = {B, B is a block of Πt, t ≥ 0}

is an exchangeable hierarchy.
The main results in Forman, Haulk and Pitman (2018) show that any

exchangeable hierarchy can be obtained by sampling from 1) a random “in-
terval hierarchy” on [0, 1) and 2) a random real-tree. The link with our
results now seems straightforward.
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An interval hierarchy on [0, 1) is a hierarchy H on [0, 1) such that all
non-singleton elements of H are intervals. Again, an interval hierarchy can
be obtained from a nested interval-partition (It)t≥0 by forgetting the time.
The family of sets

H ={I : I is an interval component of It, t ≥ 0}
∪ {{x}, x ∈ [0, 1)}
∪ {[0, 1),O̸ }

is an interval hierarchy. Theorem 4 in Forman, Haulk and Pitman (2018)
states that any exchangeable hierarchy on N can be obtained by sampling in
a random interval hierarchy. This is the direct equivalent of our Theorem 1.8
that states that any exchangeable coalescent can be obtained by sampling
in a random nested interval-partition.

Consider a measure rooted real-tree (T, d, ρ, µ), it can be endowed with a
partial order ⪯ such that y ⪯ x if x is an ancestor of y (see Evans (2007)).
Then, the fringe subtree of T rooted at x ∈ T is defined as the set

FT (x) = {y ∈ T : y ⪯ x},

it is the set of the offspring of x. The natural hierarchy associated to (T, d, ρ)
is

H = {FT (x), x ∈ T}.

Theorem 5 in Forman, Haulk and Pitman (2018) states that any exchange-
able hierarchy can be obtained by sampling in the hierarchy associated to
a random measure rooted real-tree. In our framework, we have seen that a
nested interval-partition can be seen as an ultrametric space, and in Sec-
tion 4.5 we have seen how this ultrametric space is embedded in a real-tree.
Again we have proved here the reformulation of Theorem 5 from Forman,
Haulk and Pitman (2018).

In a subsequent work, one of the authors has introduced the notion of
mass-structural isomorphism (Forman, 2018). In a nutshell, two trees that
are mass-structural isomorphic induce the same exchangeable hierarchy. In
our framework, two spaces have the same coalescent if f their backbones are
isomorphic. Thus, the mass-structural isomorphism is replaced here by the
simpler notion of isomorphism.

Overall, the two works are very similar in the sense that they obtain
the same kind of representation results for exchangeable hierarchies and
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exchangeable coalescents. However the techniques used in the proofs are dif-
ferent, e.g. the work of Forman, Haulk and Pitman (2018) relies on spinal de-
composition whereas the present work relies on nested compositions. More-
over, as an ultrametric space contains “more information” than a hierarchy,
our results are not trivially implied by the results in Forman, Haulk and
Pitman (2018), but constitute an extension of their work.

Finally, we wish to stress two things. First, most of the difficulties that
Section 4 deal with stem from the fact that we consider non-separable metric
spaces. These issues and the work that is done here heavily relies on the
theory of metric spaces. Seeing genealogies as metric spaces is only possible
if we keep the information on the times of coalescence, which is not the case
when considering hierarchies.

Second, keeping this information allows us to study genealogies as time-
indexed stochastic processes. It is a necessary step to study the Markov
property of the combs associated to Λ-coalescents as in Section 3. This
creates a direct link between the present work and the very rich litterature on
Λ-coalescents and coalescence theory that is not present in Forman, Haulk
and Pitman (2018). Moreover, this provides a new approach to the question
of dynamical genealogies, with the introduction of the dynamical comb.

APPENDIX B: INDEPENDENCE OF THE NESTED
INTERVAL-PARTITIONS AND THE SAMPLING

VARIABLES
Consider an exchangeable nested composition (Ct)t≥0, and let (It)t∈Q+ be

the nested interval-partition obtained by applying Theorem 2.1 distinctly for
any t ∈ Q+, and (Vi)i≥1 be the sequence of i.i.d. uniform variables obtained
from Theorem 2.1 applied at time 0. The aim of this section is to show that
(Vi)i≥1 is independent from (It)t∈Q+ .

Let 0 = t0 < t1 < · · · < tp. We can build a collection of sequences
(ξ

(k)
i )i≥1,k=0,...,p where for k = 0, . . . , p and i ≥ 1,

ξ
(k)
i = lim

n→∞

1

n

n∑
j=1

1{j⪯ki},

and ⪯k is the partial order on N representing Ctk as in Section 2.1. The
sequence of vectors (ξ

(0)
i , . . . , ξ

(p)
i )i≥1 is exchangeable. Thus by applying a

vectorial version of de Finetti’s theorem we know that there exists a mea-
sure µ on [0, 1]p+1 such that conditionally on µ the sequence of vectors is
i.i.d. distributed as µ. We can now “spread” the variables (ξ

(0)
i )i≥1 using

an independent i.i.d. uniform sequence as in the proof of Theorem 2.1 to
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obtain a sequence (Vi)i≥1 that is i.i.d. uniform conditionally on µ. Thus the
sequence (Vi)i≥1 is independent of µ. The interval-partitions (It0 , . . . , Itp)
can be recovered from the push-forward measures of µ by the coordinate
maps on Rp+1. Thus (Vi)i≥1 is independent from (It)t∈Q+ .

APPENDIX C: GENERATOR CALCULATION

Let n ≥ 1 and let Q̂n denote the generator of the nested composition
(Cn

t )t≥0 defined from the transition rates (λ̃b,k; 2 ≤ k ≤ b < ∞). Let Qn be
the generator of the restriction to [n] of a Λ-coalescent. Here we show that
for any function f , from the space of compositions of [n] to R,

∀π, Q̂nLf(π) = LQnf(π),

where L is the operator defined in Section 3.
We will need additional notations. The space of partitions and composi-

tions of [n] will be denoted by Pn and Sn respectively. For π, π′ ∈ Pn, we
denote by qπ,π′ the transition rate from π to π′, i.e. qπ,π′ = λb,k if π has b
blocks and π′ is obtained by merging k blocks of π, and qπ,π′ = 0 otherwise.
Similarly for c, c′ ∈ Sn we define qc,c′ to be the transition rate from c to c′.
Finally, we denote by O(π) the set of compositions of [n] whose blocks are
given by the partition π, and Card(π) the number of blocks of π. Let π ∈ Pn

and denote by b the number of blocks of π, we have

Q̂nLf(π) =
∑

π′∈Pn

qπ,π′(Lf(π′)− Lf(π))

=
∑

π′∈Pn

qπ,π′

( ∑
c′∈O(π′)

1

Card(π′)!
f(c′)−

∑
c∈O(π)

1

Card(π)!
f(c)

)

=
∑

π′∈Pn

∑
c′∈O(π′)

qπ,π′
1

Card(π′)!
f(c′)−

∑
c∈O(π)

b∑
k=2

1

Card(π)!

(
b

k

)
λb,kf(c).

Similarly, we have

LQnf(π) =
∑

c∈O(π)

1

Card(π)!
Qnf(c)

=
∑

c∈O(π)

1

Card(π)!

∑
c′∈Sn

qc,c′(f(c
′)− f(c))

=
∑

c∈O(π)

1

Card(π)!

∑
c′∈Sn

qc,c′f(c
′)−

∑
c∈O(π)

b∑
k=2

1

Card(π)!

(
b

k

)
λb,kf(c).
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We will end the calculation by showing that for any c′ ∈ Sn, the coefficient
in front of the term f(c′) in the left sum is the same for both expression.
Let π′ be the partition associated to c′. If π′ is not obtained by merging k
blocks of π for some k, then the coefficient of the term f(c′) in the sum is 0
in both expressions. Now suppose that π′ is obtained by merging k blocks of
π. In the first expression, we first choose the blocks of π that merge to get
π′ and then order the resulting partition to get the composition c′. There is
only one possible way to do that and obtain a given c′. Thus the coefficient
in front of f(c′) is λb,k/(b− k+1)!. In the second expression, we first choose
an order to obtain a composition c, and then merge its blocks to get the
composition c′. There are k! possible orderings of π, and then exactly one
merger of c that lead to c′ (we can take any permutation of the k blocks
that merge). Thus the coefficient in front of term f(c′) is

k!

b!
λ̃b,k =

k!

b!

1

b− k + 1

b!

k! (b− k)!
λb,k =

1

(b− k + 1)!
λb,k.

APPENDIX D: MEASURABILITY OF SEPARABLE ROOTED TREES

In this section we prove the claim made in the proof of Proposition 4.8
that the Borel σ-field of a separable rooted tree is induced by the clades of
the tree. Let us be more specific.

We consider a separable real-tree (T, d) with a particular point ρ ∈ T that
we call the root. For x, y ∈ T , we denote by [x, y] the unique geodesic with
endpoints x and y (see Evans (2007)). Recall from Appendix A the fringe
subtree of T rooted at x equivalently defined as the clade

C(x) = {y ∈ T : x ∈ [ρ, y]},

see Figure 7 for an illustration. The claim is that

σ({C(x), x ∈ T}) = B(T ).

Remark D.1. Our goal in the proof of Proposition 4.8 is to apply the
result to the backbone whose root should be such that clades are the balls of
U . This can be done by seeing the backbone as having a root “at infinity”.

Let x ∈ T and ε > 0, we assume that ε < d(x, ρ). We denote by B(x, ε)
the open ball centered in x with radius ε, and S(x, ε) the sphere of center x
and radius ε, i.e.

S(x, ε) = {y ∈ T : d(x, y) = ε}.
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Fig 7. A tree rooted at ρ. The ball of radius ε and center x is represented by the black bold
lines. An example of y ∈ S(x, ε) is given, and its corresponding clade C(y) is represented
by grey dashed lines.

There is a unique point in a ∈ [ρ, x] ∩ S(x, ε). It is clear that

B(x, ε) = C(a)
∪

y∈S(x,ε) {a}

C(y).

Let y ∈ S(x, ε), and 0 < η < ε, we denote by yη the only point in [y, x] such
that d(yη, y) = η. We can write∪

y∈S(x,ε) {a}

C(y) =
∩
η>0

∪
y∈S(x,ε) {a}

C(yη).

The claim is proved if we can show that the union on the right-hand side
is countable. This holds due to the separability of (T, d). To see that notice
that by uniqueness of the geodesic, if y and y′ are such that yη ̸= y′η, then
d(y, y′) > η. Thus if the set {yη : y ∈ S(x, ε) {a}} is not countable, we can
find an uncountable subset of S(x, ε) such that any two points lie at distance
at least η. This is not possible due to separability.

APPENDIX E: COMB COMPLETION
In this section we prove Proposition 4.15, i.e. that the backbone of a comb

is complete up to the addition of a countable number of points. We start
from a nested interval-partition (It)t≥0. We define

R = {x ∈ [0, 1] : ∃sx, tx s.t. x is the right endpoint
of an interval component of Iu for u ∈ [sx, tx]}
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and

L = {x ∈ [0, 1] : ∃sx, tx s.t. x is the left endpoint
of an interval component of Iu for u ∈ [sx, tx]}.

We now work with a subset of [0, 1]× {0, r, ℓ}. Let

Ī = ([0, 1]× {0}) ∪ (R× {r}) ∪ (L × {ℓ}).

We will simply write x for (x, 0), xr for (x, r) if x ∈ R and xℓ for (x, ℓ) if
x ∈ L. We extend dI to Ī in the following way. Let x < y, we define

d̄I(x, y) = d̄I(x, yℓ) = d̄I(xr, yℓ) = d̄I(xr, y) = sup
[x,y]

fI

d̄I(x, yr) = d̄I(xr, yr) = sup
[x,y)

fI

d̄I(xℓ, y) = d̄I(xℓ, yℓ) = sup
(x,y]

fI

d̄I(xℓ, yr) = sup
(x,y)

fI

and d̄I(xr, xℓ) = f(x). We use symmetrized definitions if x > y. It is straight-
forward to check that d̄I is a pseudo-ultrametric. We will denote by SI the
backbone associated to this UMS, and dSI

the restriction of the tree metric
to SI , i.e.

∀(x′, t), (y′, s) ∈ SI , dSI

(
(x′, t), (y′, s)

)
= max

{
d̄I(x

′, y′)− t+ s

2
,
|t− s|

2

}
.

Lemma E.1. The backbone (SI , dSI
,Leb) associated to (Ī , d̄I ,Leb) is a

complete metric space.

Proof. Consider (x′n, tn)n≥1 a Cauchy sequence in Ī for the metric dSI
.

As
|tn − tm|

2
≤ dSI

(
(x′n, tn), (x

′
m, tm)

)
,

the sequence (tn)n≥1 is Cauchy and converges to a limit that we denote
by t. Each point x′n can be written as x′n = (xn, an) with xn ∈ [0, 1] and
an ∈ {0, r, ℓ}. The sequence (xn)n≥1 admits a subsequence that converges to
a limit x for the usual topology in [0, 1]. Without loss of generality we can
assume that (xn)n≥1 is non-decreasing and converges to x.
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Using the fact that the sequence is Cauchy, we know that

lim
n→∞

sup
m≥n

d̄I(x
′
n, x

′
m)− tn + tm

2
≤ 0,

which directly implies that

lim
ε→0

sup
[x−ε,x)

fI ≤ t.

Suppose that x ∈ R. By definition of d̄I and the above remark,

lim
n→∞

d̄I(x
′
n, xr)−

tn + t

2
≤ 0.

Thus the sequence (x′n, tn)n≥1 converges to (xr, t).
Now suppose that x ̸∈ R. We claim that

lim
ε→0

sup
[x−ε,x)

fI = f(x).

As x ̸∈ R we directly know that

lim
ε→0

sup
[x−ε,x)

fI ≥ f(x).

Suppose that the above limit is strictly greater than f(x). Then we can find
a non-decreasing sequence (yn)n≥1 converging to x in the usual topology
such that f(yn) ↓ λ > f(x) as n goes to infinity. Let η < λ − f(x). Notice
that the set {y ∈ [0, 1] : f(y) > λ− η} is closed in the usual topology, as it
is the complement of Iλ−η. This shows that x belongs to this set, which is a
contradiction. Our claim is proved. Similarly to above, it is now immediate
that

lim
n→∞

d̄I(x
′
n, x)−

tn + t

2
≤ 0.

and that (x′n, tn)n≥1 converges to (x, t).

Remark E.2. This completion is already present in the compact case
in Lambert and Uribe Bravo (2017). In this case, we have R = L = {fI > 0}.

APPENDIX F: THE LINK BETWEEN DUST AND THE
BANACH-ULAM PROBLEM

In this section we prove Proposition 4.2. We prove this result by con-
structing a solution to the so-called Banach-Ulam problem. This problem
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can be formulated as follows: is it possible to find a space X with a proba-
bility measure µ on the power-set P(X) of X such that µ({x}) = 0 for all
x ∈ X?

Recall that a UMS (U, d, U, µ) is called a Borel UMS if U is the Borel
σ-field of (U, d). The support of the measure µ, supp(µ), is defined as the
intersection of all balls with positive mass. Equivalently, it can be defined
as

supp(U) = {x ∈ U : ∀t > 0, µ(B(x, t)) > 0}.

We start with the following lemma, which gives a necessary and sufficient
condition for the coalescent sampled from U to have dust in terms of the
support of µ.

Lemma F.1. Let (U, d, U, µ) be a UMS, and let (Πt)t≥0 be the associated
coalescent. Then (Πt)t≥0 has dust if f µ(supp(µ)) < 1.

Proof. Let (Xi)i≥1 be an i.i.d. sequence in U distributed as µ and let
(Πt)t≥0 be the coalescent obtained as above. We say that i is in the dust of
the coalescent if there exists t > 0 such that {i} is a singleton block of Πt.
We show that a.s.

i is in the dust ⇐⇒ Xi ̸∈ supp(µ).

Suppose that Xi ∈ supp(µ). Then for any t > 0, µ(B(Xi, t)) > 0, thus a.s.
there are infinitely many other variables (Xj)j≥1 in B(Xi, t). Thus Xi is in
an infinite block of Πt. Conversely suppose that i is not in the dust, i.e. that
for any t > 0, {i} is not a singleton block. Using Kingman’s representation
theorem for exchangeable partitions, we know that the block of i is a.s.
infinite and has a positive asymptotic frequency fi. The law of large numbers
shows that fi = µ(B(Xi, t)) > 0.

Proof of Proposition 4.2. Let us start by showing that (i) implies
(iii). Let (U, d, U, µ) be a Borel UMS with associated coalescent (Πt)t≥0. Sup-
pose that (Πt)t≥0 has dust. According to Lemma F.1, we have µ(supp(µ)) <
1. Consider t > 0 and let (Bt

α)α∈At be the collection of open balls of radius
t with zero mass, where At is just an index set. We know that∪

t>0

∪
α∈At

Bt
α = U supp(µ).

Using the continuity from below of the measure µ, we can find an ε > 0 such
that µ(

∪
α∈Aε

Bε
α) > 0. We now consider the equivalence relation

x ∼ y ⇐⇒ d(x, y) < ε
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and denote by X the quotient space of
∪

α∈Aε
Bε

α for the relation ∼. We
define the quotient map as

φ :

{
U → X

x 7→ {y ∈ U : d(x, y) < ε}.
We claim that φ is continuous when U is equipped with the metric topology
induced by d, and X is equipped with the discrete topology P(X). Let
C ⊂ X, then

φ−1(C) =
∪

x∈φ−1(C)

B(x, ε)

which is an open subset of U . We call µX the push-forward measure of µ by
the map φ. The measure µX/µX(X) is a diffuse probability measure defined
on P(X) as required. Thus, (X,P(X), µX) is a solution to the Banach-Ulam
problem.

Using the terminology from Fremlin (1993), this proves that the cardinal-
ity of X is a real-valued cardinal (see Notation 1C in Fremlin (1993)). Ac-
cording to Ulam’s theorem (see Theorem 1D in Fremlin (1993)), real-valued
cardinals fall into two classes: atomlessly-measurable cardinals and two-
valued-measurable cardinals. The cardinal of X is atomlessly-measurable.
To see this, one can for example notice that our measurability assumption
on d implies that the cardinality of U (and thus that of X) is not larger
than the continuum. (If this does not hold, then the diagonal does not be-
long to the product σ-field P(U)⊗P(U) and the metric d is not measurable.)
Finally, using Theorem 1D of Fremlin (1993) proves (iii).

The fact that (ii) implies (i) is obvious, it remains to show that (iii)
implies (ii). Suppose that there exists an extension of the Lebesgue mea-
sure to all subsets of R, let us denote by Leb its restriction to [0, 1]. Let
(Πt)t≥0 be any coalescent with dust. By Theorem 1.8 we can find a nested
interval-partition (It)t≥0 such that the paintbox based on (It)t≥0 is dis-
tributed as (Πt)t≥0. Let dI be the corresponding comb metric on [0, 1]. Then
([0, 1], dI ,BI([0, 1]),Leb) is a UMS, where BI([0, 1]) refers to the Borel σ-
field induced by dI and Leb is restricted to that σ-field. The coalescent
obtained by sampling from this UMS is distributed as (Πt)t≥0.
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