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Abstract
Kingman’s representation theorem [Kin78] states that any exchangeable partition of N can

be represented as a paintbox based on a random mass-partition. Similarly, any exchangeable
composition (i.e. ordered partition of N) can be represented as a paintbox based on an interval-
partition [Gne97].

Our first main result is that any exchangeable coalescent process (not necessarily Marko-
vian) can be represented as a paintbox based on a random non-decreasing process valued in
interval-partitions, called nested interval-partition, generalizing the notion of comb metric space
introduced in [LUB17] to represent compact ultrametric spaces.

As a special case, we show that any Λ-coalescent can be obtained from a paintbox based
on a unique random nested interval partition called Λ-comb, which is Markovian with explicit
semi-group. This nested interval-partition directly relates to the flow of bridges of Bertoin and
Le Gall [BLG03]. We also display a particularly simple description of the so-called evolving
coalescent [PW06] by a comb-valued Markov process.

Next, we prove that any measured ultrametric space U , under mild measure-theoretic as-
sumptions on U , is the leaf set of a tree composed of a separable subtree called the back-
bone, on which are grafted additional subtrees, which act as star-trees from the standpoint
of sampling. Displaying this so-called weak isometry requires us to extend the Gromov-weak
topology of [GPW06], that was initially designed for separable metric spaces, to non-separable
ultrametric spaces. It allows us to show that for any such ultrametric space U , there is a nested
interval-partition which is 1) indistinguishable from U in the Gromov-weak topology; 2) weakly
isometric to U if U has complete backbone; 3) isometric to U if U is complete and separable.

Keywords and phrases: Combs; compositions; nested compositions; Lambda-coalescents; flow of
bridges; metric measure spaces; Gromov-weak topology.
MSC2010 subject classification: Primary: 60G09; Secondary: 60C05; 60J35; 54E70.

1 Introduction
1.1 Ultrametric spaces and exchangeable coalescents
In this paper we extend earlier work from [LUB17] on the comb representation of ultrametric spaces.
An ultrametric space is a metric space (U, d) such that the metric d fulfills the additional assumption

∀x, y, z ∈ U, d(x, y) 6 max(d(x, z), d(z, y)).

In applications, ultrametric spaces are used to model the genealogy of entities co-existing at the
same time. The distance between two points x and y of an ultrametric space is interpreted as the
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Figure 1: Representation of two nested-interval partitions. A point (x, t) is plotted in dark if
x 6∈ It. Left panel: A realization of the Kingman comb, a tooth of size y at location x represents
that f(x) = y. Right panel: The star-tree comb, an example of nested interval-partition that cannot
be represented as an original comb.

time to the most recent common ancestor (MRCA) of x and y. For instance, in population genetics
ultrametric spaces model the genealogy of homologous genes in a population. Another example can
be found in phylogenetics where ultrametric spaces are used to model the evolutionary relationships
between species.

In population genetics and more generally in biology we do not have access to the entire pop-
ulation (that is to the entire ultrametric space) but only to a sample from the population. To
model the procedure of sampling we equip the ultrametric space with a probability measure µ (also
referred to as the sampling measure) on its Borel σ-field. A sample from the population is an i.i.d.
sequence (Xi)i>1 distributed according to µ. The genealogy of the sample is usually encoded as a
partition valued process, (Πt)t>0 called a coalescent. For any time t > 0, the blocks of the partition
Πt are given by the following relation

i ∼t j ⇐⇒ d(Xi, Xj) 6 t. (1)

The process (Πt)t>0 has two major features. First a well-known characteristic of ultrametric spaces
is that for a given t the balls of radius t form a partition of the space that gets coarser as t increases.
This implies that given s 6 t, the partition Πt is coarser than Πs. Second, if σ denotes a finite
permutation of N and σ(Πt) is the partition of N whose blocks are the images by σ of the blocks
of Πt, we have

(Πt)t>0
(d)= (σ(Πt))t>0.

We call any càdlàg partition valued process that fulfills these two conditions an exchangeable coa-
lescent (note that the process (Πt)t>0 is not necessarily Markovian).

1.2 Combs in the compact case
Combs and ultrametric spaces. In this section, we address similar questions in the much simpler
framework of comb metric spaces which have been introduced recently by [LUB17] to represent
compact ultrametric spaces. A comb is a function

f : [0, 1]→ R+

such that for any ε > 0 the set {f > ε} is finite (see Figure 1 A). To any comb is associated a comb
metric df on [0, 1] defined as

∀x, y ∈ [0, 1], df (x, y) = 1{x 6=y} sup
[x∨y,x∧y]

f.
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In general df is only a pseudo-metric on [0, 1] and it is easy to verify that it is actually ultrametric.
One of the main results in [LUB17] shows that any compact ultrametric space is isometric to a
properly completed and quotiented comb metric space (see Theorem 3.1 in [LUB17]).

Exchangeable coalescents. We also will be interested in the relation between combs and
exchangeable coalescents. Any comb metric space ([0, 1], df ) can be naturally endowed with the
Lebesgue measure on [0, 1]. Sampling from a comb can be seen as a direct extension of Kingman’s
paintbox procedure. More precisely, given a comb f , we can generate an exchangeable coalescent
(Πt)t>0 by throwing i.i.d. uniform random variables (Xi)i>1 on [0, 1] and declaring that

i ∼Πt j ⇐⇒ sup
[Xi∧Xj ,Xi∨Xj ]

f 6 t.

For the sake of illustration, we recall the comb representation of the Kingman coalescent stated
in [Kin82]. The Kingman comb is constructed out of an i.i.d. sequence (ei)i>1 of exponential
variables with parameter 1. We define the sequence (Ti)i>2 as

Ti =
∑
j>i

2
j(j − 1)ej .

The Kingman comb fK is defined as
fK =

∑
i>2

Ti1Xi .

See Figure 1 A. for an illustration of a realization of the Kingman comb. The paintbox based on
fK is a version of the Kingman coalescent (see Section 4.1.3 of [Ber06]).

More generally, the assumption that {f > ε} is finite implies that the coalescent (Πt)t>0 obtained
from a paintbox based on f has only finitely many blocks for any t > 0. This property is usually
refered to as “coming down from infinity”. It has been shown in [Lam17] that any coalescent which
comes down from infinity can be represented as a paintbox based on a comb, see Proposition 3.2.

1.3 General combs
One of the objectives of this work is to extend Theorem 3.1 of [LUB17] and Proposition 3.2 of
[Lam17] to any ultrametric space (not only compact) and to any exchangeable exchangeabe coales-
cent (i.e., beyond the “coming down from infinity” property). From a technical point of view, we
note that this extension is conceptually harder, and requires the technology of exchangeable nested
compositions which were absent in [LUB17]. This point will be discussed further in Section 2.1.

In order to deal with non-compact metric spaces, we need to generalize the definition of a comb
by relaxing the condition on the finiteness of {f > ε}. We will encode combs as functions taking
values in the open subsets of [0, 1]. Any open subset I of [0, 1] can be decomposed into an at-most
countable union of disjoint intervals noted (Ii)i>1. For this reason we will call an open subset of
[0, 1] an interval-partition and each of the intervals Ii is an interval component of I. The space of
interval-partitions is conveniently topologized with the Hausdorff distance on the complement, dH
defined as

dH(I, Ī) = sup
{
d(x, Īc), x 6∈ I

}
∨ sup

{
d(x, Ic), x 6∈ Ī

}
.

We propose to generalize the notion of comb to the notion of nested interval-partition.

Definition 1.1. A nested interval-partition is a càdlàg function (It)t>0 taking values in the open
subsets of [0, 1] verifying

∀s 6 t, Is ⊆ It.

Sometimes nested interval-partitions will be called generalized combs or even simply combs.

Let us briefly see how this definition extends the initial comb of [LUB17]. Starting from a comb
function f , we can build a nested interval-partition (It)t>0 as follows

∀t > 0, It = {f < t}
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and
I0 = int({f = 0})

where int(A) denotes the interior of the set A.
Conversely if (It)t>0 is a nested interval-partition we can define a comb function fI : [0, 1]→ R+

as
fI(x) = inf{t : x ∈ It}.

In general fI does not fulfill that {fI > t} is finite. A necessary and sufficient condition for this to
hold is that for any t > 0, It has finitely many interval components, and the summation of their
lengths is 1. If the latter condition is fulfilled, we say that It is proper or equivalently that it has
no dust.

As in the compact case, an exchangeable coalescent (Πt)t>0 can be obtained from a nested
interval-partition (It)t>0 out of an i.i.d. uniform sequence (Xi)i>1 by defining

i ∼Πt j ⇐⇒ Xi and Xj belong to the same interval component of It.

Remark 1.2. The coalescent obtained through this sampling procedure is not càdlàg in general.
As a coalescent is a non-decreasing process, we can always suppose that we work with a càdlàg
modification of the coalescent.

We will now demonstrate that nested interval-partitions form a large enough framework to
answer our two initial problems: representing any exchangeable coalescent as a paintbox on a comb
and representing general ultrametric spaces.

1.4 Comb representation of exchangeable coalescents
General comb representation. We start by showing that one can always find a comb repre-
sentation of any coalescent. First notice that this representation cannot be unique. For example
taking the symmetric of a comb about the middle of the segment [0, 1] yields a new comb but does
not change the associated coalescent. In many applications we will not be interested by this order
but only with the genealogical structure of the comb. For this reason we introduce the following
relation.

Definition 1.3. Two generalized combs are paintbox-equivalent if their associated coalescents are
identical in law. Being paintbox-equivalent is an equivalence relation, we note I the quotient space.

Remark 1.4 (Combs as Ultrametric Measured Spaces (UMS)). In Section 4, we show that any
comb can be regarded as an UMS. More precisely, we show how to construct an UMS from any comb
in a unique way. Further, any two paintbox-equivalent combs give rise to UMS’s that are in weak
isometry (see Proposition 4.11 for more details). Thus, in that sense, being paintbox-equivalent is
equivalent to being weakly isometric, and the quotient space I can be obtained by quotienting using
the weak isometry relation.

Given I ∈ I we note ρI the distribution on the space of coalescents of the paintbox based on any
representative of I. We provide the following version of Kingman’s representation theorem (e.g.
see [Ber06] Theorem 2.1) for exchangeable coalescents.

Theorem 1.5. Let (Πt)t>0 be an exchangeable coalescent. There exists a unique distribution ν on
I such that

P
(
(Πt)t>0 ∈ ·

)
=
∫
I

ρI(·)ν(dI).

Remark 1.6. It is interesting to relate this result to the original theorem from Kingman. A mass-
partition is a sequence β = (βi)i>1 such that

β1 > β2 > . . . > 0,
∑
i>1

βi 6 1.
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Figure 2: An example of two nested interval-partitions that have the same mass-coalescent but differ-
ent coalescents. For both processes, the initial mass-partition is (1/3, 1/6, 1/6, 1/9, 1/9, 1/9, 0, . . . ),
then (1/3, 1/3, 1/3, 0, . . . ) and finally (1, 0, . . . ). However, for the process on the left-hand side the
first blocks to merge are those of mass 1/6 and 1/9, whereas for the right-hand process, the blocks
of mass 1/6 first merge with the block of size 1/3.

Kingman’s representation theorem states that any exchangeable partition can be obtained through
a paintbox based on a random mass-partition, and that this correspondence is bijective. A mass-
partition can be seen as the ranked sequence of the lengths of the interval components of an interval-
partition. Now notice that two interval-partitions are paintbox-equivalent, i.e. induce the same
exchangeable partition, iff they have the same associated mass-partition. In this one-dimensional
setting, any paintbox-equivalence class of interval-partitions can be identified with a random mass-
partition. In a similar way, it would be natural to try to identify the elements of I with mass-
partition valued processes, also called mass-coalescents. However, one can easily find two different
equivalence classes of I that have the same associated mass-coalescent, see Figure 2.

Remark 1.7. A result very similar to Theorem 1.5 has been obtained in [FHP17] in the context of
hierarchies. Roughly speaking, an exchangeable hierarchy is obtained from an exchangeable coales-
cent by “forgetting about time”. In this sense, an exchangeable coalescent carries more information,
and this part of our work can be seen as an extension of [FHP17]. However, the forthcoming Sec-
tion 3 and Section 4 heavily rely on the knowledge of the coalescence times, and could not have been
achieved in the framework of hierachies. We have dedicated Section A of the appendix to explain
the links between the present work and [FHP17].

Λ-coalescents. Most of the efforts made in the study of exchangeable coalescents have been devoted
to the special case of Λ-coalescents [Pit99, Sag99]. These coalescents are parametrized by a finite
measure Λ on [0, 1], and their restriction to [n] := {1, . . . , n} is a Markov chain whose transitions
are the following. The process undergoes a transition from a partition π with b blocks to a partition
obtained by merging k blocks of π at rate λb,k given by

λb,k =
∫

[0,1]
xk−2(1− x)b−kΛ(dx).

The next proposition states that we can always find a Markovian comb representation of a Λ-
coalescent. Moreover in Section 3 we provide an explicit description of its semi-group.

Proposition 1.8. Let (Πt)t>0 be a Λ-coalescent. There exists (It)t>0 a Markov nested interval-
partition such that the coalescent obtained from the paintbox based on (It)t>0 is distributed as
(Πt)t>0.

Remark 1.9 (Combs and the flow of bridges). The flow of bridges introduced by [BLG03] represents
the dynamics of a population whose genealogy is given by a Λ-coalescent. We will show that we can
build a nested interval-partition from the flow of bridges and that it has the same distribution as
the Markov nested interval-partition of Proposition 1.8, see Section 3.
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A coalescent process models the genealogy of a population living at a fixed observation time.
Many works have been concerned with the dynamical genealogy obtain by varying the observation
time of the population. For example, in [PW06, PWW11] the authors study some statistics of
the dynamical genealogy, namely the time to the MRCA and the total length of the genealogy.
In [GPW08] the genealogy is encoded as a metric space (a real tree, see [Eva07]) and the authors
introduce the tree-valued Fleming-Viot process, a process bearing the entire information on the
dynamical genealogy. This encoding requires to work with metric space-valued stochastic processes,
and with the rather technical Gromov topology for metric spaces.

We address such questions in the framework of combs in Section 3.3. We show that we can
naturally encode a dynamical genealogy as a comb-valued process called the evolving comb. This
process is a Markov process, whose transitions can be explicitly described. In the particular case of
coalescents that come down from infinity, the transitions of the evolving comb take a particularly
simple form in terms of sampling from an independent comb.

Remark 1.10. There exists a natural extension of the Λ-coalescents called the coalescents with
simultaneous multiple collisions or Ξ-coalescents [Sch00]. All our results carry over to Ξ-coalescents,
however for the sake of clarity we will focus on the case of Λ-coalescents.

1.5 Comb representation of ultrametric spaces
The second main aim of this paper is to provide a comb representation of ultrametric measured
spaces in the same vein as Theorem 3.1 of [LUB17]. We will only state our results informally and
refer to Section 4 for the precise statements.

Any nested interval-partition (It)t>0 encodes an ultrametric on [0, 1]. Recall the definition of
the comb function associated to (It)t>0,

∀x ∈ [0, 1], fI(x) = inf{t > 0 : x ∈ It}.

Similarly to the compact case, setting

∀x, y ∈ [0, 1], dI(x, y) = sup
[x∧y,x∨y]

fI

defines a pseudo-ultrametric on [0, 1]. The ultrametric space ([0, 1], dI) is the comb metric space
associated to (It)t>0. For later purpose we will note UI the completion of the set {fI = 0} for the
metric dI (this completion can be realized explicitly by adding countably many “left” and “right”
faces to the comb, see Section 4.4).

We now introduce the Gromov-weak topology on the space of UMS and show that any UMS is
indistinguishable from a comb metric space in this topology. To do so, we realize a straightforward
extension of the work of [GPW06, Gro07] which is focused on separable metric spaces. In short,
starting from an UMS a coalescent can be obtained by sampling from it as described in Section 1.1.
We say that a sequence of UMS converges to a limiting UMS in the Gromov-weak sense if the
corresponding coalescents converge weakly as partition-valued stochastic processes (see Section 4
for a more precise definition). We are now ready to state our representation result, which is a direct
application of Theorem 1.5.

Theorem 1.11. For any UMS (U, d, µ) there exists a comb metric space that is indistinguishable
in the Gromov-weak topology from (U, d, µ).

The comb representation given by Theorem 1.11 is rather weak, since it only ensures that we
can find a comb that has the same sampling structure than a given UMS. We would like to be more
precise and obtain an isometry result as in the compact case. This is not possible in general, and
we have to consider separately the separable case and the non-separable case.

The separable case. In the separable case, the coalescent contains all the information about the
UMS. More precisely, the Gromov reconstruction theorem ensures that two complete separable UMS
that are indistinguishable in the Gromov-weak topology have their supports in isometry, see e.g.
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Figure 3: Illustration of the backbone decomposition. The dark thick lines represent the backbone.
An element of the tree is represented in grey if its descendance has zero mass.

[Gro07] Section 3. 12 .5 or [GPW06] Proposition 2.6. Using the Gromov reconstruction theorem we
will prove in Section 4.5 the following direct extension of Theorem 3.1 of [LUB17] to the separable
case.

Corollary 1.12. Let (U, d) be a complete separable ultrametric space. We can find a nested interval-
partition such that (UI , dI) is isometric to (U, d).

Notice that the proof of the previous proposition is very different from the original proof
of [LUB17] which is no longer valid for non-compact UMS.

The general case. In general, two UMS that are associated to the same coalescent are not
isometric. This essentially comes from the fact that a coalescent only bears the information about
a sequence of “typical” points of the UMS, and that a non-separable UMS may contain more
information than the topology generated by these “typical” points. The main idea of our approach
relies on a new decomposition that we now expose.

An ultrametric space (X, d, µ) can be seen as the leaves of a tree. We show that we can decompose
this tree into two parts. The first part is a separable tree that we call the backbone. Secondly, one
can then recover the tree from the backbone by grafting some “simple” subtrees on the backbone.
By “simple”, we mean that that each of those subtrees have the sampling properties of a star-tree,
in the sense that all sampled points are at the same distance. See Figure 3 for an illustration of this
decomposition. An object very similar to the backbone is studied in [Guf18] but the construction
of the backbone from a general UMS is not considered there.

Our result states that if two UMS have complete backbones and are associated to the same
coalescent, then the backbones are in isometry in a way that preserves the star-trees attached to it.
We say that the two UMS are in weak isometry, see Definition 4.10. In the general case, we have
the following version of Theorem 3.1 of [LUB17].

Corollary 1.13. Let (U, d, µ) be an UMS with a complete backbone. There exists a comb metric
space weakly isometric to (U, d, µ).

1.6 Outline
The rest of the paper is divided into three parts.
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In Section 2 we introduce the notion of composition and nested composition which will be our
main tool to study combs. Section 2.1 introduces the existing material on random compositions.
In Section 2.2 we define exchangeable nested compositions and prove the representation theorem
linking combs and nested compositions. The proof of Theorem 1.5 is given in Section 2.3.

In Section 3 we restrict our attention to the case of Λ-coalescents. We define there the notion of
Λ-comb and study a family of nested compositions emerging from the Λ-coalescents. The proof of
Proposition 1.8 is given in Section 3.2. The evolving comb is introduced and studied in Section 3.3.

Finally in Section 4 we envision combs as ultrametric spaces. A precise outline of this section
is given at the beginning of Section 4.

2 Combs and nested compositions
The objective of this section is to prove Theorem 1.5 on the comb representation of exchangeable
coalescents. As was already mentioned in introduction, the correspondence between combs and
exchangeable coalescents cannot be bijective. Roughly speaking, this comes from the fact that a
nested interval-partition inherits an order from [0, 1], and that changing this order does not modify
the associated coalescent. However, we will show in Section 2.2 that there is a bijective corre-
spondence between nested interval-partitions and exchangeable nested compositions, the ordered
version of exchangeable coalescents. Exchangeable nested compositions will be our main tool to
study combs.

We start this section by recalling existing results and material on exchangeable compositions
developed in [Gne97, DJ91] and then show how to extend them to nested compositions.

2.1 Exchangeable compositions
In combinatorics, a composition of [n] := {1, . . . , n} (resp. N) is a partition of [n] (resp. N) with
a total order on the blocks. We write C = (π,6) for a composision of N where π is the partition
and 6 the order on the blocks. The blocks of the partition π can always be labeled in increasing
order of their least element, i.e. the blocks of π are denoted (B1, B2, . . . ) and are such that for any
i, j > 1,

i 6 j ⇐⇒ min(Bi) 6 min(Bj).

Let σ be a finite permutation ofN, we note σ(C) the composition whose blocks are (σ(B1), σ(B2), . . . )
and such that the order of the blocks is

σ(Bi) 6 σ(Bj) ⇐⇒ Bi 6 Bj .

For example, for n = 5, consider Cn the composition

Cn = {2, 3} 6 {5} 6 {1, 4}.

With our labeling convention, we have B1 = {1, 4}, B2 = {2, 3} and B3 = {5} (B1 needs not be
the first block of C for the order 6). If σ = (2, 1, 3, 5, 4), the composition σ(Cn) is given by

σ(Cn) = {1, 3} 6 {4} 6 {2, 5}.

A random composition C of N is called exchangeable if for any finite permutation σ,

C (d)= σ(C).

Gnedin [Gne97] provides a procedure to build an exchangeable composition of N from any
interval-partition I called the ordered paintbox. Let (Vi)i>1 be an i.i.d. sequence of uniform [0, 1]
variables. Let C be the composition of N whose blocks are given by the relation

i ∼ j ⇐⇒ Vi and Vj belong to the same interval component of I

8



and the order of the block is

B 6 B′ ⇐⇒ Vi 6 Vj , ∀i ∈ B, ∀j ∈ B′.

The main result of [Gne97] shows that any exchangeable composition of N can be obtained as an
ordered paintbox based on a random interval-partition. We now give a proof of this result different
from the original one in [Gne97]. The result we prove is also slightly stronger because we provide
a coupling between the composition and the interval-partition.

Theorem 2.1 (Gnedin). Let C be an exchangeable composition of N. There exists on the same
probability space a random interval-partition I and an independent i.i.d. sequence (Vi)i>1 of uniform
[0, 1] variables such that the ordered paintbox based on I by the sequence (Vi)i>1 is a.s. C.

Before showing the theorem we need a technical lemma. Any composition C = (π,6) can be
encoded as a partial order � on N defined as

i � j ⇐⇒ Bi 6 Bj

where Bi (resp. Bj) is the block containing i (resp. j). The blocks of π can be recovered from �
by the following relation

i ∼ j ⇐⇒ i � j and j � i

and the order 6 by
B 6 B′ ⇐⇒ i � j, ∀i ∈ B, ∀j ∈ B′.

Lemma 2.2. Let C be an exchangeable composition of N. We can find an exchangeable sequence
of [0, 1]-valued random variables (ξi)i>1 such that

i � j ⇐⇒ ξi 6 ξj .

Proof. Let Ai be the set of integers lower than i

Ai = {k : k � i}.

It is immediate that the partition (Ai \ {i},N \ {i} \ Ai) is an exchangeable partition of N \ {i}.
Thus Kingman’s representation theorem [Ber06] ensures that the limit

ξi = lim
n→∞

1
n

Card(Ai ∩ [n])

exists a.s. For any n, the sequence (Card(Ai ∩ [n]))i>1 is exchangeable. Taking the limit, the
sequence (ξi)i>1 is also exchangeable.

We need to show that
i � j ⇐⇒ ξi 6 ξj .

The only difficulty here is to show that ξi 6 ξj implies i � j. Suppose that i 6� j, we need to show
that

ξi − ξj = lim
n→∞

1
n

Card
(
(Ai \Aj) ∩ [n]

)
> 0.

The partition (Aj \ {i, j}, Ai \ {i, j} \Aj ,N \ {i, j} \Ai) is an exchangeable partition of N \ {i, j}.
Another interesting consequence of Kingman’s theorem is that in any exchangeable partition, the
blocks are either singletons or have positive asymptotic frequencies. According to this, it is sufficient
to show that a.s. Ai\Aj has at least two elements that are not i. Consider Bi (resp. Bj) the block to
which i (resp. j) belongs. The set Ai \Aj is the reunion of all the blocks B such that Bj < B 6 Bi.
Thus Ai \ Aj is a singleton iff Bi = {i} and there exists at most one singleton block B such that
Bj < B < Bi. Let n > 1 and consider the block sizes and order of Cn as fixed. Exchangeability
shows that the labels inside the blocks are chosen uniformly among all the possibilities. In particular
this shows that the probability that (Ai \Aj)∩ [n] is a singleton goes to 0 as n goes to infinity.
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Now Theorem 2.1 is essentially a corollary of the previous lemma and of de Finetti’s theorem.

Proof of Theorem 2.1. Let (ξi)i>1 be as above. Applying de Finetti’s theorem we know that there
exists a random measure µ such that conditionally on it the sequence (ξi)i>1 is i.i.d. distributed as
µ. Consider the distribution function Fµ of µ, and its generalized inverse

F−1
µ (x) = inf{r : Fµ(r) > x}.

The interval-partition associated with µ, Iµ, is defined as the set of flats of F−1
µ :

Iµ =
{
x ∈ [0, 1] : ∃y < x < z, F−1

µ (y) = F−1
µ (z)

}
.

The measure µ has the property that if X is distributed as µ, then µ-a.s. Fµ(X) = X. Con-
ditioning on µ, this can be seen from the definition of the sequence (ξi)i>1 and the law of large
numbers:

Fµ(V1) = lim
n→∞

1
n

n∑
j=1

1{ξj6ξ1} = lim
n→∞

1
n

n∑
j=1

1{j�1} = ξ1 µ-a.s.

In the terminology of [Gne97] this shows that the measure µ is uniformized. A uniformized measure
has an atomic and a diffuse part. The support of the diffuse part is Ic

µ and coincides with the
Lebesgue measure. The atomic part is supported by the right endpoints of the interval components
of Iµ. If J = (l, r) is an interval component of Iµ, the measure µ has an atom of mass r− l located
at r.

Let (Jk)k>1 be the interval decomposition of Iµ, and write Jk = (lk, rk). Let (Xi)i>1 be an
independent i.i.d. sequence of uniform variables, we define

Vi =
{
ξi if ξi 6∈ Iµ
(rk − lk)Xi + lk if ξi = rk.

In words, the variables from the sequence (ξi)i>1 which are equal to the atom rk are uniformly
dispersed over the interval Jk. The previous remarks on the structure of uniformized measures
show that conditionally on µ, the sequence (Vi)i>1 is i.i.d. uniform on [0, 1]. The conditional
distribution does not depend on µ, thus the sequence (Vi)i>1 is independent of µ and of Iµ.

We only need to show that the ordered paintbox based on Iµ using the sequence (Vi)i>1 is C
a.s. This is plain from the design of the sequence.

We end this section with a technical result already present in [Gne97] which we will require. Let
C be an exchangeable composition of N and Cn its restriction to [n]. We denote ni the size of the
i-th block of Cn. The empirical interval-partition associated to Cn is given by

In = (0, n1

n
) ∪ (n1

n
,
n1 + n2

n
) ∪ · · · ∪ (n1 + · · ·+ nk−1

n
, 1).

Here is a more pictorial way of constructing In. Divide [0, 1] in intervals of size 1/n and label them
from 1 to n in such a way that i � j iff the block with label i is before the block with label j. Then
In is obtained by merging the intervals whose labels are in the same block of the composition. The
next result states that the interval-partition representing C in Theorem 2.1 can be obtained as the
limit of the empirical interval-partitions.

Proposition 2.3. If C is an exchangeable composition of N, I the interval-partition obtained from
Theorem 2.1 and (In)n>1 the sequence of empirical interval-partitions associated to C, we have

lim
n→∞

dH(In, I \ {0, 1}) = 0 a.s.

Proof. Let µ, (ξi)i>1 and Iµ be as in the proof of Theorem 2.1. De Finetti’s theorem ensures that

lim
n→∞

µn := 1
n

n∑
i=1

δξi = µ a.s.

10



in the sense of weak convergence of probability measures. The interval-partition Iµn coincides with
the empirical interval-partition In and as was already noticed in [Gne97], the weak convergence of
µn implies the convergence of Iµn to I in the Hausdorff topology.

Remark 2.4. This also shows that the representation obtained through Theorem 2.1 is unique in
distribution up to the points 0 and 1 that do not contribute to the paintbox. The interval-partition
I is a.s. recovered from In whose distribution is fully determined by C.

2.2 Exchangeable nested compositions
Gnedin’s theorem sets up a correspondence between random interval-partitions and exchangeable
compositions. We want to find a similar correspondence between nested interval-partitions and
exchangeable nested compositions, the ordered version of exchangeable coalescents. A nested com-
position of [n] (resp. N) is a process (Ct)t>0 taking values in the compositions of [n] (resp. N) such
that, as t increases, only adjacent blocks of the composition merge. More precisely, if (Ct)t>0 is a
nested composition, for any s 6 t, the blocks of Ct are obtained by merging blocks of Cs, and if
A 6 B are two blocks of Cs that merge, they also merge with any block C such that A 6 C 6 B.

Naturally we say that (Ct)t>0 is an exchangeable nested composition of N if for any finite
permutation σ we have

(Ct)t>0
(d)= (σ(Ct))t>0.

We can extend the ordered paintbox construction to nested compositions. Let (It)t>0 be a nested
interval-partition, and (Vi)i>1 an independent i.i.d. uniform sequence. Let Ct be the composition
obtained from the ordered paintbox based on It by (Vi)i>1. Then it is immediate that (Ct)t>0 is
an exchangeable nested composition. Notice that this is only true because we have used the same
sequence (Vi)i>1 for all times t.

We have the following direct reformulation of Theorem 2.1 in the framework of nested compo-
sitions.

Theorem 2.5. Let (Ct)t>0 be an exchangeable nested composition of N. We can find on the
same probability space a nested interval-partition (It)t>0 and an independent i.i.d. sequence (Vi)i>1
of uniform variables such that a.s. the ordered paintbox based on (It)t>0 with (Vi)i>1 is (Ct)t>0.
Moreover, if we identify all the interval partitions that coincide on (0, 1), the interval-partition
representation is unique in distribution.

Proof. Existence. For any t > 0, Ct is an exchangeable composition ofN. We can apply Theorem 2.1
distinctly for t ∈ Q+ to find on the same probability space a collection of interval-partitions (It)t∈Q+

such that for any t ∈ Q+ the ordered paintbox based on It is Ct. Let Int be the empirical interval-
partition associated to Ct ∩[n]. The fact that (Ct)t>0 is a nested composition ensures that (Int )t∈Q+

is a nested interval-partition. Taking the limit as n goes to infinity shows that (It)t∈Q+ is also a
nested interval-partition. It admits a unique càdlàg extension given by

Is = int(
⋂
t>s
t∈Q+

It).

Let (Vi)i>1 be the i.i.d. uniform sequence given by Theorem 2.1 applied at time t = 0. To see
that (Vi)i>1 is independent of (It)t>0, one can do the exact same steps as in the proof of Theorem 2.1
but using a vectorial version of de Finetti’s theorem (see Appendix B).

We now show that for any t ∈ Q+, a.s.

i ∼t j ⇐⇒ Vi and Vj are in the same interval of It (2)

where ∼t is the relation given by the blocks of Ct.
Let n > 1 and divide the interval [0, 1] in n intervals of size 1/n. We label the intervals from

1 to n in the same order as the variables V1, . . . , Vn. Let t ∈ Q+, the first step is to notice that
the empirical interval-partition Int can be recovered by merging the blocks of size 1/n whose labels

11



belong to the same block of Ct. Now, let V (n)
i (resp. V (n)

j ) be the right-hand extremity of the interval
with label i (resp. j). Using twice the law of large numbers shows that V (n)

i and V (n)
j converge to

Vi and Vj respectively. Moreover, we know that Int converges a.s. to It. If we suppose that Vi < Vj

and i ∼t j, then for any n > 1, (V (n)
i , V

(n)
j ) ⊂ Int , and taking the limit shows that (Vi, Vj) ⊂ It.

Conversely if (Vi, Vj) ⊂ It, using the convergence, for n large enough we have (V (n)
i , V

(n)
j ) ⊂ Int

and thus i and j are in the same block of Ct.
That relation (2) holds a.s. for any t > 0 will follow by right-continuity. However we have to

be careful, in general the nested composition obtained from an ordered paintbox is not càdlàg.
By continuity, the relation (2) only holds a.s. for all times t when (Ct)t>0 is continuous. The
original nested composition (Ct)t>0 is recovered by considering a càdlàg modification of the nested
composition obtained though an ordered paintbox based on (It)t>0.

Uniqueness. The points 0 and 1 play no role in the paintbox constrution, thus in order to have
a uniqueness result we need to choose a convention. Here we impose that 0 6∈ It and 1 6∈ It and
show that in this case uniqueness holds. Notice that the interval-partition built in the proof of
Theorem 2.1 and the empirical interval-partitions fulfill this property. The uniqueness will come
from the following convergence result

lim
n→∞

sup
t>0

dH(Int , It) = 0 a.s.

We start by showing the convergence. Let ε > 0, we can split [0, 1] into a finite number of pairwise
disjoint intervals of length smaller than ε noted J1, . . . , Jp. Given a combination of such intervals,
J = Ji1 ∪ · · · ∪ Jik , let fnJ denote the fraction of variables V1, . . . , Vn which belong to J . Then for
any η > 0 using the law of large numbers we can a.s. find a large enough NJ such that

∀n > NJ , |Leb(J)− fnJ | < η.

Let N be large enough such that this condition is fulfilled for all possible combinations of intervals.
We now show that a.s.

∀t > 0,∀n > N, dH(Int , It) 6 η + ε.

Let x 6∈ It, and Jx = (lx, rx) be the interval such that x ∈ J (in case x is the boundary of two
intervals, we chose the left interval). First suppose that lx = 0 or rx = 1. By contruction 0, 1 6∈ Int ,
thus d(x, 0) < ε or d(x, 1) < ε. In the other case, the variables (Vi)i>1 which are in [0, lx] and those
in [rx, 1] are not in the same interval component of It, and by construction of the paintbox, their
labels are not in the same block of Ct. For n > 1, let fn1 (resp. fn2 ) denote the frequency of the
variables (Vi)i6n belonging to [0, lx] (resp. [0, rx]). The previous remark shows that there is a point
y ∈ [fn1 , fn2 ] which does not belong to Int . For n > N we know that y ∈ [lx − η, rx + η] and thus
d(x, y) 6 η + ε. This shows

∀t > 0,∀n > N, sup
x6∈It

d(x, (Int )c) 6 η + ε.

Similarly consider xn 6∈ Int . If xn ∈ {0, 1}, as we have imposed 0, 1 6∈ It, d(xn, Ic
t ) = 0. In the

other case the point xn is the separation between two intervals of Int . These two intervals can be
seen as an agglomeration of blocks of size 1/n whose labels belong to the same block of It. Let i
(resp. j) be the label of the right-most (resp. left-most) block of size 1/n of the left interval (resp.
right interval) separated by xn. The rules of the paintbox contruction imply that Vi and Vj are
not in the same interval of It, thus there exists Vi 6 yn 6 Vj such that yn 6∈ It. The value of
xn is exactly the frequency of variables V1, . . . Vn which belong to [0, yn]. Let Jyn = (lyn , ryn) be
the interval to which y belongs, and fn1 , fn2 be as above the frequency of the n first variables in
[0, lyn ] and [0, ryn ]. As lyn 6 yn, we know that fn1 6 xn, and similarly xn 6 fn2 . Thus for n > N ,
xn ∈ [lyn − η, ryn + η] and d(xn, yn) 6 η + ε. This shows

∀t > 0,∀n > N, sup
x 6∈Int

d(x, Ic
t ) 6 η + ε.
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Thus, a.s. (Int )t>0 converges uniformly to (It)t>0.

To get uniqueness, it is sufficient to notice that the distribution of the sequence (Int , t > 0)n>1
is determined uniquely by that of (Ct)t>0. As we can recover a.s. (It)t>0 from (Int , t > 0)n>1, the
distribution of (It)t>0 is also determined by that of (Ct)t>0.

Remark 2.6. This also proves Proposition 2.3 in a more detailed way.

2.3 Uniform nested compositions, proof of Theorem 1.5
We recall that I stands for the quotient space of combs for the paintbox-equivalence relation. To
be entirely rigorous we need to define a suitable σ-field on I. By definition of I a paintbox based
on any of the representatives of a class yields the same distribution on the space of coalescents. We
can identify each class with this distribution and endow I with the weak convergence topology of
probability measures on the space of coalescents. We consider the associated Borel σ-field. This
approach bears similarity with the Gromov-weak topology introduced in [GPW06], more on this
can be found in Section 4.

The first step to find a comb representation of a given exchangeable coalescent (Πt)t>0 is to
order the blocks of (Πt)t>0 to obtain a nested composition. We will do that using the notion of
uniform nested composition that we now introduce.

Definition 2.7. Let (Ct)t>0 be an exchangeable nested composition of N and (Πt)t>0 be the asso-
ciated coalescent. We say that (Ct)t>0 is uniform if for any n > 1, conditionally on (Πn

t )t>0, the
order of the blocks of (Cnt )t>0 is uniform among all the possible orderings, i.e. all the orderings such
that (Cnt )t>0 is a nested composition.

Let (Πt)t>0 be an exchangeable coalescent. We now describe how to build a uniform nested
composition from (Πt)t>0. We proceed by induction.

For n = 1 there is a unique trivial possible order on the blocks. Suppose that we have built
for n an order on the blocks of (Πn

t )t>0 such that only adjacent blocks can merge, we call such an
order an order consistent with the genealogy. Then there are finitely many orders on the blocks of
(Πn+1

t )t>0 that extend the previous order and are consistent with the genealogy. More precisely, if
n + 1 is in a block of Πn+1

0 the extension is unique. If n + 1 is a singleton of Πn+1
0 , suppose that

{n+ 1} coalesce at some point and that k blocks are involved in this coalescence event. Then there
are k consistent extensions: {n+ 1} can be placed between any of the k− 1 other blocks, or at the
left-most (resp. right-most) position. If {n+ 1} does not coalesce, the singleton can be placed at
any position between blocks that do not coalesce. We pick one of these orders independently and
uniformly.

By induction, we have built on the same probability space as (Πt)t>0 a nested composition of
N whose blocks merge according to (Πt)t>0. It is easily checked from the construction that (Ct)t>0
is a uniform nested composition. A straightforward calculation shows that this nested composition
is exchangeable.

Proof of Theorem 1.5. Let (Πt)t>0 be an exchangeable coalescent. Let (Ct)t>0 be the uniform
nested compositions obtained as above. Invoking Theorem 2.5 shows that there exists a comb
representation (It)t>0 of (Πt)t>0. The uniqueness is immediate from the definition of the quotient.

3 Comb representation of Λ-coalescents
In this section, we restrict our attention to the well-studied case of Λ-coalescents. A process (Πt)t>0
is a Λ-coalescent if for any n > 1, its restriction (Πn

t )t>0 to [n] is a Markov process such that starting
from a partition with b blocks, any k blocks coalesce at rate

λb,k =
∫

[0,1]
xk−2(1− x)b−kΛ(dx)
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for a finite measure Λ on [0, 1].
The broad aim of this section is to find a Markovian comb representation of a given Λ-coalescent,

and to provide its semi-group. Recall from the last section the path followed to obtain a comb
associated to an exchangeable coalescent. The first step is to order the block of the coalescent
to get a nested composition, and then to use Theorem 2.5 to define a comb. Here we will follow
this path in the special case of Λ-coalescents where we can have an explicit description of both the
nested composition and the comb.

Let us first define the nested composition associated to a Λ-coalescent. Consider the modified
transition rates

λ̃b,k = 1
b− k + 1

(
b

k

)
λb,k.

Let n > 1, we define a Markov chain (Cnt )t>0 taking values in the space of composition of [n] as
follows. Starting from c, a composition of [n] with b blocks, any k adjacent blocks merge at rate
λ̃b,k. These transition rates have a natural combinatorial interpretation. Consider (Πn

t )t>0 the
restriction to [n] of a Λ-coalescent. Starting from a partition with b blocks, there are

(
b
k

)
ways of

merging k distinct blocks. Thus the total transition rate from b to b−k+ 1 blocks is
(
b
k

)
λb,k. Given

that k blocks merge, the blocks that merge are chosen uniformly among the
(
b
k

)
possible choices.

Starting from a composition with b blocks, there are only b−k+1 ways to merge k adjacent blocks.
Thus, the total transition rate of (Cnt )t>0 from b to b − k + 1 blocks is the same as (Πn

t )t>0, but
instead of choosing uniformly k blocks among the

(
b
k

)
possibilities, we choose k adjacent blocks

among the b− k + 1 possibilities.
It is usual for Λ-coalescents to formulate the semi-group of the process in terms of coagulation

of partitions. For the composition (Cnt )t>0, we have the following identity. Let t, s > 0, then

Cnt+s
(d)= Coag(Cnt , C′s), (3)

where C′s is an independent nested composition of [n] distributed as Cns . The precise definition of
the coagulation operator Coag for compositions, which is a straightforward extension of the notion
of coagulation of partitions, is given in Section 3.2.

We now extend this sequence of nested compositions to a nested composition of N. To fully
determine the distribution of (Cnt )t>0 we have to specify an initial distribution. We will always
assume in this section that the process (Cnt )t>0 starts from the composition of [n] composed of
only singletons ordered uniformly. Using the Markov projection theorem, it is not hard to see that
the sequence of processes (Cnt , t > 0)n>1, with this initial distribution, is sampling consistent, i.e.
that the restriction of (Cn+1

t )t>0 to [n] is distributed as (Cnt )t>0. Using the Kolmogorov extension
theorem we can find (Ct)t>0 an exchangeable nested composition of N whose projections to [n] is
distributed as (Cnt )t>0 for all n > 1. The process (Ct)t>0 is a nested composition whose blocks
merge according to a Λ-coalescent.

Lemma 3.1. Let (Πt)t>0 be the coalescent associated to (Ct)t>0. Then (Πt)t>0 is a Λ-coalescent.
Moreover for any t > 0, conditionally on Πn

t , Cnt is obtained by ordering uniformly the blocks of Πn
t .

Proof. Let (Cnt )t>0 and (Πn
t )t>0 be the restriction to [n] of (Ct)t>0 and (Πt)t>0 respectively. Let

Qn be the generator of (Cnt )t>0 and Q̂n be the generator of a Λ-coalescent on [n]. The result will
follow by using a Markov projection theorem from [RP81]. To apply this result, we need to find
a probability kernel Ln from the space of partitions of [n] to the space of compositions of [n] such
that for any function f from the space of partitions of [n] to R,

∀π, Q̂nLnf(π) = LnQnf(π)

and such that the initial distribution of (Cnt )t>0 is the push-forward by Ln of the initial distribution
of (Πn

t )t>0.
Let f be such a function. For π a partition of [n], let Cπ be the random composition of [n]

obtained by ordering the blocks of π uniformly. We set

∀π, Lnf(π) = E[f(Cπ)].
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Our choice of initial distribution for (Ct)t>0 ensures that the second condition holds. A straight-
forward generator calculation shows that the above equality is fulfilled and that the desired result
holds. See Appendix C for the details of the calculation.

Using Theorem 2.5, the nested composition (Ct)t>0 defines a unique nested interval-partition
(It)t>0 that we call the Λ-comb. In the remaining of the section we want to show that the Λ-comb is
a Markov process and give its semi-group. For a finite n > 1 we have a description of the semi-group
of (Cnt )t>0 given by the identity (3). Roughly speaking, we want to take the limit as n→∞ in this
identity to obtain the semi-group of (It)t>0. In the framework of interval-partitions, the notion of
coagulation is replaced by that of composition of bridges that we now introduce.

We say that a function B : [0, 1]→ [0, 1] is a bridge if it is of the form

B(x) = x(1−
∑
i>1

βi) +
∑
i>1

βi1{x6Vi}

for a random mass-partition β and an independent i.i.d. sequence (Vi)i>1 of uniform [0, 1] variables.
To any bridge we associate an interval-partition defined as

I(B) = int
(

[0, 1] \B([0, 1])
)

where B([0, 1]) is the range of B. We can ask if the converse holds. The correct notion to answer
this question is that of uniform order.

Definition 3.2. Let I be a random interval-partition and C be the composition of N obtained
through an ordered paintbox based on I. We say that I has a uniform order if for any n > 1, the
order of the blocks of C ∩[n] is uniform.

The following lemma shows that having a uniform order is a necessary and sufficient condition
for an interval-partition to be represented by a bridge.

Lemma 3.3. Let I be a random interval-partition. There exists a bridge B such that I(B) = I
iff I has a uniform order. If I has a uniform order, the bridge B such that I(B) = I is unique in
distribution.

Notice that for any t > 0, It, the Λ-comb at time t, has a uniform order. We will denote BIt
the bridge associated to It through Lemma 3.3. We are now in position to provide the semi-group
of the Λ-comb, which is the direct translation of identity (3) for interval-partitions and bridges.

Proposition 3.4. Let (It)t>0 be the Λ-comb. The process (It)t>0 is Markovian and its semi-group
is given by

∀t, s > 0, It+s
(d)= I(BIt ◦B′s) (4)

where B′s is an independent bridge distributed as BIs .

Remark 3.5. In the coming down from infinity case we have a simpler description of the semi-
group of the Λ-comb. Suppose that (It)t>0 starts from an interval-partition I0 with b blocks and no
dust. Then any k adjacent blocks of I0 merge at rate λ̃b,k.

The above proposition shows that the Λ-comb can be represented in terms of composition of
independent bridges. As a direct corollary, we provide an alternative construction of the Λ-comb
based on the flow of bridges of [BLG03]. A flow of bridges is a collection (Bs,t)s6t of bridges which
fulfills the following three conditions

1. for any s < r < t, Bs,t = Bs,r ◦Br,t (cocycle property);

2. for any t1 < · · · < tp, the bridges (Bt1,t2 , . . . , Btp−1,tp) are independent, and Bt1,t2 is dis-
tributed as B0,t2−t1 (stationarity and independence of the increments);
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3. the bridge B0,t converges to the identity map Id as t ↓ 0 in probability in Skorohod topology.

It can be seen from the cocycle property that the interval-partition-valued process (I(B0,t))t>0 is a
nested interval-partition. Bertoin and Le Gall [BLG03] have defined a sampling procedure to obtain
a coalescent from a flow of bridges. In our context, sampling from the flow of bridges according
to this procedure is the same as doing a paintbox based on (I(B0,t))t>0. An important result
from [BLG03] states that given a Λ-coalescent (Πt)t>0, there exists a unique flow of bridges whose
associated coalescent is distributed as (Πt)t>0 (see Theorem 1 in [BLG03]). We call it the Λ-flow
of bridges. Using this link, we are able to show that the comb associated to the Λ-flow of bridges
is the Λ-comb introduced above from the transition rates.

Corollary 3.6. Let Λ be a finite measure on [0, 1], and let (It)t>0 be the Λ-comb and (Bs,t)s6t be
the Λ-flow of bridges. Then

(It)t>0
(d)= (I(B0,t))t>0.

Proof. Let p > 1 and 0 6 t1 < · · · < tp. Using the Markov property of (It)t>0 and the semi-group (4)
we know that

(It1 , . . . , Itp) (d)= (It1 , I(BIt1 ◦B′1), . . . , I(BIt1 ◦B′1 ◦ · · · ◦B′p−1)),

where (B′1, . . . , B′p−1) are independent bridges and for 1 6 k 6 p−1, B′k is distributed as BItk+1−tk .
Let (Bs,t)s6t be the Λ-flow of bridges. Then from the cocycle property

(I(B0,t1), . . . , I(B0,tp)) = (I(B0,t1), I(B0,t1 ◦Bt1,t2), . . . , I(B0,t1 ◦Bt1,t2 ◦ · · · ◦Btp−1,tp)).

Moreover from the independence and stationarity of the increments, (Bt1,t2 , . . . , Btp−1,tp) are inde-
pendent bridges with the same distribution as above.

Remark 3.7. In this section we have defined the Λ-comb using the framework of compositions
developed earlier. Another approach could be to start from the Λ-flow of bridges and define the
Λ-comb to be the process (I(B0,t))t>0. However, it is rather difficult then to prove that the Λ-comb
is a Markov process. Using the notion of composition greatly simplifies this task here.

3.1 Proof of Lemma 3.3
We will need the following continuity result.

Lemma 3.8. The map I : B 7→ I(B) that maps a bridge to its associated interval-partition is
continuous when the space of interval-partitions is endowed with the Hausdorff topology and the
space of bridges with the Skorohod topology.

Proof. Let Bn be a sequence of bridges that converge to B in the Skorohod topology. We know that
we can find a sequence of continuous bijections λn from [0, 1] to [0, 1] such that limn→∞‖λn − Id‖∞
and limn→∞‖B −Bn ◦ λn‖∞ = 0. Let I = I(B) and In = I(Bn). As the interval-partitions are
obtained from bridges, we can re-write the Hausdorff distance as

dH(I, In) = sup
x∈[0,1]

inf
y∈[0,1]

|Bn(x)−B(y)| ∨ sup
x∈[0,1]

inf
y∈[0,1]

|Bn(y)−B(x)|.

We have
sup
x∈[0,1]

inf
y∈[0,1]

|B(x)−Bn(y)| 6 sup
x∈[0,1]

|B(x)−Bn(λn(x))|

and
sup
x∈[0,1]

inf
y∈[0,1]

|B(y)−Bn(x)| 6 sup
x∈[0,1]

∣∣B(λ−1
n (x))−Bn(x)

∣∣
and thus

lim
n→∞

dH(I, In) = 0,

which ends the proof.
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Proof of Lemma 3.3. First suppose that I is of the form I(B) for some bridge B. Consider B−1 the
generalized inverse of B. Let (Vi)i>1 be i.i.d. uniform variables and C be the composition obtained
through an ordered paintbox using these variables. By construction of the ordered paintbox and as
B−1 is non-decreasing, the order of the blocks of C is given by the order of the variables (B−1(Vi))i>1.
Conditionally on the bridge these variables are i.i.d. and thus their order is uniform.

Now let I be an interval-partition with a uniform order and C be the composition obtained
by an ordered paintbox. We will first consider the case where I has finitely many blocks and no
dust. The fact that the order of the blocks of the composition C are uniform shows that the order
of the interval components of I is uniform (each block of C corresponds to an interval of I). Let
K be the number of blocks of I, and let V ∗1 < · · · < V ∗K be the order statistics of independent
uniform variables. Suppose that β1 is the length of the left-most interval of I, β2 that of the second
left-most, etc. then

∀u ∈ [0, 1], B(u) =
K∑
i=1

βi1{V ∗i 6u}

is a bridge such that I(B) = I. Indeed, since the order of the intervals is uniform, there is a uniform
permutation σ of [K] independent of V ∗1 , . . . , V ∗K , such that (βσ(i)) is ranked in nonincreasing order.
This shows that

B(u) =
K∑
i=1

βσ(i)1
{
V ∗
σ(i)6u

}
indeed defines a bridge. This also shows the uniqueness in distribution of B.

Let us turn to the general case. Let n > 1 and consider In the empirical interval-partition
associated to C ∩[n]. By assumption the interval-partition In has a uniform order, thus using the
above argument we can find a unique bridge Bn such that I(Bn) = In. We know that In converges
a.s. to I. Let βn (resp. β) be the mass-partition associated to In (resp. I). As the function that maps
an interval-partition to its mass-partition is continuous, we have that βn converges a.s. to β (see
e.g. [Ber06]). We can now make use of another continuity result, namely Lemma 1 from [BLG03],
to show that the sequence of bridges (Bn)n>1 converges in distribution to a bridge B obtained from
the mass-partition β. Using Lemma 3.8, we know that I(Bn) converges in distribution to I(B). By
uniqueness of the limit, we get that

I
(d)= I(B),

and that B is unique.

3.2 Proof of Proposition 3.4
Proposition 3.4 will follow by taking the limit in the equality (3). First, let us define more carefully
the notion of coagulation.

Coagulation of partitions. Let π and π′ be two partitions of [n] or N. Let (Ai)i>1 and
(A′i)i>1 be the blocks of π and π′ respectively, labelled in the order of their least element. We
note Coag(π, π′), the coagulation of π by π′, the partition whose blocks are⋃

i∈A′
j

Ai, j > 1.

In words the blocks of π whose labels belong to the same block of π′ are merged together. For
example if

π = {{1, 4}, {2, 5}, {3}}, π′ = {{1, 3}, {2, 4, 5}}

then
Coag(π, π′) = {{1, 3, 4}, {2, 5}}.
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Composition of n. Let c be a composition of [n] with b blocks and ni be the size of the i-th block,
in the order of the composition. The vector (n1, . . . , nb) is called the composition of n associated
to c, we will denote it l(c). The compositions of n are the ordered collections (n1, . . . , nb) such that
n1 + · · ·+ nb = n. For example the composition of 5 associated to

c = ({3, 5}, {1}, {2, 4})

is l(c) = (2, 1, 2). Alternatively, we can represent a composition of n as a partition of [n]: the blocks
of the partitions are [ni] \ [ni−1] for 1 6 i 6 b with the convention [0] = O6 . In our example the
representation of (2, 1, 2) is

{{1, 2}, {3}, {4, 5}}.

Coagulation of compositions. The last definition is an extension of the notion of coagulation
to compositions. Let c be a composition of [n] with b blocks. We will first define the notion of
coagulation of c by a composition of b. Let c′ be a composition of b represented as a partition. We
note A1 6 . . . 6 Ab the blocks of c labelled according to their rank, i.e. such that A1 is the first
block etc, and A′1, . . . , A′k the blocks of c′ labelled according to their least elements. Let π be the
partition whose blocks are

Cj =
⋃
i∈A′

j

Ai, j 6 k.

By construction, the blocks of π are formed of adjacent blocks of the composition c. Thus π inherits
a natural order on its blocks from c. Let Ci and Cj be two blocks of π, we define

Ci 6
′ Cj ⇐⇒ ∀r ∈ A′i,∀l ∈ A′j , Ar 6 Al.

The composition (π,6′) is called the coagulation of c by c′ and is noted Coag(c, c′). This notion is
better understood with an example. Let

c = ({5, 6}, {1, 4}, {3}, {2}), c′ = (1, 2, 1) = {{1}, {2, 3}, {4}},

then
Coag(c, c′) = ({5, 6}, {1, 3, 4}, {2}).

Now consider c a composition of [n] with b blocks and c′ another composition of [n]. We set

Coag(c, c′) = Coag(c, l(c ∩ [b])).

Proof of Proposition 3.4. The first step to prove Proposition 3.4 is to rephrase the equality (3) in
terms of empirical interval-partitions. Let (Cnt )t>0 be the Markovian nested composition whose
transition rates are given by the array (λ̃b,k, 2 6 k 6 b <∞).

Let t, s > 0 and suppose that Cnt has b blocks. Let Int be the empirical interval-partition
associated to Cnt and I ′s be an independent interval-partition distributed as Is. We now build a
new interval partition as follows. We label the blocks of Int from left to right by 1, . . . , b. Consider
V ∗1 < · · · < V ∗b the order statistics of independent uniform variables V1, . . . , Vb. Similarly as above,
we can define a bridge Bn from V ∗1 , . . . , V

∗
b and Int such that I(Bn) = Int . Let I be the interval-

partition obtained by merging intervals i and j of Int if V ∗i and V ∗j are in the same interval of I ′s,
for all i, j. It should be clear that if BI′s is such that I(BI′s) = I ′s then

I = I(Bn ◦BI
′
s).

Now notice that the coagulation mechanism we have described to obtain I is exactly the coagulation
of Cnt by the composition of b obtained from the ordered paintbox using the variables V ∗1 , . . . , V ∗b
and the interval-partition I ′s. As the latter composition of b is distributed as C′s, expression (3)
translates into

Int+s
(d)= I(Bn ◦BI

′
s). (5)
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We now take the limit in equation (5). We know that a.s. Int converges to It. A similar
argument as in the proof of Lemma 3.3 shows that Bnt converges in distribution to a bridge Bt,
and that I(Bt) is distributed as It. Using the facts that 1) composition (in the ordinary sense of
the word) is continuous in the Skorohod topology and 2) the map I is continuous, shows that the
right-hand side of (5) converges in distribution to

I(BIt ◦B′s).

Moreover Int+s converges a.s. to It+s, thus

It+s
(d)= I(BIt ◦B′s).

Let us now show the Markov property of the Λ-comb. Let p > 1 and 0 6 t1 < · · · < tp. Using
the Markov property of (Cnt )t>0 and repeating the above argument shows that

(Int1 , . . . , I
n
tp) (d))= (I(BI

n
t1 ), I(BI

n
t1 ◦B′2), . . . , I(BI

n
t1 ◦B′2 ◦ · · · ◦B′p))

where BI
n
t1 is such that Int1 = I(BI

n
t1 ) and (B′2, . . . , B′p) are independent bridges, such that for

k = 2, . . . , p, B′k is distributed as BItk−tk−1 . Taking the limit as above shows that

(It1 , . . . , Itp) (d))= (I(BIt1 ), I(BIt1 ◦B′2), . . . , I(BIt1 ◦B′2 ◦ · · · ◦B′p))

where It1 = I(BIt1 ).

3.3 Dynamical combs
As mentioned in introduction, an exchangeable coalescent models the genealogy of a population
observed at a given time. By varying the observation time we obtain a dynamical genealogy that
has been named the evolving coalescent. There has been much interest into studying evolving coa-
lescents. For example, if the coalescent at a fixed time is the Kingman coalescent, [PW06, PWW11]
have studied statistics of the evolving coalescent using a look-down representation, [GPW08] stud-
ied the dynamics of the entire tree structure using the framework of the Gromov-weak topology.
Evolving coalescents such that the coalescent at a fixed time is a more general Λ-coalescent have also
been considered, see e.g. [KSW14] for the case of Beta-coalescents and [Sch12] for the Bolthausen-
Sznitman coalescent.

In this section we show that the previous results on the Markov property of the Λ-comb allow
us to define a comb-valued process, the evolving comb, such that sampling from the evolving comb
yields an evolving coalescent. The evolving comb contains all the information about the dynamical
genealogy but does not require the cumbersome framework of random metric spaces endowed with
the Gromov-Hausdorff topology as in [GPW08]. For the sake of clarity we will only consider the
evolving Kingman comb where we have an explicit construction of the genealogy at a fixed time.

We will build the evolving Kingman comb by defining its semi-group. Recall that when the
coalescent associated to a nested interval-partition comes down from infinity, the comb can be
represented using a comb function, see Section 1.2. Let f be a deterministic comb function and
s > 0, we want to describe the genealogy of the population at time s given that its genealogy at time
0 is encoded by f . The procedure we follow is illustrated in Figure 4. Recall the Kingman comb
construction discussed in introduction. Let (ei)i>1 be a sequence of i.i.d. exponential variables, and
(Ui)i>1 a sequence of i.i.d. uniform [0, 1] variables. For i > 2, we set

Ti =
∑
k>i

2
k(k − 1)ek.

The Kingman comb is given by
fK =

∑
i>2

Ti1Ui .
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It is known [LS18] that the above construction generates the comb associated to the flow of bridges,
i.e. the Λ-comb associated to the Kingman coalescent. There are only finitely many teeth of fK
that are larger than s, i.e. such that Ti > s, say Ns. Let σ be their order, e.g. σ(1) is the label of the
left-most tooth. Consider V ∗1 < · · · < V ∗Ns+1 the order statistics of Ns + 1 i.i.d. uniform variables.
This defines Ns intervals, for 1 6 k 6 Ns let Mk be the greatest tooth of f in (V ∗k , V ∗k+1), i.e.

Mk = sup
(V ∗
k
,V ∗
k+1)

f.

We define new variables (T̂i)i>2 as follows

∀i > Ns + 1, T̂i = T ′i ,

and
∀i 6 Ns, T̂i = Mσ(i) + s.

(Notice that as the labels start from 2, σ maps {1, . . . Ns} to {2, . . . , Ns + 1} and the sequence
(T̂i)i>2 is well-defined.) We define

f̂K =
∑
i>2

T̂i1Ui .

Geometrically, the comb f̂K is obtained through a cutting and pasting procedure illustrated in
Figure 4.

The above construction defines an operator given by

PtF (f) = E[F (f̂K)],

for all continuous bounded functions F . We will show below that the family of operators (Pt)t>0
is a semi-group. Thus we can define a comb-valued Markov process (Ir)r>0 whose transitions are
given by the above construction. We call the process (Ir)r>0 the evolving Kingman comb.

Lemma 3.9. The family of operators (Pt)t>0 is a semi-group. Moreover the Kingman comb is a
stationary distribution of the evolving Kingman comb.

Proof. Let s, t > 0, let f be a deterministic comb. We call ft the comb obtained through the above
procedure at level t starting from f , and ft+s the one obtained according to the above procedure at
level s, but using ft as starting comb. We need to show that ft+s is distributed as f ′t+s, the comb
obtained at level t+ s starting at from f .

It is sufficient to show that the portion of the comb ft+s lying between level 0 and t + s is
distributed as a Kingman comb truncated at height t + s. To show that, it is more convenient to
see combs as nested interval-partitions. The procedure described above can be rephrased in terms
of composition. Suppose that ft+s has K truncated teeth at time s, this defines K + 1 intervals
of [0, 1]. For each of these intervals of ft+s, we throw a uniform variable. Two intervals merge at
the first moment when their corresponding variables belong to the same subinterval of ft. This is
exactly the description of the ordered paintbox procedure. Thus, using the Markov property of the
Kingman comb we know that ft+s, between level 0 and t + s, is ditributed as the truncation of a
Kingman comb. This argument also shows that the Kingman comb is a stationary distribution.

This construction can be easily extended to the case of Λ-coalescents that come down from
infinity, even though we do not have an explicit construction of the comb in this case. In short,
to obtain the evolving comb at time s, one needs to sample independently a new comb, erase the
portion lying above height s and replace it by teeth sampled from the original comb. In the general
case, we have to define the transition of the evolving comb using composition of bridges.

Again, the evolving comb can be built from the flow of bridges. Let (Bs,t)t>0 be a Λ-flow of
bridges, for any time r we can build a nested interval-partition by setting

(Irt )t>0 = (I(Br,r+t))t>0.
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Figure 4: Transition of the evolving Kingman comb. The comb at time s, f̂K , is represented on
the left, and the initial comb fK is on the right. To obtain f̂K , one has first to erase the part of
the left comb lying above level s. Here we have erased Ns = 4 teeth. Then throw Ns + 1 uniform
variables V1, . . . , VNs+1, this defines Ns intervals between these variables, here (V5, V1), (V1, V4),
(V4, V2) and (V2, V3). Finally take the largest tooth in each of these intervals, represented in black
on the right-hand comb, and paste it in place of the erased tooth, as represented in grey on the
left-hand comb.

Then, using a similar argument as in the proof of Corollary 3.6 we could show that the comb-
valued process (Ir)r>0 = ((I−rt )t>0)r>0 is distributed as the evolving comb introduced above. As
a remark this provides a càdlàg modification of the evolving comb, and the Feller property of the
flow of bridges ensures that the evolving comb is a Feller process.

4 Combs and ultrametric spaces
In this section we envision combs as random UMS. Random metric spaces have already been consid-
ered in [GPW06, Gro07]. A key working hypothesis there is that the metric spaces are separable. In
terms of combs and coalescents, separability translates into absence of dust (see Section 4.5). While
separability is a very natural hypothesis when considering measured metric spaces, restricting our
attention to combs without dust seems arbitrary, as dust has not raised any difficulty so far. In
this section we provide a straightforward extension of the framework of random metric spaces to
account for non-separable UMS.

Let us recall the heuristic of our approach and give a short outline of this section. Under
minimal assumptions which are described in Section 4.1, we can obtain a coalescent by sampling
from an UMS. We can define a topology on the space of UMS by saying that a sequence of UMS
converges if the associated sequence of coalescents converges weakly as probability measures. In the
separable case, the Gromov reconstruction theorem ensures that spaces that are indistinguishable
have their supports in isometry. In general this result does not hold, we want to obtain a similar
result for general UMS. In order to that, we introduce in Section 4.2 the notion of backbone of
an UMS. An UMS can be seen as the leaves of a tree. This tree can be decomposed into 1) a
separable part, that we call the backbone and 2) additional subtrees grafted on this backbone.
Even though these subtrees can have a complex geometry, from a sampling standpoint they behave
as star-trees (recall Figure 3). In Section 4.3, we show that if two UMS are indistinguishable in the
Gromov-weak topology, then they are weakly isometric, in the sense that we can find an isometry
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between their backbones and a measure-preserving correspondence between the star-trees attached
to them (see Proposition 4.11 for a rigorous statement). Finally Section 4.4 is dedicated to showing
Corollary 1.13, i.e. that we can always find a comb metric space weakly isometric to a given UMS,
and Section 4.5 is devoted to showing Corollary 1.12, i.e. that in the separable case we can always
find a comb metric space isometric to a given UMS.

4.1 General UMS and the Gromov-weak topology
Naively, an UMS is any metric measured space (U, d, µ) where d is an ultrametric and µ is a
probability measure defined on the Borel σ-field of (U, d). However, two problem arise from this
definition. First, the space U can be very general. We need to impose some measurability conditions
in order to make sense of the coalescent associated to an UMS. Second, roughly speaking, the Borel
σ-field of a non-separable metric space tends to be large, and fewer measures can be defined on it.
For example, by restricting our attention to Borel measure, we cannot find an UMS that is associated
to a coalescent with dust. (More precisely, this question is related to a measure theoretic problem
known as the Banach-Ulam problem, and a positive answer to it would require additional axioms,
see Section F of the Appendix.) These two considerations lead us to the following definitions.

Definition 4.1. Let (U, d) be an ultrametric space. The genealogical σ-field Egen associated to
(U, d) is defined as

Egen = σ({B(x, t), x ∈ U, t > 0})

where B(x, t) is the open ball of radius t centered at x.

Example 4.2. Consider any set U as above endowed with the metric

∀x, y ∈ U, d(x, y) = 1{x 6=y}.

In this case Egen is the countable-cocountable σ-field.

Definition 4.3. An UMS is an ultrametric measured space (U, d,F , µ), where µ is a probability
measure defined on F and such that

(i) Egen ⊆ F ;

(ii) the ultrametric d is a measurable map from U × U to R+ when U × U is endowed with the
product σ-field F ⊗F .

Remark 4.4. The second assumption has rather drastic consequences on the space U . For example,
it implies that the cardinal of U is not greater than that of R.

The inclusion Egen ⊆ B(U) always holds. Thus we allow ourselves to define measures on a σ-
field smaller than the Borel σ-field as desired. Moreover, as we will see below, point (ii) is necessary
to obtain a coalescent out of an i.i.d. sequence in U .

We now define the Gromov-weak topology on the space of UMS. Let (U, d, µ) be an UMS, and
consider (Xi)i>1 an i.i.d. sequence distributed as µ. We can define an exchangeable coalescent
through the set of relations

i ∼Πt j ⇐⇒ d(Xi, Xj) 6 t.

(Notice that here our measurability assumption is key.) Alternatively, we can see this coalescent as
a random pseudo-ultrametric on N defined as

∀i, j > 1, dΠ(i, j) = d(Xi, Xj).

Both objects encode the same information, as dΠ can be recovered from (Πt)t>0 through the equality

∀i, j > 1, dΠ(i, j) = inf{t > 0 : i ∼Πt j}.

The distribution of this pseudo-ultrametric is called the distance matrix distribution of the UMS.
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Remark 4.5. From a topological point of view, a pseudo-ultrametric on N can be seen as an
element of R(N2)

+ endowed with its product topology. Notice that in this case, the correspondence
between pseudo-ultrametrics on N and coalescents outlined above is an homeomorphism.

We use distance matrix distributions to define a topology on the space of UMS. Consider a
sequence (Un, dn, µn)n>1 of UMS, and denote (νn)n>1 the associated sequence of distance matrix
distributions. We say that the sequence (Un, dn, µn)n>1 converges in the Gromov-weak topology to
(U, d, µ) if (νn)n>1 converges weakly to ν, the distance matrix distribution of (U, d, µ), in the space
of probability measures on R(N2).

Remark 4.6. In the separable case, Egen = B(U) always hold, and d is measurable. Thus in the
separable case, Definition 4.3 coincides with the “naive” definition of an UMS. We recover the usual
framework of metric measured spaces.

4.2 Backbone
It is well known that any ultrametric space (U, d) can be seen as the leaves of a tree. This is
illustrated in Fig. 3. Formally, we work on the space U ×R+ and consider the pseudo-metric

dT ((x, s), (y, t)) = max(d(x, y)− s+ t

2 ,
|t− s|

2 ).

Let T be the space U ×R+ quotiented by the equivalence relation

z ∼ z′ ⇐⇒ dT (z, z′) = 0.

Then the space (T, dT ) is a real tree [Eva07] whose leaves can be identified with (U, d).

Definition 4.7 (Backbone of T ). Define

f :
{
U → R+

x 7→ inf{t > 0 : µ(B(x, t)) > 0},

(note that f is measurable since Egen ⊆ F) and let

S := {(x, t) ∈ T : t > f(x)}.

The space S will be referred to as the backbone of the tree T , and we denote by dS the distance dT
restricted to S.

Let us now motivate the next result that will be fundamental to our approach. In words,
Proposition 4.8 states that even if the underlying UMS is not separable, the backbone is always
a separable tree. Secondly, one can recover the whole tree from the backbone by grafting some
“simple” subtrees on the skeleton. By “simple”, we mean that each of those subtrees have the
sampling properties of a star-tree. Let us be more explicit about this last statement and discuss an
example.

Consider the space [0, 1]× {0, 1} endowed with the ultrametric

∀x, y ∈ [0, 1], ∀a, b ∈ {0, 1}, d
(
(x, a), (y, b)

)
=


1 if x 6= y,

1/2 if x = y and a 6= b,

0 if (x, a) = (y, b).

The space ([0, 1]×{0, 1}, d) is a star-tree where each branch splits in two at height 1/2 (see Figure 5
left panel), we call it the bifurcating star-tree. We endow this space with the product measure
of the Lebesgue measure on [0, 1] and the uniform measure on {0, 1}. Consider two independent
random variables (X,A) and (Y,B) distributed according to the above measure. We see that these

23



Figure 5: Left panel: The bifurcating star-tree. Right panel: The bifurcating star-tree simplified
according to the metric d̃. In both cases, the backbone is illustrated with a bold black line and the
subtrees attached to it with thin grey lines.

two variables lie at distance 1/2 iff X = Y and A 6= B, which happens with probability 0. Thus,
from a sampling point of view, all points of the space lie at distance 1 from one another, i.e. the
bifurcating star-tree is a star-tree (see Figure 5 right panel).

This examples illustrates the more general phenomenon that from the measure point of view,
the subtrees attached to the backbone behave like star-trees. More formally, consider an UMS
(U, d,F , µ). We introduce the distance

∀x, y ∈ U, d̃(x, y) = 1{x6=y} inf{t > 0 : d(x, y) 6 t and µ(B(x, t)) > 0},

which replaces each subtree attached to the backbone by a star-tree. The point (iii) of the following
proposition shows that the coalescent obtained by sampling from (U, d,F , µ) is the same as the
coalescent obtained by sampling from (U, d̃,F , µ).

Proposition 4.8. (i) (S, dS) is a separable tree.

(ii) The map

ψ :
{

(U,F)→ (S,B(S))
x 7→ (x, f(x))

is measurable and we define µS := ψ ? µ, the pushforward measure (on (S,B(S))) of µ by ψ.
In particular, the support of µS belongs to the subset of the backbone {(x, t) ∈ S : t = f(x)}.

(iii) Consider an i.i.d. sequence (Xi)i>1 distributed according to µ. Then a.s. for all i, j > 1,
d(Xi, Xj) = d̃(Xi, Xj).

Proof. We start by proving (i). The fact that S is a tree can be checked directly from the definition.
We now show that it is separable. Let t ∈ Q+, there are only countably many balls of (U, d) of
radius t and positive mass, let us label them (Bti )i>1. For any t ∈ Q+ and i > 1, let xti ∈ Bti .
Let us now consider the collection (xti, t)t∈Q+,i>1. First, since µ(B(xti, t)) > 0, it follows from the
definition that t > f(xti), and thus (xti, t)t∈Q+,i>1 is a countable collection of S and it remains to
show that this collection is dense in S.

Let ε > 0 and let (x, s) ∈ U×R+ in S. We can find t ∈ Q+ such that t > s > f(x) and t−s < ε.
By definition of f , µ(B(x, t)) > 0, and we can find i such that B(x, t) = Bti . Then d(x, xti) < t and

d(x, xti)−
t+ s

2 < d(x, xti)− t+ ε/2 < ε/2

and thus dT ((x, s), (xti, t)) < ε. This shows that the collection is dense and that the space is
separable.
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We now turn to the proof of (ii). Let (x, t) ∈ S, we note

C(x, t) = {(y, s) ∈ S : dT ((x, t), (y, t)) = 0}

the clade generated by (x, t). In a genealogical interpretation, C(x, t) is the progeny of (x, t) i.e.
the subtree that has (x, t) as its MRCA. Notice that this notion can be defined similarly on any
rooted tree (here the root is an “infinite point” obtained by letting t → ∞). It is clear that
ψ−1(C(x, t)) = B(x, t). Our results is now immediate from the fact that the clades of a rooted
separable tree induce the Borel σ-field of the tree. A proof of this fact is given in Appendix D.

We now prove (iii). It is sufficient to prove that a.s. d(X,Y ) = d̃(X,Y ) for X and Y two
independent variables distributed as µ. Notice that for any x, y ∈ U , d(x, y) 6 d̃(x, y). Thus the
probability that d(X,Y ) 6= d̃(X,Y ) can be written

P
(
d(X,Y ) 6= d̃(X,Y )

)
=
∫∫

1{d(x,y)<d̃(x,y)}µ(dx)µ(dy) =
∫
µ(dx)

∫
µ(dy)1{d(x,y)<f(x)} = 0,

where the last equality can be seen by writting

{x, y ∈ U : d(x, y) < f(x)} =
⋃
ε>0
{x, y ∈ U : d(x, y) < f(x)− ε}

and noticing that each event of the union in the right-hand side has null mass.

Remark 4.9 (Backbone and marked metric space). An object similar to the backbone appears
in [Guf18] using the framework of marked metric spaces introduced in [DGP11]. We can interpret
the backbone as a marked metric space where the metric space is U endowed with the backbone
metric

d̄(x, y) = dS
(
(x, f(x)), (y, f(y))

)
and the mark space is R+. According to this correspondence, backbones are examples of elements
of the set Û defined in [Guf18]. The novelty of the present work is that we do not consider as
given the backbone of the space, but starting from the UMS, we simplify it to obtain the backbone.
This approach requires to identify the measurability assumptions to be made on UMS to avoid the
problems that are discussed in Section F of the Appendix.

Moveover, the link between backbones and marked metric spaces enables us to use the work
of [DGP11]. For instance, this provides a metric, the marked Gromov-Prohorov metric, that
metrizes the Gromov-weak topology on UMS and ensures that the topology is separable.

4.3 Isomorphism between backbones
The aim of this section is to introduce the notion of isomorphism between backbones and to prove
our reformulation of the Gromov reconstruction theorem.

Definition 4.10. Let (U, d, µ) and (U ′, d′, µ′) be two UMS with respective backbones (S, µS) and
(S ′, µ′S). We say that Φ is an isomorphism from S to S ′ if

(i) Φ is a measure-preserving isometry from S to S ′;

(ii) for every (x, t) ∈ S, there exists x′ ∈ U ′ such that Φ
(
(x, t)

)
= (x′, t), i.e. Φ preserves the

second coordinate.

We say that two UMS are in weak isometry when they have isomorphic backbones.

We want to show the following result. In words, having the same distance matrix distribution
is equivalent to being weakly isometric.

Proposition 4.11. Let (U, d,F , µ) and (U ′, d′,F ′, µ′) be two UMS with respective backbones (S, µS)
and (S ′, µ′S). We suppose that the two backbones are complete metric spaces. Then the two spaces
(S, µS) and (S ′, µ′S) are isomorphic iff the distance matrix distribution associated (U, d,F , µ) and
(U ′, d′,F ′, µ′) are identical.
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Let us compare this result to the original result from [Gro07]. In the separable case, if two
UMS share the same coalescent then their supports are in isometry. Thus two separable spaces that
are indistinguishable in the Gromov-weak topology share the exact same metric structure. The
situation is rather different in the general case. Even if two UMS share the same coalescent, they
can have rather different metric structures, think of the bifurcating star-tree and the star-tree of
Figure 5. What Proposition 4.11 states is that in this case there is only a correspondence between
coarsenings of the UMS, i.e. the backbones on which all the subtrees are replaced by star-trees.
This result is not surprising as the distance matrix distribution only contains the information of a
countable number of points, which is not enough to explore the fine metric structure of the UMS.

The “only if” part of Proposition 4.11 is a direct consequence of the following lemma, which
shows that the distance matrix distribution of an UMS can be recovered from an i.i.d. sequence of
points of the backbone.

Lemma 4.12. Let (Xi)i>1 be an i.i.d. sequence in U sampled according to µ. Then a.s.

∀i, j > 1, d(Xi, Xj) = dS
(
(Xi, f(Xi)), (Xj , f(Xj))

)
+ f(Xi) + f(Xj)

2 (6)

and

∀i > 1, f(Xi) = inf{t > 0 : {j : d(Xj , Xi) 6 t} is infinite}. (7)

Proof. We know from Proposition 4.8 that a.s. for any i, j > 1, d̃(Xi, Xj) = d(Xi, Xj). Suppose
that (Xi, f(Xi)) and (Xj , f(Xj)) lie at distance 0 in the backbone, then d̃(Xi, Xj) = f(Xi) = f(Xj)
and (6) holds. Otherwise notice that d(Xi, Xj) > f(Xi) and d(Xi, Xj) > f(Xj). Thus

d(Xi, Xj)−
f(Xi) + f(Xj)

2 6
|f(Xi)− f(Xj)|

2
and

dS
(
(Xi, f(Xi)), (Xj , f(Xj))

)
= d(Xi, Xj)−

f(Xi) + f(Xj)
2 .

The second point of the lemma is a direct consequence of the definition of f and of the observation
that if µ(B(x, t)) > 0, then a.s. there are infinitely many (Xi)i>1 that belong to this ball.

It remains to show the converse proposition, i.e. that if two UMS are sampling equivalent then
they are in weak isometry. The proof we give is an adaptation of Gromov reconstruction theorem
from Section 3. 12 .6 of [Gro07].

Proof of Proposition 4.11. We say that a sequence (xi, ti)i>1 in S is equidistributed if for any A ∈ S,

lim
n→∞

1
n

n∑
i=1

1{(xi,ti)∈A} = µS(A).

A well-known fact is that the empirical measure of an i.i.d. sample converges weakly to the sampling
measure. Thus, a.s. an i.i.d. sequence is equidistributed.

Consider the map

D :
{
SN → R(N2)

(xi, ti)i>1 7→ (dS
(
(xi, ti), (xj , tj)

)
+ ti+tj

2 )i,j>1.

and let D′ be the analogous map for U ′. Then Lemma 4.12 shows that the pushforward measure
µ⊗NS ? D is the distance matrix distribution associated to U . Similarly µ⊗NS′ ? D′ is the distance
matrix distribution associated to U ′. As we have supposed that the two distance matrix distributions
coincide, we can find a sequence (xi)i>1 in U and a corresponding sequence (x′i)i>1 in U ′ that have
the same distance matrix, i.e. such that

D((xi, f(xi))i>1) = D′((x′i, f(x′i))i>1).
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We can suppose that these sequences are equidistributed and fulfill equalities (6) and (7) as all
these events have probability 1. Using (7) we have

∀i > 1, f(xi) = f(x′i)

and then using (6) we obtain

∀i, j > 1, dS
(
(xi, f(xi)), (xj , f(xj))

)
= d′S

(
(x′i, f(x′i)), (x′j , f(x′j))

)
.

We now extend this correspondence to an isomorphism between the backbones. Let i > 1 and
t > f(xi), we set

Φ((xi, t)) = (x′i, t).

It should be clear that Φ is an isomorphism from {(xi, t) ∈ S : t > f(xi), i > 1} to
{

(x′i, t) ∈ S
′ : t > f(x′i), i > 1

}
.

It is now sufficient to show that these sets are dense to end the proof by extending Φ to S by con-
tinuity. To see that, let (x, t) ∈ S. As t > f(x), we know that µ(B(x, t + ε)) > 0 for any ε > 0.
Writing

B(x, t+ ε) = {y ∈ U : dS((x, t+ ε), (y, t+ ε))},

as (xi, f(xi))i>1 is equidistributed, we see that we can find (xi, f(xi)) such that (xi, t+ε) = (x, t+ε).
The fact that Φ is measure preserving holds because we have chosen equidistributed sequences.

Remark 4.13. According to the correspondence between backbones and marked metric spaces out-
lined earlier, Proposition 4.11 is similar to the more general Theorem 1 in [DGP11], which is itself
an adaptation of the Gromov reconstruction theorem. However as we only address the case of back-
bones, we can be more specific. A direct application of Theorem 1 in [DGP11] would only provide
an isometry between the supports of the backbones whereas here we obtain a global isometry.

Remark 4.14. The results of this section show that the backbone of an UMS contains the same
information as the coalescent associated to that UMS. Thus properties of the coalescent can be read
off from properties of the backbone. In particular, we can make precise an informal conjecture for-
mulated in the context of exchangeable hierarchies in [FHP17], and addressed in [For18], concerning
a nice decomposition of the sampling measure µ. Indeed, the sampling measure on the backbone is
naturally decomposed into its atoms, its diffuse part on the set {(x, t) ∈ S : t = 0} of leaves of S
at height 0 and the remaining diffuse part. This decomposition induces three qualitatively different
behaviors of the coalescent. In short, points sampled in the atomic part form singletons of the coa-
lescent that all merge at the same time, an event called ‘broom-like explosion’ in [FHP17]. Second,
points sampled in {(x, t) ∈ S : t = 0} always belong to an infinite block of the coalescent for t > 0,
they form the ‘iterative branching part’. Finally points sampled in the remaining part of the back-
bone are singletons of the coalescent that continuously merge with existing blocks. This behavior is
referred to as ‘erosion’.

4.4 UMS associated to a comb, completion
In this section we construct the UMS associated to a comb. An important assumption of Propo-
sition 4.11 is that the backbones of the UMS are complete metric spaces. We will show that the
UMS associated to a comb enjoys this property up to the addition of a countable number of points.

Let (It)t>0 be a nested interval-partition. Recall that we have defined the comb function fI
associated to (It)t>0 as

fI(x) = inf{t > 0 : x ∈ It},

and that we have naively defined the ultrametric distance associated to (It)t>0 as

∀x, y ∈ [0, 1], dI(x, y) = 1{x 6=y} sup
[x∧y,x∨y]

fI .
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The natural sampling measure associated to ([0, 1], dI) is the Lebesgue measure Leb defined on
the usual Borel σ-field on [0, 1]. First we need to check that ([0, 1], dI ,B([0, 1]),Leb) fulfills the
assumptions of Definition 4.3.

First, let x ∈ [0, 1] and t > 0. If x ∈ It, then B(x, t) is the interval component of It to which
x belongs. Otherwise, B(x, y) = {x}. In both case B(x, t) ∈ B([0, 1]) and thus Egen ⊆ B([0, 1]).
Moreover, it is straightforward to check that dI is B([0, 1])⊗B([0, 1]) measurable. The comb metric
space associated to (It)t>0 is the UMS ([0, 1], d,B([0, 1]),Leb).

Remark 4.15. If BI denotes the Borel σ-field on [0, 1] induced by the metric dI , it is not true in
general that BI ⊆ B([0, 1]). It is crucial to define the sampling measure on Egen rather than on BI .
Note that this holds here since the sampling measure Leb is defined on B([0, 1]) and Egen ⊆ B([0, 1]).

A key assumption to use Proposition 4.11 is that we consider metric spaces that have a complete
backbone. However, in general the backbone associated to a comb metric space does not enjoy this
property. Let us see two examples of combs that are not associated to a complete backbone.

First, consider the comb associated to the diadic space. Let 0 < t < 1 and let k be the only
integer such that t ∈

[
2−(k+1), 2−k

)
. We set

I2
t =

⋃
06i62k+1−1

(
i2−(k+1), (i+ 1)2−(k+1)

)
and for t > 1 we set

I2
t = (0, 1).

The diadic comb is illustrated in Figure 6. Now consider the comb metric d2
I associated to this

comb, and let x = 2−k for some k > 1. Consider a non-decreasing sequence (xn)n>1 that converges
to x. It is not hard to see that (xn)n>1 is Cauchy for d2

I but does not admit a limit.
Let us discuss a second example which is not separable. Consider the following comb

I ′t =
{

O6 if t < 1/2
I2
t−1/2 otherwise.

This comb is illustrated in Figure 6. It is rather clear that the backbone associated to (I ′t)t>0 is
isometric to the backbone obtained from (I2

t )t>0 (notice that here the isometry is not an isomor-
phism, as the backbone associated to (I ′t)t>0 is “shifted above by 1” from that of (I2

t )t>0). The
backbone is not complete for the same reason as above. The following proposition shows that up
to the addition of a countable number of points, we can assume that the backbone associated to a
comb metric space is complete.

Proposition 4.16. Consider the comb metric dI associated to a comb (It)t>0. We can find a
countable set F and an extension d̄I of dI to [0, 1]∪F such that d̄I is ultrametric and the backbone
associated to ([0, 1] ∪ F, d̄I) is complete.

Remark 4.17. Here we have implicitly extended the Lebesgue measure to [0, 1] ∪ F by giving zero
mass to F .

A proof of this result is given in Appendix E. The proof of Corollary 1.13 now directly follows
from the various results we have shown.

Proof of Corollary 1.13. Let (U, d,F , µ) be an UMS, and let (Πt)t>0 be the associated coalescent.
Using Theorem 1.5 we can find a nested interval-partition whose associated coalescent is (Πt)t>0.
We can now use Proposition 4.16 to find comb metric space whose backbone is complete which has
the same distance matrix distribution than (U, d,F , µ). Using Proposition 4.11 ends the proof.
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Figure 6: Left panel: The diadic comb. Right panel: The comb (I ′t)t>0.

4.5 The separable case
In this section we consider the case of separable UMS and prove Corollary 1.12 that shows that in
the separable case we can find a direct isometry between any UMS and a comb metric space.

Let (U, d, µ) be a separable UMS where U = supp(µ). The key point is that in this case f ≡ 0.
Thus, the application ψ defined in Proposition 4.8 is a bijective isometry from (U, d) to the set
of leaves of the corresponding backbone. Moreover the backbone of (U, d) is complete iff (U, d) is
complete. We will need the following lemma to prove Corollary 1.12.

Lemma 4.18. Any separable ultrametric space (U, d) can be endowed with a measure µ such that
supp(µ) = U .

Proof of Corollary 1.12. Let (U, d) be a separable UMS and µ be the measure obtained from
Lemma 4.18. Consider (Πt)t>0 the coalescent obtained from sampling in U according to µ. For
any t > 0, (U, d) only has countably many balls of radius t, and as U = supp(µ) each of them has
positive mass. Thus by the law of large numbers, all the blocks of Πt are infinite. The coalescent
(Πt)t>0 has no dust.

Using Theorem 1.5 we can find a nested interval-partition without dust (It)t>0 such that the
distance matrix distribution associated to ([0, 1], dI ,Leb) is similar to that of (U, d, µ). Let (U∪F, d̄I)
be the completion of Proposition 4.16. It is immediate that the support of the extension of the
Lebesgue measure is the completion of the set {fI = 0}. Let ψ and ψI be the map of Proposition 4.8
applied to (U, d) and ([0, 1] ∪ F, d̄I) respectively. Using Proposition 4.11 we can find an isometry
Φ between the respective backbones of these spaces. The isometry between (U, d) and the comb
metric space is obtained by composing ψ, Φ and ψI .

Proof of Lemma 4.18. We build the measure by induction. For n = 1, as the space is separable
there are only countably many balls of radius 1. If there are finitely many such balls, say k balls
B1, . . . , Bk we define

µ(Bi) = 1
k
.

Else we can find an enumeration of the balls, (Bi)i>1, and we define

µ(Bi) =
(1

2

)i
.
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Suppose that we have defined µ(B) for any ball of radius 1/n. Given a ball Bn of radius 1/n there
are at most countably many balls (Bn+1

i )i>1 of radius 1/(n + 1) such that Bn+1
i ⊂ Bn. Similarly

if there are k balls we define
µ(Bn+1

i ) = µ(Bn)
k

and if there are countably many balls we define

µ(Bn+1
i ) = µ(Bn)

(1
2

)i
.

A simple application of Caratheodory’s extension theorem now provides a probability measure µ
defined on the Borel σ-field of (U, d) that extends this measure. It is straightforward from the
construction that supp(µ) = U .

Remark 4.19. Note that a similar construction was mentioned in [LUB17], where the resulting
measure was referred to as the “visibility measure”.
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A Exchangeable hierarchies
The aim of this section is to recall some results derived in [FHP17] and discuss the link they have
with the current results. Again, we recall that the present work should not be viewed as stemming
from the work of [FHP17], but sould be viewed as an independent approach bearing similarities
that we now expose.

Let X be an infinite space. A hierarchy on X is a collection H of subsets of X such that

1. for x ∈ X, {x} ∈ H, X ∈ H and O6 ∈ H;

2. given A,B ∈ H, then A ∩B is either A, B or O6 .
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Any ultrametric space encodes a hierarchy that is obtained by “forgetting the time”. More precisely,
if (U, d) is an ultrametric space, then

H = {B(x, t), x ∈ X, t > 0} ∪ {{x}, x ∈ X} ∪ {X,O6 }

is a hierarchy. The hierachy H encodes the genealogical structure of (U, d), i.e. the order of coales-
cence of the families, but not the coalescence times.

Remark A.1. The converse does not hold, there exist hierarchies that cannot be obtained as the
collection of balls of an ultrametric space.

The main object studied in [FHP17] are exchangeable hierarchies on N. Let σ be a permutation
of N, and H be a hierarchy on N. Then σ naturally acts on H as

σ(H) = {σ(A), A ∈ H}.

A random hierarchy on N (see [FHP17] for a definition of the σ-field associated to hierarchies) is
called exchangeable if

σ(H) (d)= H .

In a similar way that exchangeable coalescents are obtained by sampling in UMS, exchangeable
hierarchies are obtained by sampling in hierarchies on measured spaces. Let (X,µ) be a probability
space, and consider a hierarchy H on X. An exchangeable hierarchy H′ can be generated out of an
i.i.d. sequence (Xi)i>1 by defining

H′ = {{i > 1 : Xi ∈ A}, A ∈ H}.

Again, an exchangeable hierarchy can be obtained from an exchangeable coalescent by forgetting
the time. Let (Πt)t>0 be an exchangeable coalescent. Then

H = {B, B is a block of Πt, t > 0}

is an exchangeable hierarchy.
The main results in [FHP17] show that any exchangeable hierarchy can be obtained by sampling

from 1) a random “interval hierarchy” on [0, 1) and 2) a random real-tree. The link with our results
now seems straightforward.

An interval hierarchy on [0, 1) is a hierarchy H on [0, 1) such that all non-singleton elements
of H are intervals. Again, an interval hierarchy can be obtained from a nested interval-partition
(It)t>0 by forgetting the time. The family of sets

H = {I : I is an interval component of It, t > 0} ∪ {{x}, x ∈ [0, 1)} ∪ {[0, 1),O6 }

is an interval hierarchy. Theorem 4 in [FHP17] states that any exchangeable hierarchy on N can
be obtained by sampling in an interval hierarchy. This is the direct equivalent of our Theorem 1.5
that states that any exchangeable coalescent can be obtained by sampling in a random nested
interval-partition.

Consider a measured rooted real-tree (T, d, ρ, µ), it can be endowed with a partial order � such
that y � x if x is an ancestor of y (see [Eva07]). Then, the fringe subtree of T rooted at x ∈ T is
defined as the set

FT (x) = {y ∈ T : y � x},

it is the set of the offspring of x. The natural hierarchy associated to (T, d, ρ) is

H = {FT (x), x ∈ T}.

Theorem 5 in [FHP17] states that any exchangeable hierarchy can be obtained by sampling in the
hierarchy associated to a random measured rooted real-tree. In our framework, we have seen that a
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nested interval-partition can be seen as an ultrametric space, and in Section 4.4 we have seen how
this ultrametric space is embedded in a real-tree. Again we have proved here the reformulation of
Theorem 5 from [FHP17].

In a subsequent work, one of the authors has introduced the notion of mass-structural iso-
morphism [For18]. In a nutshell, two trees that are mass-structural isomorphic induce the same
exchangeable hierarchy. In our framework, two spaces have the same coalescent iff their backbones
are isomorphic. Thus, the mass-structural isomorphism is replaced here by the simpler notion of
isomorphism.

Overall, the two works are very similar in the sense that they obtain the same kind of represen-
tation results for exchangeable hierarchies and exchangeable coalescents. However the techniques
used in the proofs are different, e.g. the work of [FHP17] relies on spinal decomposition whereas
the present work relies on nested compositions. Moreover, as an ultrametric space contains “more
information” than a hierarchy, our results are not trivially implied by the results in [FHP17], but
constitute an extension of their work.

Finally, we wish to stress two things. First, most of the difficulties that Section 4 deal with
stem from the fact that we consider non-separable metric spaces. These issues and the work that
is done here heavily relies on the theory of metric spaces. Seeing genealogies as metric spaces is
only possible if we keep the information on the times of coalescence, which is not the case when
considering hierarchies.

Second, keeping this information allows us to study genealogies as time-indexed stochastic pro-
cesses. It is a necessary step to study the Markov property of the combs associated to Λ-coalescents
as in Section 3. This creates a direct link between the present work and the very rich litterature on
Λ-coalescents and coalescence theory that is not present in [FHP17]. Moreover, this provides a new
approach to the question of dynamical genealogies, with the introduction of the dynamical comb.

B Details of the proof of Theorem 2.5
Consider an exchangeable nested composition (Ct)t>0, and let (It)t∈Q+ be the nested interval-
partition obtained by applying Theorem 2.1 distinctly for any t ∈ Q+, and (Vi)i>1 be the sequence
of i.i.d. uniform variables obtained from Theorem 2.1 applied at time 0. The aim of this section is
to show that (Vi)i>1 is independent from (It)t∈Q+ .

Let 0 = t0 < t1 < · · · < tp. We can build a collection of sequences (ξ(k)
i )i>1,k=0,...,p where for

k = 0, . . . , p and i > 1,

ξ
(k)
i = lim

n→∞

1
n

n∑
j=1

1{j�ki},

and �k is the partial order on N representing Ctk as in Section 2.1. The sequence of vectors
(ξ(0)
i , . . . , ξ

(p)
i )i>1 is exchangeable. Thus by applying a vectorial version of de Finetti’s theorem

we know that there exists a measure µ on [0, 1]p+1 such that conditionally on µ the sequence of
vectors is i.i.d. distributed as µ. We can now “spread” the variables (ξ(0)

i )i>1 using an independent
i.i.d. uniform sequence as in the proof of Theorem 2.1 to obtain a sequence (Vi)i>1 that is i.i.d.
uniform conditionally on µ. Thus the sequence (Vi)i>1 is independent of µ. The interval-partitions
(It0 , . . . , Itp) can be recovered from the push-forward measures of µ by the coordinate maps on
Rp+1. Thus (Vi)i>1 is independent from (It)t∈Q+ .

C Generator calculation
Let n > 1 and let Q̂n denote the generator of the nested composition (Cnt )t>0 defined from the
transition rates (λ̃b,k, 2 6 k 6 b < ∞). Let Qn be the generator of the restriction to [n] of a
Λ-coalescent. Here we show that for any function from the space of compositions of [n] to R,

∀π, Q̂Lf(π) = LQf(π),
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where L is the operator defined in Section 3.
We will need additional notations. The space of partitions and compositions of [n] will be

denoted Pn and Sn respectively. We denote qπ,π′ the transition rate from π to π′, i.e. qπ,π′ = λb,k
if π′ is obtained by merging k blocks of π and π has b blocks, and qπ,π′ = 0 otherwise. Similarly
we define qc,c′ the transition rate from the composition c to the composition c′. Finally, we denote
O(π) the set of compositions of [n] whose blocks are given by the partition π, and Card(π) the
number of blocks of π. Let π ∈ Pn and denote b the number of blocks of π, we have

Q̂Lf(π) =
∑
π′∈Pn

qπ,π′(Lf(π′)− Lf(π))

=
∑
π′∈Pn

qπ,π′
( ∑
c′∈O(π′)

1
Card(π′)!f(c′)−

∑
c∈O(π)

1
Card(π)!f(c)

)

=
∑
π′∈Pn

∑
c′∈O(π′)

qπ,π′
1

Card(π′)!f(c′)−
∑

c∈O(π)

b∑
k=2

1
Card(π)!

(
b

k

)
λb,kf(c).

Similarly, we have

LQf(π) =
∑

c∈O(π)

1
Card(π)!Qf(c)

=
∑

c∈O(π)

1
Card(π)!

∑
c′∈Sn

qc,c′(f(c′)− f(c))

=
∑

c∈O(π)

1
Card(π)!

∑
c′∈Sn

qc,c′f(c′)−
∑

c∈O(π)

b∑
k=2

1
Card(π)!

(
b

k

)
λb,kf(c).

We will end the calculation by showing that for any c′ ∈ Sn, the coefficient in front of the term
f(c′) in the left sum is the same for both expression. Let π′ be the partition associated to c′. If π′
is not obtained by merging k blocks of π for some k, then the coefficient of the term f(c′) in the
sum is 0 in both expressions. Now suppose that π′ is obtained by merging k blocks of π. In the
first expression, we first choose the blocks of π that merge to get π′ and then order the resulting
partition to get the composition c′. There is only one possible way to do that and obtain a given c′.
Thus the coefficient in front of f(c′) is λb,k/(b − k + 1)!. In the second expression, we first choose
an order to obtain a composition c, and then merge its blocks to get the composition c′. There
are k! possible orderings of π, and then exactly one merger of c that lead to c′ (we can take any
permutation of the k blocks that merge). Thus the coefficient in front of term f(c′) is

k!
b! λ̃b,k = k!

b!
1

b− k + 1
b!

k! (b− k)!λb,k = 1
(b− k + 1)!λb,k.

D Measurability of separable rooted trees
In this section we prove the claim made in the proof of Proposition 4.8 that the Borel σ-field of a
rooted tree is induced by the clades of the tree. Let us be more specific.

We consider a real-tree (T, d) with a particular point ρ ∈ T that we call the root. For x, y ∈ T ,
we note [x, y] the unique geodesic with endpoints x and y (see [Eva07]). Recall from Appendix A
the fringe subtree of T rooted at x equivalently defined as the clade

C(x) = {y ∈ T : x ∈ [ρ, y]},

see Figure 7 for an illustration. The claim is that

σ({C(x), x ∈ T}) = B(T ).
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Figure 7: A tree rooted at ρ. The ball of radius ε and center x is represented by the black bold
lines. An example of y ∈ S(x, ε) is given, and its corresponding clade C(y) is represented by grey
dashed lines.

Remark D.1. Our goal in the proof of Proposition 4.8 is to apply the result to the backbone whose
root should be such that clades are the balls of U . This can be done by seeing the backbone as having
a root “at infinity”.

Let x ∈ T and ε > 0, we assume that ε < d(x, ρ). We denote B(x, ε) the open ball centered in
x with radius ε, and S(x, ε) the sphere of center x and radius ε, i.e.

S(x, ε) = {y ∈ T : d(x, y) = ε}.

There is a unique point in a ∈ [ρ, x] ∩ S(x, ε). It is clear that

B(x, ε) = C(a) \
⋃

y∈S(x,ε)\{a}

C(y).

Let y ∈ S(x, ε), and 0 < η < ε, we denote yη the only point in [y, x] such that d(yη, y) = η. We can
write ⋃

y∈S(x,ε)\{a}

C(y) =
⋂
η>0

⋃
y∈S(x,ε)\{a}

C(yη).

The claim is proved if we can show that the union on the right-hand side is countable. This holds
due to the separability of (T, d). To see that notice that by uniqueness of the geodesic, if y and y′
are such that yη 6= y′η, then d(y, y′) > η. Thus if the set {yη : y ∈ S(x, ε) \ {a}} is not countable, we
can find an uncountable subset of S(x, ε) such that any two points lie at distance at least η. This
is not possible due to separability.

E Comb completion
In this section we prove Proposition 4.16, i.e. that the backbone of a comb is complete up to the
addition of a countable number of points. We start from a nested interval-partition (It)t>0. We
define

R = {x ∈ [0, 1] : ∃sx, tx, x is the right endpoint of an interval component of Iu for u ∈ [sx, tx]}

and

L = {x ∈ [0, 1] : ∃sx, tx, x is the left endpoint of an interval component of Iu for u ∈ [sx, tx]}.
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We now work with a subset of [0, 1]× {0, r, l}. Let

Ī = ([0, 1]× {0}) ∪ (R×{r}) ∪ (L×{l}).

We will simply note x for (x, 0), xr for (x, r) if x ∈ R and xl for (x, l) if x ∈ L. We extend dI to Ī
in the following way. Let x < y, we define

d̄I(x, y) = d̄I(x, yl) = d̄I(xr, yl) = d̄I(xr, y) = sup
[x,y]

fI d̄I(x, yr) = d̄I(xr, yr) = sup
[x,y)

fI

d̄I(xl, y) = d̄I(xl, yl) = sup
(x,y]

fI d̄I(xl, yr) = sup
(x,y)

fI

and d̄I(xr, xl) = f(x). We use symmetrized definitions if x > y. It is straightforward to check that
d̄I is a pseudo-ultrametric. We will denote SI the backbone associated to this UMS, and dSI the
restriction of the tree metric to SI , i.e.

∀(x′, t), (y′, s) ∈ SI , dSI
(
(x′, t), (y′, s)

)
= max

{
d̄I(x′, y′)−

t+ s

2 ,
|t− s|

2

}
.

Lemma E.1. The backbone (SI , dSI ,Leb) associated to (Ī , d̄I ,Leb) is a complete metric space.
Proof. Consider (x′n, tn)n>1 a Cauchy sequence in Ī for the metric d∗I . As

|tn − tm|
2 6 dSI

(
(x′n, tn), (x′m, tm)

)
,

the sequence (tn)n>1 is Cauchy and converges to a limit that we note t. Each point x′n can be written
as x′n = (xn, an) with xn ∈ [0, 1] and an ∈ {0, r, l}. The sequence (xn)n>1 admits a subsequence
that converges to a limit x for the usual topology in [0, 1]. Without loss of generality we can assume
that (xn)n>1 is non-decreasing and converges to x.

Using the fact that the sequence is Cauchy, we know that

lim
n→∞

sup
m>n

d̄I(x′n, x′m)− tn + tm
2 6 0,

which directly implies that
lim
ε→0

sup
[x−ε,x)

fI 6 t.

Suppose that x ∈ R. By definition of d̄I and the above remark,

lim
n→∞

d̄I(x′n, xr)−
tn + t

2 6 0.

Thus the sequence (x′n, tn)n>1 converges to (xr, t).
Now suppose that x 6∈ R. We claim that

lim
ε→0

sup
[x−ε,x)

fI = f(x).

As x 6∈ R we directly know that
lim
ε→0

sup
[x−ε,x)

fI > f(x).

Suppose that the above limit is strictly greater than f(x). Then we can find a non-decreasing
sequence (yn)n>1 converging to x in the usual topology such that f(yn) ↓ f > f(x) as n goes to
infinity. Let η < f − f(x). Notice that the set {y ∈ [0, 1] : f(y) > f − η} is closed, as it is the
complement of If−η. This shows that x belongs to this set, which is a contradiction. Our claim is
proved. Similarly to above, it is now immediate that

lim
n→∞

d̄I(x′n, x)− tn + t

2 6 0.

and that (x′n, tn)n>1 converges to (x, t).

Remark E.2. This completion is already present in [LUB17] in the compact case. In this case, we
have R = L = {fI > 0}.
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F The link between dust and the Banach-Ulam problem
In this section we discuss in more details the reasons that pushed us to allow the sampling measure
to be defined on Egen rather than on the Borel σ-field. We will try to answer the following question:
can we find an ultrametric space (U, d) and a Borel sampling measure µ such that the coalescent
obtained by sampling from (U, d, µ) has dust? We will show that a positive answer to this question
requires additional axioms than the usual axioms ZFC (Zermelo-Fraenkel-Choice) of set theory.
Thus, as we want to provide an extension of the theory of metric measured spaces that accounts
for dust, it is natural to allow the measures to be defined on Egen.

Our strategy is to link this question with a deep measure-theoretic problem known as the
Banach-Ulam problem. The Banach-Ulam problem can be phrased as follows: can we find a set X
and a diffuse probability measure µ defined on the power set P(X) of X (P(X) is the set of all
subsets of X)? More precisely, we will show the following result.

Lemma F.1. Consider (U, d, µ) an ultrametric measured space where µ is defined on the Borel
σ-field of (U, d). Suppose that the coalescent associated to (U, d, µ) has dust. Then we can find a
set X and a diffuse probability measure ν defined on P(X).

A treatment of the Banach-Ulam problem requires advanced set theoretic tools, we refer the
interested reader to [Fre93]. We simply mention that if a solution to the Banach-Ulam problem
exists, then its cardinal is inaccessible. The existence of inaccessible cardinals cannot be deduced
from the usual axioms ZFC of set theory and requires additional axioms.

Let (U, d) be an ultrametric space and µ be a Borel measure. We recall that the suppport
supp(µ) of µ is defined as the intersection of all the closed subsets of mass 1. Equivalently, the
support can be defined as

supp(µ) = {x ∈ U : ∀ε > 0, µ(B(x, ε)) > 0}.

We will need the following lemma that relates the presence of dust to the mass of the support.

Lemma F.2. Let (U, d, µ) be an UMS, and (Πt)t>0 be the associated coalescent. Then (Πt)t>0 has
dust iff µ(supp(µ)) < 1.

Proof. Let (Xi)i>1 be an i.i.d. sequence in U distributed as µ and let (Πt)t>0 be the coalescent
obtained as above. We say that i is in the dust of the coalescent if there exists t > 0 such that {i}
is a singleton block of Πt. We show that a.s.

i is in the dust ⇐⇒ Xi 6∈ supp(µ).

Suppose that Xi ∈ supp(µ). Then for any t > 0, µ(B(Xi, t)) > 0, thus a.s. there are infinitely many
other (Xj)j>1 in B(Xi, t). Thus Xi is in an infinite block of Πt. Conversely suppose that i is not
in the dust, i.e. that for any t > 0, {i} is not a singleton block. Using Kingman’s representation
theorem for exchangeable partitions, we know that the block of i is a.s. infinite and has a positive
asymptotic frequency fi. The law of large numbers shows that fi = µ(B(Xi, t)) > 0.

We are now ready to prove the link with the Banach-Ulam problem.

Proof of Lemma F.1. As (Πt)t>0 has dust, Lemma F.2 ensures that µ(supp(µ)) < 1. Consider
t > 0 and let (Btα)α∈At be the collection of open balls of radius t with zero mass, where At is just
an index set. We know that ⋃

t>0

⋃
α∈At

Btα = U \ supp(µ).

Using the continuity from below of the measure µ, we can find an ε > 0 such that µ(
⋃
t>ε

⋃
α∈At B

t
α) >

0. We now consider the equivalence relation

x ∼ y ⇐⇒ d(x, y) < ε
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and denote X the quotient space of
⋃
t>ε

⋃
α∈At B

t
α for the relation ∼. We define the quotient map

φ :
{
U → X

x 7→ {y ∈ U : d(x, y) < ε}

We claim that φ is continuous when U is equiped with the metric topology induced by d, and X is
equiped with the discrete topology P(X). Let C ⊂ X, then

φ−1(C) =
⋃

x∈φ−1(C)

B(x, ε)

which is an open subset of U . We call µX the push-forward measure of µ by the map φ. The
measure µX/µX(X) is a diffuse probability measure defined on P(X) as required.
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